]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
a85a261bf8f95df9c399ed3592e81db3040a40a3
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /*
107 * The memory cgroup that hit its limit and as a result is the
108 * primary target of this reclaim invocation.
109 */
110 struct mem_cgroup *target_mem_cgroup;
111
112 /*
113 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 * are scanned.
115 */
116 nodemask_t *nodemask;
117 };
118
119 struct mem_cgroup_zone {
120 struct mem_cgroup *mem_cgroup;
121 struct zone *zone;
122 };
123
124 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126 #ifdef ARCH_HAS_PREFETCH
127 #define prefetch_prev_lru_page(_page, _base, _field) \
128 do { \
129 if ((_page)->lru.prev != _base) { \
130 struct page *prev; \
131 \
132 prev = lru_to_page(&(_page->lru)); \
133 prefetch(&prev->_field); \
134 } \
135 } while (0)
136 #else
137 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138 #endif
139
140 #ifdef ARCH_HAS_PREFETCHW
141 #define prefetchw_prev_lru_page(_page, _base, _field) \
142 do { \
143 if ((_page)->lru.prev != _base) { \
144 struct page *prev; \
145 \
146 prev = lru_to_page(&(_page->lru)); \
147 prefetchw(&prev->_field); \
148 } \
149 } while (0)
150 #else
151 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152 #endif
153
154 /*
155 * From 0 .. 100. Higher means more swappy.
156 */
157 int vm_swappiness = 60;
158 long vm_total_pages; /* The total number of pages which the VM controls */
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170 {
171 return !mz->mem_cgroup;
172 }
173 #else
174 static bool global_reclaim(struct scan_control *sc)
175 {
176 return true;
177 }
178
179 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 {
181 return true;
182 }
183 #endif
184
185 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186 {
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190 return &mz->zone->reclaim_stat;
191 }
192
193 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194 enum lru_list lru)
195 {
196 if (!scanning_global_lru(mz))
197 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198 zone_to_nid(mz->zone),
199 zone_idx(mz->zone),
200 BIT(lru));
201
202 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 }
204
205
206 /*
207 * Add a shrinker callback to be called from the vm
208 */
209 void register_shrinker(struct shrinker *shrinker)
210 {
211 atomic_long_set(&shrinker->nr_in_batch, 0);
212 down_write(&shrinker_rwsem);
213 list_add_tail(&shrinker->list, &shrinker_list);
214 up_write(&shrinker_rwsem);
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219 * Remove one
220 */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 }
227 EXPORT_SYMBOL(unregister_shrinker);
228
229 static inline int do_shrinker_shrink(struct shrinker *shrinker,
230 struct shrink_control *sc,
231 unsigned long nr_to_scan)
232 {
233 sc->nr_to_scan = nr_to_scan;
234 return (*shrinker->shrink)(shrinker, sc);
235 }
236
237 #define SHRINK_BATCH 128
238 /*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object. With this in mind we age equal
243 * percentages of the lru and ageable caches. This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt. It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257 unsigned long shrink_slab(struct shrink_control *shrink,
258 unsigned long nr_pages_scanned,
259 unsigned long lru_pages)
260 {
261 struct shrinker *shrinker;
262 unsigned long ret = 0;
263
264 if (nr_pages_scanned == 0)
265 nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267 if (!down_read_trylock(&shrinker_rwsem)) {
268 /* Assume we'll be able to shrink next time */
269 ret = 1;
270 goto out;
271 }
272
273 list_for_each_entry(shrinker, &shrinker_list, list) {
274 unsigned long long delta;
275 long total_scan;
276 long max_pass;
277 int shrink_ret = 0;
278 long nr;
279 long new_nr;
280 long batch_size = shrinker->batch ? shrinker->batch
281 : SHRINK_BATCH;
282
283 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284 if (max_pass <= 0)
285 continue;
286
287 /*
288 * copy the current shrinker scan count into a local variable
289 * and zero it so that other concurrent shrinker invocations
290 * don't also do this scanning work.
291 */
292 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294 total_scan = nr;
295 delta = (4 * nr_pages_scanned) / shrinker->seeks;
296 delta *= max_pass;
297 do_div(delta, lru_pages + 1);
298 total_scan += delta;
299 if (total_scan < 0) {
300 printk(KERN_ERR "shrink_slab: %pF negative objects to "
301 "delete nr=%ld\n",
302 shrinker->shrink, total_scan);
303 total_scan = max_pass;
304 }
305
306 /*
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * max_pass. This is bad for sustaining a working set in
313 * memory.
314 *
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
317 */
318 if (delta < max_pass / 4)
319 total_scan = min(total_scan, max_pass / 2);
320
321 /*
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
325 */
326 if (total_scan > max_pass * 2)
327 total_scan = max_pass * 2;
328
329 trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 nr_pages_scanned, lru_pages,
331 max_pass, delta, total_scan);
332
333 while (total_scan >= batch_size) {
334 int nr_before;
335
336 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337 shrink_ret = do_shrinker_shrink(shrinker, shrink,
338 batch_size);
339 if (shrink_ret == -1)
340 break;
341 if (shrink_ret < nr_before)
342 ret += nr_before - shrink_ret;
343 count_vm_events(SLABS_SCANNED, batch_size);
344 total_scan -= batch_size;
345
346 cond_resched();
347 }
348
349 /*
350 * move the unused scan count back into the shrinker in a
351 * manner that handles concurrent updates. If we exhausted the
352 * scan, there is no need to do an update.
353 */
354 if (total_scan > 0)
355 new_nr = atomic_long_add_return(total_scan,
356 &shrinker->nr_in_batch);
357 else
358 new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361 }
362 up_read(&shrinker_rwsem);
363 out:
364 cond_resched();
365 return ret;
366 }
367
368 static void set_reclaim_mode(int priority, struct scan_control *sc,
369 bool sync)
370 {
371 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373 /*
374 * Initially assume we are entering either lumpy reclaim or
375 * reclaim/compaction.Depending on the order, we will either set the
376 * sync mode or just reclaim order-0 pages later.
377 */
378 if (COMPACTION_BUILD)
379 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380 else
381 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383 /*
384 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385 * restricting when its set to either costly allocations or when
386 * under memory pressure
387 */
388 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389 sc->reclaim_mode |= syncmode;
390 else if (sc->order && priority < DEF_PRIORITY - 2)
391 sc->reclaim_mode |= syncmode;
392 else
393 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 }
395
396 static void reset_reclaim_mode(struct scan_control *sc)
397 {
398 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 }
400
401 static inline int is_page_cache_freeable(struct page *page)
402 {
403 /*
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
407 */
408 return page_count(page) - page_has_private(page) == 2;
409 }
410
411 static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
413 {
414 if (current->flags & PF_SWAPWRITE)
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
420
421 /* lumpy reclaim for hugepage often need a lot of write */
422 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423 return 1;
424 return 0;
425 }
426
427 /*
428 * We detected a synchronous write error writing a page out. Probably
429 * -ENOSPC. We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up. But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439 static void handle_write_error(struct address_space *mapping,
440 struct page *page, int error)
441 {
442 lock_page(page);
443 if (page_mapping(page) == mapping)
444 mapping_set_error(mapping, error);
445 unlock_page(page);
446 }
447
448 /* possible outcome of pageout() */
449 typedef enum {
450 /* failed to write page out, page is locked */
451 PAGE_KEEP,
452 /* move page to the active list, page is locked */
453 PAGE_ACTIVATE,
454 /* page has been sent to the disk successfully, page is unlocked */
455 PAGE_SUCCESS,
456 /* page is clean and locked */
457 PAGE_CLEAN,
458 } pageout_t;
459
460 /*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464 static pageout_t pageout(struct page *page, struct address_space *mapping,
465 struct scan_control *sc)
466 {
467 /*
468 * If the page is dirty, only perform writeback if that write
469 * will be non-blocking. To prevent this allocation from being
470 * stalled by pagecache activity. But note that there may be
471 * stalls if we need to run get_block(). We could test
472 * PagePrivate for that.
473 *
474 * If this process is currently in __generic_file_aio_write() against
475 * this page's queue, we can perform writeback even if that
476 * will block.
477 *
478 * If the page is swapcache, write it back even if that would
479 * block, for some throttling. This happens by accident, because
480 * swap_backing_dev_info is bust: it doesn't reflect the
481 * congestion state of the swapdevs. Easy to fix, if needed.
482 */
483 if (!is_page_cache_freeable(page))
484 return PAGE_KEEP;
485 if (!mapping) {
486 /*
487 * Some data journaling orphaned pages can have
488 * page->mapping == NULL while being dirty with clean buffers.
489 */
490 if (page_has_private(page)) {
491 if (try_to_free_buffers(page)) {
492 ClearPageDirty(page);
493 printk("%s: orphaned page\n", __func__);
494 return PAGE_CLEAN;
495 }
496 }
497 return PAGE_KEEP;
498 }
499 if (mapping->a_ops->writepage == NULL)
500 return PAGE_ACTIVATE;
501 if (!may_write_to_queue(mapping->backing_dev_info, sc))
502 return PAGE_KEEP;
503
504 if (clear_page_dirty_for_io(page)) {
505 int res;
506 struct writeback_control wbc = {
507 .sync_mode = WB_SYNC_NONE,
508 .nr_to_write = SWAP_CLUSTER_MAX,
509 .range_start = 0,
510 .range_end = LLONG_MAX,
511 .for_reclaim = 1,
512 };
513
514 SetPageReclaim(page);
515 res = mapping->a_ops->writepage(page, &wbc);
516 if (res < 0)
517 handle_write_error(mapping, page, res);
518 if (res == AOP_WRITEPAGE_ACTIVATE) {
519 ClearPageReclaim(page);
520 return PAGE_ACTIVATE;
521 }
522
523 if (!PageWriteback(page)) {
524 /* synchronous write or broken a_ops? */
525 ClearPageReclaim(page);
526 }
527 trace_mm_vmscan_writepage(page,
528 trace_reclaim_flags(page, sc->reclaim_mode));
529 inc_zone_page_state(page, NR_VMSCAN_WRITE);
530 return PAGE_SUCCESS;
531 }
532
533 return PAGE_CLEAN;
534 }
535
536 /*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540 static int __remove_mapping(struct address_space *mapping, struct page *page)
541 {
542 BUG_ON(!PageLocked(page));
543 BUG_ON(mapping != page_mapping(page));
544
545 spin_lock_irq(&mapping->tree_lock);
546 /*
547 * The non racy check for a busy page.
548 *
549 * Must be careful with the order of the tests. When someone has
550 * a ref to the page, it may be possible that they dirty it then
551 * drop the reference. So if PageDirty is tested before page_count
552 * here, then the following race may occur:
553 *
554 * get_user_pages(&page);
555 * [user mapping goes away]
556 * write_to(page);
557 * !PageDirty(page) [good]
558 * SetPageDirty(page);
559 * put_page(page);
560 * !page_count(page) [good, discard it]
561 *
562 * [oops, our write_to data is lost]
563 *
564 * Reversing the order of the tests ensures such a situation cannot
565 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566 * load is not satisfied before that of page->_count.
567 *
568 * Note that if SetPageDirty is always performed via set_page_dirty,
569 * and thus under tree_lock, then this ordering is not required.
570 */
571 if (!page_freeze_refs(page, 2))
572 goto cannot_free;
573 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574 if (unlikely(PageDirty(page))) {
575 page_unfreeze_refs(page, 2);
576 goto cannot_free;
577 }
578
579 if (PageSwapCache(page)) {
580 swp_entry_t swap = { .val = page_private(page) };
581 __delete_from_swap_cache(page);
582 spin_unlock_irq(&mapping->tree_lock);
583 swapcache_free(swap, page);
584 } else {
585 void (*freepage)(struct page *);
586
587 freepage = mapping->a_ops->freepage;
588
589 __delete_from_page_cache(page);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
592
593 if (freepage != NULL)
594 freepage(page);
595 }
596
597 return 1;
598
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
602 }
603
604 /*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 if (__remove_mapping(mapping, page)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622 }
623
624 /**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633 void putback_lru_page(struct page *page)
634 {
635 int lru;
636 int active = !!TestClearPageActive(page);
637 int was_unevictable = PageUnevictable(page);
638
639 VM_BUG_ON(PageLRU(page));
640
641 redo:
642 ClearPageUnevictable(page);
643
644 if (page_evictable(page, NULL)) {
645 /*
646 * For evictable pages, we can use the cache.
647 * In event of a race, worst case is we end up with an
648 * unevictable page on [in]active list.
649 * We know how to handle that.
650 */
651 lru = active + page_lru_base_type(page);
652 lru_cache_add_lru(page, lru);
653 } else {
654 /*
655 * Put unevictable pages directly on zone's unevictable
656 * list.
