]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/vmscan.c
mm: submit multipage write for SWP_FS_OPS swap-space
[mirror_ubuntu-kernels.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
60
61 #include "internal.h"
62 #include "swap.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/vmscan.h>
66
67 struct scan_control {
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /*
84 * Scan pressure balancing between anon and file LRUs
85 */
86 unsigned long anon_cost;
87 unsigned long file_cost;
88
89 /* Can active pages be deactivated as part of reclaim? */
90 #define DEACTIVATE_ANON 1
91 #define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
95
96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
97 unsigned int may_writepage:1;
98
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
101
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
104
105 /*
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
112 */
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
115
116 unsigned int hibernation_mode:1;
117
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
120
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
123
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
126
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
129
130 /* Allocation order */
131 s8 order;
132
133 /* Scan (total_size >> priority) pages at once */
134 s8 priority;
135
136 /* The highest zone to isolate pages for reclaim from */
137 s8 reclaim_idx;
138
139 /* This context's GFP mask */
140 gfp_t gfp_mask;
141
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
144
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
147
148 struct {
149 unsigned int dirty;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
155 unsigned int taken;
156 } nr;
157
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
160 };
161
162 #ifdef ARCH_HAS_PREFETCHW
163 #define prefetchw_prev_lru_page(_page, _base, _field) \
164 do { \
165 if ((_page)->lru.prev != _base) { \
166 struct page *prev; \
167 \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
170 } \
171 } while (0)
172 #else
173 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174 #endif
175
176 /*
177 * From 0 .. 200. Higher means more swappy.
178 */
179 int vm_swappiness = 60;
180
181 static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
183 {
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
186
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
189
190 task->reclaim_state = rs;
191 }
192
193 static LIST_HEAD(shrinker_list);
194 static DECLARE_RWSEM(shrinker_rwsem);
195
196 #ifdef CONFIG_MEMCG
197 static int shrinker_nr_max;
198
199 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
200 static inline int shrinker_map_size(int nr_items)
201 {
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203 }
204
205 static inline int shrinker_defer_size(int nr_items)
206 {
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208 }
209
210 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 int nid)
212 {
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
215 }
216
217 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
220 {
221 struct shrinker_info *new, *old;
222 struct mem_cgroup_per_node *pn;
223 int nid;
224 int size = map_size + defer_size;
225
226 for_each_node(nid) {
227 pn = memcg->nodeinfo[nid];
228 old = shrinker_info_protected(memcg, nid);
229 /* Not yet online memcg */
230 if (!old)
231 return 0;
232
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 if (!new)
235 return -ENOMEM;
236
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
239
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
247
248 rcu_assign_pointer(pn->shrinker_info, new);
249 kvfree_rcu(old, rcu);
250 }
251
252 return 0;
253 }
254
255 void free_shrinker_info(struct mem_cgroup *memcg)
256 {
257 struct mem_cgroup_per_node *pn;
258 struct shrinker_info *info;
259 int nid;
260
261 for_each_node(nid) {
262 pn = memcg->nodeinfo[nid];
263 info = rcu_dereference_protected(pn->shrinker_info, true);
264 kvfree(info);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
266 }
267 }
268
269 int alloc_shrinker_info(struct mem_cgroup *memcg)
270 {
271 struct shrinker_info *info;
272 int nid, size, ret = 0;
273 int map_size, defer_size = 0;
274
275 down_write(&shrinker_rwsem);
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
279 for_each_node(nid) {
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 if (!info) {
282 free_shrinker_info(memcg);
283 ret = -ENOMEM;
284 break;
285 }
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
289 }
290 up_write(&shrinker_rwsem);
291
292 return ret;
293 }
294
295 static inline bool need_expand(int nr_max)
296 {
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
299 }
300
301 static int expand_shrinker_info(int new_id)
302 {
303 int ret = 0;
304 int new_nr_max = new_id + 1;
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
307 struct mem_cgroup *memcg;
308
309 if (!need_expand(new_nr_max))
310 goto out;
311
312 if (!root_mem_cgroup)
313 goto out;
314
315 lockdep_assert_held(&shrinker_rwsem);
316
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 do {
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
326 if (ret) {
327 mem_cgroup_iter_break(NULL, memcg);
328 goto out;
329 }
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
331 out:
332 if (!ret)
333 shrinker_nr_max = new_nr_max;
334
335 return ret;
336 }
337
338 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339 {
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
341 struct shrinker_info *info;
342
343 rcu_read_lock();
344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
347 set_bit(shrinker_id, info->map);
348 rcu_read_unlock();
349 }
350 }
351
352 static DEFINE_IDR(shrinker_idr);
353
354 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355 {
356 int id, ret = -ENOMEM;
357
358 if (mem_cgroup_disabled())
359 return -ENOSYS;
360
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
364 if (id < 0)
365 goto unlock;
366
367 if (id >= shrinker_nr_max) {
368 if (expand_shrinker_info(id)) {
369 idr_remove(&shrinker_idr, id);
370 goto unlock;
371 }
372 }
373 shrinker->id = id;
374 ret = 0;
375 unlock:
376 up_write(&shrinker_rwsem);
377 return ret;
378 }
379
380 static void unregister_memcg_shrinker(struct shrinker *shrinker)
381 {
382 int id = shrinker->id;
383
384 BUG_ON(id < 0);
385
386 lockdep_assert_held(&shrinker_rwsem);
387
388 idr_remove(&shrinker_idr, id);
389 }
390
391 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393 {
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398 }
399
400 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
402 {
403 struct shrinker_info *info;
404
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407 }
408
409 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410 {
411 int i, nid;
412 long nr;
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
415
416 parent = parent_mem_cgroup(memcg);
417 if (!parent)
418 parent = root_mem_cgroup;
419
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
422 for_each_node(nid) {
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 }
429 }
430 up_read(&shrinker_rwsem);
431 }
432
433 static bool cgroup_reclaim(struct scan_control *sc)
434 {
435 return sc->target_mem_cgroup;
436 }
437
438 /**
439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
440 * @sc: scan_control in question
441 *
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
447 *
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
450 */
451 static bool writeback_throttling_sane(struct scan_control *sc)
452 {
453 if (!cgroup_reclaim(sc))
454 return true;
455 #ifdef CONFIG_CGROUP_WRITEBACK
456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
457 return true;
458 #endif
459 return false;
460 }
461 #else
462 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463 {
464 return -ENOSYS;
465 }
466
467 static void unregister_memcg_shrinker(struct shrinker *shrinker)
468 {
469 }
470
471 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
473 {
474 return 0;
475 }
476
477 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
479 {
480 return 0;
481 }
482
483 static bool cgroup_reclaim(struct scan_control *sc)
484 {
485 return false;
486 }
487
488 static bool writeback_throttling_sane(struct scan_control *sc)
489 {
490 return true;
491 }
492 #endif
493
494 static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
496 {
497 int nid = sc->nid;
498
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 nid = 0;
501
502 if (sc->memcg &&
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
505 sc->memcg);
506
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508 }
509
510
511 static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
513 {
514 int nid = sc->nid;
515
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 nid = 0;
518
519 if (sc->memcg &&
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
522 sc->memcg);
523
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525 }
526
527 static bool can_demote(int nid, struct scan_control *sc)
528 {
529 if (!numa_demotion_enabled)
530 return false;
531 if (sc) {
532 if (sc->no_demotion)
533 return false;
534 /* It is pointless to do demotion in memcg reclaim */
535 if (cgroup_reclaim(sc))
536 return false;
537 }
538 if (next_demotion_node(nid) == NUMA_NO_NODE)
539 return false;
540
541 return true;
542 }
543
544 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 int nid,
546 struct scan_control *sc)
547 {
548 if (memcg == NULL) {
549 /*
550 * For non-memcg reclaim, is there
551 * space in any swap device?
552 */
553 if (get_nr_swap_pages() > 0)
554 return true;
555 } else {
556 /* Is the memcg below its swap limit? */
557 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
558 return true;
559 }
560
561 /*
562 * The page can not be swapped.
563 *
564 * Can it be reclaimed from this node via demotion?
565 */
566 return can_demote(nid, sc);
567 }
568
569 /*
570 * This misses isolated pages which are not accounted for to save counters.
571 * As the data only determines if reclaim or compaction continues, it is
572 * not expected that isolated pages will be a dominating factor.
573 */
574 unsigned long zone_reclaimable_pages(struct zone *zone)
575 {
576 unsigned long nr;
577
578 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
579 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
580 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
581 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
582 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
583
584 return nr;
585 }
586
587 /**
588 * lruvec_lru_size - Returns the number of pages on the given LRU list.
589 * @lruvec: lru vector
590 * @lru: lru to use
591 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
592 */
593 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 int zone_idx)
595 {
596 unsigned long size = 0;
597 int zid;
598
599 for (zid = 0; zid <= zone_idx; zid++) {
600 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
601
602 if (!managed_zone(zone))
603 continue;
604
605 if (!mem_cgroup_disabled())
606 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
607 else
608 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
609 }
610 return size;
611 }
612
613 /*
614 * Add a shrinker callback to be called from the vm.
615 */
616 int prealloc_shrinker(struct shrinker *shrinker)
617 {
618 unsigned int size;
619 int err;
620
621 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
622 err = prealloc_memcg_shrinker(shrinker);
623 if (err != -ENOSYS)
624 return err;
625
626 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 }
628
629 size = sizeof(*shrinker->nr_deferred);
630 if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 size *= nr_node_ids;
632
633 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
634 if (!shrinker->nr_deferred)
635 return -ENOMEM;
636
637 return 0;
638 }
639
640 void free_prealloced_shrinker(struct shrinker *shrinker)
641 {
642 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
643 down_write(&shrinker_rwsem);
644 unregister_memcg_shrinker(shrinker);
645 up_write(&shrinker_rwsem);
646 return;
647 }
648
649 kfree(shrinker->nr_deferred);
650 shrinker->nr_deferred = NULL;
651 }
652
653 void register_shrinker_prepared(struct shrinker *shrinker)
654 {
655 down_write(&shrinker_rwsem);
656 list_add_tail(&shrinker->list, &shrinker_list);
657 shrinker->flags |= SHRINKER_REGISTERED;
658 up_write(&shrinker_rwsem);
659 }
660
661 int register_shrinker(struct shrinker *shrinker)
662 {
663 int err = prealloc_shrinker(shrinker);
664
665 if (err)
666 return err;
667 register_shrinker_prepared(shrinker);
668 return 0;
669 }
670 EXPORT_SYMBOL(register_shrinker);
671
672 /*
673 * Remove one
674 */
675 void unregister_shrinker(struct shrinker *shrinker)
676 {
677 if (!(shrinker->flags & SHRINKER_REGISTERED))
678 return;
679
680 down_write(&shrinker_rwsem);
681 list_del(&shrinker->list);
682 shrinker->flags &= ~SHRINKER_REGISTERED;
683 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
684 unregister_memcg_shrinker(shrinker);
685 up_write(&shrinker_rwsem);
686
687 kfree(shrinker->nr_deferred);
688 shrinker->nr_deferred = NULL;
689 }
690 EXPORT_SYMBOL(unregister_shrinker);
691
692 /**
693 * synchronize_shrinkers - Wait for all running shrinkers to complete.
694 *
695 * This is equivalent to calling unregister_shrink() and register_shrinker(),
696 * but atomically and with less overhead. This is useful to guarantee that all
697 * shrinker invocations have seen an update, before freeing memory, similar to
698 * rcu.
699 */
700 void synchronize_shrinkers(void)
701 {
702 down_write(&shrinker_rwsem);
703 up_write(&shrinker_rwsem);
704 }
705 EXPORT_SYMBOL(synchronize_shrinkers);
706
707 #define SHRINK_BATCH 128
708
709 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
710 struct shrinker *shrinker, int priority)
711 {
712 unsigned long freed = 0;
713 unsigned long long delta;
714 long total_scan;
715 long freeable;
716 long nr;
717 long new_nr;
718 long batch_size = shrinker->batch ? shrinker->batch
719 : SHRINK_BATCH;
720 long scanned = 0, next_deferred;
721
722 freeable = shrinker->count_objects(shrinker, shrinkctl);
723 if (freeable == 0 || freeable == SHRINK_EMPTY)
724 return freeable;
725
726 /*
727 * copy the current shrinker scan count into a local variable
728 * and zero it so that other concurrent shrinker invocations
729 * don't also do this scanning work.
730 */
731 nr = xchg_nr_deferred(shrinker, shrinkctl);
732
733 if (shrinker->seeks) {
734 delta = freeable >> priority;
735 delta *= 4;
736 do_div(delta, shrinker->seeks);
737 } else {
738 /*
739 * These objects don't require any IO to create. Trim
740 * them aggressively under memory pressure to keep
741 * them from causing refetches in the IO caches.
742 */
743 delta = freeable / 2;
744 }
745
746 total_scan = nr >> priority;
747 total_scan += delta;
748 total_scan = min(total_scan, (2 * freeable));
749
750 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
751 freeable, delta, total_scan, priority);
752
753 /*
754 * Normally, we should not scan less than batch_size objects in one
755 * pass to avoid too frequent shrinker calls, but if the slab has less
756 * than batch_size objects in total and we are really tight on memory,
757 * we will try to reclaim all available objects, otherwise we can end
758 * up failing allocations although there are plenty of reclaimable
759 * objects spread over several slabs with usage less than the
760 * batch_size.
761 *
762 * We detect the "tight on memory" situations by looking at the total
763 * number of objects we want to scan (total_scan). If it is greater
764 * than the total number of objects on slab (freeable), we must be
765 * scanning at high prio and therefore should try to reclaim as much as
766 * possible.
767 */
768 while (total_scan >= batch_size ||
769 total_scan >= freeable) {
770 unsigned long ret;
771 unsigned long nr_to_scan = min(batch_size, total_scan);
772
773 shrinkctl->nr_to_scan = nr_to_scan;
774 shrinkctl->nr_scanned = nr_to_scan;
775 ret = shrinker->scan_objects(shrinker, shrinkctl);
776 if (ret == SHRINK_STOP)
777 break;
778 freed += ret;
779
780 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
781 total_scan -= shrinkctl->nr_scanned;
782 scanned += shrinkctl->nr_scanned;
783
784 cond_resched();
785 }
786
787 /*
788 * The deferred work is increased by any new work (delta) that wasn't
789 * done, decreased by old deferred work that was done now.
790 *
791 * And it is capped to two times of the freeable items.
792 */
793 next_deferred = max_t(long, (nr + delta - scanned), 0);
794 next_deferred = min(next_deferred, (2 * freeable));
795
796 /*
797 * move the unused scan count back into the shrinker in a
798 * manner that handles concurrent updates.
799 */
800 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
801
802 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
803 return freed;
804 }
805
806 #ifdef CONFIG_MEMCG
807 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
808 struct mem_cgroup *memcg, int priority)
809 {
810 struct shrinker_info *info;
811 unsigned long ret, freed = 0;
812 int i;
813
814 if (!mem_cgroup_online(memcg))
815 return 0;
816
817 if (!down_read_trylock(&shrinker_rwsem))
818 return 0;
819
820 info = shrinker_info_protected(memcg, nid);
821 if (unlikely(!info))
822 goto unlock;
823
824 for_each_set_bit(i, info->map, shrinker_nr_max) {
825 struct shrink_control sc = {
826 .gfp_mask = gfp_mask,
827 .nid = nid,
828 .memcg = memcg,
829 };
830 struct shrinker *shrinker;
831
832 shrinker = idr_find(&shrinker_idr, i);
833 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
834 if (!shrinker)
835 clear_bit(i, info->map);
836 continue;
837 }
838
839 /* Call non-slab shrinkers even though kmem is disabled */
840 if (!memcg_kmem_enabled() &&
841 !(shrinker->flags & SHRINKER_NONSLAB))
842 continue;
843
844 ret = do_shrink_slab(&sc, shrinker, priority);
845 if (ret == SHRINK_EMPTY) {
846 clear_bit(i, info->map);
847 /*
848 * After the shrinker reported that it had no objects to
849 * free, but before we cleared the corresponding bit in
850 * the memcg shrinker map, a new object might have been
851 * added. To make sure, we have the bit set in this
852 * case, we invoke the shrinker one more time and reset
853 * the bit if it reports that it is not empty anymore.
854 * The memory barrier here pairs with the barrier in
855 * set_shrinker_bit():
856 *
857 * list_lru_add() shrink_slab_memcg()
858 * list_add_tail() clear_bit()
859 * <MB> <MB>
860 * set_bit() do_shrink_slab()
861 */
862 smp_mb__after_atomic();
863 ret = do_shrink_slab(&sc, shrinker, priority);
864 if (ret == SHRINK_EMPTY)
865 ret = 0;
866 else
867 set_shrinker_bit(memcg, nid, i);
868 }
869 freed += ret;
870
871 if (rwsem_is_contended(&shrinker_rwsem)) {
872 freed = freed ? : 1;
873 break;
874 }
875 }
876 unlock:
877 up_read(&shrinker_rwsem);
878 return freed;
879 }
880 #else /* CONFIG_MEMCG */
881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 struct mem_cgroup *memcg, int priority)
883 {
884 return 0;
885 }
886 #endif /* CONFIG_MEMCG */
887
888 /**
889 * shrink_slab - shrink slab caches
890 * @gfp_mask: allocation context
891 * @nid: node whose slab caches to target
892 * @memcg: memory cgroup whose slab caches to target
893 * @priority: the reclaim priority
894 *
895 * Call the shrink functions to age shrinkable caches.
896 *
897 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
898 * unaware shrinkers will receive a node id of 0 instead.
899 *
900 * @memcg specifies the memory cgroup to target. Unaware shrinkers
901 * are called only if it is the root cgroup.
