]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmscan.c
net: phy: marvell: fix detection of PHY on Topaz switches
[mirror_ubuntu-hirsute-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
73
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
79
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
86 /* Can active pages be deactivated as part of reclaim? */
87 #define DEACTIVATE_ANON 1
88 #define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
109
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
151 };
152
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166
167 /*
168 * From 0 .. 200. Higher means more swappy.
169 */
170 int vm_swappiness = 60;
171
172 static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174 {
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182 }
183
184 static LIST_HEAD(shrinker_list);
185 static DECLARE_RWSEM(shrinker_rwsem);
186
187 #ifdef CONFIG_MEMCG
188 /*
189 * We allow subsystems to populate their shrinker-related
190 * LRU lists before register_shrinker_prepared() is called
191 * for the shrinker, since we don't want to impose
192 * restrictions on their internal registration order.
193 * In this case shrink_slab_memcg() may find corresponding
194 * bit is set in the shrinkers map.
195 *
196 * This value is used by the function to detect registering
197 * shrinkers and to skip do_shrink_slab() calls for them.
198 */
199 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
200
201 static DEFINE_IDR(shrinker_idr);
202 static int shrinker_nr_max;
203
204 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
205 {
206 int id, ret = -ENOMEM;
207
208 down_write(&shrinker_rwsem);
209 /* This may call shrinker, so it must use down_read_trylock() */
210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
211 if (id < 0)
212 goto unlock;
213
214 if (id >= shrinker_nr_max) {
215 if (memcg_expand_shrinker_maps(id)) {
216 idr_remove(&shrinker_idr, id);
217 goto unlock;
218 }
219
220 shrinker_nr_max = id + 1;
221 }
222 shrinker->id = id;
223 ret = 0;
224 unlock:
225 up_write(&shrinker_rwsem);
226 return ret;
227 }
228
229 static void unregister_memcg_shrinker(struct shrinker *shrinker)
230 {
231 int id = shrinker->id;
232
233 BUG_ON(id < 0);
234
235 down_write(&shrinker_rwsem);
236 idr_remove(&shrinker_idr, id);
237 up_write(&shrinker_rwsem);
238 }
239
240 static bool cgroup_reclaim(struct scan_control *sc)
241 {
242 return sc->target_mem_cgroup;
243 }
244
245 /**
246 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
247 * @sc: scan_control in question
248 *
249 * The normal page dirty throttling mechanism in balance_dirty_pages() is
250 * completely broken with the legacy memcg and direct stalling in
251 * shrink_page_list() is used for throttling instead, which lacks all the
252 * niceties such as fairness, adaptive pausing, bandwidth proportional
253 * allocation and configurability.
254 *
255 * This function tests whether the vmscan currently in progress can assume
256 * that the normal dirty throttling mechanism is operational.
257 */
258 static bool writeback_throttling_sane(struct scan_control *sc)
259 {
260 if (!cgroup_reclaim(sc))
261 return true;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
264 return true;
265 #endif
266 return false;
267 }
268 #else
269 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
270 {
271 return 0;
272 }
273
274 static void unregister_memcg_shrinker(struct shrinker *shrinker)
275 {
276 }
277
278 static bool cgroup_reclaim(struct scan_control *sc)
279 {
280 return false;
281 }
282
283 static bool writeback_throttling_sane(struct scan_control *sc)
284 {
285 return true;
286 }
287 #endif
288
289 /*
290 * This misses isolated pages which are not accounted for to save counters.
291 * As the data only determines if reclaim or compaction continues, it is
292 * not expected that isolated pages will be a dominating factor.
293 */
294 unsigned long zone_reclaimable_pages(struct zone *zone)
295 {
296 unsigned long nr;
297
298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 if (get_nr_swap_pages() > 0)
301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
303
304 return nr;
305 }
306
307 /**
308 * lruvec_lru_size - Returns the number of pages on the given LRU list.
309 * @lruvec: lru vector
310 * @lru: lru to use
311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
312 */
313 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
314 {
315 unsigned long size = 0;
316 int zid;
317
318 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
319 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
320
321 if (!managed_zone(zone))
322 continue;
323
324 if (!mem_cgroup_disabled())
325 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
326 else
327 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
328 }
329 return size;
330 }
331
332 /*
333 * Add a shrinker callback to be called from the vm.
334 */
335 int prealloc_shrinker(struct shrinker *shrinker)
336 {
337 unsigned int size = sizeof(*shrinker->nr_deferred);
338
339 if (shrinker->flags & SHRINKER_NUMA_AWARE)
340 size *= nr_node_ids;
341
342 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
343 if (!shrinker->nr_deferred)
344 return -ENOMEM;
345
346 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
347 if (prealloc_memcg_shrinker(shrinker))
348 goto free_deferred;
349 }
350
351 return 0;
352
353 free_deferred:
354 kfree(shrinker->nr_deferred);
355 shrinker->nr_deferred = NULL;
356 return -ENOMEM;
357 }
358
359 void free_prealloced_shrinker(struct shrinker *shrinker)
360 {
361 if (!shrinker->nr_deferred)
362 return;
363
364 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
365 unregister_memcg_shrinker(shrinker);
366
367 kfree(shrinker->nr_deferred);
368 shrinker->nr_deferred = NULL;
369 }
370
371 void register_shrinker_prepared(struct shrinker *shrinker)
372 {
373 down_write(&shrinker_rwsem);
374 list_add_tail(&shrinker->list, &shrinker_list);
375 #ifdef CONFIG_MEMCG
376 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
377 idr_replace(&shrinker_idr, shrinker, shrinker->id);
378 #endif
379 up_write(&shrinker_rwsem);
380 }
381
382 int register_shrinker(struct shrinker *shrinker)
383 {
384 int err = prealloc_shrinker(shrinker);
385
386 if (err)
387 return err;
388 register_shrinker_prepared(shrinker);
389 return 0;
390 }
391 EXPORT_SYMBOL(register_shrinker);
392
393 /*
394 * Remove one
395 */
396 void unregister_shrinker(struct shrinker *shrinker)
397 {
398 if (!shrinker->nr_deferred)
399 return;
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
402 down_write(&shrinker_rwsem);
403 list_del(&shrinker->list);
404 up_write(&shrinker_rwsem);
405 kfree(shrinker->nr_deferred);
406 shrinker->nr_deferred = NULL;
407 }
408 EXPORT_SYMBOL(unregister_shrinker);
409
410 #define SHRINK_BATCH 128
411
412 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
413 struct shrinker *shrinker, int priority)
414 {
415 unsigned long freed = 0;
416 unsigned long long delta;
417 long total_scan;
418 long freeable;
419 long nr;
420 long new_nr;
421 int nid = shrinkctl->nid;
422 long batch_size = shrinker->batch ? shrinker->batch
423 : SHRINK_BATCH;
424 long scanned = 0, next_deferred;
425
426 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
427 nid = 0;
428
429 freeable = shrinker->count_objects(shrinker, shrinkctl);
430 if (freeable == 0 || freeable == SHRINK_EMPTY)
431 return freeable;
432
433 /*
434 * copy the current shrinker scan count into a local variable
435 * and zero it so that other concurrent shrinker invocations
436 * don't also do this scanning work.
437 */
438 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
439
440 total_scan = nr;
441 if (shrinker->seeks) {
442 delta = freeable >> priority;
443 delta *= 4;
444 do_div(delta, shrinker->seeks);
445 } else {
446 /*
447 * These objects don't require any IO to create. Trim
448 * them aggressively under memory pressure to keep
449 * them from causing refetches in the IO caches.
450 */
451 delta = freeable / 2;
452 }
453
454 total_scan += delta;
455 if (total_scan < 0) {
456 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
457 shrinker->scan_objects, total_scan);
458 total_scan = freeable;
459 next_deferred = nr;
460 } else
461 next_deferred = total_scan;
462
463 /*
464 * We need to avoid excessive windup on filesystem shrinkers
465 * due to large numbers of GFP_NOFS allocations causing the
466 * shrinkers to return -1 all the time. This results in a large
467 * nr being built up so when a shrink that can do some work
468 * comes along it empties the entire cache due to nr >>>
469 * freeable. This is bad for sustaining a working set in
470 * memory.
471 *
472 * Hence only allow the shrinker to scan the entire cache when
473 * a large delta change is calculated directly.
474 */
475 if (delta < freeable / 4)
476 total_scan = min(total_scan, freeable / 2);
477
478 /*
479 * Avoid risking looping forever due to too large nr value:
480 * never try to free more than twice the estimate number of
481 * freeable entries.
482 */
483 if (total_scan > freeable * 2)
484 total_scan = freeable * 2;
485
486 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
487 freeable, delta, total_scan, priority);
488
489 /*
490 * Normally, we should not scan less than batch_size objects in one
491 * pass to avoid too frequent shrinker calls, but if the slab has less
492 * than batch_size objects in total and we are really tight on memory,
493 * we will try to reclaim all available objects, otherwise we can end
494 * up failing allocations although there are plenty of reclaimable
495 * objects spread over several slabs with usage less than the
496 * batch_size.
497 *
498 * We detect the "tight on memory" situations by looking at the total
499 * number of objects we want to scan (total_scan). If it is greater
500 * than the total number of objects on slab (freeable), we must be
501 * scanning at high prio and therefore should try to reclaim as much as
502 * possible.
503 */
504 while (total_scan >= batch_size ||
505 total_scan >= freeable) {
506 unsigned long ret;
507 unsigned long nr_to_scan = min(batch_size, total_scan);
508
509 shrinkctl->nr_to_scan = nr_to_scan;
510 shrinkctl->nr_scanned = nr_to_scan;
511 ret = shrinker->scan_objects(shrinker, shrinkctl);
512 if (ret == SHRINK_STOP)
513 break;
514 freed += ret;
515
516 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
517 total_scan -= shrinkctl->nr_scanned;
518 scanned += shrinkctl->nr_scanned;
519
520 cond_resched();
521 }
522
523 if (next_deferred >= scanned)
524 next_deferred -= scanned;
525 else
526 next_deferred = 0;
527 /*
528 * move the unused scan count back into the shrinker in a
529 * manner that handles concurrent updates. If we exhausted the
530 * scan, there is no need to do an update.
531 */
532 if (next_deferred > 0)
533 new_nr = atomic_long_add_return(next_deferred,
534 &shrinker->nr_deferred[nid]);
535 else
536 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
537
538 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
539 return freed;
540 }
541
542 #ifdef CONFIG_MEMCG
543 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
544 struct mem_cgroup *memcg, int priority)
545 {
546 struct memcg_shrinker_map *map;
547 unsigned long ret, freed = 0;
548 int i;
549
550 if (!mem_cgroup_online(memcg))
551 return 0;
552
553 if (!down_read_trylock(&shrinker_rwsem))
554 return 0;
555
556 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
557 true);
558 if (unlikely(!map))
559 goto unlock;
560
561 for_each_set_bit(i, map->map, shrinker_nr_max) {
562 struct shrink_control sc = {
563 .gfp_mask = gfp_mask,
564 .nid = nid,
565 .memcg = memcg,
566 };
567 struct shrinker *shrinker;
568
569 shrinker = idr_find(&shrinker_idr, i);
570 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
571 if (!shrinker)
572 clear_bit(i, map->map);
573 continue;
574 }
575
576 /* Call non-slab shrinkers even though kmem is disabled */
577 if (!memcg_kmem_enabled() &&
578 !(shrinker->flags & SHRINKER_NONSLAB))
579 continue;
580
581 ret = do_shrink_slab(&sc, shrinker, priority);
582 if (ret == SHRINK_EMPTY) {
583 clear_bit(i, map->map);
584 /*
585 * After the shrinker reported that it had no objects to
586 * free, but before we cleared the corresponding bit in
587 * the memcg shrinker map, a new object might have been
588 * added. To make sure, we have the bit set in this
589 * case, we invoke the shrinker one more time and reset
590 * the bit if it reports that it is not empty anymore.
591 * The memory barrier here pairs with the barrier in
592 * memcg_set_shrinker_bit():
593 *
594 * list_lru_add() shrink_slab_memcg()
595 * list_add_tail() clear_bit()
596 * <MB> <MB>
597 * set_bit() do_shrink_slab()
598 */
599 smp_mb__after_atomic();
600 ret = do_shrink_slab(&sc, shrinker, priority);
601 if (ret == SHRINK_EMPTY)
602 ret = 0;
603 else
604 memcg_set_shrinker_bit(memcg, nid, i);
605 }
606 freed += ret;
607
608 if (rwsem_is_contended(&shrinker_rwsem)) {
609 freed = freed ? : 1;
610 break;
611 }
612 }
613 unlock:
614 up_read(&shrinker_rwsem);
615 return freed;
616 }
617 #else /* CONFIG_MEMCG */
618 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
619 struct mem_cgroup *memcg, int priority)
620 {
621 return 0;
622 }
623 #endif /* CONFIG_MEMCG */
624
625 /**
626 * shrink_slab - shrink slab caches
627 * @gfp_mask: allocation context
628 * @nid: node whose slab caches to target
629 * @memcg: memory cgroup whose slab caches to target
630 * @priority: the reclaim priority
631 *
632 * Call the shrink functions to age shrinkable caches.
633 *
634 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
635 * unaware shrinkers will receive a node id of 0 instead.
636 *
637 * @memcg specifies the memory cgroup to target. Unaware shrinkers
638 * are called only if it is the root cgroup.
639 *
640 * @priority is sc->priority, we take the number of objects and >> by priority
641 * in order to get the scan target.
642 *
643 * Returns the number of reclaimed slab objects.
644 */
645 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
646 struct mem_cgroup *memcg,
647 int priority)
648 {
649 unsigned long ret, freed = 0;
650 struct shrinker *shrinker;
651
652 /*
653 * The root memcg might be allocated even though memcg is disabled
654 * via "cgroup_disable=memory" boot parameter. This could make
655 * mem_cgroup_is_root() return false, then just run memcg slab
656 * shrink, but skip global shrink. This may result in premature
657 * oom.
658 */
659 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
660 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
661
662 if (!down_read_trylock(&shrinker_rwsem))
663 goto out;
664
665 list_for_each_entry(shrinker, &shrinker_list, list) {
666 struct shrink_control sc = {
667 .gfp_mask = gfp_mask,
668 .nid = nid,
669 .memcg = memcg,
670 };
671
672 ret = do_shrink_slab(&sc, shrinker, priority);
673 if (ret == SHRINK_EMPTY)
674 ret = 0;
675 freed += ret;
676 /*
677 * Bail out if someone want to register a new shrinker to
678 * prevent the registration from being stalled for long periods
679 * by parallel ongoing shrinking.