657 */
658 lru = LRU_UNEVICTABLE;
659 add_page_to_unevictable_list(page);
660 /*
661 * When racing with an mlock or AS_UNEVICTABLE clearing
662 * (page is unlocked) make sure that if the other thread
663 * does not observe our setting of PG_lru and fails
664 * isolation/check_move_unevictable_page,
665 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 * the page back to the evictable list.
667 *
668 * The other side is TestClearPageMlocked() or shmem_lock().
669 */
670 smp_mb();
671 }
672
673 /*
674 * page's status can change while we move it among lru. If an evictable
675 * page is on unevictable list, it never be freed. To avoid that,
676 * check after we added it to the list, again.
677 */
678 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679 if (!isolate_lru_page(page)) {
680 put_page(page);
681 goto redo;
682 }
683 /* This means someone else dropped this page from LRU
684 * So, it will be freed or putback to LRU again. There is
685 * nothing to do here.
686 */
687 }
688
689 if (was_unevictable && lru != LRU_UNEVICTABLE)
690 count_vm_event(UNEVICTABLE_PGRESCUED);
691 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692 count_vm_event(UNEVICTABLE_PGCULLED);
693
694 put_page(page); /* drop ref from isolate */
695 }
696
697 enum page_references {
698 PAGEREF_RECLAIM,
699 PAGEREF_RECLAIM_CLEAN,
700 PAGEREF_KEEP,
701 PAGEREF_ACTIVATE,
702 };
703
704 static enum page_references page_check_references(struct page *page,
705 struct mem_cgroup_zone *mz,
706 struct scan_control *sc)
707 {
708 int referenced_ptes, referenced_page;
709 unsigned long vm_flags;
710
711 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712 referenced_page = TestClearPageReferenced(page);
713
714 /* Lumpy reclaim - ignore references */
715 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 return PAGEREF_RECLAIM;
717
718 /*
719 * Mlock lost the isolation race with us. Let try_to_unmap()
720 * move the page to the unevictable list.
721 */
722 if (vm_flags & VM_LOCKED)
723 return PAGEREF_RECLAIM;
724
725 if (referenced_ptes) {
726 if (PageAnon(page))
727 return PAGEREF_ACTIVATE;
728 /*
729 * All mapped pages start out with page table
730 * references from the instantiating fault, so we need
731 * to look twice if a mapped file page is used more
732 * than once.
733 *
734 * Mark it and spare it for another trip around the
735 * inactive list. Another page table reference will
736 * lead to its activation.
737 *
738 * Note: the mark is set for activated pages as well
739 * so that recently deactivated but used pages are
740 * quickly recovered.
741 */
742 SetPageReferenced(page);
743
744 if (referenced_page || referenced_ptes > 1)
745 return PAGEREF_ACTIVATE;
746
747 /*
748 * Activate file-backed executable pages after first usage.
749 */
750 if (vm_flags & VM_EXEC)
751 return PAGEREF_ACTIVATE;
752
753 return PAGEREF_KEEP;
754 }
755
756 /* Reclaim if clean, defer dirty pages to writeback */
757 if (referenced_page && !PageSwapBacked(page))
758 return PAGEREF_RECLAIM_CLEAN;
759
760 return PAGEREF_RECLAIM;
761 }
762
763 /*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767 struct mem_cgroup_zone *mz,
768 struct scan_control *sc,
769 int priority,
770 unsigned long *ret_nr_dirty,
771 unsigned long *ret_nr_writeback)
772 {
773 LIST_HEAD(ret_pages);
774 LIST_HEAD(free_pages);
775 int pgactivate = 0;
776 unsigned long nr_dirty = 0;
777 unsigned long nr_congested = 0;
778 unsigned long nr_reclaimed = 0;
779 unsigned long nr_writeback = 0;
780
781 cond_resched();
782
783 while (!list_empty(page_list)) {
784 enum page_references references;
785 struct address_space *mapping;
786 struct page *page;
787 int may_enter_fs;
788
789 cond_resched();
790
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
793
794 if (!trylock_page(page))
795 goto keep;
796
797 VM_BUG_ON(PageActive(page));
798 VM_BUG_ON(page_zone(page) != mz->zone);
799
800 sc->nr_scanned++;
801
802 if (unlikely(!page_evictable(page, NULL)))
803 goto cull_mlocked;
804
805 if (!sc->may_unmap && page_mapped(page))
806 goto keep_locked;
807
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
811
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815 if (PageWriteback(page)) {
816 nr_writeback++;
817 /*
818 * Synchronous reclaim cannot queue pages for
819 * writeback due to the possibility of stack overflow
820 * but if it encounters a page under writeback, wait
821 * for the IO to complete.
822 */
823 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824 may_enter_fs)
825 wait_on_page_writeback(page);
826 else {
827 unlock_page(page);
828 goto keep_lumpy;
829 }
830 }
831
832 references = page_check_references(page, mz, sc);
833 switch (references) {
834 case PAGEREF_ACTIVATE:
835 goto activate_locked;
836 case PAGEREF_KEEP:
837 goto keep_locked;
838 case PAGEREF_RECLAIM:
839 case PAGEREF_RECLAIM_CLEAN:
840 ; /* try to reclaim the page below */
841 }
842
843 /*
844 * Anonymous process memory has backing store?
845 * Try to allocate it some swap space here.
846 */
847 if (PageAnon(page) && !PageSwapCache(page)) {
848 if (!(sc->gfp_mask & __GFP_IO))
849 goto keep_locked;
850 if (!add_to_swap(page))
851 goto activate_locked;
852 may_enter_fs = 1;
853 }
854
855 mapping = page_mapping(page);
856
857 /*
858 * The page is mapped into the page tables of one or more
859 * processes. Try to unmap it here.
860 */
861 if (page_mapped(page) && mapping) {
862 switch (try_to_unmap(page, TTU_UNMAP)) {
863 case SWAP_FAIL:
864 goto activate_locked;
865 case SWAP_AGAIN:
866 goto keep_locked;
867 case SWAP_MLOCK:
868 goto cull_mlocked;
869 case SWAP_SUCCESS:
870 ; /* try to free the page below */
871 }
872 }
873
874 if (PageDirty(page)) {
875 nr_dirty++;
876
877 /*
878 * Only kswapd can writeback filesystem pages to
879 * avoid risk of stack overflow but do not writeback
880 * unless under significant pressure.
881 */
882 if (page_is_file_cache(page) &&
883 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884 /*
885 * Immediately reclaim when written back.
886 * Similar in principal to deactivate_page()
887 * except we already have the page isolated
888 * and know it's dirty
889 */
890 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891 SetPageReclaim(page);
892
893 goto keep_locked;
894 }
895
896 if (references == PAGEREF_RECLAIM_CLEAN)
897 goto keep_locked;
898 if (!may_enter_fs)
899 goto keep_locked;
900 if (!sc->may_writepage)
901 goto keep_locked;
902
903 /* Page is dirty, try to write it out here */
904 switch (pageout(page, mapping, sc)) {
905 case PAGE_KEEP:
906 nr_congested++;
907 goto keep_locked;
908 case PAGE_ACTIVATE:
909 goto activate_locked;
910 case PAGE_SUCCESS:
911 if (PageWriteback(page))
912 goto keep_lumpy;
913 if (PageDirty(page))
914 goto keep;
915
916 /*
917 * A synchronous write - probably a ramdisk. Go
918 * ahead and try to reclaim the page.
919 */
920 if (!trylock_page(page))
921 goto keep;
922 if (PageDirty(page) || PageWriteback(page))
923 goto keep_locked;
924 mapping = page_mapping(page);
925 case PAGE_CLEAN:
926 ; /* try to free the page below */
927 }
928 }
929
930 /*
931 * If the page has buffers, try to free the buffer mappings
932 * associated with this page. If we succeed we try to free
933 * the page as well.
934 *
935 * We do this even if the page is PageDirty().
936 * try_to_release_page() does not perform I/O, but it is
937 * possible for a page to have PageDirty set, but it is actually
938 * clean (all its buffers are clean). This happens if the
939 * buffers were written out directly, with submit_bh(). ext3
940 * will do this, as well as the blockdev mapping.
941 * try_to_release_page() will discover that cleanness and will
942 * drop the buffers and mark the page clean - it can be freed.
943 *
944 * Rarely, pages can have buffers and no ->mapping. These are
945 * the pages which were not successfully invalidated in
946 * truncate_complete_page(). We try to drop those buffers here
947 * and if that worked, and the page is no longer mapped into
948 * process address space (page_count == 1) it can be freed.
949 * Otherwise, leave the page on the LRU so it is swappable.
950 */
951 if (page_has_private(page)) {
952 if (!try_to_release_page(page, sc->gfp_mask))
953 goto activate_locked;
954 if (!mapping && page_count(page) == 1) {
955 unlock_page(page);
956 if (put_page_testzero(page))
957 goto free_it;
958 else {
959 /*
960 * rare race with speculative reference.
961 * the speculative reference will free
962 * this page shortly, so we may
963 * increment nr_reclaimed here (and
964 * leave it off the LRU).
965 */
966 nr_reclaimed++;
967 continue;
968 }
969 }
970 }
971
972 if (!mapping || !__remove_mapping(mapping, page))
973 goto keep_locked;
974
975 /*
976 * At this point, we have no other references and there is
977 * no way to pick any more up (removed from LRU, removed
978 * from pagecache). Can use non-atomic bitops now (and
979 * we obviously don't have to worry about waking up a process
980 * waiting on the page lock, because there are no references.
981 */
982 __clear_page_locked(page);
983 free_it:
984 nr_reclaimed++;
985
986 /*
987 * Is there need to periodically free_page_list? It would
988 * appear not as the counts should be low
989 */
990 list_add(&page->lru, &free_pages);
991 continue;
992
993 cull_mlocked:
994 if (PageSwapCache(page))
995 try_to_free_swap(page);
996 unlock_page(page);
997 putback_lru_page(page);
998 reset_reclaim_mode(sc);
999 continue;
1000
1001 activate_locked:
1002 /* Not a candidate for swapping, so reclaim swap space. */
1003 if (PageSwapCache(page) && vm_swap_full())
1004 try_to_free_swap(page);
1005 VM_BUG_ON(PageActive(page));
1006 SetPageActive(page);
1007 pgactivate++;
1008 keep_locked:
1009 unlock_page(page);
1010 keep:
1011 reset_reclaim_mode(sc);
1012 keep_lumpy:
1013 list_add(&page->lru, &ret_pages);
1014 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015 }
1016
1017 /*
1018 * Tag a zone as congested if all the dirty pages encountered were
1019 * backed by a congested BDI. In this case, reclaimers should just
1020 * back off and wait for congestion to clear because further reclaim
1021 * will encounter the same problem
1022 */
1023 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024 zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026 free_hot_cold_page_list(&free_pages, 1);
1027
1028 list_splice(&ret_pages, page_list);
1029 count_vm_events(PGACTIVATE, pgactivate);
1030 *ret_nr_dirty += nr_dirty;
1031 *ret_nr_writeback += nr_writeback;
1032 return nr_reclaimed;
1033 }
1034
1035 /*
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046 {
1047 bool all_lru_mode;
1048 int ret = -EINVAL;
1049
1050 /* Only take pages on the LRU. */
1051 if (!PageLRU(page))
1052 return ret;
1053
1054 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057 /*
1058 * When checking the active state, we need to be sure we are
1059 * dealing with comparible boolean values. Take the logical not
1060 * of each.
1061 */
1062 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063 return ret;
1064
1065 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 return ret;
1067
1068 /*
1069 * When this function is being called for lumpy reclaim, we
1070 * initially look into all LRU pages, active, inactive and
1071 * unevictable; only give shrink_page_list evictable pages.
1072 */
1073 if (PageUnevictable(page))
1074 return ret;
1075
1076 ret = -EBUSY;
1077
1078 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1079 return ret;
1080
1081 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1082 return ret;
1083
1084 if (likely(get_page_unless_zero(page))) {
1085 /*
1086 * Be careful not to clear PageLRU until after we're
1087 * sure the page is not being freed elsewhere -- the
1088 * page release code relies on it.
1089 */
1090 ClearPageLRU(page);
1091 ret = 0;
1092 }
1093
1094 return ret;
1095 }
1096
1097 /*
1098 * zone->lru_lock is heavily contended. Some of the functions that
1099 * shrink the lists perform better by taking out a batch of pages
1100 * and working on them outside the LRU lock.
1101 *
1102 * For pagecache intensive workloads, this function is the hottest
1103 * spot in the kernel (apart from copy_*_user functions).
1104 *
1105 * Appropriate locks must be held before calling this function.