902 *
903 * @priority is sc->priority, we take the number of objects and >> by priority
904 * in order to get the scan target.
905 *
906 * Returns the number of reclaimed slab objects.
907 */
908 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
909 struct mem_cgroup *memcg,
910 int priority)
911 {
912 unsigned long ret, freed = 0;
913 struct shrinker *shrinker;
914
915 /*
916 * The root memcg might be allocated even though memcg is disabled
917 * via "cgroup_disable=memory" boot parameter. This could make
918 * mem_cgroup_is_root() return false, then just run memcg slab
919 * shrink, but skip global shrink. This may result in premature
920 * oom.
921 */
922 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
923 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
924
925 if (!down_read_trylock(&shrinker_rwsem))
926 goto out;
927
928 list_for_each_entry(shrinker, &shrinker_list, list) {
929 struct shrink_control sc = {
930 .gfp_mask = gfp_mask,
931 .nid = nid,
932 .memcg = memcg,
933 };
934
935 ret = do_shrink_slab(&sc, shrinker, priority);
936 if (ret == SHRINK_EMPTY)
937 ret = 0;
938 freed += ret;
939 /*
940 * Bail out if someone want to register a new shrinker to
941 * prevent the registration from being stalled for long periods
942 * by parallel ongoing shrinking.
943 */
944 if (rwsem_is_contended(&shrinker_rwsem)) {
945 freed = freed ? : 1;
946 break;
947 }
948 }
949
950 up_read(&shrinker_rwsem);
951 out:
952 cond_resched();
953 return freed;
954 }
955
956 static void drop_slab_node(int nid)
957 {
958 unsigned long freed;
959 int shift = 0;
960
961 do {
962 struct mem_cgroup *memcg = NULL;
963
964 if (fatal_signal_pending(current))
965 return;
966
967 freed = 0;
968 memcg = mem_cgroup_iter(NULL, NULL, NULL);
969 do {
970 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
971 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
972 } while ((freed >> shift++) > 1);
973 }
974
975 void drop_slab(void)
976 {
977 int nid;
978
979 for_each_online_node(nid)
980 drop_slab_node(nid);
981 }
982
983 static inline int is_page_cache_freeable(struct folio *folio)
984 {
985 /*
986 * A freeable page cache page is referenced only by the caller
987 * that isolated the page, the page cache and optional buffer
988 * heads at page->private.
989 */
990 return folio_ref_count(folio) - folio_test_private(folio) ==
991 1 + folio_nr_pages(folio);
992 }
993
994 /*
995 * We detected a synchronous write error writing a folio out. Probably
996 * -ENOSPC. We need to propagate that into the address_space for a subsequent
997 * fsync(), msync() or close().
998 *
999 * The tricky part is that after writepage we cannot touch the mapping: nothing
1000 * prevents it from being freed up. But we have a ref on the folio and once
1001 * that folio is locked, the mapping is pinned.
1002 *
1003 * We're allowed to run sleeping folio_lock() here because we know the caller has
1004 * __GFP_FS.
1005 */
1006 static void handle_write_error(struct address_space *mapping,
1007 struct folio *folio, int error)
1008 {
1009 folio_lock(folio);
1010 if (folio_mapping(folio) == mapping)
1011 mapping_set_error(mapping, error);
1012 folio_unlock(folio);
1013 }
1014
1015 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016 {
1017 int reclaimable = 0, write_pending = 0;
1018 int i;
1019
1020 /*
1021 * If kswapd is disabled, reschedule if necessary but do not
1022 * throttle as the system is likely near OOM.
1023 */
1024 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1025 return true;
1026
1027 /*
1028 * If there are a lot of dirty/writeback pages then do not
1029 * throttle as throttling will occur when the pages cycle
1030 * towards the end of the LRU if still under writeback.
1031 */
1032 for (i = 0; i < MAX_NR_ZONES; i++) {
1033 struct zone *zone = pgdat->node_zones + i;
1034
1035 if (!managed_zone(zone))
1036 continue;
1037
1038 reclaimable += zone_reclaimable_pages(zone);
1039 write_pending += zone_page_state_snapshot(zone,
1040 NR_ZONE_WRITE_PENDING);
1041 }
1042 if (2 * write_pending <= reclaimable)
1043 return true;
1044
1045 return false;
1046 }
1047
1048 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1049 {
1050 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1051 long timeout, ret;
1052 DEFINE_WAIT(wait);
1053
1054 /*
1055 * Do not throttle IO workers, kthreads other than kswapd or
1056 * workqueues. They may be required for reclaim to make
1057 * forward progress (e.g. journalling workqueues or kthreads).
1058 */
1059 if (!current_is_kswapd() &&
1060 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1061 cond_resched();
1062 return;
1063 }
1064
1065 /*
1066 * These figures are pulled out of thin air.
1067 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1068 * parallel reclaimers which is a short-lived event so the timeout is
1069 * short. Failing to make progress or waiting on writeback are
1070 * potentially long-lived events so use a longer timeout. This is shaky
1071 * logic as a failure to make progress could be due to anything from
1072 * writeback to a slow device to excessive references pages at the tail
1073 * of the inactive LRU.
1074 */
1075 switch(reason) {
1076 case VMSCAN_THROTTLE_WRITEBACK:
1077 timeout = HZ/10;
1078
1079 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1080 WRITE_ONCE(pgdat->nr_reclaim_start,
1081 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1082 }
1083
1084 break;
1085 case VMSCAN_THROTTLE_CONGESTED:
1086 fallthrough;
1087 case VMSCAN_THROTTLE_NOPROGRESS:
1088 if (skip_throttle_noprogress(pgdat)) {
1089 cond_resched();
1090 return;
1091 }
1092
1093 timeout = 1;
1094
1095 break;
1096 case VMSCAN_THROTTLE_ISOLATED:
1097 timeout = HZ/50;
1098 break;
1099 default:
1100 WARN_ON_ONCE(1);
1101 timeout = HZ;
1102 break;
1103 }
1104
1105 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1106 ret = schedule_timeout(timeout);
1107 finish_wait(wqh, &wait);
1108
1109 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1110 atomic_dec(&pgdat->nr_writeback_throttled);
1111
1112 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1113 jiffies_to_usecs(timeout - ret),
1114 reason);
1115 }
1116
1117 /*
1118 * Account for pages written if tasks are throttled waiting on dirty
1119 * pages to clean. If enough pages have been cleaned since throttling
1120 * started then wakeup the throttled tasks.
1121 */
1122 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1123 int nr_throttled)
1124 {
1125 unsigned long nr_written;
1126
1127 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1128
1129 /*
1130 * This is an inaccurate read as the per-cpu deltas may not
1131 * be synchronised. However, given that the system is
1132 * writeback throttled, it is not worth taking the penalty
1133 * of getting an accurate count. At worst, the throttle
1134 * timeout guarantees forward progress.
1135 */
1136 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1137 READ_ONCE(pgdat->nr_reclaim_start);
1138
1139 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1140 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1141 }
1142
1143 /* possible outcome of pageout() */
1144 typedef enum {
1145 /* failed to write page out, page is locked */
1146 PAGE_KEEP,
1147 /* move page to the active list, page is locked */
1148 PAGE_ACTIVATE,
1149 /* page has been sent to the disk successfully, page is unlocked */
1150 PAGE_SUCCESS,
1151 /* page is clean and locked */
1152 PAGE_CLEAN,
1153 } pageout_t;
1154
1155 /*
1156 * pageout is called by shrink_page_list() for each dirty page.
1157 * Calls ->writepage().
1158 */
1159 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1160 struct swap_iocb **plug)
1161 {
1162 /*
1163 * If the folio is dirty, only perform writeback if that write
1164 * will be non-blocking. To prevent this allocation from being
1165 * stalled by pagecache activity. But note that there may be
1166 * stalls if we need to run get_block(). We could test
1167 * PagePrivate for that.
1168 *
1169 * If this process is currently in __generic_file_write_iter() against
1170 * this folio's queue, we can perform writeback even if that
1171 * will block.
1172 *
1173 * If the folio is swapcache, write it back even if that would
1174 * block, for some throttling. This happens by accident, because
1175 * swap_backing_dev_info is bust: it doesn't reflect the
1176 * congestion state of the swapdevs. Easy to fix, if needed.
1177 */
1178 if (!is_page_cache_freeable(folio))
1179 return PAGE_KEEP;
1180 if (!mapping) {
1181 /*
1182 * Some data journaling orphaned folios can have
1183 * folio->mapping == NULL while being dirty with clean buffers.
1184 */
1185 if (folio_test_private(folio)) {
1186 if (try_to_free_buffers(&folio->page)) {
1187 folio_clear_dirty(folio);
1188 pr_info("%s: orphaned folio\n", __func__);
1189 return PAGE_CLEAN;
1190 }
1191 }
1192 return PAGE_KEEP;
1193 }
1194 if (mapping->a_ops->writepage == NULL)
1195 return PAGE_ACTIVATE;
1196
1197 if (folio_clear_dirty_for_io(folio)) {
1198 int res;
1199 struct writeback_control wbc = {
1200 .sync_mode = WB_SYNC_NONE,
1201 .nr_to_write = SWAP_CLUSTER_MAX,
1202 .range_start = 0,
1203 .range_end = LLONG_MAX,
1204 .for_reclaim = 1,
1205 .swap_plug = plug,
1206 };
1207
1208 folio_set_reclaim(folio);
1209 res = mapping->a_ops->writepage(&folio->page, &wbc);
1210 if (res < 0)
1211 handle_write_error(mapping, folio, res);
1212 if (res == AOP_WRITEPAGE_ACTIVATE) {
1213 folio_clear_reclaim(folio);
1214 return PAGE_ACTIVATE;
1215 }
1216
1217 if (!folio_test_writeback(folio)) {
1218 /* synchronous write or broken a_ops? */
1219 folio_clear_reclaim(folio);
1220 }
1221 trace_mm_vmscan_write_folio(folio);
1222 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1223 return PAGE_SUCCESS;
1224 }
1225
1226 return PAGE_CLEAN;
1227 }
1228
1229 /*
1230 * Same as remove_mapping, but if the page is removed from the mapping, it
1231 * gets returned with a refcount of 0.
1232 */
1233 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1234 bool reclaimed, struct mem_cgroup *target_memcg)
1235 {
1236 int refcount;
1237 void *shadow = NULL;
1238
1239 BUG_ON(!folio_test_locked(folio));
1240 BUG_ON(mapping != folio_mapping(folio));
1241
1242 if (!folio_test_swapcache(folio))
1243 spin_lock(&mapping->host->i_lock);
1244 xa_lock_irq(&mapping->i_pages);
1245 /*
1246 * The non racy check for a busy page.
1247 *
1248 * Must be careful with the order of the tests. When someone has
1249 * a ref to the page, it may be possible that they dirty it then
1250 * drop the reference. So if PageDirty is tested before page_count
1251 * here, then the following race may occur:
1252 *
1253 * get_user_pages(&page);
1254 * [user mapping goes away]
1255 * write_to(page);
1256 * !PageDirty(page) [good]
1257 * SetPageDirty(page);
1258 * put_page(page);
1259 * !page_count(page) [good, discard it]
1260 *
1261 * [oops, our write_to data is lost]
1262 *
1263 * Reversing the order of the tests ensures such a situation cannot
1264 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1265 * load is not satisfied before that of page->_refcount.
1266 *
1267 * Note that if SetPageDirty is always performed via set_page_dirty,
1268 * and thus under the i_pages lock, then this ordering is not required.
1269 */
1270 refcount = 1 + folio_nr_pages(folio);
1271 if (!folio_ref_freeze(folio, refcount))
1272 goto cannot_free;
1273 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1274 if (unlikely(folio_test_dirty(folio))) {
1275 folio_ref_unfreeze(folio, refcount);
1276 goto cannot_free;
1277 }
1278
1279 if (folio_test_swapcache(folio)) {
1280 swp_entry_t swap = folio_swap_entry(folio);
1281 mem_cgroup_swapout(folio, swap);
1282 if (reclaimed && !mapping_exiting(mapping))
1283 shadow = workingset_eviction(folio, target_memcg);
1284 __delete_from_swap_cache(&folio->page, swap, shadow);
1285 xa_unlock_irq(&mapping->i_pages);
1286 put_swap_page(&folio->page, swap);
1287 } else {
1288 void (*freepage)(struct page *);
1289
1290 freepage = mapping->a_ops->freepage;
1291 /*
1292 * Remember a shadow entry for reclaimed file cache in
1293 * order to detect refaults, thus thrashing, later on.
1294 *
1295 * But don't store shadows in an address space that is
1296 * already exiting. This is not just an optimization,
1297 * inode reclaim needs to empty out the radix tree or
1298 * the nodes are lost. Don't plant shadows behind its
1299 * back.
1300 *
1301 * We also don't store shadows for DAX mappings because the
1302 * only page cache pages found in these are zero pages
1303 * covering holes, and because we don't want to mix DAX
1304 * exceptional entries and shadow exceptional entries in the
1305 * same address_space.
1306 */
1307 if (reclaimed && folio_is_file_lru(folio) &&
1308 !mapping_exiting(mapping) && !dax_mapping(mapping))
1309 shadow = workingset_eviction(folio, target_memcg);
1310 __filemap_remove_folio(folio, shadow);
1311 xa_unlock_irq(&mapping->i_pages);
1312 if (mapping_shrinkable(mapping))
1313 inode_add_lru(mapping->host);
1314 spin_unlock(&mapping->host->i_lock);
1315
1316 if (freepage != NULL)
1317 freepage(&folio->page);
1318 }
1319
1320 return 1;
1321
1322 cannot_free:
1323 xa_unlock_irq(&mapping->i_pages);
1324 if (!folio_test_swapcache(folio))
1325 spin_unlock(&mapping->host->i_lock);
1326 return 0;
1327 }
1328
1329 /**
1330 * remove_mapping() - Attempt to remove a folio from its mapping.
1331 * @mapping: The address space.
1332 * @folio: The folio to remove.
1333 *
1334 * If the folio is dirty, under writeback or if someone else has a ref
1335 * on it, removal will fail.
1336 * Return: The number of pages removed from the mapping. 0 if the folio
1337 * could not be removed.
1338 * Context: The caller should have a single refcount on the folio and
1339 * hold its lock.
1340 */
1341 long remove_mapping(struct address_space *mapping, struct folio *folio)
1342 {
1343 if (__remove_mapping(mapping, folio, false, NULL)) {
1344 /*
1345 * Unfreezing the refcount with 1 effectively
1346 * drops the pagecache ref for us without requiring another
1347 * atomic operation.
1348 */
1349 folio_ref_unfreeze(folio, 1);
1350 return folio_nr_pages(folio);
1351 }
1352 return 0;
1353 }
1354
1355 /**
1356 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1357 * @folio: Folio to be returned to an LRU list.
1358 *
1359 * Add previously isolated @folio to appropriate LRU list.
1360 * The folio may still be unevictable for other reasons.
1361 *
1362 * Context: lru_lock must not be held, interrupts must be enabled.
1363 */
1364 void folio_putback_lru(struct folio *folio)
1365 {
1366 folio_add_lru(folio);
1367 folio_put(folio); /* drop ref from isolate */
1368 }
1369
1370 enum page_references {
1371 PAGEREF_RECLAIM,
1372 PAGEREF_RECLAIM_CLEAN,
1373 PAGEREF_KEEP,
1374 PAGEREF_ACTIVATE,
1375 };
1376
1377 static enum page_references folio_check_references(struct folio *folio,
1378 struct scan_control *sc)
1379 {
1380 int referenced_ptes, referenced_folio;
1381 unsigned long vm_flags;
1382
1383 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1384 &vm_flags);
1385 referenced_folio = folio_test_clear_referenced(folio);
1386
1387 /*
1388 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1389 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1390 */
1391 if (vm_flags & VM_LOCKED)
1392 return PAGEREF_ACTIVATE;
1393
1394 if (referenced_ptes) {
1395 /*
1396 * All mapped folios start out with page table
1397 * references from the instantiating fault, so we need
1398 * to look twice if a mapped file/anon folio is used more
1399 * than once.
1400 *
1401 * Mark it and spare it for another trip around the
1402 * inactive list. Another page table reference will
1403 * lead to its activation.
1404 *
1405 * Note: the mark is set for activated folios as well
1406 * so that recently deactivated but used folios are
1407 * quickly recovered.
1408 */
1409 folio_set_referenced(folio);
1410
1411 if (referenced_folio || referenced_ptes > 1)
1412 return PAGEREF_ACTIVATE;
1413
1414 /*
1415 * Activate file-backed executable folios after first usage.
1416 */
1417 if ((vm_flags & VM_EXEC) && !folio_test_swapbacked(folio))
1418 return PAGEREF_ACTIVATE;
1419
1420 return PAGEREF_KEEP;
1421 }
1422
1423 /* Reclaim if clean, defer dirty folios to writeback */
1424 if (referenced_folio && !folio_test_swapbacked(folio))
1425 return PAGEREF_RECLAIM_CLEAN;
1426
1427 return PAGEREF_RECLAIM;
1428 }
1429
1430 /* Check if a page is dirty or under writeback */
1431 static void folio_check_dirty_writeback(struct folio *folio,
1432 bool *dirty, bool *writeback)
1433 {
1434 struct address_space *mapping;
1435
1436 /*
1437 * Anonymous pages are not handled by flushers and must be written
1438 * from reclaim context. Do not stall reclaim based on them
1439 */
1440 if (!folio_is_file_lru(folio) ||
1441 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1442 *dirty = false;
1443 *writeback = false;
1444 return;
1445 }
1446
1447 /* By default assume that the folio flags are accurate */
1448 *dirty = folio_test_dirty(folio);
1449 *writeback = folio_test_writeback(folio);
1450
1451 /* Verify dirty/writeback state if the filesystem supports it */
1452 if (!folio_test_private(folio))
1453 return;
1454
1455 mapping = folio_mapping(folio);
1456 if (mapping && mapping->a_ops->is_dirty_writeback)
1457 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
1458 }
1459
1460 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1461 {
1462 struct migration_target_control mtc = {
1463 /*
1464 * Allocate from 'node', or fail quickly and quietly.