680 */
681 if (rwsem_is_contended(&shrinker_rwsem)) {
682 freed = freed ? : 1;
683 break;
684 }
685 }
686
687 up_read(&shrinker_rwsem);
688 out:
689 cond_resched();
690 return freed;
691 }
692
693 void drop_slab_node(int nid)
694 {
695 unsigned long freed;
696
697 do {
698 struct mem_cgroup *memcg = NULL;
699
700 if (fatal_signal_pending(current))
701 return;
702
703 freed = 0;
704 memcg = mem_cgroup_iter(NULL, NULL, NULL);
705 do {
706 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
707 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
708 } while (freed > 10);
709 }
710
711 void drop_slab(void)
712 {
713 int nid;
714
715 for_each_online_node(nid)
716 drop_slab_node(nid);
717 }
718
719 static inline int is_page_cache_freeable(struct page *page)
720 {
721 /*
722 * A freeable page cache page is referenced only by the caller
723 * that isolated the page, the page cache and optional buffer
724 * heads at page->private.
725 */
726 int page_cache_pins = thp_nr_pages(page);
727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
728 }
729
730 static int may_write_to_inode(struct inode *inode)
731 {
732 if (current->flags & PF_SWAPWRITE)
733 return 1;
734 if (!inode_write_congested(inode))
735 return 1;
736 if (inode_to_bdi(inode) == current->backing_dev_info)
737 return 1;
738 return 0;
739 }
740
741 /*
742 * We detected a synchronous write error writing a page out. Probably
743 * -ENOSPC. We need to propagate that into the address_space for a subsequent
744 * fsync(), msync() or close().
745 *
746 * The tricky part is that after writepage we cannot touch the mapping: nothing
747 * prevents it from being freed up. But we have a ref on the page and once
748 * that page is locked, the mapping is pinned.
749 *
750 * We're allowed to run sleeping lock_page() here because we know the caller has
751 * __GFP_FS.
752 */
753 static void handle_write_error(struct address_space *mapping,
754 struct page *page, int error)
755 {
756 lock_page(page);
757 if (page_mapping(page) == mapping)
758 mapping_set_error(mapping, error);
759 unlock_page(page);
760 }
761
762 /* possible outcome of pageout() */
763 typedef enum {
764 /* failed to write page out, page is locked */
765 PAGE_KEEP,
766 /* move page to the active list, page is locked */
767 PAGE_ACTIVATE,
768 /* page has been sent to the disk successfully, page is unlocked */
769 PAGE_SUCCESS,
770 /* page is clean and locked */
771 PAGE_CLEAN,
772 } pageout_t;
773
774 /*
775 * pageout is called by shrink_page_list() for each dirty page.
776 * Calls ->writepage().
777 */
778 static pageout_t pageout(struct page *page, struct address_space *mapping)
779 {
780 /*
781 * If the page is dirty, only perform writeback if that write
782 * will be non-blocking. To prevent this allocation from being
783 * stalled by pagecache activity. But note that there may be
784 * stalls if we need to run get_block(). We could test
785 * PagePrivate for that.
786 *
787 * If this process is currently in __generic_file_write_iter() against
788 * this page's queue, we can perform writeback even if that
789 * will block.
790 *
791 * If the page is swapcache, write it back even if that would
792 * block, for some throttling. This happens by accident, because
793 * swap_backing_dev_info is bust: it doesn't reflect the
794 * congestion state of the swapdevs. Easy to fix, if needed.
795 */
796 if (!is_page_cache_freeable(page))
797 return PAGE_KEEP;
798 if (!mapping) {
799 /*
800 * Some data journaling orphaned pages can have
801 * page->mapping == NULL while being dirty with clean buffers.
802 */
803 if (page_has_private(page)) {
804 if (try_to_free_buffers(page)) {
805 ClearPageDirty(page);
806 pr_info("%s: orphaned page\n", __func__);
807 return PAGE_CLEAN;
808 }
809 }
810 return PAGE_KEEP;
811 }
812 if (mapping->a_ops->writepage == NULL)
813 return PAGE_ACTIVATE;
814 if (!may_write_to_inode(mapping->host))
815 return PAGE_KEEP;
816
817 if (clear_page_dirty_for_io(page)) {
818 int res;
819 struct writeback_control wbc = {
820 .sync_mode = WB_SYNC_NONE,
821 .nr_to_write = SWAP_CLUSTER_MAX,
822 .range_start = 0,
823 .range_end = LLONG_MAX,
824 .for_reclaim = 1,
825 };
826
827 SetPageReclaim(page);
828 res = mapping->a_ops->writepage(page, &wbc);
829 if (res < 0)
830 handle_write_error(mapping, page, res);
831 if (res == AOP_WRITEPAGE_ACTIVATE) {
832 ClearPageReclaim(page);
833 return PAGE_ACTIVATE;
834 }
835
836 if (!PageWriteback(page)) {
837 /* synchronous write or broken a_ops? */
838 ClearPageReclaim(page);
839 }
840 trace_mm_vmscan_writepage(page);
841 inc_node_page_state(page, NR_VMSCAN_WRITE);
842 return PAGE_SUCCESS;
843 }
844
845 return PAGE_CLEAN;
846 }
847
848 /*
849 * Same as remove_mapping, but if the page is removed from the mapping, it
850 * gets returned with a refcount of 0.
851 */
852 static int __remove_mapping(struct address_space *mapping, struct page *page,
853 bool reclaimed, struct mem_cgroup *target_memcg)
854 {
855 unsigned long flags;
856 int refcount;
857 void *shadow = NULL;
858
859 BUG_ON(!PageLocked(page));
860 BUG_ON(mapping != page_mapping(page));
861
862 xa_lock_irqsave(&mapping->i_pages, flags);
863 /*
864 * The non racy check for a busy page.
865 *
866 * Must be careful with the order of the tests. When someone has
867 * a ref to the page, it may be possible that they dirty it then
868 * drop the reference. So if PageDirty is tested before page_count
869 * here, then the following race may occur:
870 *
871 * get_user_pages(&page);
872 * [user mapping goes away]
873 * write_to(page);
874 * !PageDirty(page) [good]
875 * SetPageDirty(page);
876 * put_page(page);
877 * !page_count(page) [good, discard it]
878 *
879 * [oops, our write_to data is lost]
880 *
881 * Reversing the order of the tests ensures such a situation cannot
882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
883 * load is not satisfied before that of page->_refcount.
884 *
885 * Note that if SetPageDirty is always performed via set_page_dirty,
886 * and thus under the i_pages lock, then this ordering is not required.
887 */
888 refcount = 1 + compound_nr(page);
889 if (!page_ref_freeze(page, refcount))
890 goto cannot_free;
891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
892 if (unlikely(PageDirty(page))) {
893 page_ref_unfreeze(page, refcount);
894 goto cannot_free;
895 }
896
897 if (PageSwapCache(page)) {
898 swp_entry_t swap = { .val = page_private(page) };
899 mem_cgroup_swapout(page, swap);
900 if (reclaimed && !mapping_exiting(mapping))
901 shadow = workingset_eviction(page, target_memcg);
902 __delete_from_swap_cache(page, swap, shadow);
903 xa_unlock_irqrestore(&mapping->i_pages, flags);
904 put_swap_page(page, swap);
905 } else {
906 void (*freepage)(struct page *);
907
908 freepage = mapping->a_ops->freepage;
909 /*
910 * Remember a shadow entry for reclaimed file cache in
911 * order to detect refaults, thus thrashing, later on.
912 *
913 * But don't store shadows in an address space that is
914 * already exiting. This is not just an optimization,
915 * inode reclaim needs to empty out the radix tree or
916 * the nodes are lost. Don't plant shadows behind its
917 * back.
918 *
919 * We also don't store shadows for DAX mappings because the
920 * only page cache pages found in these are zero pages
921 * covering holes, and because we don't want to mix DAX
922 * exceptional entries and shadow exceptional entries in the
923 * same address_space.
924 */
925 if (reclaimed && page_is_file_lru(page) &&
926 !mapping_exiting(mapping) && !dax_mapping(mapping))
927 shadow = workingset_eviction(page, target_memcg);
928 __delete_from_page_cache(page, shadow);
929 xa_unlock_irqrestore(&mapping->i_pages, flags);
930
931 if (freepage != NULL)
932 freepage(page);
933 }
934
935 return 1;
936
937 cannot_free:
938 xa_unlock_irqrestore(&mapping->i_pages, flags);
939 return 0;
940 }
941
942 /*
943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
944 * someone else has a ref on the page, abort and return 0. If it was
945 * successfully detached, return 1. Assumes the caller has a single ref on
946 * this page.
947 */
948 int remove_mapping(struct address_space *mapping, struct page *page)
949 {
950 if (__remove_mapping(mapping, page, false, NULL)) {
951 /*
952 * Unfreezing the refcount with 1 rather than 2 effectively
953 * drops the pagecache ref for us without requiring another
954 * atomic operation.
955 */
956 page_ref_unfreeze(page, 1);
957 return 1;
958 }
959 return 0;
960 }
961
962 /**
963 * putback_lru_page - put previously isolated page onto appropriate LRU list
964 * @page: page to be put back to appropriate lru list
965 *
966 * Add previously isolated @page to appropriate LRU list.
967 * Page may still be unevictable for other reasons.
968 *
969 * lru_lock must not be held, interrupts must be enabled.
970 */
971 void putback_lru_page(struct page *page)
972 {
973 lru_cache_add(page);
974 put_page(page); /* drop ref from isolate */
975 }
976
977 enum page_references {
978 PAGEREF_RECLAIM,
979 PAGEREF_RECLAIM_CLEAN,
980 PAGEREF_KEEP,
981 PAGEREF_ACTIVATE,
982 };
983
984 static enum page_references page_check_references(struct page *page,
985 struct scan_control *sc)
986 {
987 int referenced_ptes, referenced_page;
988 unsigned long vm_flags;
989
990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 &vm_flags);
992 referenced_page = TestClearPageReferenced(page);
993
994 /*
995 * Mlock lost the isolation race with us. Let try_to_unmap()
996 * move the page to the unevictable list.
997 */
998 if (vm_flags & VM_LOCKED)
999 return PAGEREF_RECLAIM;
1000
1001 if (referenced_ptes) {
1002 /*
1003 * All mapped pages start out with page table
1004 * references from the instantiating fault, so we need
1005 * to look twice if a mapped file page is used more
1006 * than once.
1007 *
1008 * Mark it and spare it for another trip around the
1009 * inactive list. Another page table reference will
1010 * lead to its activation.
1011 *
1012 * Note: the mark is set for activated pages as well
1013 * so that recently deactivated but used pages are
1014 * quickly recovered.
1015 */
1016 SetPageReferenced(page);
1017
1018 if (referenced_page || referenced_ptes > 1)
1019 return PAGEREF_ACTIVATE;
1020
1021 /*
1022 * Activate file-backed executable pages after first usage.
1023 */
1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1025 return PAGEREF_ACTIVATE;
1026
1027 return PAGEREF_KEEP;
1028 }
1029
1030 /* Reclaim if clean, defer dirty pages to writeback */
1031 if (referenced_page && !PageSwapBacked(page))
1032 return PAGEREF_RECLAIM_CLEAN;
1033
1034 return PAGEREF_RECLAIM;
1035 }
1036
1037 /* Check if a page is dirty or under writeback */
1038 static void page_check_dirty_writeback(struct page *page,
1039 bool *dirty, bool *writeback)
1040 {
1041 struct address_space *mapping;
1042
1043 /*
1044 * Anonymous pages are not handled by flushers and must be written
1045 * from reclaim context. Do not stall reclaim based on them
1046 */
1047 if (!page_is_file_lru(page) ||
1048 (PageAnon(page) && !PageSwapBacked(page))) {
1049 *dirty = false;
1050 *writeback = false;
1051 return;
1052 }
1053
1054 /* By default assume that the page flags are accurate */
1055 *dirty = PageDirty(page);
1056 *writeback = PageWriteback(page);
1057
1058 /* Verify dirty/writeback state if the filesystem supports it */
1059 if (!page_has_private(page))
1060 return;
1061
1062 mapping = page_mapping(page);
1063 if (mapping && mapping->a_ops->is_dirty_writeback)
1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1065 }
1066
1067 /*
1068 * shrink_page_list() returns the number of reclaimed pages
1069 */
1070 static unsigned int shrink_page_list(struct list_head *page_list,
1071 struct pglist_data *pgdat,
1072 struct scan_control *sc,
1073 struct reclaim_stat *stat,
1074 bool ignore_references)
1075 {
1076 LIST_HEAD(ret_pages);
1077 LIST_HEAD(free_pages);
1078 unsigned int nr_reclaimed = 0;
1079 unsigned int pgactivate = 0;
1080
1081 memset(stat, 0, sizeof(*stat));
1082 cond_resched();
1083
1084 while (!list_empty(page_list)) {
1085 struct address_space *mapping;
1086 struct page *page;
1087 enum page_references references = PAGEREF_RECLAIM;
1088 bool dirty, writeback, may_enter_fs;
1089 unsigned int nr_pages;
1090
1091 cond_resched();
1092
1093 page = lru_to_page(page_list);
1094 list_del(&page->lru);
1095
1096 if (!trylock_page(page))
1097 goto keep;
1098
1099 VM_BUG_ON_PAGE(PageActive(page), page);
1100
1101 nr_pages = compound_nr(page);
1102
1103 /* Account the number of base pages even though THP */
1104 sc->nr_scanned += nr_pages;
1105
1106 if (unlikely(!page_evictable(page)))
1107 goto activate_locked;
1108
1109 if (!sc->may_unmap && page_mapped(page))
1110 goto keep_locked;
1111
1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1114
1115 /*
1116 * The number of dirty pages determines if a node is marked
1117 * reclaim_congested which affects wait_iff_congested. kswapd
1118 * will stall and start writing pages if the tail of the LRU
1119 * is all dirty unqueued pages.