1106 *
1107 * @nr_to_scan: The number of pages to look through on the list.
1108 * @src: The LRU list to pull pages off.
1109 * @dst: The temp list to put pages on to.
1110 * @scanned: The number of pages that were scanned.
1111 * @order: The caller's attempted allocation order
1112 * @mode: One of the LRU isolation modes
1113 * @file: True [1] if isolating file [!anon] pages
1114 *
1115 * returns how many pages were moved onto *@dst.
1116 */
1117 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1118 struct list_head *src, struct list_head *dst,
1119 unsigned long *scanned, int order, isolate_mode_t mode,
1120 int file)
1121 {
1122 unsigned long nr_taken = 0;
1123 unsigned long nr_lumpy_taken = 0;
1124 unsigned long nr_lumpy_dirty = 0;
1125 unsigned long nr_lumpy_failed = 0;
1126 unsigned long scan;
1127
1128 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1129 struct page *page;
1130 unsigned long pfn;
1131 unsigned long end_pfn;
1132 unsigned long page_pfn;
1133 int zone_id;
1134
1135 page = lru_to_page(src);
1136 prefetchw_prev_lru_page(page, src, flags);
1137
1138 VM_BUG_ON(!PageLRU(page));
1139
1140 switch (__isolate_lru_page(page, mode, file)) {
1141 case 0:
1142 mem_cgroup_lru_del(page);
1143 list_move(&page->lru, dst);
1144 nr_taken += hpage_nr_pages(page);
1145 break;
1146
1147 case -EBUSY:
1148 /* else it is being freed elsewhere */
1149 list_move(&page->lru, src);
1150 continue;
1151
1152 default:
1153 BUG();
1154 }
1155
1156 if (!order)
1157 continue;
1158
1159 /*
1160 * Attempt to take all pages in the order aligned region
1161 * surrounding the tag page. Only take those pages of
1162 * the same active state as that tag page. We may safely
1163 * round the target page pfn down to the requested order
1164 * as the mem_map is guaranteed valid out to MAX_ORDER,
1165 * where that page is in a different zone we will detect
1166 * it from its zone id and abort this block scan.
1167 */
1168 zone_id = page_zone_id(page);
1169 page_pfn = page_to_pfn(page);
1170 pfn = page_pfn & ~((1 << order) - 1);
1171 end_pfn = pfn + (1 << order);
1172 for (; pfn < end_pfn; pfn++) {
1173 struct page *cursor_page;
1174
1175 /* The target page is in the block, ignore it. */
1176 if (unlikely(pfn == page_pfn))
1177 continue;
1178
1179 /* Avoid holes within the zone. */
1180 if (unlikely(!pfn_valid_within(pfn)))
1181 break;
1182
1183 cursor_page = pfn_to_page(pfn);
1184
1185 /* Check that we have not crossed a zone boundary. */
1186 if (unlikely(page_zone_id(cursor_page) != zone_id))
1187 break;
1188
1189 /*
1190 * If we don't have enough swap space, reclaiming of
1191 * anon page which don't already have a swap slot is
1192 * pointless.
1193 */
1194 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1195 !PageSwapCache(cursor_page))
1196 break;
1197
1198 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1199 mem_cgroup_lru_del(cursor_page);
1200 list_move(&cursor_page->lru, dst);
1201 nr_taken += hpage_nr_pages(cursor_page);
1202 nr_lumpy_taken++;
1203 if (PageDirty(cursor_page))
1204 nr_lumpy_dirty++;
1205 scan++;
1206 } else {
1207 /*
1208 * Check if the page is freed already.
1209 *
1210 * We can't use page_count() as that
1211 * requires compound_head and we don't
1212 * have a pin on the page here. If a
1213 * page is tail, we may or may not
1214 * have isolated the head, so assume
1215 * it's not free, it'd be tricky to
1216 * track the head status without a
1217 * page pin.
1218 */
1219 if (!PageTail(cursor_page) &&
1220 !atomic_read(&cursor_page->_count))
1221 continue;
1222 break;
1223 }
1224 }
1225
1226 /* If we break out of the loop above, lumpy reclaim failed */
1227 if (pfn < end_pfn)
1228 nr_lumpy_failed++;
1229 }
1230
1231 *scanned = scan;
1232
1233 trace_mm_vmscan_lru_isolate(order,
1234 nr_to_scan, scan,
1235 nr_taken,
1236 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1237 mode, file);
1238 return nr_taken;
1239 }
1240
1241 static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1242 struct list_head *dst,
1243 unsigned long *scanned, int order,
1244 isolate_mode_t mode, int active, int file)
1245 {
1246 struct lruvec *lruvec;
1247 int lru = LRU_BASE;
1248
1249 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1250 if (active)
1251 lru += LRU_ACTIVE;
1252 if (file)
1253 lru += LRU_FILE;
1254 return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1255 scanned, order, mode, file);
1256 }
1257
1258 /*
1259 * clear_active_flags() is a helper for shrink_active_list(), clearing
1260 * any active bits from the pages in the list.
1261 */
1262 static unsigned long clear_active_flags(struct list_head *page_list,
1263 unsigned int *count)
1264 {
1265 int nr_active = 0;
1266 int lru;
1267 struct page *page;
1268
1269 list_for_each_entry(page, page_list, lru) {
1270 int numpages = hpage_nr_pages(page);
1271 lru = page_lru_base_type(page);
1272 if (PageActive(page)) {
1273 lru += LRU_ACTIVE;
1274 ClearPageActive(page);
1275 nr_active += numpages;
1276 }
1277 if (count)
1278 count[lru] += numpages;
1279 }
1280
1281 return nr_active;
1282 }
1283
1284 /**
1285 * isolate_lru_page - tries to isolate a page from its LRU list
1286 * @page: page to isolate from its LRU list
1287 *
1288 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1289 * vmstat statistic corresponding to whatever LRU list the page was on.
1290 *
1291 * Returns 0 if the page was removed from an LRU list.
1292 * Returns -EBUSY if the page was not on an LRU list.
1293 *
1294 * The returned page will have PageLRU() cleared. If it was found on
1295 * the active list, it will have PageActive set. If it was found on
1296 * the unevictable list, it will have the PageUnevictable bit set. That flag
1297 * may need to be cleared by the caller before letting the page go.
1298 *
1299 * The vmstat statistic corresponding to the list on which the page was
1300 * found will be decremented.
1301 *
1302 * Restrictions:
1303 * (1) Must be called with an elevated refcount on the page. This is a
1304 * fundamentnal difference from isolate_lru_pages (which is called
1305 * without a stable reference).
1306 * (2) the lru_lock must not be held.
1307 * (3) interrupts must be enabled.
1308 */
1309 int isolate_lru_page(struct page *page)
1310 {
1311 int ret = -EBUSY;
1312
1313 VM_BUG_ON(!page_count(page));
1314
1315 if (PageLRU(page)) {
1316 struct zone *zone = page_zone(page);
1317
1318 spin_lock_irq(&zone->lru_lock);
1319 if (PageLRU(page)) {
1320 int lru = page_lru(page);
1321 ret = 0;
1322 get_page(page);
1323 ClearPageLRU(page);
1324
1325 del_page_from_lru_list(zone, page, lru);
1326 }
1327 spin_unlock_irq(&zone->lru_lock);
1328 }
1329 return ret;
1330 }
1331
1332 /*
1333 * Are there way too many processes in the direct reclaim path already?
1334 */
1335 static int too_many_isolated(struct zone *zone, int file,
1336 struct scan_control *sc)
1337 {
1338 unsigned long inactive, isolated;
1339
1340 if (current_is_kswapd())
1341 return 0;
1342
1343 if (!global_reclaim(sc))
1344 return 0;
1345
1346 if (file) {
1347 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1348 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1349 } else {
1350 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1351 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1352 }
1353
1354 return isolated > inactive;
1355 }
1356
1357 /*
1358 * TODO: Try merging with migrations version of putback_lru_pages
1359 */
1360 static noinline_for_stack void
1361 putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1362 unsigned long nr_anon, unsigned long nr_file,
1363 struct list_head *page_list)
1364 {
1365 struct page *page;
1366 struct pagevec pvec;
1367 struct zone *zone = mz->zone;
1368 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1369
1370 pagevec_init(&pvec, 1);
1371
1372 /*
1373 * Put back any unfreeable pages.
1374 */
1375 spin_lock(&zone->lru_lock);
1376 while (!list_empty(page_list)) {
1377 int lru;
1378 page = lru_to_page(page_list);
1379 VM_BUG_ON(PageLRU(page));
1380 list_del(&page->lru);
1381 if (unlikely(!page_evictable(page, NULL))) {
1382 spin_unlock_irq(&zone->lru_lock);
1383 putback_lru_page(page);
1384 spin_lock_irq(&zone->lru_lock);
1385 continue;
1386 }
1387 SetPageLRU(page);
1388 lru = page_lru(page);
1389 add_page_to_lru_list(zone, page, lru);
1390 if (is_active_lru(lru)) {
1391 int file = is_file_lru(lru);
1392 int numpages = hpage_nr_pages(page);
1393 reclaim_stat->recent_rotated[file] += numpages;
1394 }
1395 if (!pagevec_add(&pvec, page)) {
1396 spin_unlock_irq(&zone->lru_lock);
1397 __pagevec_release(&pvec);
1398 spin_lock_irq(&zone->lru_lock);
1399 }
1400 }
1401 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1402 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1403
1404 spin_unlock_irq(&zone->lru_lock);
1405 pagevec_release(&pvec);
1406 }
1407
1408 static noinline_for_stack void
1409 update_isolated_counts(struct mem_cgroup_zone *mz,
1410 struct scan_control *sc,
1411 unsigned long *nr_anon,
1412 unsigned long *nr_file,
1413 struct list_head *isolated_list)
1414 {
1415 unsigned long nr_active;
1416 struct zone *zone = mz->zone;
1417 unsigned int count[NR_LRU_LISTS] = { 0, };
1418 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1419
1420 nr_active = clear_active_flags(isolated_list, count);
1421 __count_vm_events(PGDEACTIVATE, nr_active);
1422
1423 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1424 -count[LRU_ACTIVE_FILE]);
1425 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1426 -count[LRU_INACTIVE_FILE]);
1427 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1428 -count[LRU_ACTIVE_ANON]);
1429 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1430 -count[LRU_INACTIVE_ANON]);
1431
1432 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1433 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1434 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1435 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1436
1437 reclaim_stat->recent_scanned[0] += *nr_anon;
1438 reclaim_stat->recent_scanned[1] += *nr_file;
1439 }
1440
1441 /*
1442 * Returns true if a direct reclaim should wait on pages under writeback.
1443 *
1444 * If we are direct reclaiming for contiguous pages and we do not reclaim
1445 * everything in the list, try again and wait for writeback IO to complete.
1446 * This will stall high-order allocations noticeably. Only do that when really
1447 * need to free the pages under high memory pressure.
1448 */
1449 static inline bool should_reclaim_stall(unsigned long nr_taken,
1450 unsigned long nr_freed,
1451 int priority,
1452 struct scan_control *sc)
1453 {
1454 int lumpy_stall_priority;
1455
1456 /* kswapd should not stall on sync IO */
1457 if (current_is_kswapd())
1458 return false;
1459
1460 /* Only stall on lumpy reclaim */
1461 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1462 return false;
1463
1464 /* If we have reclaimed everything on the isolated list, no stall */
1465 if (nr_freed == nr_taken)
1466 return false;
1467
1468 /*
1469 * For high-order allocations, there are two stall thresholds.
1470 * High-cost allocations stall immediately where as lower
1471 * order allocations such as stacks require the scanning
1472 * priority to be much higher before stalling.