1465 * When this happens, 'page' will likely just be discarded
1466 * instead of migrated.
1467 */
1468 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1469 __GFP_THISNODE | __GFP_NOWARN |
1470 __GFP_NOMEMALLOC | GFP_NOWAIT,
1471 .nid = node
1472 };
1473
1474 return alloc_migration_target(page, (unsigned long)&mtc);
1475 }
1476
1477 /*
1478 * Take pages on @demote_list and attempt to demote them to
1479 * another node. Pages which are not demoted are left on
1480 * @demote_pages.
1481 */
1482 static unsigned int demote_page_list(struct list_head *demote_pages,
1483 struct pglist_data *pgdat)
1484 {
1485 int target_nid = next_demotion_node(pgdat->node_id);
1486 unsigned int nr_succeeded;
1487
1488 if (list_empty(demote_pages))
1489 return 0;
1490
1491 if (target_nid == NUMA_NO_NODE)
1492 return 0;
1493
1494 /* Demotion ignores all cpuset and mempolicy settings */
1495 migrate_pages(demote_pages, alloc_demote_page, NULL,
1496 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1497 &nr_succeeded);
1498
1499 if (current_is_kswapd())
1500 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1501 else
1502 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1503
1504 return nr_succeeded;
1505 }
1506
1507 static bool may_enter_fs(struct page *page, gfp_t gfp_mask)
1508 {
1509 if (gfp_mask & __GFP_FS)
1510 return true;
1511 if (!PageSwapCache(page) || !(gfp_mask & __GFP_IO))
1512 return false;
1513 /*
1514 * We can "enter_fs" for swap-cache with only __GFP_IO
1515 * providing this isn't SWP_FS_OPS.
1516 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1517 * but that will never affect SWP_FS_OPS, so the data_race
1518 * is safe.
1519 */
1520 return !data_race(page_swap_flags(page) & SWP_FS_OPS);
1521 }
1522
1523 /*
1524 * shrink_page_list() returns the number of reclaimed pages
1525 */
1526 static unsigned int shrink_page_list(struct list_head *page_list,
1527 struct pglist_data *pgdat,
1528 struct scan_control *sc,
1529 struct reclaim_stat *stat,
1530 bool ignore_references)
1531 {
1532 LIST_HEAD(ret_pages);
1533 LIST_HEAD(free_pages);
1534 LIST_HEAD(demote_pages);
1535 unsigned int nr_reclaimed = 0;
1536 unsigned int pgactivate = 0;
1537 bool do_demote_pass;
1538 struct swap_iocb *plug = NULL;
1539
1540 memset(stat, 0, sizeof(*stat));
1541 cond_resched();
1542 do_demote_pass = can_demote(pgdat->node_id, sc);
1543
1544 retry:
1545 while (!list_empty(page_list)) {
1546 struct address_space *mapping;
1547 struct page *page;
1548 struct folio *folio;
1549 enum page_references references = PAGEREF_RECLAIM;
1550 bool dirty, writeback;
1551 unsigned int nr_pages;
1552
1553 cond_resched();
1554
1555 folio = lru_to_folio(page_list);
1556 list_del(&folio->lru);
1557 page = &folio->page;
1558
1559 if (!trylock_page(page))
1560 goto keep;
1561
1562 VM_BUG_ON_PAGE(PageActive(page), page);
1563
1564 nr_pages = compound_nr(page);
1565
1566 /* Account the number of base pages even though THP */
1567 sc->nr_scanned += nr_pages;
1568
1569 if (unlikely(!page_evictable(page)))
1570 goto activate_locked;
1571
1572 if (!sc->may_unmap && page_mapped(page))
1573 goto keep_locked;
1574
1575 /*
1576 * The number of dirty pages determines if a node is marked
1577 * reclaim_congested. kswapd will stall and start writing
1578 * pages if the tail of the LRU is all dirty unqueued pages.
1579 */
1580 folio_check_dirty_writeback(folio, &dirty, &writeback);
1581 if (dirty || writeback)
1582 stat->nr_dirty += nr_pages;
1583
1584 if (dirty && !writeback)
1585 stat->nr_unqueued_dirty += nr_pages;
1586
1587 /*
1588 * Treat this page as congested if the underlying BDI is or if
1589 * pages are cycling through the LRU so quickly that the
1590 * pages marked for immediate reclaim are making it to the
1591 * end of the LRU a second time.
1592 */
1593 mapping = page_mapping(page);
1594 if (writeback && PageReclaim(page))
1595 stat->nr_congested += nr_pages;
1596
1597 /*
1598 * If a page at the tail of the LRU is under writeback, there
1599 * are three cases to consider.
1600 *
1601 * 1) If reclaim is encountering an excessive number of pages
1602 * under writeback and this page is both under writeback and
1603 * PageReclaim then it indicates that pages are being queued
1604 * for IO but are being recycled through the LRU before the
1605 * IO can complete. Waiting on the page itself risks an
1606 * indefinite stall if it is impossible to writeback the
1607 * page due to IO error or disconnected storage so instead
1608 * note that the LRU is being scanned too quickly and the
1609 * caller can stall after page list has been processed.
1610 *
1611 * 2) Global or new memcg reclaim encounters a page that is
1612 * not marked for immediate reclaim, or the caller does not
1613 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1614 * not to fs). In this case mark the page for immediate
1615 * reclaim and continue scanning.
1616 *
1617 * Require may_enter_fs() because we would wait on fs, which
1618 * may not have submitted IO yet. And the loop driver might
1619 * enter reclaim, and deadlock if it waits on a page for
1620 * which it is needed to do the write (loop masks off
1621 * __GFP_IO|__GFP_FS for this reason); but more thought
1622 * would probably show more reasons.
1623 *
1624 * 3) Legacy memcg encounters a page that is already marked
1625 * PageReclaim. memcg does not have any dirty pages
1626 * throttling so we could easily OOM just because too many
1627 * pages are in writeback and there is nothing else to
1628 * reclaim. Wait for the writeback to complete.
1629 *
1630 * In cases 1) and 2) we activate the pages to get them out of
1631 * the way while we continue scanning for clean pages on the
1632 * inactive list and refilling from the active list. The
1633 * observation here is that waiting for disk writes is more
1634 * expensive than potentially causing reloads down the line.
1635 * Since they're marked for immediate reclaim, they won't put
1636 * memory pressure on the cache working set any longer than it
1637 * takes to write them to disk.
1638 */
1639 if (PageWriteback(page)) {
1640 /* Case 1 above */
1641 if (current_is_kswapd() &&
1642 PageReclaim(page) &&
1643 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1644 stat->nr_immediate += nr_pages;
1645 goto activate_locked;
1646
1647 /* Case 2 above */
1648 } else if (writeback_throttling_sane(sc) ||
1649 !PageReclaim(page) || !may_enter_fs(page, sc->gfp_mask)) {
1650 /*
1651 * This is slightly racy - end_page_writeback()
1652 * might have just cleared PageReclaim, then
1653 * setting PageReclaim here end up interpreted
1654 * as PageReadahead - but that does not matter
1655 * enough to care. What we do want is for this
1656 * page to have PageReclaim set next time memcg
1657 * reclaim reaches the tests above, so it will
1658 * then wait_on_page_writeback() to avoid OOM;
1659 * and it's also appropriate in global reclaim.
1660 */
1661 SetPageReclaim(page);
1662 stat->nr_writeback += nr_pages;
1663 goto activate_locked;
1664
1665 /* Case 3 above */
1666 } else {
1667 unlock_page(page);
1668 wait_on_page_writeback(page);
1669 /* then go back and try same page again */
1670 list_add_tail(&page->lru, page_list);
1671 continue;
1672 }
1673 }
1674
1675 if (!ignore_references)
1676 references = folio_check_references(folio, sc);
1677
1678 switch (references) {
1679 case PAGEREF_ACTIVATE:
1680 goto activate_locked;
1681 case PAGEREF_KEEP:
1682 stat->nr_ref_keep += nr_pages;
1683 goto keep_locked;
1684 case PAGEREF_RECLAIM:
1685 case PAGEREF_RECLAIM_CLEAN:
1686 ; /* try to reclaim the page below */
1687 }
1688
1689 /*
1690 * Before reclaiming the page, try to relocate
1691 * its contents to another node.
1692 */
1693 if (do_demote_pass &&
1694 (thp_migration_supported() || !PageTransHuge(page))) {
1695 list_add(&page->lru, &demote_pages);
1696 unlock_page(page);
1697 continue;
1698 }
1699
1700 /*
1701 * Anonymous process memory has backing store?
1702 * Try to allocate it some swap space here.
1703 * Lazyfree page could be freed directly
1704 */
1705 if (PageAnon(page) && PageSwapBacked(page)) {
1706 if (!PageSwapCache(page)) {
1707 if (!(sc->gfp_mask & __GFP_IO))
1708 goto keep_locked;
1709 if (folio_maybe_dma_pinned(folio))
1710 goto keep_locked;
1711 if (PageTransHuge(page)) {
1712 /* cannot split THP, skip it */
1713 if (!can_split_folio(folio, NULL))
1714 goto activate_locked;
1715 /*
1716 * Split pages without a PMD map right
1717 * away. Chances are some or all of the
1718 * tail pages can be freed without IO.
1719 */
1720 if (!folio_entire_mapcount(folio) &&
1721 split_folio_to_list(folio,
1722 page_list))
1723 goto activate_locked;
1724 }
1725 if (!add_to_swap(page)) {
1726 if (!PageTransHuge(page))
1727 goto activate_locked_split;
1728 /* Fallback to swap normal pages */
1729 if (split_folio_to_list(folio,
1730 page_list))
1731 goto activate_locked;
1732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1733 count_vm_event(THP_SWPOUT_FALLBACK);
1734 #endif
1735 if (!add_to_swap(page))
1736 goto activate_locked_split;
1737 }
1738
1739 /* Adding to swap updated mapping */
1740 mapping = page_mapping(page);
1741 }
1742 } else if (PageSwapBacked(page) && PageTransHuge(page)) {
1743 /* Split shmem THP */
1744 if (split_folio_to_list(folio, page_list))
1745 goto keep_locked;
1746 }
1747
1748 /*
1749 * THP may get split above, need minus tail pages and update
1750 * nr_pages to avoid accounting tail pages twice.
1751 *
1752 * The tail pages that are added into swap cache successfully
1753 * reach here.
1754 */
1755 if ((nr_pages > 1) && !PageTransHuge(page)) {
1756 sc->nr_scanned -= (nr_pages - 1);
1757 nr_pages = 1;
1758 }
1759
1760 /*
1761 * The page is mapped into the page tables of one or more
1762 * processes. Try to unmap it here.
1763 */
1764 if (page_mapped(page)) {
1765 enum ttu_flags flags = TTU_BATCH_FLUSH;
1766 bool was_swapbacked = PageSwapBacked(page);
1767
1768 if (PageTransHuge(page) &&
1769 thp_order(page) >= HPAGE_PMD_ORDER)
1770 flags |= TTU_SPLIT_HUGE_PMD;
1771
1772 try_to_unmap(folio, flags);
1773 if (page_mapped(page)) {
1774 stat->nr_unmap_fail += nr_pages;
1775 if (!was_swapbacked && PageSwapBacked(page))
1776 stat->nr_lazyfree_fail += nr_pages;
1777 goto activate_locked;
1778 }
1779 }
1780
1781 if (PageDirty(page)) {
1782 /*
1783 * Only kswapd can writeback filesystem pages
1784 * to avoid risk of stack overflow. But avoid
1785 * injecting inefficient single-page IO into
1786 * flusher writeback as much as possible: only
1787 * write pages when we've encountered many
1788 * dirty pages, and when we've already scanned
1789 * the rest of the LRU for clean pages and see
1790 * the same dirty pages again (PageReclaim).
1791 */
1792 if (page_is_file_lru(page) &&
1793 (!current_is_kswapd() || !PageReclaim(page) ||
1794 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1795 /*
1796 * Immediately reclaim when written back.
1797 * Similar in principal to deactivate_page()
1798 * except we already have the page isolated
1799 * and know it's dirty
1800 */
1801 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1802 SetPageReclaim(page);
1803
1804 goto activate_locked;
1805 }
1806
1807 if (references == PAGEREF_RECLAIM_CLEAN)
1808 goto keep_locked;
1809 if (!may_enter_fs(page, sc->gfp_mask))
1810 goto keep_locked;
1811 if (!sc->may_writepage)
1812 goto keep_locked;
1813
1814 /*
1815 * Page is dirty. Flush the TLB if a writable entry
1816 * potentially exists to avoid CPU writes after IO
1817 * starts and then write it out here.
1818 */
1819 try_to_unmap_flush_dirty();
1820 switch (pageout(folio, mapping, &plug)) {
1821 case PAGE_KEEP:
1822 goto keep_locked;
1823 case PAGE_ACTIVATE:
1824 goto activate_locked;
1825 case PAGE_SUCCESS:
1826 stat->nr_pageout += nr_pages;
1827
1828 if (PageWriteback(page))
1829 goto keep;
1830 if (PageDirty(page))
1831 goto keep;
1832
1833 /*
1834 * A synchronous write - probably a ramdisk. Go
1835 * ahead and try to reclaim the page.
1836 */
1837 if (!trylock_page(page))
1838 goto keep;
1839 if (PageDirty(page) || PageWriteback(page))
1840 goto keep_locked;
1841 mapping = page_mapping(page);
1842 fallthrough;
1843 case PAGE_CLEAN:
1844 ; /* try to free the page below */
1845 }
1846 }
1847
1848 /*
1849 * If the page has buffers, try to free the buffer mappings
1850 * associated with this page. If we succeed we try to free
1851 * the page as well.
1852 *
1853 * We do this even if the page is PageDirty().
1854 * try_to_release_page() does not perform I/O, but it is
1855 * possible for a page to have PageDirty set, but it is actually
1856 * clean (all its buffers are clean). This happens if the
1857 * buffers were written out directly, with submit_bh(). ext3
1858 * will do this, as well as the blockdev mapping.
1859 * try_to_release_page() will discover that cleanness and will
1860 * drop the buffers and mark the page clean - it can be freed.
1861 *
1862 * Rarely, pages can have buffers and no ->mapping. These are
1863 * the pages which were not successfully invalidated in
1864 * truncate_cleanup_page(). We try to drop those buffers here
1865 * and if that worked, and the page is no longer mapped into
1866 * process address space (page_count == 1) it can be freed.
1867 * Otherwise, leave the page on the LRU so it is swappable.
1868 */
1869 if (page_has_private(page)) {
1870 if (!try_to_release_page(page, sc->gfp_mask))
1871 goto activate_locked;
1872 if (!mapping && page_count(page) == 1) {
1873 unlock_page(page);
1874 if (put_page_testzero(page))
1875 goto free_it;
1876 else {
1877 /*
1878 * rare race with speculative reference.
1879 * the speculative reference will free
1880 * this page shortly, so we may
1881 * increment nr_reclaimed here (and
1882 * leave it off the LRU).
1883 */
1884 nr_reclaimed++;
1885 continue;
1886 }
1887 }
1888 }
1889
1890 if (PageAnon(page) && !PageSwapBacked(page)) {
1891 /* follow __remove_mapping for reference */
1892 if (!page_ref_freeze(page, 1))
1893 goto keep_locked;
1894 /*
1895 * The page has only one reference left, which is
1896 * from the isolation. After the caller puts the
1897 * page back on lru and drops the reference, the
1898 * page will be freed anyway. It doesn't matter
1899 * which lru it goes. So we don't bother checking
1900 * PageDirty here.
1901 */
1902 count_vm_event(PGLAZYFREED);
1903 count_memcg_page_event(page, PGLAZYFREED);
1904 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1905 sc->target_mem_cgroup))
1906 goto keep_locked;
1907
1908 unlock_page(page);
1909 free_it:
1910 /*
1911 * THP may get swapped out in a whole, need account
1912 * all base pages.
1913 */
1914 nr_reclaimed += nr_pages;
1915
1916 /*
1917 * Is there need to periodically free_page_list? It would
1918 * appear not as the counts should be low
1919 */
1920 if (unlikely(PageTransHuge(page)))
1921 destroy_compound_page(page);
1922 else
1923 list_add(&page->lru, &free_pages);
1924 continue;
1925
1926 activate_locked_split:
1927 /*
1928 * The tail pages that are failed to add into swap cache
1929 * reach here. Fixup nr_scanned and nr_pages.