1120 */
1121 page_check_dirty_writeback(page, &dirty, &writeback);
1122 if (dirty || writeback)
1123 stat->nr_dirty++;
1124
1125 if (dirty && !writeback)
1126 stat->nr_unqueued_dirty++;
1127
1128 /*
1129 * Treat this page as congested if the underlying BDI is or if
1130 * pages are cycling through the LRU so quickly that the
1131 * pages marked for immediate reclaim are making it to the
1132 * end of the LRU a second time.
1133 */
1134 mapping = page_mapping(page);
1135 if (((dirty || writeback) && mapping &&
1136 inode_write_congested(mapping->host)) ||
1137 (writeback && PageReclaim(page)))
1138 stat->nr_congested++;
1139
1140 /*
1141 * If a page at the tail of the LRU is under writeback, there
1142 * are three cases to consider.
1143 *
1144 * 1) If reclaim is encountering an excessive number of pages
1145 * under writeback and this page is both under writeback and
1146 * PageReclaim then it indicates that pages are being queued
1147 * for IO but are being recycled through the LRU before the
1148 * IO can complete. Waiting on the page itself risks an
1149 * indefinite stall if it is impossible to writeback the
1150 * page due to IO error or disconnected storage so instead
1151 * note that the LRU is being scanned too quickly and the
1152 * caller can stall after page list has been processed.
1153 *
1154 * 2) Global or new memcg reclaim encounters a page that is
1155 * not marked for immediate reclaim, or the caller does not
1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 * not to fs). In this case mark the page for immediate
1158 * reclaim and continue scanning.
1159 *
1160 * Require may_enter_fs because we would wait on fs, which
1161 * may not have submitted IO yet. And the loop driver might
1162 * enter reclaim, and deadlock if it waits on a page for
1163 * which it is needed to do the write (loop masks off
1164 * __GFP_IO|__GFP_FS for this reason); but more thought
1165 * would probably show more reasons.
1166 *
1167 * 3) Legacy memcg encounters a page that is already marked
1168 * PageReclaim. memcg does not have any dirty pages
1169 * throttling so we could easily OOM just because too many
1170 * pages are in writeback and there is nothing else to
1171 * reclaim. Wait for the writeback to complete.
1172 *
1173 * In cases 1) and 2) we activate the pages to get them out of
1174 * the way while we continue scanning for clean pages on the
1175 * inactive list and refilling from the active list. The
1176 * observation here is that waiting for disk writes is more
1177 * expensive than potentially causing reloads down the line.
1178 * Since they're marked for immediate reclaim, they won't put
1179 * memory pressure on the cache working set any longer than it
1180 * takes to write them to disk.
1181 */
1182 if (PageWriteback(page)) {
1183 /* Case 1 above */
1184 if (current_is_kswapd() &&
1185 PageReclaim(page) &&
1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1187 stat->nr_immediate++;
1188 goto activate_locked;
1189
1190 /* Case 2 above */
1191 } else if (writeback_throttling_sane(sc) ||
1192 !PageReclaim(page) || !may_enter_fs) {
1193 /*
1194 * This is slightly racy - end_page_writeback()
1195 * might have just cleared PageReclaim, then
1196 * setting PageReclaim here end up interpreted
1197 * as PageReadahead - but that does not matter
1198 * enough to care. What we do want is for this
1199 * page to have PageReclaim set next time memcg
1200 * reclaim reaches the tests above, so it will
1201 * then wait_on_page_writeback() to avoid OOM;
1202 * and it's also appropriate in global reclaim.
1203 */
1204 SetPageReclaim(page);
1205 stat->nr_writeback++;
1206 goto activate_locked;
1207
1208 /* Case 3 above */
1209 } else {
1210 unlock_page(page);
1211 wait_on_page_writeback(page);
1212 /* then go back and try same page again */
1213 list_add_tail(&page->lru, page_list);
1214 continue;
1215 }
1216 }
1217
1218 if (!ignore_references)
1219 references = page_check_references(page, sc);
1220
1221 switch (references) {
1222 case PAGEREF_ACTIVATE:
1223 goto activate_locked;
1224 case PAGEREF_KEEP:
1225 stat->nr_ref_keep += nr_pages;
1226 goto keep_locked;
1227 case PAGEREF_RECLAIM:
1228 case PAGEREF_RECLAIM_CLEAN:
1229 ; /* try to reclaim the page below */
1230 }
1231
1232 /*
1233 * Anonymous process memory has backing store?
1234 * Try to allocate it some swap space here.
1235 * Lazyfree page could be freed directly
1236 */
1237 if (PageAnon(page) && PageSwapBacked(page)) {
1238 if (!PageSwapCache(page)) {
1239 if (!(sc->gfp_mask & __GFP_IO))
1240 goto keep_locked;
1241 if (page_maybe_dma_pinned(page))
1242 goto keep_locked;
1243 if (PageTransHuge(page)) {
1244 /* cannot split THP, skip it */
1245 if (!can_split_huge_page(page, NULL))
1246 goto activate_locked;
1247 /*
1248 * Split pages without a PMD map right
1249 * away. Chances are some or all of the
1250 * tail pages can be freed without IO.
1251 */
1252 if (!compound_mapcount(page) &&
1253 split_huge_page_to_list(page,
1254 page_list))
1255 goto activate_locked;
1256 }
1257 if (!add_to_swap(page)) {
1258 if (!PageTransHuge(page))
1259 goto activate_locked_split;
1260 /* Fallback to swap normal pages */
1261 if (split_huge_page_to_list(page,
1262 page_list))
1263 goto activate_locked;
1264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1265 count_vm_event(THP_SWPOUT_FALLBACK);
1266 #endif
1267 if (!add_to_swap(page))
1268 goto activate_locked_split;
1269 }
1270
1271 may_enter_fs = true;
1272
1273 /* Adding to swap updated mapping */
1274 mapping = page_mapping(page);
1275 }
1276 } else if (unlikely(PageTransHuge(page))) {
1277 /* Split file THP */
1278 if (split_huge_page_to_list(page, page_list))
1279 goto keep_locked;
1280 }
1281
1282 /*
1283 * THP may get split above, need minus tail pages and update
1284 * nr_pages to avoid accounting tail pages twice.
1285 *
1286 * The tail pages that are added into swap cache successfully
1287 * reach here.
1288 */
1289 if ((nr_pages > 1) && !PageTransHuge(page)) {
1290 sc->nr_scanned -= (nr_pages - 1);
1291 nr_pages = 1;
1292 }
1293
1294 /*
1295 * The page is mapped into the page tables of one or more
1296 * processes. Try to unmap it here.
1297 */
1298 if (page_mapped(page)) {
1299 enum ttu_flags flags = TTU_BATCH_FLUSH;
1300 bool was_swapbacked = PageSwapBacked(page);
1301
1302 if (unlikely(PageTransHuge(page)))
1303 flags |= TTU_SPLIT_HUGE_PMD;
1304
1305 if (!try_to_unmap(page, flags)) {
1306 stat->nr_unmap_fail += nr_pages;
1307 if (!was_swapbacked && PageSwapBacked(page))
1308 stat->nr_lazyfree_fail += nr_pages;
1309 goto activate_locked;
1310 }
1311 }
1312
1313 if (PageDirty(page)) {
1314 /*
1315 * Only kswapd can writeback filesystem pages
1316 * to avoid risk of stack overflow. But avoid
1317 * injecting inefficient single-page IO into
1318 * flusher writeback as much as possible: only
1319 * write pages when we've encountered many
1320 * dirty pages, and when we've already scanned
1321 * the rest of the LRU for clean pages and see
1322 * the same dirty pages again (PageReclaim).
1323 */
1324 if (page_is_file_lru(page) &&
1325 (!current_is_kswapd() || !PageReclaim(page) ||
1326 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1327 /*
1328 * Immediately reclaim when written back.
1329 * Similar in principal to deactivate_page()
1330 * except we already have the page isolated
1331 * and know it's dirty
1332 */
1333 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1334 SetPageReclaim(page);
1335
1336 goto activate_locked;
1337 }
1338
1339 if (references == PAGEREF_RECLAIM_CLEAN)
1340 goto keep_locked;
1341 if (!may_enter_fs)
1342 goto keep_locked;
1343 if (!sc->may_writepage)
1344 goto keep_locked;
1345
1346 /*
1347 * Page is dirty. Flush the TLB if a writable entry
1348 * potentially exists to avoid CPU writes after IO
1349 * starts and then write it out here.
1350 */
1351 try_to_unmap_flush_dirty();
1352 switch (pageout(page, mapping)) {
1353 case PAGE_KEEP:
1354 goto keep_locked;
1355 case PAGE_ACTIVATE:
1356 goto activate_locked;
1357 case PAGE_SUCCESS:
1358 stat->nr_pageout += thp_nr_pages(page);
1359
1360 if (PageWriteback(page))
1361 goto keep;
1362 if (PageDirty(page))
1363 goto keep;
1364
1365 /*
1366 * A synchronous write - probably a ramdisk. Go
1367 * ahead and try to reclaim the page.
1368 */
1369 if (!trylock_page(page))
1370 goto keep;
1371 if (PageDirty(page) || PageWriteback(page))
1372 goto keep_locked;
1373 mapping = page_mapping(page);
1374 fallthrough;
1375 case PAGE_CLEAN:
1376 ; /* try to free the page below */
1377 }
1378 }
1379
1380 /*
1381 * If the page has buffers, try to free the buffer mappings
1382 * associated with this page. If we succeed we try to free
1383 * the page as well.
1384 *
1385 * We do this even if the page is PageDirty().
1386 * try_to_release_page() does not perform I/O, but it is
1387 * possible for a page to have PageDirty set, but it is actually
1388 * clean (all its buffers are clean). This happens if the
1389 * buffers were written out directly, with submit_bh(). ext3
1390 * will do this, as well as the blockdev mapping.
1391 * try_to_release_page() will discover that cleanness and will
1392 * drop the buffers and mark the page clean - it can be freed.
1393 *
1394 * Rarely, pages can have buffers and no ->mapping. These are
1395 * the pages which were not successfully invalidated in
1396 * truncate_cleanup_page(). We try to drop those buffers here
1397 * and if that worked, and the page is no longer mapped into
1398 * process address space (page_count == 1) it can be freed.
1399 * Otherwise, leave the page on the LRU so it is swappable.
1400 */
1401 if (page_has_private(page)) {
1402 if (!try_to_release_page(page, sc->gfp_mask))
1403 goto activate_locked;
1404 if (!mapping && page_count(page) == 1) {
1405 unlock_page(page);
1406 if (put_page_testzero(page))
1407 goto free_it;
1408 else {
1409 /*
1410 * rare race with speculative reference.
1411 * the speculative reference will free
1412 * this page shortly, so we may
1413 * increment nr_reclaimed here (and
1414 * leave it off the LRU).
1415 */
1416 nr_reclaimed++;
1417 continue;
1418 }
1419 }
1420 }
1421
1422 if (PageAnon(page) && !PageSwapBacked(page)) {
1423 /* follow __remove_mapping for reference */
1424 if (!page_ref_freeze(page, 1))
1425 goto keep_locked;
1426 if (PageDirty(page)) {
1427 page_ref_unfreeze(page, 1);
1428 goto keep_locked;
1429 }
1430
1431 count_vm_event(PGLAZYFREED);
1432 count_memcg_page_event(page, PGLAZYFREED);
1433 } else if (!mapping || !__remove_mapping(mapping, page, true,
1434 sc->target_mem_cgroup))
1435 goto keep_locked;
1436
1437 unlock_page(page);
1438 free_it:
1439 /*
1440 * THP may get swapped out in a whole, need account
1441 * all base pages.
1442 */
1443 nr_reclaimed += nr_pages;
1444
1445 /*
1446 * Is there need to periodically free_page_list? It would
1447 * appear not as the counts should be low
1448 */
1449 if (unlikely(PageTransHuge(page)))
1450 destroy_compound_page(page);
1451 else
1452 list_add(&page->lru, &free_pages);
1453 continue;
1454
1455 activate_locked_split:
1456 /*
1457 * The tail pages that are failed to add into swap cache
1458 * reach here. Fixup nr_scanned and nr_pages.
1459 */
1460 if (nr_pages > 1) {
1461 sc->nr_scanned -= (nr_pages - 1);
1462 nr_pages = 1;
1463 }
1464 activate_locked:
1465 /* Not a candidate for swapping, so reclaim swap space. */
1466 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1467 PageMlocked(page)))
1468 try_to_free_swap(page);
1469 VM_BUG_ON_PAGE(PageActive(page), page);
1470 if (!PageMlocked(page)) {
1471 int type = page_is_file_lru(page);
1472 SetPageActive(page);
1473 stat->nr_activate[type] += nr_pages;
1474 count_memcg_page_event(page, PGACTIVATE);
1475 }
1476 keep_locked:
1477 unlock_page(page);
1478 keep:
1479 list_add(&page->lru, &ret_pages);
1480 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 }
1482
1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484
1485 mem_cgroup_uncharge_list(&free_pages);
1486 try_to_unmap_flush();
1487 free_unref_page_list(&free_pages);
1488
1489 list_splice(&ret_pages, page_list);
1490 count_vm_events(PGACTIVATE, pgactivate);
1491
1492 return nr_reclaimed;
1493 }
1494
1495 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1496 struct list_head *page_list)
1497 {
1498 struct scan_control sc = {
1499 .gfp_mask = GFP_KERNEL,
1500 .priority = DEF_PRIORITY,
1501 .may_unmap = 1,
1502 };
1503 struct reclaim_stat stat;
1504 unsigned int nr_reclaimed;
1505 struct page *page, *next;
1506 LIST_HEAD(clean_pages);
1507
1508 list_for_each_entry_safe(page, next, page_list, lru) {
1509 if (page_is_file_lru(page) && !PageDirty(page) &&
1510 !__PageMovable(page) && !PageUnevictable(page)) {
1511 ClearPageActive(page);
1512 list_move(&page->lru, &clean_pages);
1513 }
1514 }
1515
1516 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1517 &stat, true);
1518 list_splice(&clean_pages, page_list);
1519 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1520 -(long)nr_reclaimed);
1521 /*
1522 * Since lazyfree pages are isolated from file LRU from the beginning,
1523 * they will rotate back to anonymous LRU in the end if it failed to
1524 * discard so isolated count will be mismatched.
1525 * Compensate the isolated count for both LRU lists.