1473 */
1474 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1475 lumpy_stall_priority = DEF_PRIORITY;
1476 else
1477 lumpy_stall_priority = DEF_PRIORITY / 3;
1478
1479 return priority <= lumpy_stall_priority;
1480 }
1481
1482 /*
1483 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1484 * of reclaimed pages
1485 */
1486 static noinline_for_stack unsigned long
1487 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1488 struct scan_control *sc, int priority, int file)
1489 {
1490 LIST_HEAD(page_list);
1491 unsigned long nr_scanned;
1492 unsigned long nr_reclaimed = 0;
1493 unsigned long nr_taken;
1494 unsigned long nr_anon;
1495 unsigned long nr_file;
1496 unsigned long nr_dirty = 0;
1497 unsigned long nr_writeback = 0;
1498 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1499 struct zone *zone = mz->zone;
1500
1501 while (unlikely(too_many_isolated(zone, file, sc))) {
1502 congestion_wait(BLK_RW_ASYNC, HZ/10);
1503
1504 /* We are about to die and free our memory. Return now. */
1505 if (fatal_signal_pending(current))
1506 return SWAP_CLUSTER_MAX;
1507 }
1508
1509 set_reclaim_mode(priority, sc, false);
1510 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1511 reclaim_mode |= ISOLATE_ACTIVE;
1512
1513 lru_add_drain();
1514
1515 if (!sc->may_unmap)
1516 reclaim_mode |= ISOLATE_UNMAPPED;
1517 if (!sc->may_writepage)
1518 reclaim_mode |= ISOLATE_CLEAN;
1519
1520 spin_lock_irq(&zone->lru_lock);
1521
1522 nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1523 &nr_scanned, sc->order,
1524 reclaim_mode, 0, file);
1525 if (global_reclaim(sc)) {
1526 zone->pages_scanned += nr_scanned;
1527 if (current_is_kswapd())
1528 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1529 nr_scanned);
1530 else
1531 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1532 nr_scanned);
1533 }
1534
1535 if (nr_taken == 0) {
1536 spin_unlock_irq(&zone->lru_lock);
1537 return 0;
1538 }
1539
1540 update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1541
1542 spin_unlock_irq(&zone->lru_lock);
1543
1544 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1545 &nr_dirty, &nr_writeback);
1546
1547 /* Check if we should syncronously wait for writeback */
1548 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1549 set_reclaim_mode(priority, sc, true);
1550 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1551 priority, &nr_dirty, &nr_writeback);
1552 }
1553
1554 local_irq_disable();
1555 if (current_is_kswapd())
1556 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1557 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1558
1559 putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1560
1561 /*
1562 * If reclaim is isolating dirty pages under writeback, it implies
1563 * that the long-lived page allocation rate is exceeding the page
1564 * laundering rate. Either the global limits are not being effective
1565 * at throttling processes due to the page distribution throughout
1566 * zones or there is heavy usage of a slow backing device. The
1567 * only option is to throttle from reclaim context which is not ideal
1568 * as there is no guarantee the dirtying process is throttled in the
1569 * same way balance_dirty_pages() manages.
1570 *
1571 * This scales the number of dirty pages that must be under writeback
1572 * before throttling depending on priority. It is a simple backoff
1573 * function that has the most effect in the range DEF_PRIORITY to
1574 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1575 * in trouble and reclaim is considered to be in trouble.
1576 *
1577 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1578 * DEF_PRIORITY-1 50% must be PageWriteback
1579 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1580 * ...
1581 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1582 * isolated page is PageWriteback
1583 */
1584 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1585 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1586
1587 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1588 zone_idx(zone),
1589 nr_scanned, nr_reclaimed,
1590 priority,
1591 trace_shrink_flags(file, sc->reclaim_mode));
1592 return nr_reclaimed;
1593 }
1594
1595 /*
1596 * This moves pages from the active list to the inactive list.
1597 *
1598 * We move them the other way if the page is referenced by one or more
1599 * processes, from rmap.
1600 *
1601 * If the pages are mostly unmapped, the processing is fast and it is
1602 * appropriate to hold zone->lru_lock across the whole operation. But if
1603 * the pages are mapped, the processing is slow (page_referenced()) so we
1604 * should drop zone->lru_lock around each page. It's impossible to balance
1605 * this, so instead we remove the pages from the LRU while processing them.
1606 * It is safe to rely on PG_active against the non-LRU pages in here because
1607 * nobody will play with that bit on a non-LRU page.
1608 *
1609 * The downside is that we have to touch page->_count against each page.
1610 * But we had to alter page->flags anyway.
1611 */
1612
1613 static void move_active_pages_to_lru(struct zone *zone,
1614 struct list_head *list,
1615 enum lru_list lru)
1616 {
1617 unsigned long pgmoved = 0;
1618 struct pagevec pvec;
1619 struct page *page;
1620
1621 pagevec_init(&pvec, 1);
1622
1623 while (!list_empty(list)) {
1624 struct lruvec *lruvec;
1625
1626 page = lru_to_page(list);
1627
1628 VM_BUG_ON(PageLRU(page));
1629 SetPageLRU(page);
1630
1631 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1632 list_move(&page->lru, &lruvec->lists[lru]);
1633 pgmoved += hpage_nr_pages(page);
1634
1635 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1636 spin_unlock_irq(&zone->lru_lock);
1637 if (buffer_heads_over_limit)
1638 pagevec_strip(&pvec);
1639 __pagevec_release(&pvec);
1640 spin_lock_irq(&zone->lru_lock);
1641 }
1642 }
1643 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1644 if (!is_active_lru(lru))
1645 __count_vm_events(PGDEACTIVATE, pgmoved);
1646 }
1647
1648 static void shrink_active_list(unsigned long nr_pages,
1649 struct mem_cgroup_zone *mz,
1650 struct scan_control *sc,
1651 int priority, int file)
1652 {
1653 unsigned long nr_taken;
1654 unsigned long pgscanned;
1655 unsigned long vm_flags;
1656 LIST_HEAD(l_hold); /* The pages which were snipped off */
1657 LIST_HEAD(l_active);
1658 LIST_HEAD(l_inactive);
1659 struct page *page;
1660 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1661 unsigned long nr_rotated = 0;
1662 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1663 struct zone *zone = mz->zone;
1664
1665 lru_add_drain();
1666
1667 if (!sc->may_unmap)
1668 reclaim_mode |= ISOLATE_UNMAPPED;
1669 if (!sc->may_writepage)
1670 reclaim_mode |= ISOLATE_CLEAN;
1671
1672 spin_lock_irq(&zone->lru_lock);
1673
1674 nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1675 &pgscanned, sc->order,
1676 reclaim_mode, 1, file);
1677
1678 if (global_reclaim(sc))
1679 zone->pages_scanned += pgscanned;
1680
1681 reclaim_stat->recent_scanned[file] += nr_taken;
1682
1683 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1684 if (file)
1685 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1686 else
1687 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1688 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1689 spin_unlock_irq(&zone->lru_lock);
1690
1691 while (!list_empty(&l_hold)) {
1692 cond_resched();
1693 page = lru_to_page(&l_hold);
1694 list_del(&page->lru);
1695
1696 if (unlikely(!page_evictable(page, NULL))) {
1697 putback_lru_page(page);
1698 continue;
1699 }
1700
1701 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1702 nr_rotated += hpage_nr_pages(page);
1703 /*
1704 * Identify referenced, file-backed active pages and
1705 * give them one more trip around the active list. So
1706 * that executable code get better chances to stay in
1707 * memory under moderate memory pressure. Anon pages
1708 * are not likely to be evicted by use-once streaming
1709 * IO, plus JVM can create lots of anon VM_EXEC pages,
1710 * so we ignore them here.
1711 */
1712 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1713 list_add(&page->lru, &l_active);
1714 continue;
1715 }
1716 }
1717
1718 ClearPageActive(page); /* we are de-activating */
1719 list_add(&page->lru, &l_inactive);
1720 }
1721
1722 /*
1723 * Move pages back to the lru list.
1724 */
1725 spin_lock_irq(&zone->lru_lock);
1726 /*
1727 * Count referenced pages from currently used mappings as rotated,
1728 * even though only some of them are actually re-activated. This
1729 * helps balance scan pressure between file and anonymous pages in
1730 * get_scan_ratio.
1731 */
1732 reclaim_stat->recent_rotated[file] += nr_rotated;
1733
1734 move_active_pages_to_lru(zone, &l_active,
1735 LRU_ACTIVE + file * LRU_FILE);
1736 move_active_pages_to_lru(zone, &l_inactive,
1737 LRU_BASE + file * LRU_FILE);
1738 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1739 spin_unlock_irq(&zone->lru_lock);
1740 }
1741
1742 #ifdef CONFIG_SWAP
1743 static int inactive_anon_is_low_global(struct zone *zone)
1744 {
1745 unsigned long active, inactive;
1746
1747 active = zone_page_state(zone, NR_ACTIVE_ANON);
1748 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1749
1750 if (inactive * zone->inactive_ratio < active)
1751 return 1;
1752
1753 return 0;
1754 }
1755
1756 /**
1757 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1758 * @zone: zone to check
1759 * @sc: scan control of this context
1760 *
1761 * Returns true if the zone does not have enough inactive anon pages,
1762 * meaning some active anon pages need to be deactivated.
1763 */
1764 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1765 {
1766 /*
1767 * If we don't have swap space, anonymous page deactivation
1768 * is pointless.
1769 */
1770 if (!total_swap_pages)
1771 return 0;
1772
1773 if (!scanning_global_lru(mz))
1774 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1775 mz->zone);
1776
1777 return inactive_anon_is_low_global(mz->zone);
1778 }
1779 #else
1780 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1781 {
1782 return 0;
1783 }
1784 #endif
1785
1786 static int inactive_file_is_low_global(struct zone *zone)
1787 {
1788 unsigned long active, inactive;
1789
1790 active = zone_page_state(zone, NR_ACTIVE_FILE);
1791 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1792
1793 return (active > inactive);
1794 }
1795
1796 /**
1797 * inactive_file_is_low - check if file pages need to be deactivated
1798 * @mz: memory cgroup and zone to check
1799 *
1800 * When the system is doing streaming IO, memory pressure here
1801 * ensures that active file pages get deactivated, until more
1802 * than half of the file pages are on the inactive list.
1803 *
1804 * Once we get to that situation, protect the system's working
1805 * set from being evicted by disabling active file page aging.
1806 *
1807 * This uses a different ratio than the anonymous pages, because
1808 * the page cache uses a use-once replacement algorithm.
1809 */
1810 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1811 {
1812 if (!scanning_global_lru(mz))
1813 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1814 mz->zone);
1815
1816 return inactive_file_is_low_global(mz->zone);
1817 }
1818
1819 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1820 {
1821 if (file)
1822 return inactive_file_is_low(mz);
1823 else
1824 return inactive_anon_is_low(mz);
1825 }
1826
1827 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1828 struct mem_cgroup_zone *mz,
1829 struct scan_control *sc, int priority)
1830 {
1831 int file = is_file_lru(lru);
1832
1833 if (is_active_lru(lru)) {
1834 if (inactive_list_is_low(mz, file))
1835 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1836 return 0;
1837 }
1838
1839 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1840 }
1841
1842 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1843 struct scan_control *sc)
1844 {
1845 if (global_reclaim(sc))
1846 return vm_swappiness;
1847 return mem_cgroup_swappiness(mz->mem_cgroup);
1848 }
1849
1850 /*
1851 * Determine how aggressively the anon and file LRU lists should be
1852 * scanned. The relative value of each set of LRU lists is determined
1853 * by looking at the fraction of the pages scanned we did rotate back
1854 * onto the active list instead of evict.
1855 *
1856 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1857 */
1858 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1859 unsigned long *nr, int priority)
1860 {
1861 unsigned long anon, file, free;
1862 unsigned long anon_prio, file_prio;
1863 unsigned long ap, fp;
1864 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1865 u64 fraction[2], denominator;
1866 enum lru_list l;
1867 int noswap = 0;
1868 bool force_scan = false;
1869
1870 /*
1871 * If the zone or memcg is small, nr[l] can be 0. This
1872 * results in no scanning on this priority and a potential
1873 * priority drop. Global direct reclaim can go to the next
1874 * zone and tends to have no problems. Global kswapd is for
1875 * zone balancing and it needs to scan a minimum amount. When
1876 * reclaiming for a memcg, a priority drop can cause high
1877 * latencies, so it's better to scan a minimum amount there as
1878 * well.
1879 */
1880 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1881 force_scan = true;
1882 if (!global_reclaim(sc))
1883 force_scan = true;
1884
1885 /* If we have no swap space, do not bother scanning anon pages. */
1886 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1887 noswap = 1;
1888 fraction[0] = 0;
1889 fraction[1] = 1;
1890 denominator = 1;
1891 goto out;
1892 }
1893
1894 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1895 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1896 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1897 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1898
1899 if (global_reclaim(sc)) {
1900 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1901 /* If we have very few page cache pages,
1902 force-scan anon pages. */
1903 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1904 fraction[0] = 1;
1905 fraction[1] = 0;
1906 denominator = 1;
1907 goto out;
1908 }
1909 }
1910
1911 /*
1912 * With swappiness at 100, anonymous and file have the same priority.
1913 * This scanning priority is essentially the inverse of IO cost.
1914 */
1915 anon_prio = vmscan_swappiness(mz, sc);
1916 file_prio = 200 - vmscan_swappiness(mz, sc);
1917
1918 /*
1919 * OK, so we have swap space and a fair amount of page cache
1920 * pages. We use the recently rotated / recently scanned
1921 * ratios to determine how valuable each cache is.