1930 */
1931 if (nr_pages > 1) {
1932 sc->nr_scanned -= (nr_pages - 1);
1933 nr_pages = 1;
1934 }
1935 activate_locked:
1936 /* Not a candidate for swapping, so reclaim swap space. */
1937 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1938 PageMlocked(page)))
1939 try_to_free_swap(page);
1940 VM_BUG_ON_PAGE(PageActive(page), page);
1941 if (!PageMlocked(page)) {
1942 int type = page_is_file_lru(page);
1943 SetPageActive(page);
1944 stat->nr_activate[type] += nr_pages;
1945 count_memcg_page_event(page, PGACTIVATE);
1946 }
1947 keep_locked:
1948 unlock_page(page);
1949 keep:
1950 list_add(&page->lru, &ret_pages);
1951 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1952 }
1953 /* 'page_list' is always empty here */
1954
1955 /* Migrate pages selected for demotion */
1956 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1957 /* Pages that could not be demoted are still in @demote_pages */
1958 if (!list_empty(&demote_pages)) {
1959 /* Pages which failed to demoted go back on @page_list for retry: */
1960 list_splice_init(&demote_pages, page_list);
1961 do_demote_pass = false;
1962 goto retry;
1963 }
1964
1965 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1966
1967 mem_cgroup_uncharge_list(&free_pages);
1968 try_to_unmap_flush();
1969 free_unref_page_list(&free_pages);
1970
1971 list_splice(&ret_pages, page_list);
1972 count_vm_events(PGACTIVATE, pgactivate);
1973
1974 if (plug)
1975 swap_write_unplug(plug);
1976 return nr_reclaimed;
1977 }
1978
1979 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1980 struct list_head *page_list)
1981 {
1982 struct scan_control sc = {
1983 .gfp_mask = GFP_KERNEL,
1984 .may_unmap = 1,
1985 };
1986 struct reclaim_stat stat;
1987 unsigned int nr_reclaimed;
1988 struct page *page, *next;
1989 LIST_HEAD(clean_pages);
1990 unsigned int noreclaim_flag;
1991
1992 list_for_each_entry_safe(page, next, page_list, lru) {
1993 if (!PageHuge(page) && page_is_file_lru(page) &&
1994 !PageDirty(page) && !__PageMovable(page) &&
1995 !PageUnevictable(page)) {
1996 ClearPageActive(page);
1997 list_move(&page->lru, &clean_pages);
1998 }
1999 }
2000
2001 /*
2002 * We should be safe here since we are only dealing with file pages and
2003 * we are not kswapd and therefore cannot write dirty file pages. But
2004 * call memalloc_noreclaim_save() anyway, just in case these conditions
2005 * change in the future.
2006 */
2007 noreclaim_flag = memalloc_noreclaim_save();
2008 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
2009 &stat, true);
2010 memalloc_noreclaim_restore(noreclaim_flag);
2011
2012 list_splice(&clean_pages, page_list);
2013 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2014 -(long)nr_reclaimed);
2015 /*
2016 * Since lazyfree pages are isolated from file LRU from the beginning,
2017 * they will rotate back to anonymous LRU in the end if it failed to
2018 * discard so isolated count will be mismatched.
2019 * Compensate the isolated count for both LRU lists.
2020 */
2021 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2022 stat.nr_lazyfree_fail);
2023 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2024 -(long)stat.nr_lazyfree_fail);
2025 return nr_reclaimed;
2026 }
2027
2028 /*
2029 * Update LRU sizes after isolating pages. The LRU size updates must
2030 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2031 */
2032 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2033 enum lru_list lru, unsigned long *nr_zone_taken)
2034 {
2035 int zid;
2036
2037 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2038 if (!nr_zone_taken[zid])
2039 continue;
2040
2041 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2042 }
2043
2044 }
2045
2046 /*
2047 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2048 *
2049 * lruvec->lru_lock is heavily contended. Some of the functions that
2050 * shrink the lists perform better by taking out a batch of pages
2051 * and working on them outside the LRU lock.
2052 *
2053 * For pagecache intensive workloads, this function is the hottest
2054 * spot in the kernel (apart from copy_*_user functions).
2055 *
2056 * Lru_lock must be held before calling this function.
2057 *
2058 * @nr_to_scan: The number of eligible pages to look through on the list.
2059 * @lruvec: The LRU vector to pull pages from.
2060 * @dst: The temp list to put pages on to.
2061 * @nr_scanned: The number of pages that were scanned.
2062 * @sc: The scan_control struct for this reclaim session
2063 * @lru: LRU list id for isolating
2064 *
2065 * returns how many pages were moved onto *@dst.
2066 */
2067 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2068 struct lruvec *lruvec, struct list_head *dst,
2069 unsigned long *nr_scanned, struct scan_control *sc,
2070 enum lru_list lru)
2071 {
2072 struct list_head *src = &lruvec->lists[lru];
2073 unsigned long nr_taken = 0;
2074 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2075 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2076 unsigned long skipped = 0;
2077 unsigned long scan, total_scan, nr_pages;
2078 LIST_HEAD(pages_skipped);
2079
2080 total_scan = 0;
2081 scan = 0;
2082 while (scan < nr_to_scan && !list_empty(src)) {
2083 struct list_head *move_to = src;
2084 struct page *page;
2085
2086 page = lru_to_page(src);
2087 prefetchw_prev_lru_page(page, src, flags);
2088
2089 nr_pages = compound_nr(page);
2090 total_scan += nr_pages;
2091
2092 if (page_zonenum(page) > sc->reclaim_idx) {
2093 nr_skipped[page_zonenum(page)] += nr_pages;
2094 move_to = &pages_skipped;
2095 goto move;
2096 }
2097
2098 /*
2099 * Do not count skipped pages because that makes the function
2100 * return with no isolated pages if the LRU mostly contains
2101 * ineligible pages. This causes the VM to not reclaim any
2102 * pages, triggering a premature OOM.
2103 * Account all tail pages of THP.
2104 */
2105 scan += nr_pages;
2106
2107 if (!PageLRU(page))
2108 goto move;
2109 if (!sc->may_unmap && page_mapped(page))
2110 goto move;
2111
2112 /*
2113 * Be careful not to clear PageLRU until after we're
2114 * sure the page is not being freed elsewhere -- the
2115 * page release code relies on it.
2116 */
2117 if (unlikely(!get_page_unless_zero(page)))
2118 goto move;
2119
2120 if (!TestClearPageLRU(page)) {
2121 /* Another thread is already isolating this page */
2122 put_page(page);
2123 goto move;
2124 }
2125
2126 nr_taken += nr_pages;
2127 nr_zone_taken[page_zonenum(page)] += nr_pages;
2128 move_to = dst;
2129 move:
2130 list_move(&page->lru, move_to);
2131 }
2132
2133 /*
2134 * Splice any skipped pages to the start of the LRU list. Note that
2135 * this disrupts the LRU order when reclaiming for lower zones but
2136 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2137 * scanning would soon rescan the same pages to skip and waste lots
2138 * of cpu cycles.
2139 */
2140 if (!list_empty(&pages_skipped)) {
2141 int zid;
2142
2143 list_splice(&pages_skipped, src);
2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 if (!nr_skipped[zid])
2146 continue;
2147
2148 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2149 skipped += nr_skipped[zid];
2150 }
2151 }
2152 *nr_scanned = total_scan;
2153 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2154 total_scan, skipped, nr_taken,
2155 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2156 update_lru_sizes(lruvec, lru, nr_zone_taken);
2157 return nr_taken;
2158 }
2159
2160 /**
2161 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2162 * @folio: Folio to isolate from its LRU list.
2163 *
2164 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2165 * corresponding to whatever LRU list the folio was on.
2166 *
2167 * The folio will have its LRU flag cleared. If it was found on the
2168 * active list, it will have the Active flag set. If it was found on the
2169 * unevictable list, it will have the Unevictable flag set. These flags
2170 * may need to be cleared by the caller before letting the page go.
2171 *
2172 * Context:
2173 *
2174 * (1) Must be called with an elevated refcount on the page. This is a
2175 * fundamental difference from isolate_lru_pages() (which is called
2176 * without a stable reference).
2177 * (2) The lru_lock must not be held.
2178 * (3) Interrupts must be enabled.
2179 *
2180 * Return: 0 if the folio was removed from an LRU list.
2181 * -EBUSY if the folio was not on an LRU list.
2182 */
2183 int folio_isolate_lru(struct folio *folio)
2184 {
2185 int ret = -EBUSY;
2186
2187 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2188
2189 if (folio_test_clear_lru(folio)) {
2190 struct lruvec *lruvec;
2191
2192 folio_get(folio);
2193 lruvec = folio_lruvec_lock_irq(folio);
2194 lruvec_del_folio(lruvec, folio);
2195 unlock_page_lruvec_irq(lruvec);
2196 ret = 0;
2197 }
2198
2199 return ret;
2200 }
2201
2202 /*
2203 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2204 * then get rescheduled. When there are massive number of tasks doing page
2205 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2206 * the LRU list will go small and be scanned faster than necessary, leading to
2207 * unnecessary swapping, thrashing and OOM.
2208 */
2209 static int too_many_isolated(struct pglist_data *pgdat, int file,
2210 struct scan_control *sc)
2211 {
2212 unsigned long inactive, isolated;
2213 bool too_many;
2214
2215 if (current_is_kswapd())
2216 return 0;
2217
2218 if (!writeback_throttling_sane(sc))
2219 return 0;
2220
2221 if (file) {
2222 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2223 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2224 } else {
2225 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2226 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2227 }
2228
2229 /*
2230 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2231 * won't get blocked by normal direct-reclaimers, forming a circular
2232 * deadlock.
2233 */
2234 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2235 inactive >>= 3;
2236
2237 too_many = isolated > inactive;
2238
2239 /* Wake up tasks throttled due to too_many_isolated. */
2240 if (!too_many)
2241 wake_throttle_isolated(pgdat);
2242
2243 return too_many;
2244 }
2245
2246 /*
2247 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2248 * On return, @list is reused as a list of pages to be freed by the caller.
2249 *
2250 * Returns the number of pages moved to the given lruvec.
2251 */
2252 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2253 struct list_head *list)
2254 {
2255 int nr_pages, nr_moved = 0;
2256 LIST_HEAD(pages_to_free);
2257 struct page *page;
2258
2259 while (!list_empty(list)) {
2260 page = lru_to_page(list);
2261 VM_BUG_ON_PAGE(PageLRU(page), page);
2262 list_del(&page->lru);
2263 if (unlikely(!page_evictable(page))) {
2264 spin_unlock_irq(&lruvec->lru_lock);
2265 putback_lru_page(page);
2266 spin_lock_irq(&lruvec->lru_lock);
2267 continue;
2268 }
2269
2270 /*
2271 * The SetPageLRU needs to be kept here for list integrity.
2272 * Otherwise:
2273 * #0 move_pages_to_lru #1 release_pages
2274 * if !put_page_testzero
2275 * if (put_page_testzero())
2276 * !PageLRU //skip lru_lock
2277 * SetPageLRU()
2278 * list_add(&page->lru,)
2279 * list_add(&page->lru,)
2280 */
2281 SetPageLRU(page);
2282
2283 if (unlikely(put_page_testzero(page))) {
2284 __clear_page_lru_flags(page);
2285
2286 if (unlikely(PageCompound(page))) {
2287 spin_unlock_irq(&lruvec->lru_lock);
2288 destroy_compound_page(page);
2289 spin_lock_irq(&lruvec->lru_lock);
2290 } else
2291 list_add(&page->lru, &pages_to_free);
2292
2293 continue;
2294 }
2295
2296 /*
2297 * All pages were isolated from the same lruvec (and isolation
2298 * inhibits memcg migration).
2299 */
2300 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2301 add_page_to_lru_list(page, lruvec);
2302 nr_pages = thp_nr_pages(page);
2303 nr_moved += nr_pages;
2304 if (PageActive(page))
2305 workingset_age_nonresident(lruvec, nr_pages);
2306 }
2307
2308 /*
2309 * To save our caller's stack, now use input list for pages to free.
2310 */
2311 list_splice(&pages_to_free, list);
2312
2313 return nr_moved;
2314 }
2315
2316 /*
2317 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2318 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2319 * we should not throttle. Otherwise it is safe to do so.
2320 */
2321 static int current_may_throttle(void)
2322 {
2323 return !(current->flags & PF_LOCAL_THROTTLE);
2324 }
2325
2326 /*
2327 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2328 * of reclaimed pages
2329 */
2330 static unsigned long
2331 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2332 struct scan_control *sc, enum lru_list lru)
2333 {
2334 LIST_HEAD(page_list);
2335 unsigned long nr_scanned;
2336 unsigned int nr_reclaimed = 0;
2337 unsigned long nr_taken;
2338 struct reclaim_stat stat;
2339 bool file = is_file_lru(lru);
2340 enum vm_event_item item;
2341 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2342 bool stalled = false;
2343
2344 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2345 if (stalled)
2346 return 0;
2347
2348 /* wait a bit for the reclaimer. */
2349 stalled = true;
2350 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2351
2352 /* We are about to die and free our memory. Return now. */
2353 if (fatal_signal_pending(current))
2354 return SWAP_CLUSTER_MAX;
2355 }
2356
2357 lru_add_drain();
2358
2359 spin_lock_irq(&lruvec->lru_lock);
2360
2361 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2362 &nr_scanned, sc, lru);
2363
2364 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2365 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2366 if (!cgroup_reclaim(sc))
2367 __count_vm_events(item, nr_scanned);
2368 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2369 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2370
2371 spin_unlock_irq(&lruvec->lru_lock);
2372
2373 if (nr_taken == 0)
2374 return 0;
2375
2376 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2377
2378 spin_lock_irq(&lruvec->lru_lock);
2379 move_pages_to_lru(lruvec, &page_list);
2380
2381 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2382 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2383 if (!cgroup_reclaim(sc))
2384 __count_vm_events(item, nr_reclaimed);
2385 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2386 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2387 spin_unlock_irq(&lruvec->lru_lock);
2388
2389 lru_note_cost(lruvec, file, stat.nr_pageout);
2390 mem_cgroup_uncharge_list(&page_list);
2391 free_unref_page_list(&page_list);
2392
2393 /*
2394 * If dirty pages are scanned that are not queued for IO, it
2395 * implies that flushers are not doing their job. This can
2396 * happen when memory pressure pushes dirty pages to the end of
2397 * the LRU before the dirty limits are breached and the dirty
2398 * data has expired. It can also happen when the proportion of
2399 * dirty pages grows not through writes but through memory
2400 * pressure reclaiming all the clean cache. And in some cases,
2401 * the flushers simply cannot keep up with the allocation
2402 * rate. Nudge the flusher threads in case they are asleep.
2403 */
2404 if (stat.nr_unqueued_dirty == nr_taken)
2405 wakeup_flusher_threads(WB_REASON_VMSCAN);
2406
2407 sc->nr.dirty += stat.nr_dirty;
2408 sc->nr.congested += stat.nr_congested;
2409 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2410 sc->nr.writeback += stat.nr_writeback;
2411 sc->nr.immediate += stat.nr_immediate;
2412 sc->nr.taken += nr_taken;
2413 if (file)
2414 sc->nr.file_taken += nr_taken;
2415
2416 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2417 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2418 return nr_reclaimed;
2419 }
2420
2421 /*
2422 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2423 *
2424 * We move them the other way if the page is referenced by one or more
2425 * processes.
2426 *
2427 * If the pages are mostly unmapped, the processing is fast and it is
2428 * appropriate to hold lru_lock across the whole operation. But if
2429 * the pages are mapped, the processing is slow (folio_referenced()), so
2430 * we should drop lru_lock around each page. It's impossible to balance
2431 * this, so instead we remove the pages from the LRU while processing them.
2432 * It is safe to rely on PG_active against the non-LRU pages in here because
2433 * nobody will play with that bit on a non-LRU page.
2434 *
2435 * The downside is that we have to touch page->_refcount against each page.
2436 * But we had to alter page->flags anyway.
2437 */
2438 static void shrink_active_list(unsigned long nr_to_scan,
2439 struct lruvec *lruvec,
2440 struct scan_control *sc,
2441 enum lru_list lru)
2442 {
2443 unsigned long nr_taken;
2444 unsigned long nr_scanned;
2445 unsigned long vm_flags;
2446 LIST_HEAD(l_hold); /* The pages which were snipped off */
2447 LIST_HEAD(l_active);
2448 LIST_HEAD(l_inactive);
2449 unsigned nr_deactivate, nr_activate;
2450 unsigned nr_rotated = 0;
2451 int file = is_file_lru(lru);
2452 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2453
2454 lru_add_drain();
2455
2456 spin_lock_irq(&lruvec->lru_lock);
2457
2458 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2459 &nr_scanned, sc, lru);
2460
2461 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2462
2463 if (!cgroup_reclaim(sc))
2464 __count_vm_events(PGREFILL, nr_scanned);
2465 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2466
2467 spin_unlock_irq(&lruvec->lru_lock);
2468
2469 while (!list_empty(&l_hold)) {
2470 struct folio *folio;
2471 struct page *page;
2472
2473 cond_resched();
2474 folio = lru_to_folio(&l_hold);
2475 list_del(&folio->lru);
2476 page = &folio->page;
2477
2478 if (unlikely(!page_evictable(page))) {
2479 putback_lru_page(page);
2480 continue;
2481 }
2482
2483 if (unlikely(buffer_heads_over_limit)) {
2484 if (page_has_private(page) && trylock_page(page)) {
2485 if (page_has_private(page))
2486 try_to_release_page(page, 0);
2487 unlock_page(page);
2488 }
2489 }
2490
2491 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2492 &vm_flags)) {
2493 /*
2494 * Identify referenced, file-backed active pages and
2495 * give them one more trip around the active list. So
2496 * that executable code get better chances to stay in
2497 * memory under moderate memory pressure. Anon pages
2498 * are not likely to be evicted by use-once streaming
2499 * IO, plus JVM can create lots of anon VM_EXEC pages,
2500 * so we ignore them here.
2501 */
2502 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2503 nr_rotated += thp_nr_pages(page);
2504 list_add(&page->lru, &l_active);
2505 continue;
2506 }
2507 }
2508
2509 ClearPageActive(page); /* we are de-activating */
2510 SetPageWorkingset(page);
2511 list_add(&page->lru, &l_inactive);
2512 }
2513
2514 /*
2515 * Move pages back to the lru list.