1526 */
1527 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1528 stat.nr_lazyfree_fail);
1529 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1530 -(long)stat.nr_lazyfree_fail);
1531 return nr_reclaimed;
1532 }
1533
1534 /*
1535 * Attempt to remove the specified page from its LRU. Only take this page
1536 * if it is of the appropriate PageActive status. Pages which are being
1537 * freed elsewhere are also ignored.
1538 *
1539 * page: page to consider
1540 * mode: one of the LRU isolation modes defined above
1541 *
1542 * returns 0 on success, -ve errno on failure.
1543 */
1544 int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1545 {
1546 int ret = -EBUSY;
1547
1548 /* Only take pages on the LRU. */
1549 if (!PageLRU(page))
1550 return ret;
1551
1552 /* Compaction should not handle unevictable pages but CMA can do so */
1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 return ret;
1555
1556 /*
1557 * To minimise LRU disruption, the caller can indicate that it only
1558 * wants to isolate pages it will be able to operate on without
1559 * blocking - clean pages for the most part.
1560 *
1561 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1562 * that it is possible to migrate without blocking
1563 */
1564 if (mode & ISOLATE_ASYNC_MIGRATE) {
1565 /* All the caller can do on PageWriteback is block */
1566 if (PageWriteback(page))
1567 return ret;
1568
1569 if (PageDirty(page)) {
1570 struct address_space *mapping;
1571 bool migrate_dirty;
1572
1573 /*
1574 * Only pages without mappings or that have a
1575 * ->migratepage callback are possible to migrate
1576 * without blocking. However, we can be racing with
1577 * truncation so it's necessary to lock the page
1578 * to stabilise the mapping as truncation holds
1579 * the page lock until after the page is removed
1580 * from the page cache.
1581 */
1582 if (!trylock_page(page))
1583 return ret;
1584
1585 mapping = page_mapping(page);
1586 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1587 unlock_page(page);
1588 if (!migrate_dirty)
1589 return ret;
1590 }
1591 }
1592
1593 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1594 return ret;
1595
1596 return 0;
1597 }
1598
1599 /*
1600 * Update LRU sizes after isolating pages. The LRU size updates must
1601 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1602 */
1603 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1604 enum lru_list lru, unsigned long *nr_zone_taken)
1605 {
1606 int zid;
1607
1608 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609 if (!nr_zone_taken[zid])
1610 continue;
1611
1612 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1613 }
1614
1615 }
1616
1617 /**
1618 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1619 *
1620 * lruvec->lru_lock is heavily contended. Some of the functions that
1621 * shrink the lists perform better by taking out a batch of pages
1622 * and working on them outside the LRU lock.
1623 *
1624 * For pagecache intensive workloads, this function is the hottest
1625 * spot in the kernel (apart from copy_*_user functions).
1626 *
1627 * Lru_lock must be held before calling this function.
1628 *
1629 * @nr_to_scan: The number of eligible pages to look through on the list.
1630 * @lruvec: The LRU vector to pull pages from.
1631 * @dst: The temp list to put pages on to.
1632 * @nr_scanned: The number of pages that were scanned.
1633 * @sc: The scan_control struct for this reclaim session
1634 * @lru: LRU list id for isolating
1635 *
1636 * returns how many pages were moved onto *@dst.
1637 */
1638 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1639 struct lruvec *lruvec, struct list_head *dst,
1640 unsigned long *nr_scanned, struct scan_control *sc,
1641 enum lru_list lru)
1642 {
1643 struct list_head *src = &lruvec->lists[lru];
1644 unsigned long nr_taken = 0;
1645 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1646 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1647 unsigned long skipped = 0;
1648 unsigned long scan, total_scan, nr_pages;
1649 LIST_HEAD(pages_skipped);
1650 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1651
1652 total_scan = 0;
1653 scan = 0;
1654 while (scan < nr_to_scan && !list_empty(src)) {
1655 struct page *page;
1656
1657 page = lru_to_page(src);
1658 prefetchw_prev_lru_page(page, src, flags);
1659
1660 nr_pages = compound_nr(page);
1661 total_scan += nr_pages;
1662
1663 if (page_zonenum(page) > sc->reclaim_idx) {
1664 list_move(&page->lru, &pages_skipped);
1665 nr_skipped[page_zonenum(page)] += nr_pages;
1666 continue;
1667 }
1668
1669 /*
1670 * Do not count skipped pages because that makes the function
1671 * return with no isolated pages if the LRU mostly contains
1672 * ineligible pages. This causes the VM to not reclaim any
1673 * pages, triggering a premature OOM.
1674 *
1675 * Account all tail pages of THP. This would not cause
1676 * premature OOM since __isolate_lru_page() returns -EBUSY
1677 * only when the page is being freed somewhere else.
1678 */
1679 scan += nr_pages;
1680 switch (__isolate_lru_page_prepare(page, mode)) {
1681 case 0:
1682 /*
1683 * Be careful not to clear PageLRU until after we're
1684 * sure the page is not being freed elsewhere -- the
1685 * page release code relies on it.
1686 */
1687 if (unlikely(!get_page_unless_zero(page)))
1688 goto busy;
1689
1690 if (!TestClearPageLRU(page)) {
1691 /*
1692 * This page may in other isolation path,
1693 * but we still hold lru_lock.
1694 */
1695 put_page(page);
1696 goto busy;
1697 }
1698
1699 nr_taken += nr_pages;
1700 nr_zone_taken[page_zonenum(page)] += nr_pages;
1701 list_move(&page->lru, dst);
1702 break;
1703
1704 default:
1705 busy:
1706 /* else it is being freed elsewhere */
1707 list_move(&page->lru, src);
1708 }
1709 }
1710
1711 /*
1712 * Splice any skipped pages to the start of the LRU list. Note that
1713 * this disrupts the LRU order when reclaiming for lower zones but
1714 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1715 * scanning would soon rescan the same pages to skip and put the
1716 * system at risk of premature OOM.
1717 */
1718 if (!list_empty(&pages_skipped)) {
1719 int zid;
1720
1721 list_splice(&pages_skipped, src);
1722 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1723 if (!nr_skipped[zid])
1724 continue;
1725
1726 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1727 skipped += nr_skipped[zid];
1728 }
1729 }
1730 *nr_scanned = total_scan;
1731 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1732 total_scan, skipped, nr_taken, mode, lru);
1733 update_lru_sizes(lruvec, lru, nr_zone_taken);
1734 return nr_taken;
1735 }
1736
1737 /**
1738 * isolate_lru_page - tries to isolate a page from its LRU list
1739 * @page: page to isolate from its LRU list
1740 *
1741 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1742 * vmstat statistic corresponding to whatever LRU list the page was on.
1743 *
1744 * Returns 0 if the page was removed from an LRU list.
1745 * Returns -EBUSY if the page was not on an LRU list.
1746 *
1747 * The returned page will have PageLRU() cleared. If it was found on
1748 * the active list, it will have PageActive set. If it was found on
1749 * the unevictable list, it will have the PageUnevictable bit set. That flag
1750 * may need to be cleared by the caller before letting the page go.
1751 *
1752 * The vmstat statistic corresponding to the list on which the page was
1753 * found will be decremented.
1754 *
1755 * Restrictions:
1756 *
1757 * (1) Must be called with an elevated refcount on the page. This is a
1758 * fundamental difference from isolate_lru_pages (which is called
1759 * without a stable reference).
1760 * (2) the lru_lock must not be held.
1761 * (3) interrupts must be enabled.
1762 */
1763 int isolate_lru_page(struct page *page)
1764 {
1765 int ret = -EBUSY;
1766
1767 VM_BUG_ON_PAGE(!page_count(page), page);
1768 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1769
1770 if (TestClearPageLRU(page)) {
1771 struct lruvec *lruvec;
1772
1773 get_page(page);
1774 lruvec = lock_page_lruvec_irq(page);
1775 del_page_from_lru_list(page, lruvec, page_lru(page));
1776 unlock_page_lruvec_irq(lruvec);
1777 ret = 0;
1778 }
1779
1780 return ret;
1781 }
1782
1783 /*
1784 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1785 * then get rescheduled. When there are massive number of tasks doing page
1786 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1787 * the LRU list will go small and be scanned faster than necessary, leading to
1788 * unnecessary swapping, thrashing and OOM.
1789 */
1790 static int too_many_isolated(struct pglist_data *pgdat, int file,
1791 struct scan_control *sc)
1792 {
1793 unsigned long inactive, isolated;
1794
1795 if (current_is_kswapd())
1796 return 0;
1797
1798 if (!writeback_throttling_sane(sc))
1799 return 0;
1800
1801 if (file) {
1802 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1804 } else {
1805 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1806 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1807 }
1808
1809 /*
1810 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1811 * won't get blocked by normal direct-reclaimers, forming a circular
1812 * deadlock.
1813 */
1814 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1815 inactive >>= 3;
1816
1817 return isolated > inactive;
1818 }
1819
1820 /*
1821 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
1822 * On return, @list is reused as a list of pages to be freed by the caller.
1823 *
1824 * Returns the number of pages moved to the given lruvec.
1825 */
1826 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1827 struct list_head *list)
1828 {
1829 int nr_pages, nr_moved = 0;
1830 LIST_HEAD(pages_to_free);
1831 struct page *page;
1832 enum lru_list lru;
1833
1834 while (!list_empty(list)) {
1835 page = lru_to_page(list);
1836 VM_BUG_ON_PAGE(PageLRU(page), page);
1837 list_del(&page->lru);
1838 if (unlikely(!page_evictable(page))) {
1839 spin_unlock_irq(&lruvec->lru_lock);
1840 putback_lru_page(page);
1841 spin_lock_irq(&lruvec->lru_lock);
1842 continue;
1843 }
1844
1845 /*
1846 * The SetPageLRU needs to be kept here for list integrity.
1847 * Otherwise:
1848 * #0 move_pages_to_lru #1 release_pages
1849 * if !put_page_testzero
1850 * if (put_page_testzero())
1851 * !PageLRU //skip lru_lock
1852 * SetPageLRU()
1853 * list_add(&page->lru,)
1854 * list_add(&page->lru,)
1855 */
1856 SetPageLRU(page);
1857
1858 if (unlikely(put_page_testzero(page))) {
1859 __ClearPageLRU(page);
1860 __ClearPageActive(page);
1861
1862 if (unlikely(PageCompound(page))) {
1863 spin_unlock_irq(&lruvec->lru_lock);
1864 destroy_compound_page(page);
1865 spin_lock_irq(&lruvec->lru_lock);
1866 } else
1867 list_add(&page->lru, &pages_to_free);
1868
1869 continue;
1870 }
1871
1872 /*
1873 * All pages were isolated from the same lruvec (and isolation
1874 * inhibits memcg migration).
1875 */
1876 VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page);
1877 lru = page_lru(page);
1878 nr_pages = thp_nr_pages(page);
1879
1880 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1881 list_add(&page->lru, &lruvec->lists[lru]);
1882 nr_moved += nr_pages;
1883 if (PageActive(page))
1884 workingset_age_nonresident(lruvec, nr_pages);
1885 }
1886
1887 /*
1888 * To save our caller's stack, now use input list for pages to free.
1889 */
1890 list_splice(&pages_to_free, list);
1891
1892 return nr_moved;
1893 }
1894
1895 /*
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested. In other cases it is safe to throttle.
1900 */
1901 static int current_may_throttle(void)
1902 {
1903 return !(current->flags & PF_LOCAL_THROTTLE) ||
1904 current->backing_dev_info == NULL ||
1905 bdi_write_congested(current->backing_dev_info);
1906 }
1907
1908 /*
1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1910 * of reclaimed pages
1911 */
1912 static noinline_for_stack unsigned long
1913 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1914 struct scan_control *sc, enum lru_list lru)
1915 {
1916 LIST_HEAD(page_list);
1917 unsigned long nr_scanned;
1918 unsigned int nr_reclaimed = 0;
1919 unsigned long nr_taken;
1920 struct reclaim_stat stat;
1921 bool file = is_file_lru(lru);
1922 enum vm_event_item item;
1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1924 bool stalled = false;
1925
1926 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1927 if (stalled)
1928 return 0;
1929
1930 /* wait a bit for the reclaimer. */
1931 msleep(100);
1932 stalled = true;
1933
1934 /* We are about to die and free our memory. Return now. */
1935 if (fatal_signal_pending(current))
1936 return SWAP_CLUSTER_MAX;
1937 }
1938
1939 lru_add_drain();
1940
1941 spin_lock_irq(&lruvec->lru_lock);
1942
1943 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1944 &nr_scanned, sc, lru);
1945
1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1947 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1948 if (!cgroup_reclaim(sc))
1949 __count_vm_events(item, nr_scanned);
1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1951 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952
1953 spin_unlock_irq(&lruvec->lru_lock);
1954
1955 if (nr_taken == 0)
1956 return 0;
1957
1958 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1959
1960 spin_lock_irq(&lruvec->lru_lock);
1961 move_pages_to_lru(lruvec, &page_list);
1962
1963 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1964 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1965 if (!cgroup_reclaim(sc))
1966 __count_vm_events(item, nr_reclaimed);
1967 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1968 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1969 spin_unlock_irq(&lruvec->lru_lock);
1970
1971 lru_note_cost(lruvec, file, stat.nr_pageout);
1972 mem_cgroup_uncharge_list(&page_list);
1973 free_unref_page_list(&page_list);
1974
1975 /*
1976 * If dirty pages are scanned that are not queued for IO, it
1977 * implies that flushers are not doing their job. This can
1978 * happen when memory pressure pushes dirty pages to the end of
1979 * the LRU before the dirty limits are breached and the dirty
1980 * data has expired. It can also happen when the proportion of
1981 * dirty pages grows not through writes but through memory
1982 * pressure reclaiming all the clean cache. And in some cases,
1983 * the flushers simply cannot keep up with the allocation
1984 * rate. Nudge the flusher threads in case they are asleep.
1985 */
1986 if (stat.nr_unqueued_dirty == nr_taken)
1987 wakeup_flusher_threads(WB_REASON_VMSCAN);
1988
1989 sc->nr.dirty += stat.nr_dirty;
1990 sc->nr.congested += stat.nr_congested;
1991 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1992 sc->nr.writeback += stat.nr_writeback;
1993 sc->nr.immediate += stat.nr_immediate;
1994 sc->nr.taken += nr_taken;
1995 if (file)
1996 sc->nr.file_taken += nr_taken;
1997
1998 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1999 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2000 return nr_reclaimed;
2001 }
2002
2003 /*
2004 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2005 *
2006 * We move them the other way if the page is referenced by one or more
2007 * processes.