1922 *
1923 * Because workloads change over time (and to avoid overflow)
1924 * we keep these statistics as a floating average, which ends
1925 * up weighing recent references more than old ones.
1926 *
1927 * anon in [0], file in [1]
1928 */
1929 spin_lock_irq(&mz->zone->lru_lock);
1930 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1931 reclaim_stat->recent_scanned[0] /= 2;
1932 reclaim_stat->recent_rotated[0] /= 2;
1933 }
1934
1935 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1936 reclaim_stat->recent_scanned[1] /= 2;
1937 reclaim_stat->recent_rotated[1] /= 2;
1938 }
1939
1940 /*
1941 * The amount of pressure on anon vs file pages is inversely
1942 * proportional to the fraction of recently scanned pages on
1943 * each list that were recently referenced and in active use.
1944 */
1945 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1946 ap /= reclaim_stat->recent_rotated[0] + 1;
1947
1948 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1949 fp /= reclaim_stat->recent_rotated[1] + 1;
1950 spin_unlock_irq(&mz->zone->lru_lock);
1951
1952 fraction[0] = ap;
1953 fraction[1] = fp;
1954 denominator = ap + fp + 1;
1955 out:
1956 for_each_evictable_lru(l) {
1957 int file = is_file_lru(l);
1958 unsigned long scan;
1959
1960 scan = zone_nr_lru_pages(mz, l);
1961 if (priority || noswap) {
1962 scan >>= priority;
1963 if (!scan && force_scan)
1964 scan = SWAP_CLUSTER_MAX;
1965 scan = div64_u64(scan * fraction[file], denominator);
1966 }
1967 nr[l] = scan;
1968 }
1969 }
1970
1971 /*
1972 * Reclaim/compaction depends on a number of pages being freed. To avoid
1973 * disruption to the system, a small number of order-0 pages continue to be
1974 * rotated and reclaimed in the normal fashion. However, by the time we get
1975 * back to the allocator and call try_to_compact_zone(), we ensure that
1976 * there are enough free pages for it to be likely successful
1977 */
1978 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1979 unsigned long nr_reclaimed,
1980 unsigned long nr_scanned,
1981 struct scan_control *sc)
1982 {
1983 unsigned long pages_for_compaction;
1984 unsigned long inactive_lru_pages;
1985
1986 /* If not in reclaim/compaction mode, stop */
1987 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1988 return false;
1989
1990 /* Consider stopping depending on scan and reclaim activity */
1991 if (sc->gfp_mask & __GFP_REPEAT) {
1992 /*
1993 * For __GFP_REPEAT allocations, stop reclaiming if the
1994 * full LRU list has been scanned and we are still failing
1995 * to reclaim pages. This full LRU scan is potentially
1996 * expensive but a __GFP_REPEAT caller really wants to succeed
1997 */
1998 if (!nr_reclaimed && !nr_scanned)
1999 return false;
2000 } else {
2001 /*
2002 * For non-__GFP_REPEAT allocations which can presumably
2003 * fail without consequence, stop if we failed to reclaim
2004 * any pages from the last SWAP_CLUSTER_MAX number of
2005 * pages that were scanned. This will return to the
2006 * caller faster at the risk reclaim/compaction and
2007 * the resulting allocation attempt fails
2008 */
2009 if (!nr_reclaimed)
2010 return false;
2011 }
2012
2013 /*
2014 * If we have not reclaimed enough pages for compaction and the
2015 * inactive lists are large enough, continue reclaiming
2016 */
2017 pages_for_compaction = (2UL << sc->order);
2018 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2019 if (nr_swap_pages > 0)
2020 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2021 if (sc->nr_reclaimed < pages_for_compaction &&
2022 inactive_lru_pages > pages_for_compaction)
2023 return true;
2024
2025 /* If compaction would go ahead or the allocation would succeed, stop */
2026 switch (compaction_suitable(mz->zone, sc->order)) {
2027 case COMPACT_PARTIAL:
2028 case COMPACT_CONTINUE:
2029 return false;
2030 default:
2031 return true;
2032 }
2033 }
2034
2035 /*
2036 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2037 */
2038 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2039 struct scan_control *sc)
2040 {
2041 unsigned long nr[NR_LRU_LISTS];
2042 unsigned long nr_to_scan;
2043 enum lru_list l;
2044 unsigned long nr_reclaimed, nr_scanned;
2045 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2046 struct blk_plug plug;
2047
2048 restart:
2049 nr_reclaimed = 0;
2050 nr_scanned = sc->nr_scanned;
2051 get_scan_count(mz, sc, nr, priority);
2052
2053 blk_start_plug(&plug);
2054 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2055 nr[LRU_INACTIVE_FILE]) {
2056 for_each_evictable_lru(l) {
2057 if (nr[l]) {
2058 nr_to_scan = min_t(unsigned long,
2059 nr[l], SWAP_CLUSTER_MAX);
2060 nr[l] -= nr_to_scan;
2061
2062 nr_reclaimed += shrink_list(l, nr_to_scan,
2063 mz, sc, priority);
2064 }
2065 }
2066 /*
2067 * On large memory systems, scan >> priority can become
2068 * really large. This is fine for the starting priority;
2069 * we want to put equal scanning pressure on each zone.
2070 * However, if the VM has a harder time of freeing pages,
2071 * with multiple processes reclaiming pages, the total
2072 * freeing target can get unreasonably large.
2073 */
2074 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2075 break;
2076 }
2077 blk_finish_plug(&plug);
2078 sc->nr_reclaimed += nr_reclaimed;
2079
2080 /*
2081 * Even if we did not try to evict anon pages at all, we want to
2082 * rebalance the anon lru active/inactive ratio.
2083 */
2084 if (inactive_anon_is_low(mz))
2085 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2086
2087 /* reclaim/compaction might need reclaim to continue */
2088 if (should_continue_reclaim(mz, nr_reclaimed,
2089 sc->nr_scanned - nr_scanned, sc))
2090 goto restart;
2091
2092 throttle_vm_writeout(sc->gfp_mask);
2093 }
2094
2095 static void shrink_zone(int priority, struct zone *zone,
2096 struct scan_control *sc)
2097 {
2098 struct mem_cgroup *root = sc->target_mem_cgroup;
2099 struct mem_cgroup_reclaim_cookie reclaim = {
2100 .zone = zone,
2101 .priority = priority,
2102 };
2103 struct mem_cgroup *memcg;
2104
2105 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2106 do {
2107 struct mem_cgroup_zone mz = {
2108 .mem_cgroup = memcg,
2109 .zone = zone,
2110 };
2111
2112 shrink_mem_cgroup_zone(priority, &mz, sc);
2113 /*
2114 * Limit reclaim has historically picked one memcg and
2115 * scanned it with decreasing priority levels until
2116 * nr_to_reclaim had been reclaimed. This priority
2117 * cycle is thus over after a single memcg.
2118 *
2119 * Direct reclaim and kswapd, on the other hand, have
2120 * to scan all memory cgroups to fulfill the overall
2121 * scan target for the zone.
2122 */
2123 if (!global_reclaim(sc)) {
2124 mem_cgroup_iter_break(root, memcg);
2125 break;
2126 }
2127 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2128 } while (memcg);
2129 }
2130
2131 /*
2132 * This is the direct reclaim path, for page-allocating processes. We only
2133 * try to reclaim pages from zones which will satisfy the caller's allocation
2134 * request.
2135 *
2136 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2137 * Because:
2138 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2139 * allocation or
2140 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2141 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2142 * zone defense algorithm.
2143 *
2144 * If a zone is deemed to be full of pinned pages then just give it a light
2145 * scan then give up on it.
2146 *
2147 * This function returns true if a zone is being reclaimed for a costly
2148 * high-order allocation and compaction is either ready to begin or deferred.
2149 * This indicates to the caller that it should retry the allocation or fail.
2150 */
2151 static bool shrink_zones(int priority, struct zonelist *zonelist,
2152 struct scan_control *sc)
2153 {
2154 struct zoneref *z;
2155 struct zone *zone;
2156 unsigned long nr_soft_reclaimed;
2157 unsigned long nr_soft_scanned;
2158 bool should_abort_reclaim = false;
2159
2160 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2161 gfp_zone(sc->gfp_mask), sc->nodemask) {
2162 if (!populated_zone(zone))
2163 continue;
2164 /*
2165 * Take care memory controller reclaiming has small influence
2166 * to global LRU.
2167 */
2168 if (global_reclaim(sc)) {
2169 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2170 continue;
2171 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2172 continue; /* Let kswapd poll it */
2173 if (COMPACTION_BUILD) {
2174 /*
2175 * If we already have plenty of memory free for
2176 * compaction in this zone, don't free any more.
2177 * Even though compaction is invoked for any
2178 * non-zero order, only frequent costly order
2179 * reclamation is disruptive enough to become a
2180 * noticable problem, like transparent huge page
2181 * allocations.
2182 */
2183 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2184 (compaction_suitable(zone, sc->order) ||
2185 compaction_deferred(zone))) {
2186 should_abort_reclaim = true;
2187 continue;
2188 }
2189 }
2190 /*
2191 * This steals pages from memory cgroups over softlimit
2192 * and returns the number of reclaimed pages and
2193 * scanned pages. This works for global memory pressure
2194 * and balancing, not for a memcg's limit.
2195 */
2196 nr_soft_scanned = 0;
2197 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2198 sc->order, sc->gfp_mask,
2199 &nr_soft_scanned);
2200 sc->nr_reclaimed += nr_soft_reclaimed;
2201 sc->nr_scanned += nr_soft_scanned;
2202 /* need some check for avoid more shrink_zone() */
2203 }
2204
2205 shrink_zone(priority, zone, sc);
2206 }
2207
2208 return should_abort_reclaim;
2209 }
2210
2211 static bool zone_reclaimable(struct zone *zone)
2212 {
2213 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2214 }
2215
2216 /* All zones in zonelist are unreclaimable? */
2217 static bool all_unreclaimable(struct zonelist *zonelist,
2218 struct scan_control *sc)
2219 {
2220 struct zoneref *z;
2221 struct zone *zone;
2222
2223 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2224 gfp_zone(sc->gfp_mask), sc->nodemask) {
2225 if (!populated_zone(zone))
2226 continue;
2227 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2228 continue;
2229 if (!zone->all_unreclaimable)
2230 return false;
2231 }
2232
2233 return true;
2234 }
2235
2236 /*
2237 * This is the main entry point to direct page reclaim.
2238 *
2239 * If a full scan of the inactive list fails to free enough memory then we
2240 * are "out of memory" and something needs to be killed.
2241 *
2242 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2243 * high - the zone may be full of dirty or under-writeback pages, which this
2244 * caller can't do much about. We kick the writeback threads and take explicit
2245 * naps in the hope that some of these pages can be written. But if the
2246 * allocating task holds filesystem locks which prevent writeout this might not
2247 * work, and the allocation attempt will fail.
2248 *
2249 * returns: 0, if no pages reclaimed
2250 * else, the number of pages reclaimed
2251 */
2252 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2253 struct scan_control *sc,
2254 struct shrink_control *shrink)
2255 {
2256 int priority;
2257 unsigned long total_scanned = 0;
2258 struct reclaim_state *reclaim_state = current->reclaim_state;
2259 struct zoneref *z;
2260 struct zone *zone;
2261 unsigned long writeback_threshold;
2262
2263 get_mems_allowed();
2264 delayacct_freepages_start();
2265
2266 if (global_reclaim(sc))
2267 count_vm_event(ALLOCSTALL);
2268
2269 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2270 sc->nr_scanned = 0;
2271 if (!priority)
2272 disable_swap_token(sc->target_mem_cgroup);
2273 if (shrink_zones(priority, zonelist, sc))
2274 break;
2275
2276 /*
2277 * Don't shrink slabs when reclaiming memory from
2278 * over limit cgroups
2279 */
2280 if (global_reclaim(sc)) {
2281 unsigned long lru_pages = 0;
2282 for_each_zone_zonelist(zone, z, zonelist,
2283 gfp_zone(sc->gfp_mask)) {
2284 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2285 continue;
2286
2287 lru_pages += zone_reclaimable_pages(zone);
2288 }
2289
2290 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2291 if (reclaim_state) {
2292 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2293 reclaim_state->reclaimed_slab = 0;
2294 }
2295 }
2296 total_scanned += sc->nr_scanned;
2297 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2298 goto out;
2299
2300 /*
2301 * Try to write back as many pages as we just scanned. This
2302 * tends to cause slow streaming writers to write data to the
2303 * disk smoothly, at the dirtying rate, which is nice. But
2304 * that's undesirable in laptop mode, where we *want* lumpy
2305 * writeout. So in laptop mode, write out the whole world.