2516 */
2517 spin_lock_irq(&lruvec->lru_lock);
2518
2519 nr_activate = move_pages_to_lru(lruvec, &l_active);
2520 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2521 /* Keep all free pages in l_active list */
2522 list_splice(&l_inactive, &l_active);
2523
2524 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2525 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2526
2527 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2528 spin_unlock_irq(&lruvec->lru_lock);
2529
2530 mem_cgroup_uncharge_list(&l_active);
2531 free_unref_page_list(&l_active);
2532 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2533 nr_deactivate, nr_rotated, sc->priority, file);
2534 }
2535
2536 unsigned long reclaim_pages(struct list_head *page_list)
2537 {
2538 int nid = NUMA_NO_NODE;
2539 unsigned int nr_reclaimed = 0;
2540 LIST_HEAD(node_page_list);
2541 struct reclaim_stat dummy_stat;
2542 struct page *page;
2543 unsigned int noreclaim_flag;
2544 struct scan_control sc = {
2545 .gfp_mask = GFP_KERNEL,
2546 .may_writepage = 1,
2547 .may_unmap = 1,
2548 .may_swap = 1,
2549 .no_demotion = 1,
2550 };
2551
2552 noreclaim_flag = memalloc_noreclaim_save();
2553
2554 while (!list_empty(page_list)) {
2555 page = lru_to_page(page_list);
2556 if (nid == NUMA_NO_NODE) {
2557 nid = page_to_nid(page);
2558 INIT_LIST_HEAD(&node_page_list);
2559 }
2560
2561 if (nid == page_to_nid(page)) {
2562 ClearPageActive(page);
2563 list_move(&page->lru, &node_page_list);
2564 continue;
2565 }
2566
2567 nr_reclaimed += shrink_page_list(&node_page_list,
2568 NODE_DATA(nid),
2569 &sc, &dummy_stat, false);
2570 while (!list_empty(&node_page_list)) {
2571 page = lru_to_page(&node_page_list);
2572 list_del(&page->lru);
2573 putback_lru_page(page);
2574 }
2575
2576 nid = NUMA_NO_NODE;
2577 }
2578
2579 if (!list_empty(&node_page_list)) {
2580 nr_reclaimed += shrink_page_list(&node_page_list,
2581 NODE_DATA(nid),
2582 &sc, &dummy_stat, false);
2583 while (!list_empty(&node_page_list)) {
2584 page = lru_to_page(&node_page_list);
2585 list_del(&page->lru);
2586 putback_lru_page(page);
2587 }
2588 }
2589
2590 memalloc_noreclaim_restore(noreclaim_flag);
2591
2592 return nr_reclaimed;
2593 }
2594
2595 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2596 struct lruvec *lruvec, struct scan_control *sc)
2597 {
2598 if (is_active_lru(lru)) {
2599 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2600 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2601 else
2602 sc->skipped_deactivate = 1;
2603 return 0;
2604 }
2605
2606 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2607 }
2608
2609 /*
2610 * The inactive anon list should be small enough that the VM never has
2611 * to do too much work.
2612 *
2613 * The inactive file list should be small enough to leave most memory
2614 * to the established workingset on the scan-resistant active list,
2615 * but large enough to avoid thrashing the aggregate readahead window.
2616 *
2617 * Both inactive lists should also be large enough that each inactive
2618 * page has a chance to be referenced again before it is reclaimed.
2619 *
2620 * If that fails and refaulting is observed, the inactive list grows.
2621 *
2622 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2623 * on this LRU, maintained by the pageout code. An inactive_ratio
2624 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2625 *
2626 * total target max
2627 * memory ratio inactive
2628 * -------------------------------------
2629 * 10MB 1 5MB
2630 * 100MB 1 50MB
2631 * 1GB 3 250MB
2632 * 10GB 10 0.9GB
2633 * 100GB 31 3GB
2634 * 1TB 101 10GB
2635 * 10TB 320 32GB
2636 */
2637 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2638 {
2639 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2640 unsigned long inactive, active;
2641 unsigned long inactive_ratio;
2642 unsigned long gb;
2643
2644 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2645 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2646
2647 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2648 if (gb)
2649 inactive_ratio = int_sqrt(10 * gb);
2650 else
2651 inactive_ratio = 1;
2652
2653 return inactive * inactive_ratio < active;
2654 }
2655
2656 enum scan_balance {
2657 SCAN_EQUAL,
2658 SCAN_FRACT,
2659 SCAN_ANON,
2660 SCAN_FILE,
2661 };
2662
2663 /*
2664 * Determine how aggressively the anon and file LRU lists should be
2665 * scanned.
2666 *
2667 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2668 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2669 */
2670 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2671 unsigned long *nr)
2672 {
2673 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2674 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2675 unsigned long anon_cost, file_cost, total_cost;
2676 int swappiness = mem_cgroup_swappiness(memcg);
2677 u64 fraction[ANON_AND_FILE];
2678 u64 denominator = 0; /* gcc */
2679 enum scan_balance scan_balance;
2680 unsigned long ap, fp;
2681 enum lru_list lru;
2682
2683 /* If we have no swap space, do not bother scanning anon pages. */
2684 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2685 scan_balance = SCAN_FILE;
2686 goto out;
2687 }
2688
2689 /*
2690 * Global reclaim will swap to prevent OOM even with no
2691 * swappiness, but memcg users want to use this knob to
2692 * disable swapping for individual groups completely when
2693 * using the memory controller's swap limit feature would be
2694 * too expensive.
2695 */
2696 if (cgroup_reclaim(sc) && !swappiness) {
2697 scan_balance = SCAN_FILE;
2698 goto out;
2699 }
2700
2701 /*
2702 * Do not apply any pressure balancing cleverness when the
2703 * system is close to OOM, scan both anon and file equally
2704 * (unless the swappiness setting disagrees with swapping).
2705 */
2706 if (!sc->priority && swappiness) {
2707 scan_balance = SCAN_EQUAL;
2708 goto out;
2709 }
2710
2711 /*
2712 * If the system is almost out of file pages, force-scan anon.
2713 */
2714 if (sc->file_is_tiny) {
2715 scan_balance = SCAN_ANON;
2716 goto out;
2717 }
2718
2719 /*
2720 * If there is enough inactive page cache, we do not reclaim
2721 * anything from the anonymous working right now.
2722 */
2723 if (sc->cache_trim_mode) {
2724 scan_balance = SCAN_FILE;
2725 goto out;
2726 }
2727
2728 scan_balance = SCAN_FRACT;
2729 /*
2730 * Calculate the pressure balance between anon and file pages.
2731 *
2732 * The amount of pressure we put on each LRU is inversely
2733 * proportional to the cost of reclaiming each list, as
2734 * determined by the share of pages that are refaulting, times
2735 * the relative IO cost of bringing back a swapped out
2736 * anonymous page vs reloading a filesystem page (swappiness).
2737 *
2738 * Although we limit that influence to ensure no list gets
2739 * left behind completely: at least a third of the pressure is
2740 * applied, before swappiness.
2741 *
2742 * With swappiness at 100, anon and file have equal IO cost.
2743 */
2744 total_cost = sc->anon_cost + sc->file_cost;
2745 anon_cost = total_cost + sc->anon_cost;
2746 file_cost = total_cost + sc->file_cost;
2747 total_cost = anon_cost + file_cost;
2748
2749 ap = swappiness * (total_cost + 1);
2750 ap /= anon_cost + 1;
2751
2752 fp = (200 - swappiness) * (total_cost + 1);
2753 fp /= file_cost + 1;
2754
2755 fraction[0] = ap;
2756 fraction[1] = fp;
2757 denominator = ap + fp;
2758 out:
2759 for_each_evictable_lru(lru) {
2760 int file = is_file_lru(lru);
2761 unsigned long lruvec_size;
2762 unsigned long low, min;
2763 unsigned long scan;
2764
2765 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2766 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2767 &min, &low);
2768
2769 if (min || low) {
2770 /*
2771 * Scale a cgroup's reclaim pressure by proportioning
2772 * its current usage to its memory.low or memory.min
2773 * setting.
2774 *
2775 * This is important, as otherwise scanning aggression
2776 * becomes extremely binary -- from nothing as we
2777 * approach the memory protection threshold, to totally
2778 * nominal as we exceed it. This results in requiring
2779 * setting extremely liberal protection thresholds. It
2780 * also means we simply get no protection at all if we
2781 * set it too low, which is not ideal.
2782 *
2783 * If there is any protection in place, we reduce scan
2784 * pressure by how much of the total memory used is
2785 * within protection thresholds.
2786 *
2787 * There is one special case: in the first reclaim pass,
2788 * we skip over all groups that are within their low
2789 * protection. If that fails to reclaim enough pages to
2790 * satisfy the reclaim goal, we come back and override
2791 * the best-effort low protection. However, we still
2792 * ideally want to honor how well-behaved groups are in
2793 * that case instead of simply punishing them all
2794 * equally. As such, we reclaim them based on how much
2795 * memory they are using, reducing the scan pressure
2796 * again by how much of the total memory used is under
2797 * hard protection.
2798 */
2799 unsigned long cgroup_size = mem_cgroup_size(memcg);
2800 unsigned long protection;
2801
2802 /* memory.low scaling, make sure we retry before OOM */
2803 if (!sc->memcg_low_reclaim && low > min) {
2804 protection = low;
2805 sc->memcg_low_skipped = 1;
2806 } else {
2807 protection = min;
2808 }
2809
2810 /* Avoid TOCTOU with earlier protection check */
2811 cgroup_size = max(cgroup_size, protection);
2812
2813 scan = lruvec_size - lruvec_size * protection /
2814 (cgroup_size + 1);
2815
2816 /*
2817 * Minimally target SWAP_CLUSTER_MAX pages to keep
2818 * reclaim moving forwards, avoiding decrementing
2819 * sc->priority further than desirable.
2820 */
2821 scan = max(scan, SWAP_CLUSTER_MAX);
2822 } else {
2823 scan = lruvec_size;
2824 }
2825
2826 scan >>= sc->priority;
2827
2828 /*
2829 * If the cgroup's already been deleted, make sure to
2830 * scrape out the remaining cache.
2831 */
2832 if (!scan && !mem_cgroup_online(memcg))
2833 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2834
2835 switch (scan_balance) {
2836 case SCAN_EQUAL:
2837 /* Scan lists relative to size */
2838 break;
2839 case SCAN_FRACT:
2840 /*
2841 * Scan types proportional to swappiness and
2842 * their relative recent reclaim efficiency.
2843 * Make sure we don't miss the last page on
2844 * the offlined memory cgroups because of a
2845 * round-off error.
2846 */
2847 scan = mem_cgroup_online(memcg) ?
2848 div64_u64(scan * fraction[file], denominator) :
2849 DIV64_U64_ROUND_UP(scan * fraction[file],
2850 denominator);
2851 break;
2852 case SCAN_FILE:
2853 case SCAN_ANON:
2854 /* Scan one type exclusively */
2855 if ((scan_balance == SCAN_FILE) != file)
2856 scan = 0;
2857 break;
2858 default:
2859 /* Look ma, no brain */
2860 BUG();
2861 }
2862
2863 nr[lru] = scan;
2864 }
2865 }
2866
2867 /*
2868 * Anonymous LRU management is a waste if there is
2869 * ultimately no way to reclaim the memory.
2870 */
2871 static bool can_age_anon_pages(struct pglist_data *pgdat,
2872 struct scan_control *sc)
2873 {
2874 /* Aging the anon LRU is valuable if swap is present: */
2875 if (total_swap_pages > 0)
2876 return true;
2877
2878 /* Also valuable if anon pages can be demoted: */
2879 return can_demote(pgdat->node_id, sc);
2880 }
2881
2882 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2883 {
2884 unsigned long nr[NR_LRU_LISTS];
2885 unsigned long targets[NR_LRU_LISTS];
2886 unsigned long nr_to_scan;
2887 enum lru_list lru;
2888 unsigned long nr_reclaimed = 0;
2889 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2890 struct blk_plug plug;
2891 bool scan_adjusted;
2892
2893 get_scan_count(lruvec, sc, nr);
2894
2895 /* Record the original scan target for proportional adjustments later */
2896 memcpy(targets, nr, sizeof(nr));
2897
2898 /*
2899 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2900 * event that can occur when there is little memory pressure e.g.
2901 * multiple streaming readers/writers. Hence, we do not abort scanning
2902 * when the requested number of pages are reclaimed when scanning at
2903 * DEF_PRIORITY on the assumption that the fact we are direct
2904 * reclaiming implies that kswapd is not keeping up and it is best to
2905 * do a batch of work at once. For memcg reclaim one check is made to
2906 * abort proportional reclaim if either the file or anon lru has already
2907 * dropped to zero at the first pass.
2908 */
2909 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2910 sc->priority == DEF_PRIORITY);
2911
2912 blk_start_plug(&plug);
2913 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2914 nr[LRU_INACTIVE_FILE]) {
2915 unsigned long nr_anon, nr_file, percentage;
2916 unsigned long nr_scanned;
2917
2918 for_each_evictable_lru(lru) {
2919 if (nr[lru]) {
2920 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2921 nr[lru] -= nr_to_scan;
2922
2923 nr_reclaimed += shrink_list(lru, nr_to_scan,
2924 lruvec, sc);
2925 }
2926 }
2927
2928 cond_resched();
2929
2930 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2931 continue;
2932
2933 /*
2934 * For kswapd and memcg, reclaim at least the number of pages
2935 * requested. Ensure that the anon and file LRUs are scanned
2936 * proportionally what was requested by get_scan_count(). We
2937 * stop reclaiming one LRU and reduce the amount scanning
2938 * proportional to the original scan target.
2939 */
2940 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2941 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2942
2943 /*
2944 * It's just vindictive to attack the larger once the smaller
2945 * has gone to zero. And given the way we stop scanning the
2946 * smaller below, this makes sure that we only make one nudge
2947 * towards proportionality once we've got nr_to_reclaim.
2948 */
2949 if (!nr_file || !nr_anon)
2950 break;
2951
2952 if (nr_file > nr_anon) {
2953 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2954 targets[LRU_ACTIVE_ANON] + 1;
2955 lru = LRU_BASE;
2956 percentage = nr_anon * 100 / scan_target;
2957 } else {
2958 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2959 targets[LRU_ACTIVE_FILE] + 1;
2960 lru = LRU_FILE;
2961 percentage = nr_file * 100 / scan_target;
2962 }
2963
2964 /* Stop scanning the smaller of the LRU */
2965 nr[lru] = 0;
2966 nr[lru + LRU_ACTIVE] = 0;
2967
2968 /*
2969 * Recalculate the other LRU scan count based on its original
2970 * scan target and the percentage scanning already complete
2971 */
2972 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2973 nr_scanned = targets[lru] - nr[lru];
2974 nr[lru] = targets[lru] * (100 - percentage) / 100;
2975 nr[lru] -= min(nr[lru], nr_scanned);
2976
2977 lru += LRU_ACTIVE;
2978 nr_scanned = targets[lru] - nr[lru];
2979 nr[lru] = targets[lru] * (100 - percentage) / 100;
2980 nr[lru] -= min(nr[lru], nr_scanned);
2981
2982 scan_adjusted = true;
2983 }
2984 blk_finish_plug(&plug);
2985 sc->nr_reclaimed += nr_reclaimed;
2986
2987 /*
2988 * Even if we did not try to evict anon pages at all, we want to
2989 * rebalance the anon lru active/inactive ratio.
2990 */
2991 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2992 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2993 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2994 sc, LRU_ACTIVE_ANON);
2995 }
2996
2997 /* Use reclaim/compaction for costly allocs or under memory pressure */
2998 static bool in_reclaim_compaction(struct scan_control *sc)
2999 {
3000 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3001 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3002 sc->priority < DEF_PRIORITY - 2))
3003 return true;
3004
3005 return false;
3006 }
3007
3008 /*
3009 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3010 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3011 * true if more pages should be reclaimed such that when the page allocator
3012 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3013 * It will give up earlier than that if there is difficulty reclaiming pages.
3014 */
3015 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3016 unsigned long nr_reclaimed,
3017 struct scan_control *sc)
3018 {
3019 unsigned long pages_for_compaction;
3020 unsigned long inactive_lru_pages;
3021 int z;
3022
3023 /* If not in reclaim/compaction mode, stop */
3024 if (!in_reclaim_compaction(sc))
3025 return false;
3026
3027 /*
3028 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3029 * number of pages that were scanned. This will return to the caller
3030 * with the risk reclaim/compaction and the resulting allocation attempt
3031 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3032 * allocations through requiring that the full LRU list has been scanned
3033 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3034 * scan, but that approximation was wrong, and there were corner cases
3035 * where always a non-zero amount of pages were scanned.
3036 */
3037 if (!nr_reclaimed)
3038 return false;
3039
3040 /* If compaction would go ahead or the allocation would succeed, stop */
3041 for (z = 0; z <= sc->reclaim_idx; z++) {
3042 struct zone *zone = &pgdat->node_zones[z];
3043 if (!managed_zone(zone))
3044 continue;
3045
3046 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3047 case COMPACT_SUCCESS:
3048 case COMPACT_CONTINUE:
3049 return false;
3050 default:
3051 /* check next zone */
3052 ;
3053 }
3054 }
3055
3056 /*
3057 * If we have not reclaimed enough pages for compaction and the
3058 * inactive lists are large enough, continue reclaiming
3059 */
3060 pages_for_compaction = compact_gap(sc->order);
3061 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3062 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3063 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3064
3065 return inactive_lru_pages > pages_for_compaction;
3066 }
3067
3068 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3069 {
3070 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3071 struct mem_cgroup *memcg;
3072
3073 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3074 do {
3075 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3076 unsigned long reclaimed;
3077 unsigned long scanned;
3078
3079 /*
3080 * This loop can become CPU-bound when target memcgs
3081 * aren't eligible for reclaim - either because they
3082 * don't have any reclaimable pages, or because their
3083 * memory is explicitly protected. Avoid soft lockups.