2008 *
2009 * If the pages are mostly unmapped, the processing is fast and it is
2010 * appropriate to hold lru_lock across the whole operation. But if
2011 * the pages are mapped, the processing is slow (page_referenced()), so
2012 * we should drop lru_lock around each page. It's impossible to balance
2013 * this, so instead we remove the pages from the LRU while processing them.
2014 * It is safe to rely on PG_active against the non-LRU pages in here because
2015 * nobody will play with that bit on a non-LRU page.
2016 *
2017 * The downside is that we have to touch page->_refcount against each page.
2018 * But we had to alter page->flags anyway.
2019 */
2020 static void shrink_active_list(unsigned long nr_to_scan,
2021 struct lruvec *lruvec,
2022 struct scan_control *sc,
2023 enum lru_list lru)
2024 {
2025 unsigned long nr_taken;
2026 unsigned long nr_scanned;
2027 unsigned long vm_flags;
2028 LIST_HEAD(l_hold); /* The pages which were snipped off */
2029 LIST_HEAD(l_active);
2030 LIST_HEAD(l_inactive);
2031 struct page *page;
2032 unsigned nr_deactivate, nr_activate;
2033 unsigned nr_rotated = 0;
2034 int file = is_file_lru(lru);
2035 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2036
2037 lru_add_drain();
2038
2039 spin_lock_irq(&lruvec->lru_lock);
2040
2041 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2042 &nr_scanned, sc, lru);
2043
2044 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2045
2046 if (!cgroup_reclaim(sc))
2047 __count_vm_events(PGREFILL, nr_scanned);
2048 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2049
2050 spin_unlock_irq(&lruvec->lru_lock);
2051
2052 while (!list_empty(&l_hold)) {
2053 cond_resched();
2054 page = lru_to_page(&l_hold);
2055 list_del(&page->lru);
2056
2057 if (unlikely(!page_evictable(page))) {
2058 putback_lru_page(page);
2059 continue;
2060 }
2061
2062 if (unlikely(buffer_heads_over_limit)) {
2063 if (page_has_private(page) && trylock_page(page)) {
2064 if (page_has_private(page))
2065 try_to_release_page(page, 0);
2066 unlock_page(page);
2067 }
2068 }
2069
2070 if (page_referenced(page, 0, sc->target_mem_cgroup,
2071 &vm_flags)) {
2072 /*
2073 * Identify referenced, file-backed active pages and
2074 * give them one more trip around the active list. So
2075 * that executable code get better chances to stay in
2076 * memory under moderate memory pressure. Anon pages
2077 * are not likely to be evicted by use-once streaming
2078 * IO, plus JVM can create lots of anon VM_EXEC pages,
2079 * so we ignore them here.
2080 */
2081 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2082 nr_rotated += thp_nr_pages(page);
2083 list_add(&page->lru, &l_active);
2084 continue;
2085 }
2086 }
2087
2088 ClearPageActive(page); /* we are de-activating */
2089 SetPageWorkingset(page);
2090 list_add(&page->lru, &l_inactive);
2091 }
2092
2093 /*
2094 * Move pages back to the lru list.
2095 */
2096 spin_lock_irq(&lruvec->lru_lock);
2097
2098 nr_activate = move_pages_to_lru(lruvec, &l_active);
2099 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2100 /* Keep all free pages in l_active list */
2101 list_splice(&l_inactive, &l_active);
2102
2103 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2104 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2105
2106 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2107 spin_unlock_irq(&lruvec->lru_lock);
2108
2109 mem_cgroup_uncharge_list(&l_active);
2110 free_unref_page_list(&l_active);
2111 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2112 nr_deactivate, nr_rotated, sc->priority, file);
2113 }
2114
2115 unsigned long reclaim_pages(struct list_head *page_list)
2116 {
2117 int nid = NUMA_NO_NODE;
2118 unsigned int nr_reclaimed = 0;
2119 LIST_HEAD(node_page_list);
2120 struct reclaim_stat dummy_stat;
2121 struct page *page;
2122 struct scan_control sc = {
2123 .gfp_mask = GFP_KERNEL,
2124 .priority = DEF_PRIORITY,
2125 .may_writepage = 1,
2126 .may_unmap = 1,
2127 .may_swap = 1,
2128 };
2129
2130 while (!list_empty(page_list)) {
2131 page = lru_to_page(page_list);
2132 if (nid == NUMA_NO_NODE) {
2133 nid = page_to_nid(page);
2134 INIT_LIST_HEAD(&node_page_list);
2135 }
2136
2137 if (nid == page_to_nid(page)) {
2138 ClearPageActive(page);
2139 list_move(&page->lru, &node_page_list);
2140 continue;
2141 }
2142
2143 nr_reclaimed += shrink_page_list(&node_page_list,
2144 NODE_DATA(nid),
2145 &sc, &dummy_stat, false);
2146 while (!list_empty(&node_page_list)) {
2147 page = lru_to_page(&node_page_list);
2148 list_del(&page->lru);
2149 putback_lru_page(page);
2150 }
2151
2152 nid = NUMA_NO_NODE;
2153 }
2154
2155 if (!list_empty(&node_page_list)) {
2156 nr_reclaimed += shrink_page_list(&node_page_list,
2157 NODE_DATA(nid),
2158 &sc, &dummy_stat, false);
2159 while (!list_empty(&node_page_list)) {
2160 page = lru_to_page(&node_page_list);
2161 list_del(&page->lru);
2162 putback_lru_page(page);
2163 }
2164 }
2165
2166 return nr_reclaimed;
2167 }
2168
2169 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2170 struct lruvec *lruvec, struct scan_control *sc)
2171 {
2172 if (is_active_lru(lru)) {
2173 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2174 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2175 else
2176 sc->skipped_deactivate = 1;
2177 return 0;
2178 }
2179
2180 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2181 }
2182
2183 /*
2184 * The inactive anon list should be small enough that the VM never has
2185 * to do too much work.
2186 *
2187 * The inactive file list should be small enough to leave most memory
2188 * to the established workingset on the scan-resistant active list,
2189 * but large enough to avoid thrashing the aggregate readahead window.
2190 *
2191 * Both inactive lists should also be large enough that each inactive
2192 * page has a chance to be referenced again before it is reclaimed.
2193 *
2194 * If that fails and refaulting is observed, the inactive list grows.
2195 *
2196 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2197 * on this LRU, maintained by the pageout code. An inactive_ratio
2198 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2199 *
2200 * total target max
2201 * memory ratio inactive
2202 * -------------------------------------
2203 * 10MB 1 5MB
2204 * 100MB 1 50MB
2205 * 1GB 3 250MB
2206 * 10GB 10 0.9GB
2207 * 100GB 31 3GB
2208 * 1TB 101 10GB
2209 * 10TB 320 32GB
2210 */
2211 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2212 {
2213 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2214 unsigned long inactive, active;
2215 unsigned long inactive_ratio;
2216 unsigned long gb;
2217
2218 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2219 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2220
2221 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2222 if (gb)
2223 inactive_ratio = int_sqrt(10 * gb);
2224 else
2225 inactive_ratio = 1;
2226
2227 return inactive * inactive_ratio < active;
2228 }
2229
2230 enum scan_balance {
2231 SCAN_EQUAL,
2232 SCAN_FRACT,
2233 SCAN_ANON,
2234 SCAN_FILE,
2235 };
2236
2237 /*
2238 * Determine how aggressively the anon and file LRU lists should be
2239 * scanned. The relative value of each set of LRU lists is determined
2240 * by looking at the fraction of the pages scanned we did rotate back
2241 * onto the active list instead of evict.
2242 *
2243 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2244 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2245 */
2246 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2247 unsigned long *nr)
2248 {
2249 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2250 unsigned long anon_cost, file_cost, total_cost;
2251 int swappiness = mem_cgroup_swappiness(memcg);
2252 u64 fraction[ANON_AND_FILE];
2253 u64 denominator = 0; /* gcc */
2254 enum scan_balance scan_balance;
2255 unsigned long ap, fp;
2256 enum lru_list lru;
2257
2258 /* If we have no swap space, do not bother scanning anon pages. */
2259 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2260 scan_balance = SCAN_FILE;
2261 goto out;
2262 }
2263
2264 /*
2265 * Global reclaim will swap to prevent OOM even with no
2266 * swappiness, but memcg users want to use this knob to
2267 * disable swapping for individual groups completely when
2268 * using the memory controller's swap limit feature would be
2269 * too expensive.
2270 */
2271 if (cgroup_reclaim(sc) && !swappiness) {
2272 scan_balance = SCAN_FILE;
2273 goto out;
2274 }
2275
2276 /*
2277 * Do not apply any pressure balancing cleverness when the
2278 * system is close to OOM, scan both anon and file equally
2279 * (unless the swappiness setting disagrees with swapping).
2280 */
2281 if (!sc->priority && swappiness) {
2282 scan_balance = SCAN_EQUAL;
2283 goto out;
2284 }
2285
2286 /*
2287 * If the system is almost out of file pages, force-scan anon.
2288 */
2289 if (sc->file_is_tiny) {
2290 scan_balance = SCAN_ANON;
2291 goto out;
2292 }
2293
2294 /*
2295 * If there is enough inactive page cache, we do not reclaim
2296 * anything from the anonymous working right now.
2297 */
2298 if (sc->cache_trim_mode) {
2299 scan_balance = SCAN_FILE;
2300 goto out;
2301 }
2302
2303 scan_balance = SCAN_FRACT;
2304 /*
2305 * Calculate the pressure balance between anon and file pages.
2306 *
2307 * The amount of pressure we put on each LRU is inversely
2308 * proportional to the cost of reclaiming each list, as
2309 * determined by the share of pages that are refaulting, times
2310 * the relative IO cost of bringing back a swapped out
2311 * anonymous page vs reloading a filesystem page (swappiness).
2312 *
2313 * Although we limit that influence to ensure no list gets
2314 * left behind completely: at least a third of the pressure is
2315 * applied, before swappiness.
2316 *
2317 * With swappiness at 100, anon and file have equal IO cost.
2318 */
2319 total_cost = sc->anon_cost + sc->file_cost;
2320 anon_cost = total_cost + sc->anon_cost;
2321 file_cost = total_cost + sc->file_cost;
2322 total_cost = anon_cost + file_cost;
2323
2324 ap = swappiness * (total_cost + 1);
2325 ap /= anon_cost + 1;
2326
2327 fp = (200 - swappiness) * (total_cost + 1);
2328 fp /= file_cost + 1;
2329
2330 fraction[0] = ap;
2331 fraction[1] = fp;
2332 denominator = ap + fp;
2333 out:
2334 for_each_evictable_lru(lru) {
2335 int file = is_file_lru(lru);
2336 unsigned long lruvec_size;
2337 unsigned long scan;
2338 unsigned long protection;
2339
2340 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2341 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2342 memcg,
2343 sc->memcg_low_reclaim);
2344
2345 if (protection) {
2346 /*
2347 * Scale a cgroup's reclaim pressure by proportioning
2348 * its current usage to its memory.low or memory.min
2349 * setting.
2350 *
2351 * This is important, as otherwise scanning aggression
2352 * becomes extremely binary -- from nothing as we
2353 * approach the memory protection threshold, to totally
2354 * nominal as we exceed it. This results in requiring
2355 * setting extremely liberal protection thresholds. It
2356 * also means we simply get no protection at all if we
2357 * set it too low, which is not ideal.
2358 *
2359 * If there is any protection in place, we reduce scan
2360 * pressure by how much of the total memory used is
2361 * within protection thresholds.
2362 *
2363 * There is one special case: in the first reclaim pass,
2364 * we skip over all groups that are within their low
2365 * protection. If that fails to reclaim enough pages to
2366 * satisfy the reclaim goal, we come back and override
2367 * the best-effort low protection. However, we still
2368 * ideally want to honor how well-behaved groups are in
2369 * that case instead of simply punishing them all
2370 * equally. As such, we reclaim them based on how much
2371 * memory they are using, reducing the scan pressure
2372 * again by how much of the total memory used is under
2373 * hard protection.
2374 */
2375 unsigned long cgroup_size = mem_cgroup_size(memcg);
2376
2377 /* Avoid TOCTOU with earlier protection check */
2378 cgroup_size = max(cgroup_size, protection);
2379
2380 scan = lruvec_size - lruvec_size * protection /
2381 cgroup_size;
2382
2383 /*
2384 * Minimally target SWAP_CLUSTER_MAX pages to keep
2385 * reclaim moving forwards, avoiding decrementing
2386 * sc->priority further than desirable.
2387 */
2388 scan = max(scan, SWAP_CLUSTER_MAX);
2389 } else {
2390 scan = lruvec_size;
2391 }
2392
2393 scan >>= sc->priority;
2394
2395 /*
2396 * If the cgroup's already been deleted, make sure to
2397 * scrape out the remaining cache.
2398 */
2399 if (!scan && !mem_cgroup_online(memcg))
2400 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2401
2402 switch (scan_balance) {
2403 case SCAN_EQUAL:
2404 /* Scan lists relative to size */
2405 break;
2406 case SCAN_FRACT:
2407 /*
2408 * Scan types proportional to swappiness and
2409 * their relative recent reclaim efficiency.
2410 * Make sure we don't miss the last page on
2411 * the offlined memory cgroups because of a
2412 * round-off error.
2413 */
2414 scan = mem_cgroup_online(memcg) ?
2415 div64_u64(scan * fraction[file], denominator) :
2416 DIV64_U64_ROUND_UP(scan * fraction[file],
2417 denominator);
2418 break;
2419 case SCAN_FILE:
2420 case SCAN_ANON:
2421 /* Scan one type exclusively */
2422 if ((scan_balance == SCAN_FILE) != file)
2423 scan = 0;
2424 break;
2425 default:
2426 /* Look ma, no brain */
2427 BUG();
2428 }
2429
2430 nr[lru] = scan;
2431 }
2432 }
2433
2434 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2435 {
2436 unsigned long nr[NR_LRU_LISTS];
2437 unsigned long targets[NR_LRU_LISTS];
2438 unsigned long nr_to_scan;
2439 enum lru_list lru;
2440 unsigned long nr_reclaimed = 0;
2441 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2442 struct blk_plug plug;
2443 bool scan_adjusted;
2444
2445 get_scan_count(lruvec, sc, nr);
2446
2447 /* Record the original scan target for proportional adjustments later */
2448 memcpy(targets, nr, sizeof(nr));
2449
2450 /*
2451 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2452 * event that can occur when there is little memory pressure e.g.