2306 */
2307 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2308 if (total_scanned > writeback_threshold) {
2309 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2310 WB_REASON_TRY_TO_FREE_PAGES);
2311 sc->may_writepage = 1;
2312 }
2313
2314 /* Take a nap, wait for some writeback to complete */
2315 if (!sc->hibernation_mode && sc->nr_scanned &&
2316 priority < DEF_PRIORITY - 2) {
2317 struct zone *preferred_zone;
2318
2319 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2320 &cpuset_current_mems_allowed,
2321 &preferred_zone);
2322 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2323 }
2324 }
2325
2326 out:
2327 delayacct_freepages_end();
2328 put_mems_allowed();
2329
2330 if (sc->nr_reclaimed)
2331 return sc->nr_reclaimed;
2332
2333 /*
2334 * As hibernation is going on, kswapd is freezed so that it can't mark
2335 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2336 * check.
2337 */
2338 if (oom_killer_disabled)
2339 return 0;
2340
2341 /* top priority shrink_zones still had more to do? don't OOM, then */
2342 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2343 return 1;
2344
2345 return 0;
2346 }
2347
2348 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2349 gfp_t gfp_mask, nodemask_t *nodemask)
2350 {
2351 unsigned long nr_reclaimed;
2352 struct scan_control sc = {
2353 .gfp_mask = gfp_mask,
2354 .may_writepage = !laptop_mode,
2355 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2356 .may_unmap = 1,
2357 .may_swap = 1,
2358 .order = order,
2359 .target_mem_cgroup = NULL,
2360 .nodemask = nodemask,
2361 };
2362 struct shrink_control shrink = {
2363 .gfp_mask = sc.gfp_mask,
2364 };
2365
2366 trace_mm_vmscan_direct_reclaim_begin(order,
2367 sc.may_writepage,
2368 gfp_mask);
2369
2370 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2371
2372 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2373
2374 return nr_reclaimed;
2375 }
2376
2377 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2378
2379 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2380 gfp_t gfp_mask, bool noswap,
2381 struct zone *zone,
2382 unsigned long *nr_scanned)
2383 {
2384 struct scan_control sc = {
2385 .nr_scanned = 0,
2386 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2387 .may_writepage = !laptop_mode,
2388 .may_unmap = 1,
2389 .may_swap = !noswap,
2390 .order = 0,
2391 .target_mem_cgroup = memcg,
2392 };
2393 struct mem_cgroup_zone mz = {
2394 .mem_cgroup = memcg,
2395 .zone = zone,
2396 };
2397
2398 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2399 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2400
2401 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2402 sc.may_writepage,
2403 sc.gfp_mask);
2404
2405 /*
2406 * NOTE: Although we can get the priority field, using it
2407 * here is not a good idea, since it limits the pages we can scan.
2408 * if we don't reclaim here, the shrink_zone from balance_pgdat
2409 * will pick up pages from other mem cgroup's as well. We hack
2410 * the priority and make it zero.
2411 */
2412 shrink_mem_cgroup_zone(0, &mz, &sc);
2413
2414 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2415
2416 *nr_scanned = sc.nr_scanned;
2417 return sc.nr_reclaimed;
2418 }
2419
2420 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2421 gfp_t gfp_mask,
2422 bool noswap)
2423 {
2424 struct zonelist *zonelist;
2425 unsigned long nr_reclaimed;
2426 int nid;
2427 struct scan_control sc = {
2428 .may_writepage = !laptop_mode,
2429 .may_unmap = 1,
2430 .may_swap = !noswap,
2431 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2432 .order = 0,
2433 .target_mem_cgroup = memcg,
2434 .nodemask = NULL, /* we don't care the placement */
2435 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2436 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2437 };
2438 struct shrink_control shrink = {
2439 .gfp_mask = sc.gfp_mask,
2440 };
2441
2442 /*
2443 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2444 * take care of from where we get pages. So the node where we start the
2445 * scan does not need to be the current node.
2446 */
2447 nid = mem_cgroup_select_victim_node(memcg);
2448
2449 zonelist = NODE_DATA(nid)->node_zonelists;
2450
2451 trace_mm_vmscan_memcg_reclaim_begin(0,
2452 sc.may_writepage,
2453 sc.gfp_mask);
2454
2455 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2456
2457 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2458
2459 return nr_reclaimed;
2460 }
2461 #endif
2462
2463 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2464 int priority)
2465 {
2466 struct mem_cgroup *memcg;
2467
2468 if (!total_swap_pages)
2469 return;
2470
2471 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2472 do {
2473 struct mem_cgroup_zone mz = {
2474 .mem_cgroup = memcg,
2475 .zone = zone,
2476 };
2477
2478 if (inactive_anon_is_low(&mz))
2479 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2480 sc, priority, 0);
2481
2482 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2483 } while (memcg);
2484 }
2485
2486 /*
2487 * pgdat_balanced is used when checking if a node is balanced for high-order
2488 * allocations. Only zones that meet watermarks and are in a zone allowed
2489 * by the callers classzone_idx are added to balanced_pages. The total of
2490 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2491 * for the node to be considered balanced. Forcing all zones to be balanced
2492 * for high orders can cause excessive reclaim when there are imbalanced zones.
2493 * The choice of 25% is due to
2494 * o a 16M DMA zone that is balanced will not balance a zone on any
2495 * reasonable sized machine
2496 * o On all other machines, the top zone must be at least a reasonable
2497 * percentage of the middle zones. For example, on 32-bit x86, highmem
2498 * would need to be at least 256M for it to be balance a whole node.
2499 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2500 * to balance a node on its own. These seemed like reasonable ratios.
2501 */
2502 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2503 int classzone_idx)
2504 {
2505 unsigned long present_pages = 0;
2506 int i;
2507
2508 for (i = 0; i <= classzone_idx; i++)
2509 present_pages += pgdat->node_zones[i].present_pages;
2510
2511 /* A special case here: if zone has no page, we think it's balanced */
2512 return balanced_pages >= (present_pages >> 2);
2513 }
2514
2515 /* is kswapd sleeping prematurely? */
2516 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2517 int classzone_idx)
2518 {
2519 int i;
2520 unsigned long balanced = 0;
2521 bool all_zones_ok = true;
2522
2523 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2524 if (remaining)
2525 return true;
2526
2527 /* Check the watermark levels */
2528 for (i = 0; i <= classzone_idx; i++) {
2529 struct zone *zone = pgdat->node_zones + i;
2530
2531 if (!populated_zone(zone))
2532 continue;
2533
2534 /*
2535 * balance_pgdat() skips over all_unreclaimable after
2536 * DEF_PRIORITY. Effectively, it considers them balanced so
2537 * they must be considered balanced here as well if kswapd
2538 * is to sleep
2539 */
2540 if (zone->all_unreclaimable) {
2541 balanced += zone->present_pages;
2542 continue;
2543 }
2544
2545 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2546 i, 0))
2547 all_zones_ok = false;
2548 else
2549 balanced += zone->present_pages;
2550 }
2551
2552 /*
2553 * For high-order requests, the balanced zones must contain at least
2554 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2555 * must be balanced
2556 */
2557 if (order)
2558 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2559 else
2560 return !all_zones_ok;
2561 }
2562
2563 /*
2564 * For kswapd, balance_pgdat() will work across all this node's zones until
2565 * they are all at high_wmark_pages(zone).
2566 *
2567 * Returns the final order kswapd was reclaiming at
2568 *
2569 * There is special handling here for zones which are full of pinned pages.
2570 * This can happen if the pages are all mlocked, or if they are all used by
2571 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2572 * What we do is to detect the case where all pages in the zone have been
2573 * scanned twice and there has been zero successful reclaim. Mark the zone as
2574 * dead and from now on, only perform a short scan. Basically we're polling
2575 * the zone for when the problem goes away.
2576 *
2577 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2578 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2579 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2580 * lower zones regardless of the number of free pages in the lower zones. This
2581 * interoperates with the page allocator fallback scheme to ensure that aging
2582 * of pages is balanced across the zones.
2583 */
2584 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2585 int *classzone_idx)
2586 {
2587 int all_zones_ok;
2588 unsigned long balanced;
2589 int priority;
2590 int i;
2591 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2592 unsigned long total_scanned;
2593 struct reclaim_state *reclaim_state = current->reclaim_state;
2594 unsigned long nr_soft_reclaimed;
2595 unsigned long nr_soft_scanned;
2596 struct scan_control sc = {
2597 .gfp_mask = GFP_KERNEL,
2598 .may_unmap = 1,
2599 .may_swap = 1,
2600 /*
2601 * kswapd doesn't want to be bailed out while reclaim. because
2602 * we want to put equal scanning pressure on each zone.
2603 */
2604 .nr_to_reclaim = ULONG_MAX,
2605 .order = order,
2606 .target_mem_cgroup = NULL,
2607 };
2608 struct shrink_control shrink = {
2609 .gfp_mask = sc.gfp_mask,
2610 };
2611 loop_again:
2612 total_scanned = 0;
2613 sc.nr_reclaimed = 0;
2614 sc.may_writepage = !laptop_mode;
2615 count_vm_event(PAGEOUTRUN);
2616
2617 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2618 unsigned long lru_pages = 0;
2619 int has_under_min_watermark_zone = 0;
2620
2621 /* The swap token gets in the way of swapout... */
2622 if (!priority)
2623 disable_swap_token(NULL);
2624
2625 all_zones_ok = 1;
2626 balanced = 0;
2627
2628 /*
2629 * Scan in the highmem->dma direction for the highest
2630 * zone which needs scanning
2631 */
2632 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2633 struct zone *zone = pgdat->node_zones + i;
2634
2635 if (!populated_zone(zone))
2636 continue;
2637
2638 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2639 continue;
2640
2641 /*
2642 * Do some background aging of the anon list, to give
2643 * pages a chance to be referenced before reclaiming.
2644 */
2645 age_active_anon(zone, &sc, priority);
2646
2647 if (!zone_watermark_ok_safe(zone, order,
2648 high_wmark_pages(zone), 0, 0)) {
2649 end_zone = i;
2650 break;
2651 } else {
2652 /* If balanced, clear the congested flag */
2653 zone_clear_flag(zone, ZONE_CONGESTED);
2654 }
2655 }
2656 if (i < 0)
2657 goto out;
2658
2659 for (i = 0; i <= end_zone; i++) {
2660 struct zone *zone = pgdat->node_zones + i;
2661
2662 lru_pages += zone_reclaimable_pages(zone);
2663 }
2664
2665 /*
2666 * Now scan the zone in the dma->highmem direction, stopping
2667 * at the last zone which needs scanning.
2668 *
2669 * We do this because the page allocator works in the opposite
2670 * direction. This prevents the page allocator from allocating
2671 * pages behind kswapd's direction of progress, which would
2672 * cause too much scanning of the lower zones.
2673 */
2674 for (i = 0; i <= end_zone; i++) {
2675 struct zone *zone = pgdat->node_zones + i;
2676 int nr_slab;
2677 unsigned long balance_gap;
2678
2679 if (!populated_zone(zone))
2680 continue;
2681
2682 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2683 continue;
2684
2685 sc.nr_scanned = 0;
2686
2687 nr_soft_scanned = 0;
2688 /*
2689 * Call soft limit reclaim before calling shrink_zone.
2690 */
2691 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2692 order, sc.gfp_mask,
2693 &nr_soft_scanned);
2694 sc.nr_reclaimed += nr_soft_reclaimed;
2695 total_scanned += nr_soft_scanned;
2696
2697 /*
2698 * We put equal pressure on every zone, unless
2699 * one zone has way too many pages free
2700 * already. The "too many pages" is defined
2701 * as the high wmark plus a "gap" where the
2702 * gap is either the low watermark or 1%
2703 * of the zone, whichever is smaller.
2704 */
2705 balance_gap = min(low_wmark_pages(zone),
2706 (zone->present_pages +
2707 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2708 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2709 if (!zone_watermark_ok_safe(zone, order,
2710 high_wmark_pages(zone) + balance_gap,
2711 end_zone, 0)) {
2712 shrink_zone(priority, zone, &sc);
2713
2714 reclaim_state->reclaimed_slab = 0;
2715 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2716 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2717 total_scanned += sc.nr_scanned;
2718
2719 if (nr_slab == 0 && !zone_reclaimable(zone))
2720 zone->all_unreclaimable = 1;
2721 }
2722
2723 /*
2724 * If we've done a decent amount of scanning and
2725 * the reclaim ratio is low, start doing writepage
2726 * even in laptop mode
2727 */
2728 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2729 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2730 sc.may_writepage = 1;
2731
2732 if (zone->all_unreclaimable) {
2733 if (end_zone && end_zone == i)
2734 end_zone--;
2735 continue;
2736 }
2737
2738 if (!zone_watermark_ok_safe(zone, order,
2739 high_wmark_pages(zone), end_zone, 0)) {
2740 all_zones_ok = 0;
2741 /*
2742 * We are still under min water mark. This
2743 * means that we have a GFP_ATOMIC allocation
2744 * failure risk. Hurry up!