3084 */
3085 cond_resched();
3086
3087 mem_cgroup_calculate_protection(target_memcg, memcg);
3088
3089 if (mem_cgroup_below_min(memcg)) {
3090 /*
3091 * Hard protection.
3092 * If there is no reclaimable memory, OOM.
3093 */
3094 continue;
3095 } else if (mem_cgroup_below_low(memcg)) {
3096 /*
3097 * Soft protection.
3098 * Respect the protection only as long as
3099 * there is an unprotected supply
3100 * of reclaimable memory from other cgroups.
3101 */
3102 if (!sc->memcg_low_reclaim) {
3103 sc->memcg_low_skipped = 1;
3104 continue;
3105 }
3106 memcg_memory_event(memcg, MEMCG_LOW);
3107 }
3108
3109 reclaimed = sc->nr_reclaimed;
3110 scanned = sc->nr_scanned;
3111
3112 shrink_lruvec(lruvec, sc);
3113
3114 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3115 sc->priority);
3116
3117 /* Record the group's reclaim efficiency */
3118 vmpressure(sc->gfp_mask, memcg, false,
3119 sc->nr_scanned - scanned,
3120 sc->nr_reclaimed - reclaimed);
3121
3122 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3123 }
3124
3125 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3126 {
3127 struct reclaim_state *reclaim_state = current->reclaim_state;
3128 unsigned long nr_reclaimed, nr_scanned;
3129 struct lruvec *target_lruvec;
3130 bool reclaimable = false;
3131 unsigned long file;
3132
3133 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3134
3135 again:
3136 /*
3137 * Flush the memory cgroup stats, so that we read accurate per-memcg
3138 * lruvec stats for heuristics.
3139 */
3140 mem_cgroup_flush_stats();
3141
3142 memset(&sc->nr, 0, sizeof(sc->nr));
3143
3144 nr_reclaimed = sc->nr_reclaimed;
3145 nr_scanned = sc->nr_scanned;
3146
3147 /*
3148 * Determine the scan balance between anon and file LRUs.
3149 */
3150 spin_lock_irq(&target_lruvec->lru_lock);
3151 sc->anon_cost = target_lruvec->anon_cost;
3152 sc->file_cost = target_lruvec->file_cost;
3153 spin_unlock_irq(&target_lruvec->lru_lock);
3154
3155 /*
3156 * Target desirable inactive:active list ratios for the anon
3157 * and file LRU lists.
3158 */
3159 if (!sc->force_deactivate) {
3160 unsigned long refaults;
3161
3162 refaults = lruvec_page_state(target_lruvec,
3163 WORKINGSET_ACTIVATE_ANON);
3164 if (refaults != target_lruvec->refaults[0] ||
3165 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3166 sc->may_deactivate |= DEACTIVATE_ANON;
3167 else
3168 sc->may_deactivate &= ~DEACTIVATE_ANON;
3169
3170 /*
3171 * When refaults are being observed, it means a new
3172 * workingset is being established. Deactivate to get
3173 * rid of any stale active pages quickly.
3174 */
3175 refaults = lruvec_page_state(target_lruvec,
3176 WORKINGSET_ACTIVATE_FILE);
3177 if (refaults != target_lruvec->refaults[1] ||
3178 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3179 sc->may_deactivate |= DEACTIVATE_FILE;
3180 else
3181 sc->may_deactivate &= ~DEACTIVATE_FILE;
3182 } else
3183 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3184
3185 /*
3186 * If we have plenty of inactive file pages that aren't
3187 * thrashing, try to reclaim those first before touching
3188 * anonymous pages.
3189 */
3190 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3191 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3192 sc->cache_trim_mode = 1;
3193 else
3194 sc->cache_trim_mode = 0;
3195
3196 /*
3197 * Prevent the reclaimer from falling into the cache trap: as
3198 * cache pages start out inactive, every cache fault will tip
3199 * the scan balance towards the file LRU. And as the file LRU
3200 * shrinks, so does the window for rotation from references.
3201 * This means we have a runaway feedback loop where a tiny
3202 * thrashing file LRU becomes infinitely more attractive than
3203 * anon pages. Try to detect this based on file LRU size.
3204 */
3205 if (!cgroup_reclaim(sc)) {
3206 unsigned long total_high_wmark = 0;
3207 unsigned long free, anon;
3208 int z;
3209
3210 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3211 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3212 node_page_state(pgdat, NR_INACTIVE_FILE);
3213
3214 for (z = 0; z < MAX_NR_ZONES; z++) {
3215 struct zone *zone = &pgdat->node_zones[z];
3216 if (!managed_zone(zone))
3217 continue;
3218
3219 total_high_wmark += high_wmark_pages(zone);
3220 }
3221
3222 /*
3223 * Consider anon: if that's low too, this isn't a
3224 * runaway file reclaim problem, but rather just
3225 * extreme pressure. Reclaim as per usual then.
3226 */
3227 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3228
3229 sc->file_is_tiny =
3230 file + free <= total_high_wmark &&
3231 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3232 anon >> sc->priority;
3233 }
3234
3235 shrink_node_memcgs(pgdat, sc);
3236
3237 if (reclaim_state) {
3238 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3239 reclaim_state->reclaimed_slab = 0;
3240 }
3241
3242 /* Record the subtree's reclaim efficiency */
3243 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3244 sc->nr_scanned - nr_scanned,
3245 sc->nr_reclaimed - nr_reclaimed);
3246
3247 if (sc->nr_reclaimed - nr_reclaimed)
3248 reclaimable = true;
3249
3250 if (current_is_kswapd()) {
3251 /*
3252 * If reclaim is isolating dirty pages under writeback,
3253 * it implies that the long-lived page allocation rate
3254 * is exceeding the page laundering rate. Either the
3255 * global limits are not being effective at throttling
3256 * processes due to the page distribution throughout
3257 * zones or there is heavy usage of a slow backing
3258 * device. The only option is to throttle from reclaim
3259 * context which is not ideal as there is no guarantee
3260 * the dirtying process is throttled in the same way
3261 * balance_dirty_pages() manages.
3262 *
3263 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3264 * count the number of pages under pages flagged for
3265 * immediate reclaim and stall if any are encountered
3266 * in the nr_immediate check below.
3267 */
3268 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3269 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3270
3271 /* Allow kswapd to start writing pages during reclaim.*/
3272 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3273 set_bit(PGDAT_DIRTY, &pgdat->flags);
3274
3275 /*
3276 * If kswapd scans pages marked for immediate
3277 * reclaim and under writeback (nr_immediate), it
3278 * implies that pages are cycling through the LRU
3279 * faster than they are written so forcibly stall
3280 * until some pages complete writeback.
3281 */
3282 if (sc->nr.immediate)
3283 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3284 }
3285
3286 /*
3287 * Tag a node/memcg as congested if all the dirty pages were marked
3288 * for writeback and immediate reclaim (counted in nr.congested).
3289 *
3290 * Legacy memcg will stall in page writeback so avoid forcibly
3291 * stalling in reclaim_throttle().
3292 */
3293 if ((current_is_kswapd() ||
3294 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3295 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3296 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3297
3298 /*
3299 * Stall direct reclaim for IO completions if the lruvec is
3300 * node is congested. Allow kswapd to continue until it
3301 * starts encountering unqueued dirty pages or cycling through
3302 * the LRU too quickly.
3303 */
3304 if (!current_is_kswapd() && current_may_throttle() &&
3305 !sc->hibernation_mode &&
3306 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3307 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3308
3309 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3310 sc))
3311 goto again;
3312
3313 /*
3314 * Kswapd gives up on balancing particular nodes after too
3315 * many failures to reclaim anything from them and goes to
3316 * sleep. On reclaim progress, reset the failure counter. A
3317 * successful direct reclaim run will revive a dormant kswapd.
3318 */
3319 if (reclaimable)
3320 pgdat->kswapd_failures = 0;
3321 }
3322
3323 /*
3324 * Returns true if compaction should go ahead for a costly-order request, or
3325 * the allocation would already succeed without compaction. Return false if we
3326 * should reclaim first.
3327 */
3328 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3329 {
3330 unsigned long watermark;
3331 enum compact_result suitable;
3332
3333 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3334 if (suitable == COMPACT_SUCCESS)
3335 /* Allocation should succeed already. Don't reclaim. */
3336 return true;
3337 if (suitable == COMPACT_SKIPPED)
3338 /* Compaction cannot yet proceed. Do reclaim. */
3339 return false;
3340
3341 /*
3342 * Compaction is already possible, but it takes time to run and there
3343 * are potentially other callers using the pages just freed. So proceed
3344 * with reclaim to make a buffer of free pages available to give
3345 * compaction a reasonable chance of completing and allocating the page.
3346 * Note that we won't actually reclaim the whole buffer in one attempt
3347 * as the target watermark in should_continue_reclaim() is lower. But if
3348 * we are already above the high+gap watermark, don't reclaim at all.
3349 */
3350 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3351
3352 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3353 }
3354
3355 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3356 {
3357 /*
3358 * If reclaim is making progress greater than 12% efficiency then
3359 * wake all the NOPROGRESS throttled tasks.
3360 */
3361 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3362 wait_queue_head_t *wqh;
3363
3364 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3365 if (waitqueue_active(wqh))
3366 wake_up(wqh);
3367
3368 return;
3369 }
3370
3371 /*
3372 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3373 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3374 * under writeback and marked for immediate reclaim at the tail of the
3375 * LRU.
3376 */
3377 if (current_is_kswapd() || cgroup_reclaim(sc))
3378 return;
3379
3380 /* Throttle if making no progress at high prioities. */
3381 if (sc->priority == 1 && !sc->nr_reclaimed)
3382 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3383 }
3384
3385 /*
3386 * This is the direct reclaim path, for page-allocating processes. We only
3387 * try to reclaim pages from zones which will satisfy the caller's allocation
3388 * request.
3389 *
3390 * If a zone is deemed to be full of pinned pages then just give it a light
3391 * scan then give up on it.
3392 */
3393 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3394 {
3395 struct zoneref *z;
3396 struct zone *zone;
3397 unsigned long nr_soft_reclaimed;
3398 unsigned long nr_soft_scanned;
3399 gfp_t orig_mask;
3400 pg_data_t *last_pgdat = NULL;
3401 pg_data_t *first_pgdat = NULL;
3402
3403 /*
3404 * If the number of buffer_heads in the machine exceeds the maximum
3405 * allowed level, force direct reclaim to scan the highmem zone as
3406 * highmem pages could be pinning lowmem pages storing buffer_heads
3407 */
3408 orig_mask = sc->gfp_mask;
3409 if (buffer_heads_over_limit) {
3410 sc->gfp_mask |= __GFP_HIGHMEM;
3411 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3412 }
3413
3414 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3415 sc->reclaim_idx, sc->nodemask) {
3416 /*
3417 * Take care memory controller reclaiming has small influence
3418 * to global LRU.
3419 */
3420 if (!cgroup_reclaim(sc)) {
3421 if (!cpuset_zone_allowed(zone,
3422 GFP_KERNEL | __GFP_HARDWALL))
3423 continue;
3424
3425 /*
3426 * If we already have plenty of memory free for
3427 * compaction in this zone, don't free any more.
3428 * Even though compaction is invoked for any
3429 * non-zero order, only frequent costly order
3430 * reclamation is disruptive enough to become a
3431 * noticeable problem, like transparent huge
3432 * page allocations.
3433 */
3434 if (IS_ENABLED(CONFIG_COMPACTION) &&
3435 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3436 compaction_ready(zone, sc)) {
3437 sc->compaction_ready = true;
3438 continue;
3439 }
3440
3441 /*
3442 * Shrink each node in the zonelist once. If the
3443 * zonelist is ordered by zone (not the default) then a
3444 * node may be shrunk multiple times but in that case
3445 * the user prefers lower zones being preserved.
3446 */
3447 if (zone->zone_pgdat == last_pgdat)
3448 continue;
3449
3450 /*
3451 * This steals pages from memory cgroups over softlimit
3452 * and returns the number of reclaimed pages and
3453 * scanned pages. This works for global memory pressure
3454 * and balancing, not for a memcg's limit.
3455 */
3456 nr_soft_scanned = 0;
3457 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3458 sc->order, sc->gfp_mask,
3459 &nr_soft_scanned);
3460 sc->nr_reclaimed += nr_soft_reclaimed;
3461 sc->nr_scanned += nr_soft_scanned;
3462 /* need some check for avoid more shrink_zone() */
3463 }
3464
3465 if (!first_pgdat)
3466 first_pgdat = zone->zone_pgdat;
3467
3468 /* See comment about same check for global reclaim above */
3469 if (zone->zone_pgdat == last_pgdat)
3470 continue;
3471 last_pgdat = zone->zone_pgdat;
3472 shrink_node(zone->zone_pgdat, sc);
3473 }
3474
3475 if (first_pgdat)
3476 consider_reclaim_throttle(first_pgdat, sc);
3477
3478 /*
3479 * Restore to original mask to avoid the impact on the caller if we
3480 * promoted it to __GFP_HIGHMEM.
3481 */
3482 sc->gfp_mask = orig_mask;
3483 }
3484
3485 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3486 {
3487 struct lruvec *target_lruvec;
3488 unsigned long refaults;
3489
3490 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3491 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3492 target_lruvec->refaults[0] = refaults;
3493 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3494 target_lruvec->refaults[1] = refaults;
3495 }
3496
3497 /*
3498 * This is the main entry point to direct page reclaim.
3499 *
3500 * If a full scan of the inactive list fails to free enough memory then we
3501 * are "out of memory" and something needs to be killed.
3502 *
3503 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3504 * high - the zone may be full of dirty or under-writeback pages, which this
3505 * caller can't do much about. We kick the writeback threads and take explicit
3506 * naps in the hope that some of these pages can be written. But if the
3507 * allocating task holds filesystem locks which prevent writeout this might not
3508 * work, and the allocation attempt will fail.
3509 *
3510 * returns: 0, if no pages reclaimed
3511 * else, the number of pages reclaimed
3512 */
3513 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3514 struct scan_control *sc)
3515 {
3516 int initial_priority = sc->priority;
3517 pg_data_t *last_pgdat;
3518 struct zoneref *z;
3519 struct zone *zone;
3520 retry:
3521 delayacct_freepages_start();
3522
3523 if (!cgroup_reclaim(sc))
3524 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3525
3526 do {
3527 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3528 sc->priority);
3529 sc->nr_scanned = 0;
3530 shrink_zones(zonelist, sc);
3531
3532 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3533 break;
3534
3535 if (sc->compaction_ready)
3536 break;
3537
3538 /*
3539 * If we're getting trouble reclaiming, start doing
3540 * writepage even in laptop mode.
3541 */
3542 if (sc->priority < DEF_PRIORITY - 2)
3543 sc->may_writepage = 1;
3544 } while (--sc->priority >= 0);
3545
3546 last_pgdat = NULL;
3547 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3548 sc->nodemask) {
3549 if (zone->zone_pgdat == last_pgdat)
3550 continue;
3551 last_pgdat = zone->zone_pgdat;
3552
3553 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3554
3555 if (cgroup_reclaim(sc)) {
3556 struct lruvec *lruvec;
3557
3558 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3559 zone->zone_pgdat);
3560 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3561 }
3562 }
3563
3564 delayacct_freepages_end();
3565
3566 if (sc->nr_reclaimed)
3567 return sc->nr_reclaimed;
3568
3569 /* Aborted reclaim to try compaction? don't OOM, then */
3570 if (sc->compaction_ready)
3571 return 1;
3572
3573 /*
3574 * We make inactive:active ratio decisions based on the node's
3575 * composition of memory, but a restrictive reclaim_idx or a
3576 * memory.low cgroup setting can exempt large amounts of
3577 * memory from reclaim. Neither of which are very common, so
3578 * instead of doing costly eligibility calculations of the
3579 * entire cgroup subtree up front, we assume the estimates are
3580 * good, and retry with forcible deactivation if that fails.
3581 */
3582 if (sc->skipped_deactivate) {
3583 sc->priority = initial_priority;
3584 sc->force_deactivate = 1;
3585 sc->skipped_deactivate = 0;
3586 goto retry;
3587 }
3588
3589 /* Untapped cgroup reserves? Don't OOM, retry. */
3590 if (sc->memcg_low_skipped) {
3591 sc->priority = initial_priority;
3592 sc->force_deactivate = 0;
3593 sc->memcg_low_reclaim = 1;
3594 sc->memcg_low_skipped = 0;
3595 goto retry;
3596 }
3597
3598 return 0;
3599 }
3600
3601 static bool allow_direct_reclaim(pg_data_t *pgdat)
3602 {
3603 struct zone *zone;
3604 unsigned long pfmemalloc_reserve = 0;
3605 unsigned long free_pages = 0;
3606 int i;
3607 bool wmark_ok;
3608
3609 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3610 return true;
3611
3612 for (i = 0; i <= ZONE_NORMAL; i++) {
3613 zone = &pgdat->node_zones[i];
3614 if (!managed_zone(zone))
3615 continue;
3616
3617 if (!zone_reclaimable_pages(zone))
3618 continue;
3619
3620 pfmemalloc_reserve += min_wmark_pages(zone);
3621 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3622 }
3623
3624 /* If there are no reserves (unexpected config) then do not throttle */
3625 if (!pfmemalloc_reserve)
3626 return true;
3627
3628 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3629
3630 /* kswapd must be awake if processes are being throttled */
3631 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3632 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3633 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3634
3635 wake_up_interruptible(&pgdat->kswapd_wait);
3636 }
3637
3638 return wmark_ok;
3639 }
3640
3641 /*
3642 * Throttle direct reclaimers if backing storage is backed by the network
3643 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3644 * depleted. kswapd will continue to make progress and wake the processes
3645 * when the low watermark is reached.