2453 * multiple streaming readers/writers. Hence, we do not abort scanning
2454 * when the requested number of pages are reclaimed when scanning at
2455 * DEF_PRIORITY on the assumption that the fact we are direct
2456 * reclaiming implies that kswapd is not keeping up and it is best to
2457 * do a batch of work at once. For memcg reclaim one check is made to
2458 * abort proportional reclaim if either the file or anon lru has already
2459 * dropped to zero at the first pass.
2460 */
2461 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2462 sc->priority == DEF_PRIORITY);
2463
2464 blk_start_plug(&plug);
2465 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2466 nr[LRU_INACTIVE_FILE]) {
2467 unsigned long nr_anon, nr_file, percentage;
2468 unsigned long nr_scanned;
2469
2470 for_each_evictable_lru(lru) {
2471 if (nr[lru]) {
2472 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2473 nr[lru] -= nr_to_scan;
2474
2475 nr_reclaimed += shrink_list(lru, nr_to_scan,
2476 lruvec, sc);
2477 }
2478 }
2479
2480 cond_resched();
2481
2482 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2483 continue;
2484
2485 /*
2486 * For kswapd and memcg, reclaim at least the number of pages
2487 * requested. Ensure that the anon and file LRUs are scanned
2488 * proportionally what was requested by get_scan_count(). We
2489 * stop reclaiming one LRU and reduce the amount scanning
2490 * proportional to the original scan target.
2491 */
2492 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2493 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2494
2495 /*
2496 * It's just vindictive to attack the larger once the smaller
2497 * has gone to zero. And given the way we stop scanning the
2498 * smaller below, this makes sure that we only make one nudge
2499 * towards proportionality once we've got nr_to_reclaim.
2500 */
2501 if (!nr_file || !nr_anon)
2502 break;
2503
2504 if (nr_file > nr_anon) {
2505 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2506 targets[LRU_ACTIVE_ANON] + 1;
2507 lru = LRU_BASE;
2508 percentage = nr_anon * 100 / scan_target;
2509 } else {
2510 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2511 targets[LRU_ACTIVE_FILE] + 1;
2512 lru = LRU_FILE;
2513 percentage = nr_file * 100 / scan_target;
2514 }
2515
2516 /* Stop scanning the smaller of the LRU */
2517 nr[lru] = 0;
2518 nr[lru + LRU_ACTIVE] = 0;
2519
2520 /*
2521 * Recalculate the other LRU scan count based on its original
2522 * scan target and the percentage scanning already complete
2523 */
2524 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2525 nr_scanned = targets[lru] - nr[lru];
2526 nr[lru] = targets[lru] * (100 - percentage) / 100;
2527 nr[lru] -= min(nr[lru], nr_scanned);
2528
2529 lru += LRU_ACTIVE;
2530 nr_scanned = targets[lru] - nr[lru];
2531 nr[lru] = targets[lru] * (100 - percentage) / 100;
2532 nr[lru] -= min(nr[lru], nr_scanned);
2533
2534 scan_adjusted = true;
2535 }
2536 blk_finish_plug(&plug);
2537 sc->nr_reclaimed += nr_reclaimed;
2538
2539 /*
2540 * Even if we did not try to evict anon pages at all, we want to
2541 * rebalance the anon lru active/inactive ratio.
2542 */
2543 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2544 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2545 sc, LRU_ACTIVE_ANON);
2546 }
2547
2548 /* Use reclaim/compaction for costly allocs or under memory pressure */
2549 static bool in_reclaim_compaction(struct scan_control *sc)
2550 {
2551 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2552 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2553 sc->priority < DEF_PRIORITY - 2))
2554 return true;
2555
2556 return false;
2557 }
2558
2559 /*
2560 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2561 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2562 * true if more pages should be reclaimed such that when the page allocator
2563 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2564 * It will give up earlier than that if there is difficulty reclaiming pages.
2565 */
2566 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2567 unsigned long nr_reclaimed,
2568 struct scan_control *sc)
2569 {
2570 unsigned long pages_for_compaction;
2571 unsigned long inactive_lru_pages;
2572 int z;
2573
2574 /* If not in reclaim/compaction mode, stop */
2575 if (!in_reclaim_compaction(sc))
2576 return false;
2577
2578 /*
2579 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2580 * number of pages that were scanned. This will return to the caller
2581 * with the risk reclaim/compaction and the resulting allocation attempt
2582 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2583 * allocations through requiring that the full LRU list has been scanned
2584 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2585 * scan, but that approximation was wrong, and there were corner cases
2586 * where always a non-zero amount of pages were scanned.
2587 */
2588 if (!nr_reclaimed)
2589 return false;
2590
2591 /* If compaction would go ahead or the allocation would succeed, stop */
2592 for (z = 0; z <= sc->reclaim_idx; z++) {
2593 struct zone *zone = &pgdat->node_zones[z];
2594 if (!managed_zone(zone))
2595 continue;
2596
2597 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2598 case COMPACT_SUCCESS:
2599 case COMPACT_CONTINUE:
2600 return false;
2601 default:
2602 /* check next zone */
2603 ;
2604 }
2605 }
2606
2607 /*
2608 * If we have not reclaimed enough pages for compaction and the
2609 * inactive lists are large enough, continue reclaiming
2610 */
2611 pages_for_compaction = compact_gap(sc->order);
2612 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2613 if (get_nr_swap_pages() > 0)
2614 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2615
2616 return inactive_lru_pages > pages_for_compaction;
2617 }
2618
2619 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2620 {
2621 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2622 struct mem_cgroup *memcg;
2623
2624 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2625 do {
2626 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2627 unsigned long reclaimed;
2628 unsigned long scanned;
2629
2630 /*
2631 * This loop can become CPU-bound when target memcgs
2632 * aren't eligible for reclaim - either because they
2633 * don't have any reclaimable pages, or because their
2634 * memory is explicitly protected. Avoid soft lockups.
2635 */
2636 cond_resched();
2637
2638 mem_cgroup_calculate_protection(target_memcg, memcg);
2639
2640 if (mem_cgroup_below_min(memcg)) {
2641 /*
2642 * Hard protection.
2643 * If there is no reclaimable memory, OOM.
2644 */
2645 continue;
2646 } else if (mem_cgroup_below_low(memcg)) {
2647 /*
2648 * Soft protection.
2649 * Respect the protection only as long as
2650 * there is an unprotected supply
2651 * of reclaimable memory from other cgroups.
2652 */
2653 if (!sc->memcg_low_reclaim) {
2654 sc->memcg_low_skipped = 1;
2655 continue;
2656 }
2657 memcg_memory_event(memcg, MEMCG_LOW);
2658 }
2659
2660 reclaimed = sc->nr_reclaimed;
2661 scanned = sc->nr_scanned;
2662
2663 shrink_lruvec(lruvec, sc);
2664
2665 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2666 sc->priority);
2667
2668 /* Record the group's reclaim efficiency */
2669 vmpressure(sc->gfp_mask, memcg, false,
2670 sc->nr_scanned - scanned,
2671 sc->nr_reclaimed - reclaimed);
2672
2673 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2674 }
2675
2676 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2677 {
2678 struct reclaim_state *reclaim_state = current->reclaim_state;
2679 unsigned long nr_reclaimed, nr_scanned;
2680 struct lruvec *target_lruvec;
2681 bool reclaimable = false;
2682 unsigned long file;
2683
2684 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2685
2686 again:
2687 memset(&sc->nr, 0, sizeof(sc->nr));
2688
2689 nr_reclaimed = sc->nr_reclaimed;
2690 nr_scanned = sc->nr_scanned;
2691
2692 /*
2693 * Determine the scan balance between anon and file LRUs.
2694 */
2695 spin_lock_irq(&target_lruvec->lru_lock);
2696 sc->anon_cost = target_lruvec->anon_cost;
2697 sc->file_cost = target_lruvec->file_cost;
2698 spin_unlock_irq(&target_lruvec->lru_lock);
2699
2700 /*
2701 * Target desirable inactive:active list ratios for the anon
2702 * and file LRU lists.
2703 */
2704 if (!sc->force_deactivate) {
2705 unsigned long refaults;
2706
2707 refaults = lruvec_page_state(target_lruvec,
2708 WORKINGSET_ACTIVATE_ANON);
2709 if (refaults != target_lruvec->refaults[0] ||
2710 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2711 sc->may_deactivate |= DEACTIVATE_ANON;
2712 else
2713 sc->may_deactivate &= ~DEACTIVATE_ANON;
2714
2715 /*
2716 * When refaults are being observed, it means a new
2717 * workingset is being established. Deactivate to get
2718 * rid of any stale active pages quickly.
2719 */
2720 refaults = lruvec_page_state(target_lruvec,
2721 WORKINGSET_ACTIVATE_FILE);
2722 if (refaults != target_lruvec->refaults[1] ||
2723 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2724 sc->may_deactivate |= DEACTIVATE_FILE;
2725 else
2726 sc->may_deactivate &= ~DEACTIVATE_FILE;
2727 } else
2728 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2729
2730 /*
2731 * If we have plenty of inactive file pages that aren't
2732 * thrashing, try to reclaim those first before touching
2733 * anonymous pages.
2734 */
2735 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2736 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2737 sc->cache_trim_mode = 1;
2738 else
2739 sc->cache_trim_mode = 0;
2740
2741 /*
2742 * Prevent the reclaimer from falling into the cache trap: as
2743 * cache pages start out inactive, every cache fault will tip
2744 * the scan balance towards the file LRU. And as the file LRU
2745 * shrinks, so does the window for rotation from references.
2746 * This means we have a runaway feedback loop where a tiny
2747 * thrashing file LRU becomes infinitely more attractive than
2748 * anon pages. Try to detect this based on file LRU size.
2749 */
2750 if (!cgroup_reclaim(sc)) {
2751 unsigned long total_high_wmark = 0;
2752 unsigned long free, anon;
2753 int z;
2754
2755 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2756 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2757 node_page_state(pgdat, NR_INACTIVE_FILE);
2758
2759 for (z = 0; z < MAX_NR_ZONES; z++) {
2760 struct zone *zone = &pgdat->node_zones[z];
2761 if (!managed_zone(zone))
2762 continue;
2763
2764 total_high_wmark += high_wmark_pages(zone);
2765 }
2766
2767 /*
2768 * Consider anon: if that's low too, this isn't a
2769 * runaway file reclaim problem, but rather just
2770 * extreme pressure. Reclaim as per usual then.
2771 */
2772 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2773
2774 sc->file_is_tiny =
2775 file + free <= total_high_wmark &&
2776 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2777 anon >> sc->priority;
2778 }
2779
2780 shrink_node_memcgs(pgdat, sc);
2781
2782 if (reclaim_state) {
2783 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2784 reclaim_state->reclaimed_slab = 0;
2785 }
2786
2787 /* Record the subtree's reclaim efficiency */
2788 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2789 sc->nr_scanned - nr_scanned,
2790 sc->nr_reclaimed - nr_reclaimed);
2791
2792 if (sc->nr_reclaimed - nr_reclaimed)
2793 reclaimable = true;
2794
2795 if (current_is_kswapd()) {
2796 /*
2797 * If reclaim is isolating dirty pages under writeback,
2798 * it implies that the long-lived page allocation rate
2799 * is exceeding the page laundering rate. Either the
2800 * global limits are not being effective at throttling
2801 * processes due to the page distribution throughout
2802 * zones or there is heavy usage of a slow backing
2803 * device. The only option is to throttle from reclaim
2804 * context which is not ideal as there is no guarantee
2805 * the dirtying process is throttled in the same way
2806 * balance_dirty_pages() manages.
2807 *
2808 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2809 * count the number of pages under pages flagged for
2810 * immediate reclaim and stall if any are encountered
2811 * in the nr_immediate check below.
2812 */
2813 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2814 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2815
2816 /* Allow kswapd to start writing pages during reclaim.*/
2817 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2818 set_bit(PGDAT_DIRTY, &pgdat->flags);
2819
2820 /*
2821 * If kswapd scans pages marked for immediate
2822 * reclaim and under writeback (nr_immediate), it
2823 * implies that pages are cycling through the LRU
2824 * faster than they are written so also forcibly stall.
2825 */
2826 if (sc->nr.immediate)
2827 congestion_wait(BLK_RW_ASYNC, HZ/10);
2828 }
2829
2830 /*
2831 * Tag a node/memcg as congested if all the dirty pages
2832 * scanned were backed by a congested BDI and
2833 * wait_iff_congested will stall.
2834 *
2835 * Legacy memcg will stall in page writeback so avoid forcibly
2836 * stalling in wait_iff_congested().
2837 */
2838 if ((current_is_kswapd() ||
2839 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2840 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2841 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2842
2843 /*
2844 * Stall direct reclaim for IO completions if underlying BDIs
2845 * and node is congested. Allow kswapd to continue until it
2846 * starts encountering unqueued dirty pages or cycling through
2847 * the LRU too quickly.
2848 */
2849 if (!current_is_kswapd() && current_may_throttle() &&
2850 !sc->hibernation_mode &&
2851 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2852 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2853
2854 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2855 sc))
2856 goto again;
2857
2858 /*
2859 * Kswapd gives up on balancing particular nodes after too
2860 * many failures to reclaim anything from them and goes to
2861 * sleep. On reclaim progress, reset the failure counter. A
2862 * successful direct reclaim run will revive a dormant kswapd.
2863 */
2864 if (reclaimable)
2865 pgdat->kswapd_failures = 0;
2866 }
2867
2868 /*
2869 * Returns true if compaction should go ahead for a costly-order request, or
2870 * the allocation would already succeed without compaction. Return false if we
2871 * should reclaim first.