2745 */
2746 if (!zone_watermark_ok_safe(zone, order,
2747 min_wmark_pages(zone), end_zone, 0))
2748 has_under_min_watermark_zone = 1;
2749 } else {
2750 /*
2751 * If a zone reaches its high watermark,
2752 * consider it to be no longer congested. It's
2753 * possible there are dirty pages backed by
2754 * congested BDIs but as pressure is relieved,
2755 * spectulatively avoid congestion waits
2756 */
2757 zone_clear_flag(zone, ZONE_CONGESTED);
2758 if (i <= *classzone_idx)
2759 balanced += zone->present_pages;
2760 }
2761
2762 }
2763 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2764 break; /* kswapd: all done */
2765 /*
2766 * OK, kswapd is getting into trouble. Take a nap, then take
2767 * another pass across the zones.
2768 */
2769 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2770 if (has_under_min_watermark_zone)
2771 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2772 else
2773 congestion_wait(BLK_RW_ASYNC, HZ/10);
2774 }
2775
2776 /*
2777 * We do this so kswapd doesn't build up large priorities for
2778 * example when it is freeing in parallel with allocators. It
2779 * matches the direct reclaim path behaviour in terms of impact
2780 * on zone->*_priority.
2781 */
2782 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2783 break;
2784 }
2785 out:
2786
2787 /*
2788 * order-0: All zones must meet high watermark for a balanced node
2789 * high-order: Balanced zones must make up at least 25% of the node
2790 * for the node to be balanced
2791 */
2792 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2793 cond_resched();
2794
2795 try_to_freeze();
2796
2797 /*
2798 * Fragmentation may mean that the system cannot be
2799 * rebalanced for high-order allocations in all zones.
2800 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2801 * it means the zones have been fully scanned and are still
2802 * not balanced. For high-order allocations, there is
2803 * little point trying all over again as kswapd may
2804 * infinite loop.
2805 *
2806 * Instead, recheck all watermarks at order-0 as they
2807 * are the most important. If watermarks are ok, kswapd will go
2808 * back to sleep. High-order users can still perform direct
2809 * reclaim if they wish.
2810 */
2811 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2812 order = sc.order = 0;
2813
2814 goto loop_again;
2815 }
2816
2817 /*
2818 * If kswapd was reclaiming at a higher order, it has the option of
2819 * sleeping without all zones being balanced. Before it does, it must
2820 * ensure that the watermarks for order-0 on *all* zones are met and
2821 * that the congestion flags are cleared. The congestion flag must
2822 * be cleared as kswapd is the only mechanism that clears the flag
2823 * and it is potentially going to sleep here.
2824 */
2825 if (order) {
2826 for (i = 0; i <= end_zone; i++) {
2827 struct zone *zone = pgdat->node_zones + i;
2828
2829 if (!populated_zone(zone))
2830 continue;
2831
2832 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2833 continue;
2834
2835 /* Confirm the zone is balanced for order-0 */
2836 if (!zone_watermark_ok(zone, 0,
2837 high_wmark_pages(zone), 0, 0)) {
2838 order = sc.order = 0;
2839 goto loop_again;
2840 }
2841
2842 /* If balanced, clear the congested flag */
2843 zone_clear_flag(zone, ZONE_CONGESTED);
2844 if (i <= *classzone_idx)
2845 balanced += zone->present_pages;
2846 }
2847 }
2848
2849 /*
2850 * Return the order we were reclaiming at so sleeping_prematurely()
2851 * makes a decision on the order we were last reclaiming at. However,
2852 * if another caller entered the allocator slow path while kswapd
2853 * was awake, order will remain at the higher level
2854 */
2855 *classzone_idx = end_zone;
2856 return order;
2857 }
2858
2859 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2860 {
2861 long remaining = 0;
2862 DEFINE_WAIT(wait);
2863
2864 if (freezing(current) || kthread_should_stop())
2865 return;
2866
2867 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2868
2869 /* Try to sleep for a short interval */
2870 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2871 remaining = schedule_timeout(HZ/10);
2872 finish_wait(&pgdat->kswapd_wait, &wait);
2873 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2874 }
2875
2876 /*
2877 * After a short sleep, check if it was a premature sleep. If not, then
2878 * go fully to sleep until explicitly woken up.
2879 */
2880 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2881 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2882
2883 /*
2884 * vmstat counters are not perfectly accurate and the estimated
2885 * value for counters such as NR_FREE_PAGES can deviate from the
2886 * true value by nr_online_cpus * threshold. To avoid the zone
2887 * watermarks being breached while under pressure, we reduce the
2888 * per-cpu vmstat threshold while kswapd is awake and restore
2889 * them before going back to sleep.
2890 */
2891 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2892 schedule();
2893 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2894 } else {
2895 if (remaining)
2896 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2897 else
2898 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2899 }
2900 finish_wait(&pgdat->kswapd_wait, &wait);
2901 }
2902
2903 /*
2904 * The background pageout daemon, started as a kernel thread
2905 * from the init process.
2906 *
2907 * This basically trickles out pages so that we have _some_
2908 * free memory available even if there is no other activity
2909 * that frees anything up. This is needed for things like routing
2910 * etc, where we otherwise might have all activity going on in
2911 * asynchronous contexts that cannot page things out.
2912 *
2913 * If there are applications that are active memory-allocators
2914 * (most normal use), this basically shouldn't matter.
2915 */
2916 static int kswapd(void *p)
2917 {
2918 unsigned long order, new_order;
2919 unsigned balanced_order;
2920 int classzone_idx, new_classzone_idx;
2921 int balanced_classzone_idx;
2922 pg_data_t *pgdat = (pg_data_t*)p;
2923 struct task_struct *tsk = current;
2924
2925 struct reclaim_state reclaim_state = {
2926 .reclaimed_slab = 0,
2927 };
2928 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2929
2930 lockdep_set_current_reclaim_state(GFP_KERNEL);
2931
2932 if (!cpumask_empty(cpumask))
2933 set_cpus_allowed_ptr(tsk, cpumask);
2934 current->reclaim_state = &reclaim_state;
2935
2936 /*
2937 * Tell the memory management that we're a "memory allocator",
2938 * and that if we need more memory we should get access to it
2939 * regardless (see "__alloc_pages()"). "kswapd" should
2940 * never get caught in the normal page freeing logic.
2941 *
2942 * (Kswapd normally doesn't need memory anyway, but sometimes
2943 * you need a small amount of memory in order to be able to
2944 * page out something else, and this flag essentially protects
2945 * us from recursively trying to free more memory as we're
2946 * trying to free the first piece of memory in the first place).
2947 */
2948 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2949 set_freezable();
2950
2951 order = new_order = 0;
2952 balanced_order = 0;
2953 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2954 balanced_classzone_idx = classzone_idx;
2955 for ( ; ; ) {
2956 int ret;
2957
2958 /*
2959 * If the last balance_pgdat was unsuccessful it's unlikely a
2960 * new request of a similar or harder type will succeed soon
2961 * so consider going to sleep on the basis we reclaimed at
2962 */
2963 if (balanced_classzone_idx >= new_classzone_idx &&
2964 balanced_order == new_order) {
2965 new_order = pgdat->kswapd_max_order;
2966 new_classzone_idx = pgdat->classzone_idx;
2967 pgdat->kswapd_max_order = 0;
2968 pgdat->classzone_idx = pgdat->nr_zones - 1;
2969 }
2970
2971 if (order < new_order || classzone_idx > new_classzone_idx) {
2972 /*
2973 * Don't sleep if someone wants a larger 'order'
2974 * allocation or has tigher zone constraints
2975 */
2976 order = new_order;
2977 classzone_idx = new_classzone_idx;
2978 } else {
2979 kswapd_try_to_sleep(pgdat, balanced_order,
2980 balanced_classzone_idx);
2981 order = pgdat->kswapd_max_order;
2982 classzone_idx = pgdat->classzone_idx;
2983 new_order = order;
2984 new_classzone_idx = classzone_idx;
2985 pgdat->kswapd_max_order = 0;
2986 pgdat->classzone_idx = pgdat->nr_zones - 1;
2987 }
2988
2989 ret = try_to_freeze();
2990 if (kthread_should_stop())
2991 break;
2992
2993 /*
2994 * We can speed up thawing tasks if we don't call balance_pgdat
2995 * after returning from the refrigerator
2996 */
2997 if (!ret) {
2998 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2999 balanced_classzone_idx = classzone_idx;
3000 balanced_order = balance_pgdat(pgdat, order,
3001 &balanced_classzone_idx);
3002 }
3003 }
3004 return 0;
3005 }
3006
3007 /*
3008 * A zone is low on free memory, so wake its kswapd task to service it.
3009 */
3010 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3011 {
3012 pg_data_t *pgdat;
3013
3014 if (!populated_zone(zone))
3015 return;
3016
3017 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3018 return;
3019 pgdat = zone->zone_pgdat;
3020 if (pgdat->kswapd_max_order < order) {
3021 pgdat->kswapd_max_order = order;
3022 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3023 }
3024 if (!waitqueue_active(&pgdat->kswapd_wait))
3025 return;
3026 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3027 return;
3028
3029 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3030 wake_up_interruptible(&pgdat->kswapd_wait);
3031 }
3032
3033 /*
3034 * The reclaimable count would be mostly accurate.
3035 * The less reclaimable pages may be
3036 * - mlocked pages, which will be moved to unevictable list when encountered
3037 * - mapped pages, which may require several travels to be reclaimed
3038 * - dirty pages, which is not "instantly" reclaimable
3039 */
3040 unsigned long global_reclaimable_pages(void)
3041 {
3042 int nr;
3043
3044 nr = global_page_state(NR_ACTIVE_FILE) +
3045 global_page_state(NR_INACTIVE_FILE);
3046
3047 if (nr_swap_pages > 0)
3048 nr += global_page_state(NR_ACTIVE_ANON) +
3049 global_page_state(NR_INACTIVE_ANON);
3050
3051 return nr;
3052 }
3053
3054 unsigned long zone_reclaimable_pages(struct zone *zone)
3055 {
3056 int nr;
3057
3058 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3059 zone_page_state(zone, NR_INACTIVE_FILE);
3060
3061 if (nr_swap_pages > 0)
3062 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3063 zone_page_state(zone, NR_INACTIVE_ANON);
3064
3065 return nr;
3066 }
3067
3068 #ifdef CONFIG_HIBERNATION
3069 /*
3070 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3071 * freed pages.
3072 *
3073 * Rather than trying to age LRUs the aim is to preserve the overall
3074 * LRU order by reclaiming preferentially
3075 * inactive > active > active referenced > active mapped
3076 */
3077 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3078 {
3079 struct reclaim_state reclaim_state;
3080 struct scan_control sc = {
3081 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3082 .may_swap = 1,
3083 .may_unmap = 1,
3084 .may_writepage = 1,
3085 .nr_to_reclaim = nr_to_reclaim,
3086 .hibernation_mode = 1,
3087 .order = 0,
3088 };
3089 struct shrink_control shrink = {
3090 .gfp_mask = sc.gfp_mask,
3091 };
3092 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3093 struct task_struct *p = current;
3094 unsigned long nr_reclaimed;
3095
3096 p->flags |= PF_MEMALLOC;
3097 lockdep_set_current_reclaim_state(sc.gfp_mask);
3098 reclaim_state.reclaimed_slab = 0;
3099 p->reclaim_state = &reclaim_state;
3100
3101 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3102
3103 p->reclaim_state = NULL;
3104 lockdep_clear_current_reclaim_state();
3105 p->flags &= ~PF_MEMALLOC;
3106
3107 return nr_reclaimed;
3108 }
3109 #endif /* CONFIG_HIBERNATION */
3110
3111 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3112 not required for correctness. So if the last cpu in a node goes
3113 away, we get changed to run anywhere: as the first one comes back,
3114 restore their cpu bindings. */
3115 static int __devinit cpu_callback(struct notifier_block *nfb,
3116 unsigned long action, void *hcpu)
3117 {
3118 int nid;
3119
3120 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3121 for_each_node_state(nid, N_HIGH_MEMORY) {
3122 pg_data_t *pgdat = NODE_DATA(nid);
3123 const struct cpumask *mask;
3124
3125 mask = cpumask_of_node(pgdat->node_id);
3126
3127 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3128 /* One of our CPUs online: restore mask */
3129 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3130 }
3131 }
3132 return NOTIFY_OK;
3133 }
3134
3135 /*
3136 * This kswapd start function will be called by init and node-hot-add.