3646 *
3647 * Returns true if a fatal signal was delivered during throttling. If this
3648 * happens, the page allocator should not consider triggering the OOM killer.
3649 */
3650 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3651 nodemask_t *nodemask)
3652 {
3653 struct zoneref *z;
3654 struct zone *zone;
3655 pg_data_t *pgdat = NULL;
3656
3657 /*
3658 * Kernel threads should not be throttled as they may be indirectly
3659 * responsible for cleaning pages necessary for reclaim to make forward
3660 * progress. kjournald for example may enter direct reclaim while
3661 * committing a transaction where throttling it could forcing other
3662 * processes to block on log_wait_commit().
3663 */
3664 if (current->flags & PF_KTHREAD)
3665 goto out;
3666
3667 /*
3668 * If a fatal signal is pending, this process should not throttle.
3669 * It should return quickly so it can exit and free its memory
3670 */
3671 if (fatal_signal_pending(current))
3672 goto out;
3673
3674 /*
3675 * Check if the pfmemalloc reserves are ok by finding the first node
3676 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3677 * GFP_KERNEL will be required for allocating network buffers when
3678 * swapping over the network so ZONE_HIGHMEM is unusable.
3679 *
3680 * Throttling is based on the first usable node and throttled processes
3681 * wait on a queue until kswapd makes progress and wakes them. There
3682 * is an affinity then between processes waking up and where reclaim
3683 * progress has been made assuming the process wakes on the same node.
3684 * More importantly, processes running on remote nodes will not compete
3685 * for remote pfmemalloc reserves and processes on different nodes
3686 * should make reasonable progress.
3687 */
3688 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3689 gfp_zone(gfp_mask), nodemask) {
3690 if (zone_idx(zone) > ZONE_NORMAL)
3691 continue;
3692
3693 /* Throttle based on the first usable node */
3694 pgdat = zone->zone_pgdat;
3695 if (allow_direct_reclaim(pgdat))
3696 goto out;
3697 break;
3698 }
3699
3700 /* If no zone was usable by the allocation flags then do not throttle */
3701 if (!pgdat)
3702 goto out;
3703
3704 /* Account for the throttling */
3705 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3706
3707 /*
3708 * If the caller cannot enter the filesystem, it's possible that it
3709 * is due to the caller holding an FS lock or performing a journal
3710 * transaction in the case of a filesystem like ext[3|4]. In this case,
3711 * it is not safe to block on pfmemalloc_wait as kswapd could be
3712 * blocked waiting on the same lock. Instead, throttle for up to a
3713 * second before continuing.
3714 */
3715 if (!(gfp_mask & __GFP_FS))
3716 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3717 allow_direct_reclaim(pgdat), HZ);
3718 else
3719 /* Throttle until kswapd wakes the process */
3720 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3721 allow_direct_reclaim(pgdat));
3722
3723 if (fatal_signal_pending(current))
3724 return true;
3725
3726 out:
3727 return false;
3728 }
3729
3730 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3731 gfp_t gfp_mask, nodemask_t *nodemask)
3732 {
3733 unsigned long nr_reclaimed;
3734 struct scan_control sc = {
3735 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3736 .gfp_mask = current_gfp_context(gfp_mask),
3737 .reclaim_idx = gfp_zone(gfp_mask),
3738 .order = order,
3739 .nodemask = nodemask,
3740 .priority = DEF_PRIORITY,
3741 .may_writepage = !laptop_mode,
3742 .may_unmap = 1,
3743 .may_swap = 1,
3744 };
3745
3746 /*
3747 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3748 * Confirm they are large enough for max values.
3749 */
3750 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3751 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3752 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3753
3754 /*
3755 * Do not enter reclaim if fatal signal was delivered while throttled.
3756 * 1 is returned so that the page allocator does not OOM kill at this
3757 * point.
3758 */
3759 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3760 return 1;
3761
3762 set_task_reclaim_state(current, &sc.reclaim_state);
3763 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3764
3765 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3766
3767 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3768 set_task_reclaim_state(current, NULL);
3769
3770 return nr_reclaimed;
3771 }
3772
3773 #ifdef CONFIG_MEMCG
3774
3775 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3776 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3777 gfp_t gfp_mask, bool noswap,
3778 pg_data_t *pgdat,
3779 unsigned long *nr_scanned)
3780 {
3781 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3782 struct scan_control sc = {
3783 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3784 .target_mem_cgroup = memcg,
3785 .may_writepage = !laptop_mode,
3786 .may_unmap = 1,
3787 .reclaim_idx = MAX_NR_ZONES - 1,
3788 .may_swap = !noswap,
3789 };
3790
3791 WARN_ON_ONCE(!current->reclaim_state);
3792
3793 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3794 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3795
3796 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3797 sc.gfp_mask);
3798
3799 /*
3800 * NOTE: Although we can get the priority field, using it
3801 * here is not a good idea, since it limits the pages we can scan.
3802 * if we don't reclaim here, the shrink_node from balance_pgdat
3803 * will pick up pages from other mem cgroup's as well. We hack
3804 * the priority and make it zero.
3805 */
3806 shrink_lruvec(lruvec, &sc);
3807
3808 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3809
3810 *nr_scanned = sc.nr_scanned;
3811
3812 return sc.nr_reclaimed;
3813 }
3814
3815 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3816 unsigned long nr_pages,
3817 gfp_t gfp_mask,
3818 bool may_swap)
3819 {
3820 unsigned long nr_reclaimed;
3821 unsigned int noreclaim_flag;
3822 struct scan_control sc = {
3823 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3824 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3825 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3826 .reclaim_idx = MAX_NR_ZONES - 1,
3827 .target_mem_cgroup = memcg,
3828 .priority = DEF_PRIORITY,
3829 .may_writepage = !laptop_mode,
3830 .may_unmap = 1,
3831 .may_swap = may_swap,
3832 };
3833 /*
3834 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3835 * equal pressure on all the nodes. This is based on the assumption that
3836 * the reclaim does not bail out early.
3837 */
3838 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3839
3840 set_task_reclaim_state(current, &sc.reclaim_state);
3841 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3842 noreclaim_flag = memalloc_noreclaim_save();
3843
3844 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3845
3846 memalloc_noreclaim_restore(noreclaim_flag);
3847 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3848 set_task_reclaim_state(current, NULL);
3849
3850 return nr_reclaimed;
3851 }
3852 #endif
3853
3854 static void age_active_anon(struct pglist_data *pgdat,
3855 struct scan_control *sc)
3856 {
3857 struct mem_cgroup *memcg;
3858 struct lruvec *lruvec;
3859
3860 if (!can_age_anon_pages(pgdat, sc))
3861 return;
3862
3863 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3864 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3865 return;
3866
3867 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3868 do {
3869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3870 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3871 sc, LRU_ACTIVE_ANON);
3872 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3873 } while (memcg);
3874 }
3875
3876 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3877 {
3878 int i;
3879 struct zone *zone;
3880
3881 /*
3882 * Check for watermark boosts top-down as the higher zones
3883 * are more likely to be boosted. Both watermarks and boosts
3884 * should not be checked at the same time as reclaim would
3885 * start prematurely when there is no boosting and a lower
3886 * zone is balanced.
3887 */
3888 for (i = highest_zoneidx; i >= 0; i--) {
3889 zone = pgdat->node_zones + i;
3890 if (!managed_zone(zone))
3891 continue;
3892
3893 if (zone->watermark_boost)
3894 return true;
3895 }
3896
3897 return false;
3898 }
3899
3900 /*
3901 * Returns true if there is an eligible zone balanced for the request order
3902 * and highest_zoneidx
3903 */
3904 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3905 {
3906 int i;
3907 unsigned long mark = -1;
3908 struct zone *zone;
3909
3910 /*
3911 * Check watermarks bottom-up as lower zones are more likely to
3912 * meet watermarks.
3913 */
3914 for (i = 0; i <= highest_zoneidx; i++) {
3915 zone = pgdat->node_zones + i;
3916
3917 if (!managed_zone(zone))
3918 continue;
3919
3920 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3921 mark = wmark_pages(zone, WMARK_PROMO);
3922 else
3923 mark = high_wmark_pages(zone);
3924 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3925 return true;
3926 }
3927
3928 /*
3929 * If a node has no managed zone within highest_zoneidx, it does not
3930 * need balancing by definition. This can happen if a zone-restricted
3931 * allocation tries to wake a remote kswapd.
3932 */
3933 if (mark == -1)
3934 return true;
3935
3936 return false;
3937 }
3938
3939 /* Clear pgdat state for congested, dirty or under writeback. */
3940 static void clear_pgdat_congested(pg_data_t *pgdat)
3941 {
3942 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3943
3944 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3945 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3946 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3947 }
3948
3949 /*
3950 * Prepare kswapd for sleeping. This verifies that there are no processes
3951 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3952 *
3953 * Returns true if kswapd is ready to sleep
3954 */
3955 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3956 int highest_zoneidx)
3957 {
3958 /*
3959 * The throttled processes are normally woken up in balance_pgdat() as
3960 * soon as allow_direct_reclaim() is true. But there is a potential
3961 * race between when kswapd checks the watermarks and a process gets
3962 * throttled. There is also a potential race if processes get
3963 * throttled, kswapd wakes, a large process exits thereby balancing the
3964 * zones, which causes kswapd to exit balance_pgdat() before reaching
3965 * the wake up checks. If kswapd is going to sleep, no process should
3966 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3967 * the wake up is premature, processes will wake kswapd and get
3968 * throttled again. The difference from wake ups in balance_pgdat() is
3969 * that here we are under prepare_to_wait().
3970 */
3971 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3972 wake_up_all(&pgdat->pfmemalloc_wait);
3973
3974 /* Hopeless node, leave it to direct reclaim */
3975 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3976 return true;
3977
3978 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3979 clear_pgdat_congested(pgdat);
3980 return true;
3981 }
3982
3983 return false;
3984 }
3985
3986 /*
3987 * kswapd shrinks a node of pages that are at or below the highest usable
3988 * zone that is currently unbalanced.
3989 *
3990 * Returns true if kswapd scanned at least the requested number of pages to
3991 * reclaim or if the lack of progress was due to pages under writeback.
3992 * This is used to determine if the scanning priority needs to be raised.
3993 */
3994 static bool kswapd_shrink_node(pg_data_t *pgdat,
3995 struct scan_control *sc)
3996 {
3997 struct zone *zone;
3998 int z;
3999
4000 /* Reclaim a number of pages proportional to the number of zones */
4001 sc->nr_to_reclaim = 0;
4002 for (z = 0; z <= sc->reclaim_idx; z++) {
4003 zone = pgdat->node_zones + z;
4004 if (!managed_zone(zone))
4005 continue;
4006
4007 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4008 }
4009
4010 /*
4011 * Historically care was taken to put equal pressure on all zones but
4012 * now pressure is applied based on node LRU order.
4013 */
4014 shrink_node(pgdat, sc);
4015
4016 /*
4017 * Fragmentation may mean that the system cannot be rebalanced for
4018 * high-order allocations. If twice the allocation size has been
4019 * reclaimed then recheck watermarks only at order-0 to prevent
4020 * excessive reclaim. Assume that a process requested a high-order
4021 * can direct reclaim/compact.
4022 */
4023 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4024 sc->order = 0;
4025
4026 return sc->nr_scanned >= sc->nr_to_reclaim;
4027 }
4028
4029 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4030 static inline void
4031 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4032 {
4033 int i;
4034 struct zone *zone;
4035
4036 for (i = 0; i <= highest_zoneidx; i++) {
4037 zone = pgdat->node_zones + i;
4038
4039 if (!managed_zone(zone))
4040 continue;
4041
4042 if (active)
4043 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4044 else
4045 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4046 }
4047 }
4048
4049 static inline void
4050 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4051 {
4052 update_reclaim_active(pgdat, highest_zoneidx, true);
4053 }
4054
4055 static inline void
4056 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4057 {
4058 update_reclaim_active(pgdat, highest_zoneidx, false);
4059 }
4060
4061 /*
4062 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4063 * that are eligible for use by the caller until at least one zone is
4064 * balanced.
4065 *
4066 * Returns the order kswapd finished reclaiming at.
4067 *
4068 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4069 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4070 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4071 * or lower is eligible for reclaim until at least one usable zone is
4072 * balanced.
4073 */
4074 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4075 {
4076 int i;
4077 unsigned long nr_soft_reclaimed;
4078 unsigned long nr_soft_scanned;
4079 unsigned long pflags;
4080 unsigned long nr_boost_reclaim;
4081 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4082 bool boosted;
4083 struct zone *zone;
4084 struct scan_control sc = {
4085 .gfp_mask = GFP_KERNEL,
4086 .order = order,
4087 .may_unmap = 1,
4088 };
4089
4090 set_task_reclaim_state(current, &sc.reclaim_state);
4091 psi_memstall_enter(&pflags);
4092 __fs_reclaim_acquire(_THIS_IP_);
4093
4094 count_vm_event(PAGEOUTRUN);
4095
4096 /*
4097 * Account for the reclaim boost. Note that the zone boost is left in
4098 * place so that parallel allocations that are near the watermark will
4099 * stall or direct reclaim until kswapd is finished.
4100 */
4101 nr_boost_reclaim = 0;
4102 for (i = 0; i <= highest_zoneidx; i++) {
4103 zone = pgdat->node_zones + i;
4104 if (!managed_zone(zone))
4105 continue;
4106
4107 nr_boost_reclaim += zone->watermark_boost;
4108 zone_boosts[i] = zone->watermark_boost;
4109 }
4110 boosted = nr_boost_reclaim;
4111
4112 restart:
4113 set_reclaim_active(pgdat, highest_zoneidx);
4114 sc.priority = DEF_PRIORITY;
4115 do {
4116 unsigned long nr_reclaimed = sc.nr_reclaimed;
4117 bool raise_priority = true;
4118 bool balanced;
4119 bool ret;
4120
4121 sc.reclaim_idx = highest_zoneidx;
4122
4123 /*
4124 * If the number of buffer_heads exceeds the maximum allowed
4125 * then consider reclaiming from all zones. This has a dual
4126 * purpose -- on 64-bit systems it is expected that
4127 * buffer_heads are stripped during active rotation. On 32-bit
4128 * systems, highmem pages can pin lowmem memory and shrinking
4129 * buffers can relieve lowmem pressure. Reclaim may still not
4130 * go ahead if all eligible zones for the original allocation
4131 * request are balanced to avoid excessive reclaim from kswapd.
4132 */
4133 if (buffer_heads_over_limit) {
4134 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4135 zone = pgdat->node_zones + i;
4136 if (!managed_zone(zone))
4137 continue;
4138
4139 sc.reclaim_idx = i;
4140 break;
4141 }
4142 }
4143
4144 /*
4145 * If the pgdat is imbalanced then ignore boosting and preserve
4146 * the watermarks for a later time and restart. Note that the
4147 * zone watermarks will be still reset at the end of balancing
4148 * on the grounds that the normal reclaim should be enough to
4149 * re-evaluate if boosting is required when kswapd next wakes.
4150 */
4151 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4152 if (!balanced && nr_boost_reclaim) {
4153 nr_boost_reclaim = 0;
4154 goto restart;
4155 }
4156
4157 /*
4158 * If boosting is not active then only reclaim if there are no
4159 * eligible zones. Note that sc.reclaim_idx is not used as
4160 * buffer_heads_over_limit may have adjusted it.
4161 */
4162 if (!nr_boost_reclaim && balanced)
4163 goto out;
4164
4165 /* Limit the priority of boosting to avoid reclaim writeback */
4166 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4167 raise_priority = false;
4168
4169 /*
4170 * Do not writeback or swap pages for boosted reclaim. The
4171 * intent is to relieve pressure not issue sub-optimal IO
4172 * from reclaim context. If no pages are reclaimed, the
4173 * reclaim will be aborted.
4174 */
4175 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4176 sc.may_swap = !nr_boost_reclaim;
4177
4178 /*
4179 * Do some background aging of the anon list, to give
4180 * pages a chance to be referenced before reclaiming. All
4181 * pages are rotated regardless of classzone as this is
4182 * about consistent aging.
4183 */
4184 age_active_anon(pgdat, &sc);
4185
4186 /*
4187 * If we're getting trouble reclaiming, start doing writepage
4188 * even in laptop mode.
4189 */
4190 if (sc.priority < DEF_PRIORITY - 2)
4191 sc.may_writepage = 1;
4192
4193 /* Call soft limit reclaim before calling shrink_node. */
4194 sc.nr_scanned = 0;
4195 nr_soft_scanned = 0;
4196 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4197 sc.gfp_mask, &nr_soft_scanned);
4198 sc.nr_reclaimed += nr_soft_reclaimed;
4199
4200 /*
4201 * There should be no need to raise the scanning priority if
4202 * enough pages are already being scanned that that high
4203 * watermark would be met at 100% efficiency.
4204 */
4205 if (kswapd_shrink_node(pgdat, &sc))
4206 raise_priority = false;
4207
4208 /*
4209 * If the low watermark is met there is no need for processes
4210 * to be throttled on pfmemalloc_wait as they should not be
4211 * able to safely make forward progress. Wake them
4212 */
4213 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4214 allow_direct_reclaim(pgdat))
4215 wake_up_all(&pgdat->pfmemalloc_wait);
4216
4217 /* Check if kswapd should be suspending */
4218 __fs_reclaim_release(_THIS_IP_);
4219 ret = try_to_freeze();
4220 __fs_reclaim_acquire(_THIS_IP_);
4221 if (ret || kthread_should_stop())
4222 break;
4223
4224 /*
4225 * Raise priority if scanning rate is too low or there was no
4226 * progress in reclaiming pages
4227 */
4228 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4229 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4230
4231 /*
4232 * If reclaim made no progress for a boost, stop reclaim as
4233 * IO cannot be queued and it could be an infinite loop in
4234 * extreme circumstances.