2872 */
2873 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2874 {
2875 unsigned long watermark;
2876 enum compact_result suitable;
2877
2878 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2879 if (suitable == COMPACT_SUCCESS)
2880 /* Allocation should succeed already. Don't reclaim. */
2881 return true;
2882 if (suitable == COMPACT_SKIPPED)
2883 /* Compaction cannot yet proceed. Do reclaim. */
2884 return false;
2885
2886 /*
2887 * Compaction is already possible, but it takes time to run and there
2888 * are potentially other callers using the pages just freed. So proceed
2889 * with reclaim to make a buffer of free pages available to give
2890 * compaction a reasonable chance of completing and allocating the page.
2891 * Note that we won't actually reclaim the whole buffer in one attempt
2892 * as the target watermark in should_continue_reclaim() is lower. But if
2893 * we are already above the high+gap watermark, don't reclaim at all.
2894 */
2895 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2896
2897 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2898 }
2899
2900 /*
2901 * This is the direct reclaim path, for page-allocating processes. We only
2902 * try to reclaim pages from zones which will satisfy the caller's allocation
2903 * request.
2904 *
2905 * If a zone is deemed to be full of pinned pages then just give it a light
2906 * scan then give up on it.
2907 */
2908 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2909 {
2910 struct zoneref *z;
2911 struct zone *zone;
2912 unsigned long nr_soft_reclaimed;
2913 unsigned long nr_soft_scanned;
2914 gfp_t orig_mask;
2915 pg_data_t *last_pgdat = NULL;
2916
2917 /*
2918 * If the number of buffer_heads in the machine exceeds the maximum
2919 * allowed level, force direct reclaim to scan the highmem zone as
2920 * highmem pages could be pinning lowmem pages storing buffer_heads
2921 */
2922 orig_mask = sc->gfp_mask;
2923 if (buffer_heads_over_limit) {
2924 sc->gfp_mask |= __GFP_HIGHMEM;
2925 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2926 }
2927
2928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2929 sc->reclaim_idx, sc->nodemask) {
2930 /*
2931 * Take care memory controller reclaiming has small influence
2932 * to global LRU.
2933 */
2934 if (!cgroup_reclaim(sc)) {
2935 if (!cpuset_zone_allowed(zone,
2936 GFP_KERNEL | __GFP_HARDWALL))
2937 continue;
2938
2939 /*
2940 * If we already have plenty of memory free for
2941 * compaction in this zone, don't free any more.
2942 * Even though compaction is invoked for any
2943 * non-zero order, only frequent costly order
2944 * reclamation is disruptive enough to become a
2945 * noticeable problem, like transparent huge
2946 * page allocations.
2947 */
2948 if (IS_ENABLED(CONFIG_COMPACTION) &&
2949 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2950 compaction_ready(zone, sc)) {
2951 sc->compaction_ready = true;
2952 continue;
2953 }
2954
2955 /*
2956 * Shrink each node in the zonelist once. If the
2957 * zonelist is ordered by zone (not the default) then a
2958 * node may be shrunk multiple times but in that case
2959 * the user prefers lower zones being preserved.
2960 */
2961 if (zone->zone_pgdat == last_pgdat)
2962 continue;
2963
2964 /*
2965 * This steals pages from memory cgroups over softlimit
2966 * and returns the number of reclaimed pages and
2967 * scanned pages. This works for global memory pressure
2968 * and balancing, not for a memcg's limit.
2969 */
2970 nr_soft_scanned = 0;
2971 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2972 sc->order, sc->gfp_mask,
2973 &nr_soft_scanned);
2974 sc->nr_reclaimed += nr_soft_reclaimed;
2975 sc->nr_scanned += nr_soft_scanned;
2976 /* need some check for avoid more shrink_zone() */
2977 }
2978
2979 /* See comment about same check for global reclaim above */
2980 if (zone->zone_pgdat == last_pgdat)
2981 continue;
2982 last_pgdat = zone->zone_pgdat;
2983 shrink_node(zone->zone_pgdat, sc);
2984 }
2985
2986 /*
2987 * Restore to original mask to avoid the impact on the caller if we
2988 * promoted it to __GFP_HIGHMEM.
2989 */
2990 sc->gfp_mask = orig_mask;
2991 }
2992
2993 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2994 {
2995 struct lruvec *target_lruvec;
2996 unsigned long refaults;
2997
2998 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2999 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3000 target_lruvec->refaults[0] = refaults;
3001 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3002 target_lruvec->refaults[1] = refaults;
3003 }
3004
3005 /*
3006 * This is the main entry point to direct page reclaim.
3007 *
3008 * If a full scan of the inactive list fails to free enough memory then we
3009 * are "out of memory" and something needs to be killed.
3010 *
3011 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3012 * high - the zone may be full of dirty or under-writeback pages, which this
3013 * caller can't do much about. We kick the writeback threads and take explicit
3014 * naps in the hope that some of these pages can be written. But if the
3015 * allocating task holds filesystem locks which prevent writeout this might not
3016 * work, and the allocation attempt will fail.
3017 *
3018 * returns: 0, if no pages reclaimed
3019 * else, the number of pages reclaimed
3020 */
3021 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3022 struct scan_control *sc)
3023 {
3024 int initial_priority = sc->priority;
3025 pg_data_t *last_pgdat;
3026 struct zoneref *z;
3027 struct zone *zone;
3028 retry:
3029 delayacct_freepages_start();
3030
3031 if (!cgroup_reclaim(sc))
3032 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3033
3034 do {
3035 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3036 sc->priority);
3037 sc->nr_scanned = 0;
3038 shrink_zones(zonelist, sc);
3039
3040 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3041 break;
3042
3043 if (sc->compaction_ready)
3044 break;
3045
3046 /*
3047 * If we're getting trouble reclaiming, start doing
3048 * writepage even in laptop mode.
3049 */
3050 if (sc->priority < DEF_PRIORITY - 2)
3051 sc->may_writepage = 1;
3052 } while (--sc->priority >= 0);
3053
3054 last_pgdat = NULL;
3055 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3056 sc->nodemask) {
3057 if (zone->zone_pgdat == last_pgdat)
3058 continue;
3059 last_pgdat = zone->zone_pgdat;
3060
3061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3062
3063 if (cgroup_reclaim(sc)) {
3064 struct lruvec *lruvec;
3065
3066 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3067 zone->zone_pgdat);
3068 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3069 }
3070 }
3071
3072 delayacct_freepages_end();
3073
3074 if (sc->nr_reclaimed)
3075 return sc->nr_reclaimed;
3076
3077 /* Aborted reclaim to try compaction? don't OOM, then */
3078 if (sc->compaction_ready)
3079 return 1;
3080
3081 /*
3082 * We make inactive:active ratio decisions based on the node's
3083 * composition of memory, but a restrictive reclaim_idx or a
3084 * memory.low cgroup setting can exempt large amounts of
3085 * memory from reclaim. Neither of which are very common, so
3086 * instead of doing costly eligibility calculations of the
3087 * entire cgroup subtree up front, we assume the estimates are
3088 * good, and retry with forcible deactivation if that fails.
3089 */
3090 if (sc->skipped_deactivate) {
3091 sc->priority = initial_priority;
3092 sc->force_deactivate = 1;
3093 sc->skipped_deactivate = 0;
3094 goto retry;
3095 }
3096
3097 /* Untapped cgroup reserves? Don't OOM, retry. */
3098 if (sc->memcg_low_skipped) {
3099 sc->priority = initial_priority;
3100 sc->force_deactivate = 0;
3101 sc->memcg_low_reclaim = 1;
3102 sc->memcg_low_skipped = 0;
3103 goto retry;
3104 }
3105
3106 return 0;
3107 }
3108
3109 static bool allow_direct_reclaim(pg_data_t *pgdat)
3110 {
3111 struct zone *zone;
3112 unsigned long pfmemalloc_reserve = 0;
3113 unsigned long free_pages = 0;
3114 int i;
3115 bool wmark_ok;
3116
3117 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3118 return true;
3119
3120 for (i = 0; i <= ZONE_NORMAL; i++) {
3121 zone = &pgdat->node_zones[i];
3122 if (!managed_zone(zone))
3123 continue;
3124
3125 if (!zone_reclaimable_pages(zone))
3126 continue;
3127
3128 pfmemalloc_reserve += min_wmark_pages(zone);
3129 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3130 }
3131
3132 /* If there are no reserves (unexpected config) then do not throttle */
3133 if (!pfmemalloc_reserve)
3134 return true;
3135
3136 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3137
3138 /* kswapd must be awake if processes are being throttled */
3139 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3140 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3141 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3142
3143 wake_up_interruptible(&pgdat->kswapd_wait);
3144 }
3145
3146 return wmark_ok;
3147 }
3148
3149 /*
3150 * Throttle direct reclaimers if backing storage is backed by the network
3151 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3152 * depleted. kswapd will continue to make progress and wake the processes
3153 * when the low watermark is reached.
3154 *
3155 * Returns true if a fatal signal was delivered during throttling. If this
3156 * happens, the page allocator should not consider triggering the OOM killer.
3157 */
3158 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3159 nodemask_t *nodemask)
3160 {
3161 struct zoneref *z;
3162 struct zone *zone;
3163 pg_data_t *pgdat = NULL;
3164
3165 /*
3166 * Kernel threads should not be throttled as they may be indirectly
3167 * responsible for cleaning pages necessary for reclaim to make forward
3168 * progress. kjournald for example may enter direct reclaim while
3169 * committing a transaction where throttling it could forcing other
3170 * processes to block on log_wait_commit().
3171 */
3172 if (current->flags & PF_KTHREAD)
3173 goto out;
3174
3175 /*
3176 * If a fatal signal is pending, this process should not throttle.
3177 * It should return quickly so it can exit and free its memory
3178 */
3179 if (fatal_signal_pending(current))
3180 goto out;
3181
3182 /*
3183 * Check if the pfmemalloc reserves are ok by finding the first node
3184 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3185 * GFP_KERNEL will be required for allocating network buffers when
3186 * swapping over the network so ZONE_HIGHMEM is unusable.
3187 *
3188 * Throttling is based on the first usable node and throttled processes
3189 * wait on a queue until kswapd makes progress and wakes them. There
3190 * is an affinity then between processes waking up and where reclaim
3191 * progress has been made assuming the process wakes on the same node.
3192 * More importantly, processes running on remote nodes will not compete
3193 * for remote pfmemalloc reserves and processes on different nodes
3194 * should make reasonable progress.
3195 */
3196 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3197 gfp_zone(gfp_mask), nodemask) {
3198 if (zone_idx(zone) > ZONE_NORMAL)
3199 continue;
3200
3201 /* Throttle based on the first usable node */
3202 pgdat = zone->zone_pgdat;
3203 if (allow_direct_reclaim(pgdat))
3204 goto out;
3205 break;
3206 }
3207
3208 /* If no zone was usable by the allocation flags then do not throttle */
3209 if (!pgdat)
3210 goto out;
3211
3212 /* Account for the throttling */
3213 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3214
3215 /*
3216 * If the caller cannot enter the filesystem, it's possible that it
3217 * is due to the caller holding an FS lock or performing a journal
3218 * transaction in the case of a filesystem like ext[3|4]. In this case,
3219 * it is not safe to block on pfmemalloc_wait as kswapd could be
3220 * blocked waiting on the same lock. Instead, throttle for up to a
3221 * second before continuing.
3222 */
3223 if (!(gfp_mask & __GFP_FS)) {
3224 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3225 allow_direct_reclaim(pgdat), HZ);
3226
3227 goto check_pending;
3228 }
3229
3230 /* Throttle until kswapd wakes the process */
3231 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3232 allow_direct_reclaim(pgdat));
3233
3234 check_pending:
3235 if (fatal_signal_pending(current))
3236 return true;
3237
3238 out:
3239 return false;
3240 }
3241
3242 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3243 gfp_t gfp_mask, nodemask_t *nodemask)
3244 {
3245 unsigned long nr_reclaimed;
3246 struct scan_control sc = {
3247 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3248 .gfp_mask = current_gfp_context(gfp_mask),
3249 .reclaim_idx = gfp_zone(gfp_mask),
3250 .order = order,
3251 .nodemask = nodemask,
3252 .priority = DEF_PRIORITY,
3253 .may_writepage = !laptop_mode,
3254 .may_unmap = 1,
3255 .may_swap = 1,
3256 };
3257
3258 /*
3259 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3260 * Confirm they are large enough for max values.
3261 */
3262 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3263 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3264 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3265
3266 /*
3267 * Do not enter reclaim if fatal signal was delivered while throttled.
3268 * 1 is returned so that the page allocator does not OOM kill at this
3269 * point.
3270 */
3271 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3272 return 1;
3273
3274 set_task_reclaim_state(current, &sc.reclaim_state);
3275 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3276
3277 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3278
3279 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3280 set_task_reclaim_state(current, NULL);
3281
3282 return nr_reclaimed;
3283 }
3284
3285 #ifdef CONFIG_MEMCG
3286
3287 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3288 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3289 gfp_t gfp_mask, bool noswap,
3290 pg_data_t *pgdat,
3291 unsigned long *nr_scanned)
3292 {
3293 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3294 struct scan_control sc = {
3295 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3296 .target_mem_cgroup = memcg,
3297 .may_writepage = !laptop_mode,
3298 .may_unmap = 1,
3299 .reclaim_idx = MAX_NR_ZONES - 1,
3300 .may_swap = !noswap,
3301 };
3302
3303 WARN_ON_ONCE(!current->reclaim_state);
3304
3305 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3306 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3307
3308 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3309 sc.gfp_mask);
3310
3311 /*
3312 * NOTE: Although we can get the priority field, using it
3313 * here is not a good idea, since it limits the pages we can scan.
3314 * if we don't reclaim here, the shrink_node from balance_pgdat
3315 * will pick up pages from other mem cgroup's as well. We hack
3316 * the priority and make it zero.
3317 */
3318 shrink_lruvec(lruvec, &sc);
3319
3320 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3321
3322 *nr_scanned = sc.nr_scanned;
3323
3324 return sc.nr_reclaimed;
3325 }
3326
3327 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3328 unsigned long nr_pages,
3329 gfp_t gfp_mask,
3330 bool may_swap)
3331 {
3332 unsigned long nr_reclaimed;
3333 unsigned int noreclaim_flag;
3334 struct scan_control sc = {
3335 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3336 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3337 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3338 .reclaim_idx = MAX_NR_ZONES - 1,
3339 .target_mem_cgroup = memcg,
3340 .priority = DEF_PRIORITY,
3341 .may_writepage = !laptop_mode,
3342 .may_unmap = 1,
3343 .may_swap = may_swap,
3344 };
3345 /*
3346 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3347 * equal pressure on all the nodes. This is based on the assumption that
3348 * the reclaim does not bail out early.