3137 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3138 */
3139 int kswapd_run(int nid)
3140 {
3141 pg_data_t *pgdat = NODE_DATA(nid);
3142 int ret = 0;
3143
3144 if (pgdat->kswapd)
3145 return 0;
3146
3147 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3148 if (IS_ERR(pgdat->kswapd)) {
3149 /* failure at boot is fatal */
3150 BUG_ON(system_state == SYSTEM_BOOTING);
3151 printk("Failed to start kswapd on node %d\n",nid);
3152 ret = -1;
3153 }
3154 return ret;
3155 }
3156
3157 /*
3158 * Called by memory hotplug when all memory in a node is offlined.
3159 */
3160 void kswapd_stop(int nid)
3161 {
3162 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3163
3164 if (kswapd)
3165 kthread_stop(kswapd);
3166 }
3167
3168 static int __init kswapd_init(void)
3169 {
3170 int nid;
3171
3172 swap_setup();
3173 for_each_node_state(nid, N_HIGH_MEMORY)
3174 kswapd_run(nid);
3175 hotcpu_notifier(cpu_callback, 0);
3176 return 0;
3177 }
3178
3179 module_init(kswapd_init)
3180
3181 #ifdef CONFIG_NUMA
3182 /*
3183 * Zone reclaim mode
3184 *
3185 * If non-zero call zone_reclaim when the number of free pages falls below
3186 * the watermarks.
3187 */
3188 int zone_reclaim_mode __read_mostly;
3189
3190 #define RECLAIM_OFF 0
3191 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3192 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3193 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3194
3195 /*
3196 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3197 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3198 * a zone.
3199 */
3200 #define ZONE_RECLAIM_PRIORITY 4
3201
3202 /*
3203 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3204 * occur.
3205 */
3206 int sysctl_min_unmapped_ratio = 1;
3207
3208 /*
3209 * If the number of slab pages in a zone grows beyond this percentage then
3210 * slab reclaim needs to occur.
3211 */
3212 int sysctl_min_slab_ratio = 5;
3213
3214 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3215 {
3216 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3217 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3218 zone_page_state(zone, NR_ACTIVE_FILE);
3219
3220 /*
3221 * It's possible for there to be more file mapped pages than
3222 * accounted for by the pages on the file LRU lists because
3223 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3224 */
3225 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3226 }
3227
3228 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3229 static long zone_pagecache_reclaimable(struct zone *zone)
3230 {
3231 long nr_pagecache_reclaimable;
3232 long delta = 0;
3233
3234 /*
3235 * If RECLAIM_SWAP is set, then all file pages are considered
3236 * potentially reclaimable. Otherwise, we have to worry about
3237 * pages like swapcache and zone_unmapped_file_pages() provides
3238 * a better estimate
3239 */
3240 if (zone_reclaim_mode & RECLAIM_SWAP)
3241 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3242 else
3243 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3244
3245 /* If we can't clean pages, remove dirty pages from consideration */
3246 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3247 delta += zone_page_state(zone, NR_FILE_DIRTY);
3248
3249 /* Watch for any possible underflows due to delta */
3250 if (unlikely(delta > nr_pagecache_reclaimable))
3251 delta = nr_pagecache_reclaimable;
3252
3253 return nr_pagecache_reclaimable - delta;
3254 }
3255
3256 /*
3257 * Try to free up some pages from this zone through reclaim.
3258 */
3259 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3260 {
3261 /* Minimum pages needed in order to stay on node */
3262 const unsigned long nr_pages = 1 << order;
3263 struct task_struct *p = current;
3264 struct reclaim_state reclaim_state;
3265 int priority;
3266 struct scan_control sc = {
3267 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3268 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3269 .may_swap = 1,
3270 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3271 SWAP_CLUSTER_MAX),
3272 .gfp_mask = gfp_mask,
3273 .order = order,
3274 };
3275 struct shrink_control shrink = {
3276 .gfp_mask = sc.gfp_mask,
3277 };
3278 unsigned long nr_slab_pages0, nr_slab_pages1;
3279
3280 cond_resched();
3281 /*
3282 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3283 * and we also need to be able to write out pages for RECLAIM_WRITE
3284 * and RECLAIM_SWAP.
3285 */
3286 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3287 lockdep_set_current_reclaim_state(gfp_mask);
3288 reclaim_state.reclaimed_slab = 0;
3289 p->reclaim_state = &reclaim_state;
3290
3291 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3292 /*
3293 * Free memory by calling shrink zone with increasing
3294 * priorities until we have enough memory freed.
3295 */
3296 priority = ZONE_RECLAIM_PRIORITY;
3297 do {
3298 shrink_zone(priority, zone, &sc);
3299 priority--;
3300 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3301 }
3302
3303 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3304 if (nr_slab_pages0 > zone->min_slab_pages) {
3305 /*
3306 * shrink_slab() does not currently allow us to determine how
3307 * many pages were freed in this zone. So we take the current
3308 * number of slab pages and shake the slab until it is reduced
3309 * by the same nr_pages that we used for reclaiming unmapped
3310 * pages.
3311 *
3312 * Note that shrink_slab will free memory on all zones and may
3313 * take a long time.
3314 */
3315 for (;;) {
3316 unsigned long lru_pages = zone_reclaimable_pages(zone);
3317
3318 /* No reclaimable slab or very low memory pressure */
3319 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3320 break;
3321
3322 /* Freed enough memory */
3323 nr_slab_pages1 = zone_page_state(zone,
3324 NR_SLAB_RECLAIMABLE);
3325 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3326 break;
3327 }
3328
3329 /*
3330 * Update nr_reclaimed by the number of slab pages we
3331 * reclaimed from this zone.
3332 */
3333 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3334 if (nr_slab_pages1 < nr_slab_pages0)
3335 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3336 }
3337
3338 p->reclaim_state = NULL;
3339 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3340 lockdep_clear_current_reclaim_state();
3341 return sc.nr_reclaimed >= nr_pages;
3342 }
3343
3344 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3345 {
3346 int node_id;
3347 int ret;
3348
3349 /*
3350 * Zone reclaim reclaims unmapped file backed pages and
3351 * slab pages if we are over the defined limits.
3352 *
3353 * A small portion of unmapped file backed pages is needed for
3354 * file I/O otherwise pages read by file I/O will be immediately
3355 * thrown out if the zone is overallocated. So we do not reclaim
3356 * if less than a specified percentage of the zone is used by
3357 * unmapped file backed pages.
3358 */
3359 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3360 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3361 return ZONE_RECLAIM_FULL;
3362
3363 if (zone->all_unreclaimable)
3364 return ZONE_RECLAIM_FULL;
3365
3366 /*
3367 * Do not scan if the allocation should not be delayed.
3368 */
3369 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3370 return ZONE_RECLAIM_NOSCAN;
3371
3372 /*
3373 * Only run zone reclaim on the local zone or on zones that do not
3374 * have associated processors. This will favor the local processor
3375 * over remote processors and spread off node memory allocations
3376 * as wide as possible.
3377 */
3378 node_id = zone_to_nid(zone);
3379 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3380 return ZONE_RECLAIM_NOSCAN;
3381
3382 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3383 return ZONE_RECLAIM_NOSCAN;
3384
3385 ret = __zone_reclaim(zone, gfp_mask, order);
3386 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3387
3388 if (!ret)
3389 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3390
3391 return ret;
3392 }
3393 #endif
3394
3395 /*
3396 * page_evictable - test whether a page is evictable
3397 * @page: the page to test
3398 * @vma: the VMA in which the page is or will be mapped, may be NULL
3399 *
3400 * Test whether page is evictable--i.e., should be placed on active/inactive
3401 * lists vs unevictable list. The vma argument is !NULL when called from the
3402 * fault path to determine how to instantate a new page.
3403 *
3404 * Reasons page might not be evictable:
3405 * (1) page's mapping marked unevictable
3406 * (2) page is part of an mlocked VMA
3407 *
3408 */
3409 int page_evictable(struct page *page, struct vm_area_struct *vma)
3410 {
3411
3412 if (mapping_unevictable(page_mapping(page)))
3413 return 0;
3414
3415 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3416 return 0;
3417
3418 return 1;
3419 }
3420
3421 /**
3422 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3423 * @page: page to check evictability and move to appropriate lru list
3424 * @zone: zone page is in
3425 *
3426 * Checks a page for evictability and moves the page to the appropriate
3427 * zone lru list.
3428 *
3429 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3430 * have PageUnevictable set.
3431 */
3432 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3433 {
3434 struct lruvec *lruvec;
3435
3436 VM_BUG_ON(PageActive(page));
3437 retry:
3438 ClearPageUnevictable(page);
3439 if (page_evictable(page, NULL)) {
3440 enum lru_list l = page_lru_base_type(page);
3441
3442 __dec_zone_state(zone, NR_UNEVICTABLE);
3443 lruvec = mem_cgroup_lru_move_lists(zone, page,
3444 LRU_UNEVICTABLE, l);
3445 list_move(&page->lru, &lruvec->lists[l]);
3446 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3447 __count_vm_event(UNEVICTABLE_PGRESCUED);
3448 } else {
3449 /*
3450 * rotate unevictable list
3451 */
3452 SetPageUnevictable(page);
3453 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3454 LRU_UNEVICTABLE);
3455 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3456 if (page_evictable(page, NULL))
3457 goto retry;
3458 }
3459 }
3460
3461 /**
3462 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3463 * @mapping: struct address_space to scan for evictable pages
3464 *
3465 * Scan all pages in mapping. Check unevictable pages for
3466 * evictability and move them to the appropriate zone lru list.
3467 */
3468 void scan_mapping_unevictable_pages(struct address_space *mapping)
3469 {
3470 pgoff_t next = 0;
3471 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3472 PAGE_CACHE_SHIFT;
3473 struct zone *zone;
3474 struct pagevec pvec;
3475
3476 if (mapping->nrpages == 0)
3477 return;
3478
3479 pagevec_init(&pvec, 0);
3480 while (next < end &&
3481 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3482 int i;
3483 int pg_scanned = 0;
3484
3485 zone = NULL;
3486
3487 for (i = 0; i < pagevec_count(&pvec); i++) {
3488 struct page *page = pvec.pages[i];
3489 pgoff_t page_index = page->index;
3490 struct zone *pagezone = page_zone(page);
3491
3492 pg_scanned++;
3493 if (page_index > next)
3494 next = page_index;
3495 next++;
3496
3497 if (pagezone != zone) {
3498 if (zone)
3499 spin_unlock_irq(&zone->lru_lock);
3500 zone = pagezone;
3501 spin_lock_irq(&zone->lru_lock);
3502 }
3503
3504 if (PageLRU(page) && PageUnevictable(page))
3505 check_move_unevictable_page(page, zone);
3506 }
3507 if (zone)
3508 spin_unlock_irq(&zone->lru_lock);
3509 pagevec_release(&pvec);
3510
3511 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3512 }
3513
3514 }
3515
3516 static void warn_scan_unevictable_pages(void)
3517 {
3518 printk_once(KERN_WARNING
3519 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3520 "disabled for lack of a legitimate use case. If you have "
3521 "one, please send an email to linux-mm@kvack.org.\n",
3522 current->comm);
3523 }
3524
3525 /*
3526 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3527 * all nodes' unevictable lists for evictable pages
3528 */
3529 unsigned long scan_unevictable_pages;
3530
3531 int scan_unevictable_handler(struct ctl_table *table, int write,
3532 void __user *buffer,
3533 size_t *length, loff_t *ppos)
3534 {
3535 warn_scan_unevictable_pages();
3536 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3537 scan_unevictable_pages = 0;
3538 return 0;
3539 }
3540
3541 #ifdef CONFIG_NUMA
3542 /*
3543 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3544 * a specified node's per zone unevictable lists for evictable pages.
3545 */
3546
3547 static ssize_t read_scan_unevictable_node(struct device *dev,
3548 struct device_attribute *attr,
3549 char *buf)
3550 {
3551 warn_scan_unevictable_pages();
3552 return sprintf(buf, "0\n"); /* always zero; should fit... */
3553 }
3554
3555 static ssize_t write_scan_unevictable_node(struct device *dev,
3556 struct device_attribute *attr,
3557 const char *buf, size_t count)
3558 {
3559 warn_scan_unevictable_pages();
3560 return 1;
3561 }
3562
3563
3564 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3565 read_scan_unevictable_node,
3566 write_scan_unevictable_node);
3567
3568 int scan_unevictable_register_node(struct node *node)
3569 {
3570 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3571 }
3572
3573 void scan_unevictable_unregister_node(struct node *node)
3574 {
3575 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3576 }
3577 #endif