4235 */
4236 if (nr_boost_reclaim && !nr_reclaimed)
4237 break;
4238
4239 if (raise_priority || !nr_reclaimed)
4240 sc.priority--;
4241 } while (sc.priority >= 1);
4242
4243 if (!sc.nr_reclaimed)
4244 pgdat->kswapd_failures++;
4245
4246 out:
4247 clear_reclaim_active(pgdat, highest_zoneidx);
4248
4249 /* If reclaim was boosted, account for the reclaim done in this pass */
4250 if (boosted) {
4251 unsigned long flags;
4252
4253 for (i = 0; i <= highest_zoneidx; i++) {
4254 if (!zone_boosts[i])
4255 continue;
4256
4257 /* Increments are under the zone lock */
4258 zone = pgdat->node_zones + i;
4259 spin_lock_irqsave(&zone->lock, flags);
4260 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4261 spin_unlock_irqrestore(&zone->lock, flags);
4262 }
4263
4264 /*
4265 * As there is now likely space, wakeup kcompact to defragment
4266 * pageblocks.
4267 */
4268 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4269 }
4270
4271 snapshot_refaults(NULL, pgdat);
4272 __fs_reclaim_release(_THIS_IP_);
4273 psi_memstall_leave(&pflags);
4274 set_task_reclaim_state(current, NULL);
4275
4276 /*
4277 * Return the order kswapd stopped reclaiming at as
4278 * prepare_kswapd_sleep() takes it into account. If another caller
4279 * entered the allocator slow path while kswapd was awake, order will
4280 * remain at the higher level.
4281 */
4282 return sc.order;
4283 }
4284
4285 /*
4286 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4287 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4288 * not a valid index then either kswapd runs for first time or kswapd couldn't
4289 * sleep after previous reclaim attempt (node is still unbalanced). In that
4290 * case return the zone index of the previous kswapd reclaim cycle.
4291 */
4292 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4293 enum zone_type prev_highest_zoneidx)
4294 {
4295 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4296
4297 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4298 }
4299
4300 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4301 unsigned int highest_zoneidx)
4302 {
4303 long remaining = 0;
4304 DEFINE_WAIT(wait);
4305
4306 if (freezing(current) || kthread_should_stop())
4307 return;
4308
4309 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4310
4311 /*
4312 * Try to sleep for a short interval. Note that kcompactd will only be
4313 * woken if it is possible to sleep for a short interval. This is
4314 * deliberate on the assumption that if reclaim cannot keep an
4315 * eligible zone balanced that it's also unlikely that compaction will
4316 * succeed.
4317 */
4318 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4319 /*
4320 * Compaction records what page blocks it recently failed to
4321 * isolate pages from and skips them in the future scanning.
4322 * When kswapd is going to sleep, it is reasonable to assume
4323 * that pages and compaction may succeed so reset the cache.
4324 */
4325 reset_isolation_suitable(pgdat);
4326
4327 /*
4328 * We have freed the memory, now we should compact it to make
4329 * allocation of the requested order possible.
4330 */
4331 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4332
4333 remaining = schedule_timeout(HZ/10);
4334
4335 /*
4336 * If woken prematurely then reset kswapd_highest_zoneidx and
4337 * order. The values will either be from a wakeup request or
4338 * the previous request that slept prematurely.
4339 */
4340 if (remaining) {
4341 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4342 kswapd_highest_zoneidx(pgdat,
4343 highest_zoneidx));
4344
4345 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4346 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4347 }
4348
4349 finish_wait(&pgdat->kswapd_wait, &wait);
4350 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4351 }
4352
4353 /*
4354 * After a short sleep, check if it was a premature sleep. If not, then
4355 * go fully to sleep until explicitly woken up.
4356 */
4357 if (!remaining &&
4358 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4359 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4360
4361 /*
4362 * vmstat counters are not perfectly accurate and the estimated
4363 * value for counters such as NR_FREE_PAGES can deviate from the
4364 * true value by nr_online_cpus * threshold. To avoid the zone
4365 * watermarks being breached while under pressure, we reduce the
4366 * per-cpu vmstat threshold while kswapd is awake and restore
4367 * them before going back to sleep.
4368 */
4369 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4370
4371 if (!kthread_should_stop())
4372 schedule();
4373
4374 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4375 } else {
4376 if (remaining)
4377 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4378 else
4379 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4380 }
4381 finish_wait(&pgdat->kswapd_wait, &wait);
4382 }
4383
4384 /*
4385 * The background pageout daemon, started as a kernel thread
4386 * from the init process.
4387 *
4388 * This basically trickles out pages so that we have _some_
4389 * free memory available even if there is no other activity
4390 * that frees anything up. This is needed for things like routing
4391 * etc, where we otherwise might have all activity going on in
4392 * asynchronous contexts that cannot page things out.
4393 *
4394 * If there are applications that are active memory-allocators
4395 * (most normal use), this basically shouldn't matter.
4396 */
4397 static int kswapd(void *p)
4398 {
4399 unsigned int alloc_order, reclaim_order;
4400 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4401 pg_data_t *pgdat = (pg_data_t *)p;
4402 struct task_struct *tsk = current;
4403 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4404
4405 if (!cpumask_empty(cpumask))
4406 set_cpus_allowed_ptr(tsk, cpumask);
4407
4408 /*
4409 * Tell the memory management that we're a "memory allocator",
4410 * and that if we need more memory we should get access to it
4411 * regardless (see "__alloc_pages()"). "kswapd" should
4412 * never get caught in the normal page freeing logic.
4413 *
4414 * (Kswapd normally doesn't need memory anyway, but sometimes
4415 * you need a small amount of memory in order to be able to
4416 * page out something else, and this flag essentially protects
4417 * us from recursively trying to free more memory as we're
4418 * trying to free the first piece of memory in the first place).
4419 */
4420 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4421 set_freezable();
4422
4423 WRITE_ONCE(pgdat->kswapd_order, 0);
4424 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4425 atomic_set(&pgdat->nr_writeback_throttled, 0);
4426 for ( ; ; ) {
4427 bool ret;
4428
4429 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4430 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4431 highest_zoneidx);
4432
4433 kswapd_try_sleep:
4434 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4435 highest_zoneidx);
4436
4437 /* Read the new order and highest_zoneidx */
4438 alloc_order = READ_ONCE(pgdat->kswapd_order);
4439 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4440 highest_zoneidx);
4441 WRITE_ONCE(pgdat->kswapd_order, 0);
4442 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4443
4444 ret = try_to_freeze();
4445 if (kthread_should_stop())
4446 break;
4447
4448 /*
4449 * We can speed up thawing tasks if we don't call balance_pgdat
4450 * after returning from the refrigerator
4451 */
4452 if (ret)
4453 continue;
4454
4455 /*
4456 * Reclaim begins at the requested order but if a high-order
4457 * reclaim fails then kswapd falls back to reclaiming for
4458 * order-0. If that happens, kswapd will consider sleeping
4459 * for the order it finished reclaiming at (reclaim_order)
4460 * but kcompactd is woken to compact for the original
4461 * request (alloc_order).
4462 */
4463 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4464 alloc_order);
4465 reclaim_order = balance_pgdat(pgdat, alloc_order,
4466 highest_zoneidx);
4467 if (reclaim_order < alloc_order)
4468 goto kswapd_try_sleep;
4469 }
4470
4471 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4472
4473 return 0;
4474 }
4475
4476 /*
4477 * A zone is low on free memory or too fragmented for high-order memory. If
4478 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4479 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4480 * has failed or is not needed, still wake up kcompactd if only compaction is
4481 * needed.
4482 */
4483 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4484 enum zone_type highest_zoneidx)
4485 {
4486 pg_data_t *pgdat;
4487 enum zone_type curr_idx;
4488
4489 if (!managed_zone(zone))
4490 return;
4491
4492 if (!cpuset_zone_allowed(zone, gfp_flags))
4493 return;
4494
4495 pgdat = zone->zone_pgdat;
4496 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4497
4498 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4499 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4500
4501 if (READ_ONCE(pgdat->kswapd_order) < order)
4502 WRITE_ONCE(pgdat->kswapd_order, order);
4503
4504 if (!waitqueue_active(&pgdat->kswapd_wait))
4505 return;
4506
4507 /* Hopeless node, leave it to direct reclaim if possible */
4508 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4509 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4510 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4511 /*
4512 * There may be plenty of free memory available, but it's too
4513 * fragmented for high-order allocations. Wake up kcompactd
4514 * and rely on compaction_suitable() to determine if it's
4515 * needed. If it fails, it will defer subsequent attempts to
4516 * ratelimit its work.
4517 */
4518 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4519 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4520 return;
4521 }
4522
4523 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4524 gfp_flags);
4525 wake_up_interruptible(&pgdat->kswapd_wait);
4526 }
4527
4528 #ifdef CONFIG_HIBERNATION
4529 /*
4530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4531 * freed pages.
4532 *
4533 * Rather than trying to age LRUs the aim is to preserve the overall
4534 * LRU order by reclaiming preferentially
4535 * inactive > active > active referenced > active mapped
4536 */
4537 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4538 {
4539 struct scan_control sc = {
4540 .nr_to_reclaim = nr_to_reclaim,
4541 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4542 .reclaim_idx = MAX_NR_ZONES - 1,
4543 .priority = DEF_PRIORITY,
4544 .may_writepage = 1,
4545 .may_unmap = 1,
4546 .may_swap = 1,
4547 .hibernation_mode = 1,
4548 };
4549 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4550 unsigned long nr_reclaimed;
4551 unsigned int noreclaim_flag;
4552
4553 fs_reclaim_acquire(sc.gfp_mask);
4554 noreclaim_flag = memalloc_noreclaim_save();
4555 set_task_reclaim_state(current, &sc.reclaim_state);
4556
4557 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4558
4559 set_task_reclaim_state(current, NULL);
4560 memalloc_noreclaim_restore(noreclaim_flag);
4561 fs_reclaim_release(sc.gfp_mask);
4562
4563 return nr_reclaimed;
4564 }
4565 #endif /* CONFIG_HIBERNATION */
4566
4567 /*
4568 * This kswapd start function will be called by init and node-hot-add.
4569 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4570 */
4571 void kswapd_run(int nid)
4572 {
4573 pg_data_t *pgdat = NODE_DATA(nid);
4574
4575 if (pgdat->kswapd)
4576 return;
4577
4578 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4579 if (IS_ERR(pgdat->kswapd)) {
4580 /* failure at boot is fatal */
4581 BUG_ON(system_state < SYSTEM_RUNNING);
4582 pr_err("Failed to start kswapd on node %d\n", nid);
4583 pgdat->kswapd = NULL;
4584 }
4585 }
4586
4587 /*
4588 * Called by memory hotplug when all memory in a node is offlined. Caller must
4589 * hold mem_hotplug_begin/end().
4590 */
4591 void kswapd_stop(int nid)
4592 {
4593 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4594
4595 if (kswapd) {
4596 kthread_stop(kswapd);
4597 NODE_DATA(nid)->kswapd = NULL;
4598 }
4599 }
4600
4601 static int __init kswapd_init(void)
4602 {
4603 int nid;
4604
4605 swap_setup();
4606 for_each_node_state(nid, N_MEMORY)
4607 kswapd_run(nid);
4608 return 0;
4609 }
4610
4611 module_init(kswapd_init)
4612
4613 #ifdef CONFIG_NUMA
4614 /*
4615 * Node reclaim mode
4616 *
4617 * If non-zero call node_reclaim when the number of free pages falls below
4618 * the watermarks.
4619 */
4620 int node_reclaim_mode __read_mostly;
4621
4622 /*
4623 * Priority for NODE_RECLAIM. This determines the fraction of pages
4624 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4625 * a zone.
4626 */
4627 #define NODE_RECLAIM_PRIORITY 4
4628
4629 /*
4630 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4631 * occur.
4632 */
4633 int sysctl_min_unmapped_ratio = 1;
4634
4635 /*
4636 * If the number of slab pages in a zone grows beyond this percentage then
4637 * slab reclaim needs to occur.
4638 */
4639 int sysctl_min_slab_ratio = 5;
4640
4641 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4642 {
4643 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4644 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4645 node_page_state(pgdat, NR_ACTIVE_FILE);
4646
4647 /*
4648 * It's possible for there to be more file mapped pages than
4649 * accounted for by the pages on the file LRU lists because
4650 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4651 */
4652 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4653 }
4654
4655 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4656 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4657 {
4658 unsigned long nr_pagecache_reclaimable;
4659 unsigned long delta = 0;
4660
4661 /*
4662 * If RECLAIM_UNMAP is set, then all file pages are considered
4663 * potentially reclaimable. Otherwise, we have to worry about
4664 * pages like swapcache and node_unmapped_file_pages() provides
4665 * a better estimate
4666 */
4667 if (node_reclaim_mode & RECLAIM_UNMAP)
4668 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4669 else
4670 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4671
4672 /* If we can't clean pages, remove dirty pages from consideration */
4673 if (!(node_reclaim_mode & RECLAIM_WRITE))
4674 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4675
4676 /* Watch for any possible underflows due to delta */
4677 if (unlikely(delta > nr_pagecache_reclaimable))
4678 delta = nr_pagecache_reclaimable;
4679
4680 return nr_pagecache_reclaimable - delta;
4681 }
4682
4683 /*
4684 * Try to free up some pages from this node through reclaim.
4685 */
4686 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4687 {
4688 /* Minimum pages needed in order to stay on node */
4689 const unsigned long nr_pages = 1 << order;
4690 struct task_struct *p = current;
4691 unsigned int noreclaim_flag;
4692 struct scan_control sc = {
4693 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4694 .gfp_mask = current_gfp_context(gfp_mask),
4695 .order = order,
4696 .priority = NODE_RECLAIM_PRIORITY,
4697 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4698 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4699 .may_swap = 1,
4700 .reclaim_idx = gfp_zone(gfp_mask),
4701 };
4702 unsigned long pflags;
4703
4704 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4705 sc.gfp_mask);
4706
4707 cond_resched();
4708 psi_memstall_enter(&pflags);
4709 fs_reclaim_acquire(sc.gfp_mask);
4710 /*
4711 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4712 */
4713 noreclaim_flag = memalloc_noreclaim_save();
4714 set_task_reclaim_state(p, &sc.reclaim_state);
4715
4716 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4717 /*
4718 * Free memory by calling shrink node with increasing
4719 * priorities until we have enough memory freed.
4720 */
4721 do {
4722 shrink_node(pgdat, &sc);
4723 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4724 }
4725
4726 set_task_reclaim_state(p, NULL);
4727 memalloc_noreclaim_restore(noreclaim_flag);
4728 fs_reclaim_release(sc.gfp_mask);
4729 psi_memstall_leave(&pflags);
4730
4731 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4732
4733 return sc.nr_reclaimed >= nr_pages;
4734 }
4735
4736 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4737 {
4738 int ret;
4739
4740 /*
4741 * Node reclaim reclaims unmapped file backed pages and
4742 * slab pages if we are over the defined limits.
4743 *
4744 * A small portion of unmapped file backed pages is needed for
4745 * file I/O otherwise pages read by file I/O will be immediately
4746 * thrown out if the node is overallocated. So we do not reclaim
4747 * if less than a specified percentage of the node is used by
4748 * unmapped file backed pages.
4749 */
4750 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4751 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4752 pgdat->min_slab_pages)
4753 return NODE_RECLAIM_FULL;
4754
4755 /*
4756 * Do not scan if the allocation should not be delayed.
4757 */
4758 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4759 return NODE_RECLAIM_NOSCAN;
4760
4761 /*
4762 * Only run node reclaim on the local node or on nodes that do not
4763 * have associated processors. This will favor the local processor
4764 * over remote processors and spread off node memory allocations
4765 * as wide as possible.
4766 */
4767 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4768 return NODE_RECLAIM_NOSCAN;
4769
4770 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4771 return NODE_RECLAIM_NOSCAN;
4772
4773 ret = __node_reclaim(pgdat, gfp_mask, order);
4774 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4775
4776 if (!ret)
4777 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4778
4779 return ret;
4780 }
4781 #endif
4782
4783 /**
4784 * check_move_unevictable_pages - check pages for evictability and move to
4785 * appropriate zone lru list
4786 * @pvec: pagevec with lru pages to check
4787 *
4788 * Checks pages for evictability, if an evictable page is in the unevictable
4789 * lru list, moves it to the appropriate evictable lru list. This function
4790 * should be only used for lru pages.
4791 */
4792 void check_move_unevictable_pages(struct pagevec *pvec)
4793 {
4794 struct lruvec *lruvec = NULL;
4795 int pgscanned = 0;
4796 int pgrescued = 0;
4797 int i;
4798
4799 for (i = 0; i < pvec->nr; i++) {
4800 struct page *page = pvec->pages[i];
4801 struct folio *folio = page_folio(page);
4802 int nr_pages;
4803
4804 if (PageTransTail(page))
4805 continue;
4806
4807 nr_pages = thp_nr_pages(page);
4808 pgscanned += nr_pages;
4809
4810 /* block memcg migration during page moving between lru */
4811 if (!TestClearPageLRU(page))
4812 continue;
4813
4814 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4815 if (page_evictable(page) && PageUnevictable(page)) {
4816 del_page_from_lru_list(page, lruvec);
4817 ClearPageUnevictable(page);
4818 add_page_to_lru_list(page, lruvec);
4819 pgrescued += nr_pages;
4820 }
4821 SetPageLRU(page);
4822 }
4823
4824 if (lruvec) {
4825 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4826 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4827 unlock_page_lruvec_irq(lruvec);
4828 } else if (pgscanned) {
4829 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4830 }
4831 }
4832 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);