3349 */
3350 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3351
3352 set_task_reclaim_state(current, &sc.reclaim_state);
3353 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3354 noreclaim_flag = memalloc_noreclaim_save();
3355
3356 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3357
3358 memalloc_noreclaim_restore(noreclaim_flag);
3359 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3360 set_task_reclaim_state(current, NULL);
3361
3362 return nr_reclaimed;
3363 }
3364 #endif
3365
3366 static void age_active_anon(struct pglist_data *pgdat,
3367 struct scan_control *sc)
3368 {
3369 struct mem_cgroup *memcg;
3370 struct lruvec *lruvec;
3371
3372 if (!total_swap_pages)
3373 return;
3374
3375 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3376 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3377 return;
3378
3379 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3380 do {
3381 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3382 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3383 sc, LRU_ACTIVE_ANON);
3384 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3385 } while (memcg);
3386 }
3387
3388 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3389 {
3390 int i;
3391 struct zone *zone;
3392
3393 /*
3394 * Check for watermark boosts top-down as the higher zones
3395 * are more likely to be boosted. Both watermarks and boosts
3396 * should not be checked at the same time as reclaim would
3397 * start prematurely when there is no boosting and a lower
3398 * zone is balanced.
3399 */
3400 for (i = highest_zoneidx; i >= 0; i--) {
3401 zone = pgdat->node_zones + i;
3402 if (!managed_zone(zone))
3403 continue;
3404
3405 if (zone->watermark_boost)
3406 return true;
3407 }
3408
3409 return false;
3410 }
3411
3412 /*
3413 * Returns true if there is an eligible zone balanced for the request order
3414 * and highest_zoneidx
3415 */
3416 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3417 {
3418 int i;
3419 unsigned long mark = -1;
3420 struct zone *zone;
3421
3422 /*
3423 * Check watermarks bottom-up as lower zones are more likely to
3424 * meet watermarks.
3425 */
3426 for (i = 0; i <= highest_zoneidx; i++) {
3427 zone = pgdat->node_zones + i;
3428
3429 if (!managed_zone(zone))
3430 continue;
3431
3432 mark = high_wmark_pages(zone);
3433 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3434 return true;
3435 }
3436
3437 /*
3438 * If a node has no populated zone within highest_zoneidx, it does not
3439 * need balancing by definition. This can happen if a zone-restricted
3440 * allocation tries to wake a remote kswapd.
3441 */
3442 if (mark == -1)
3443 return true;
3444
3445 return false;
3446 }
3447
3448 /* Clear pgdat state for congested, dirty or under writeback. */
3449 static void clear_pgdat_congested(pg_data_t *pgdat)
3450 {
3451 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3452
3453 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3454 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3455 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3456 }
3457
3458 /*
3459 * Prepare kswapd for sleeping. This verifies that there are no processes
3460 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3461 *
3462 * Returns true if kswapd is ready to sleep
3463 */
3464 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3465 int highest_zoneidx)
3466 {
3467 /*
3468 * The throttled processes are normally woken up in balance_pgdat() as
3469 * soon as allow_direct_reclaim() is true. But there is a potential
3470 * race between when kswapd checks the watermarks and a process gets
3471 * throttled. There is also a potential race if processes get
3472 * throttled, kswapd wakes, a large process exits thereby balancing the
3473 * zones, which causes kswapd to exit balance_pgdat() before reaching
3474 * the wake up checks. If kswapd is going to sleep, no process should
3475 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3476 * the wake up is premature, processes will wake kswapd and get
3477 * throttled again. The difference from wake ups in balance_pgdat() is
3478 * that here we are under prepare_to_wait().
3479 */
3480 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3481 wake_up_all(&pgdat->pfmemalloc_wait);
3482
3483 /* Hopeless node, leave it to direct reclaim */
3484 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3485 return true;
3486
3487 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3488 clear_pgdat_congested(pgdat);
3489 return true;
3490 }
3491
3492 return false;
3493 }
3494
3495 /*
3496 * kswapd shrinks a node of pages that are at or below the highest usable
3497 * zone that is currently unbalanced.
3498 *
3499 * Returns true if kswapd scanned at least the requested number of pages to
3500 * reclaim or if the lack of progress was due to pages under writeback.
3501 * This is used to determine if the scanning priority needs to be raised.
3502 */
3503 static bool kswapd_shrink_node(pg_data_t *pgdat,
3504 struct scan_control *sc)
3505 {
3506 struct zone *zone;
3507 int z;
3508
3509 /* Reclaim a number of pages proportional to the number of zones */
3510 sc->nr_to_reclaim = 0;
3511 for (z = 0; z <= sc->reclaim_idx; z++) {
3512 zone = pgdat->node_zones + z;
3513 if (!managed_zone(zone))
3514 continue;
3515
3516 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3517 }
3518
3519 /*
3520 * Historically care was taken to put equal pressure on all zones but
3521 * now pressure is applied based on node LRU order.
3522 */
3523 shrink_node(pgdat, sc);
3524
3525 /*
3526 * Fragmentation may mean that the system cannot be rebalanced for
3527 * high-order allocations. If twice the allocation size has been
3528 * reclaimed then recheck watermarks only at order-0 to prevent
3529 * excessive reclaim. Assume that a process requested a high-order
3530 * can direct reclaim/compact.
3531 */
3532 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3533 sc->order = 0;
3534
3535 return sc->nr_scanned >= sc->nr_to_reclaim;
3536 }
3537
3538 /*
3539 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3540 * that are eligible for use by the caller until at least one zone is
3541 * balanced.
3542 *
3543 * Returns the order kswapd finished reclaiming at.
3544 *
3545 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3546 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3547 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3548 * or lower is eligible for reclaim until at least one usable zone is
3549 * balanced.
3550 */
3551 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3552 {
3553 int i;
3554 unsigned long nr_soft_reclaimed;
3555 unsigned long nr_soft_scanned;
3556 unsigned long pflags;
3557 unsigned long nr_boost_reclaim;
3558 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3559 bool boosted;
3560 struct zone *zone;
3561 struct scan_control sc = {
3562 .gfp_mask = GFP_KERNEL,
3563 .order = order,
3564 .may_unmap = 1,
3565 };
3566
3567 set_task_reclaim_state(current, &sc.reclaim_state);
3568 psi_memstall_enter(&pflags);
3569 __fs_reclaim_acquire();
3570
3571 count_vm_event(PAGEOUTRUN);
3572
3573 /*
3574 * Account for the reclaim boost. Note that the zone boost is left in
3575 * place so that parallel allocations that are near the watermark will
3576 * stall or direct reclaim until kswapd is finished.
3577 */
3578 nr_boost_reclaim = 0;
3579 for (i = 0; i <= highest_zoneidx; i++) {
3580 zone = pgdat->node_zones + i;
3581 if (!managed_zone(zone))
3582 continue;
3583
3584 nr_boost_reclaim += zone->watermark_boost;
3585 zone_boosts[i] = zone->watermark_boost;
3586 }
3587 boosted = nr_boost_reclaim;
3588
3589 restart:
3590 sc.priority = DEF_PRIORITY;
3591 do {
3592 unsigned long nr_reclaimed = sc.nr_reclaimed;
3593 bool raise_priority = true;
3594 bool balanced;
3595 bool ret;
3596
3597 sc.reclaim_idx = highest_zoneidx;
3598
3599 /*
3600 * If the number of buffer_heads exceeds the maximum allowed
3601 * then consider reclaiming from all zones. This has a dual
3602 * purpose -- on 64-bit systems it is expected that
3603 * buffer_heads are stripped during active rotation. On 32-bit
3604 * systems, highmem pages can pin lowmem memory and shrinking
3605 * buffers can relieve lowmem pressure. Reclaim may still not
3606 * go ahead if all eligible zones for the original allocation
3607 * request are balanced to avoid excessive reclaim from kswapd.
3608 */
3609 if (buffer_heads_over_limit) {
3610 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3611 zone = pgdat->node_zones + i;
3612 if (!managed_zone(zone))
3613 continue;
3614
3615 sc.reclaim_idx = i;
3616 break;
3617 }
3618 }
3619
3620 /*
3621 * If the pgdat is imbalanced then ignore boosting and preserve
3622 * the watermarks for a later time and restart. Note that the
3623 * zone watermarks will be still reset at the end of balancing
3624 * on the grounds that the normal reclaim should be enough to
3625 * re-evaluate if boosting is required when kswapd next wakes.
3626 */
3627 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3628 if (!balanced && nr_boost_reclaim) {
3629 nr_boost_reclaim = 0;
3630 goto restart;
3631 }
3632
3633 /*
3634 * If boosting is not active then only reclaim if there are no
3635 * eligible zones. Note that sc.reclaim_idx is not used as
3636 * buffer_heads_over_limit may have adjusted it.
3637 */
3638 if (!nr_boost_reclaim && balanced)
3639 goto out;
3640
3641 /* Limit the priority of boosting to avoid reclaim writeback */
3642 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3643 raise_priority = false;
3644
3645 /*
3646 * Do not writeback or swap pages for boosted reclaim. The
3647 * intent is to relieve pressure not issue sub-optimal IO
3648 * from reclaim context. If no pages are reclaimed, the
3649 * reclaim will be aborted.
3650 */
3651 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3652 sc.may_swap = !nr_boost_reclaim;
3653
3654 /*
3655 * Do some background aging of the anon list, to give
3656 * pages a chance to be referenced before reclaiming. All
3657 * pages are rotated regardless of classzone as this is
3658 * about consistent aging.
3659 */
3660 age_active_anon(pgdat, &sc);
3661
3662 /*
3663 * If we're getting trouble reclaiming, start doing writepage
3664 * even in laptop mode.
3665 */
3666 if (sc.priority < DEF_PRIORITY - 2)
3667 sc.may_writepage = 1;
3668
3669 /* Call soft limit reclaim before calling shrink_node. */
3670 sc.nr_scanned = 0;
3671 nr_soft_scanned = 0;
3672 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3673 sc.gfp_mask, &nr_soft_scanned);
3674 sc.nr_reclaimed += nr_soft_reclaimed;
3675
3676 /*
3677 * There should be no need to raise the scanning priority if
3678 * enough pages are already being scanned that that high
3679 * watermark would be met at 100% efficiency.
3680 */
3681 if (kswapd_shrink_node(pgdat, &sc))
3682 raise_priority = false;
3683
3684 /*
3685 * If the low watermark is met there is no need for processes
3686 * to be throttled on pfmemalloc_wait as they should not be
3687 * able to safely make forward progress. Wake them
3688 */
3689 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3690 allow_direct_reclaim(pgdat))
3691 wake_up_all(&pgdat->pfmemalloc_wait);
3692
3693 /* Check if kswapd should be suspending */
3694 __fs_reclaim_release();
3695 ret = try_to_freeze();
3696 __fs_reclaim_acquire();
3697 if (ret || kthread_should_stop())
3698 break;
3699
3700 /*
3701 * Raise priority if scanning rate is too low or there was no
3702 * progress in reclaiming pages
3703 */
3704 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3705 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3706
3707 /*
3708 * If reclaim made no progress for a boost, stop reclaim as
3709 * IO cannot be queued and it could be an infinite loop in
3710 * extreme circumstances.
3711 */
3712 if (nr_boost_reclaim && !nr_reclaimed)
3713 break;
3714
3715 if (raise_priority || !nr_reclaimed)
3716 sc.priority--;
3717 } while (sc.priority >= 1);
3718
3719 if (!sc.nr_reclaimed)
3720 pgdat->kswapd_failures++;
3721
3722 out:
3723 /* If reclaim was boosted, account for the reclaim done in this pass */
3724 if (boosted) {
3725 unsigned long flags;
3726
3727 for (i = 0; i <= highest_zoneidx; i++) {
3728 if (!zone_boosts[i])
3729 continue;
3730
3731 /* Increments are under the zone lock */
3732 zone = pgdat->node_zones + i;
3733 spin_lock_irqsave(&zone->lock, flags);
3734 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3735 spin_unlock_irqrestore(&zone->lock, flags);
3736 }
3737
3738 /*
3739 * As there is now likely space, wakeup kcompact to defragment
3740 * pageblocks.
3741 */
3742 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3743 }
3744
3745 snapshot_refaults(NULL, pgdat);
3746 __fs_reclaim_release();
3747 psi_memstall_leave(&pflags);
3748 set_task_reclaim_state(current, NULL);
3749
3750 /*
3751 * Return the order kswapd stopped reclaiming at as
3752 * prepare_kswapd_sleep() takes it into account. If another caller
3753 * entered the allocator slow path while kswapd was awake, order will
3754 * remain at the higher level.
3755 */
3756 return sc.order;
3757 }
3758
3759 /*
3760 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3761 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3762 * not a valid index then either kswapd runs for first time or kswapd couldn't
3763 * sleep after previous reclaim attempt (node is still unbalanced). In that
3764 * case return the zone index of the previous kswapd reclaim cycle.
3765 */
3766 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3767 enum zone_type prev_highest_zoneidx)
3768 {
3769 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3770
3771 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3772 }
3773
3774 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3775 unsigned int highest_zoneidx)
3776 {
3777 long remaining = 0;
3778 DEFINE_WAIT(wait);
3779
3780 if (freezing(current) || kthread_should_stop())
3781 return;
3782
3783 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3784
3785 /*
3786 * Try to sleep for a short interval. Note that kcompactd will only be
3787 * woken if it is possible to sleep for a short interval. This is
3788 * deliberate on the assumption that if reclaim cannot keep an
3789 * eligible zone balanced that it's also unlikely that compaction will
3790 * succeed.
3791 */
3792 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3793 /*
3794 * Compaction records what page blocks it recently failed to
3795 * isolate pages from and skips them in the future scanning.
3796 * When kswapd is going to sleep, it is reasonable to assume
3797 * that pages and compaction may succeed so reset the cache.
3798 */
3799 reset_isolation_suitable(pgdat);
3800
3801 /*
3802 * We have freed the memory, now we should compact it to make
3803 * allocation of the requested order possible.
3804 */
3805 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3806
3807 remaining = schedule_timeout(HZ/10);
3808
3809 /*
3810 * If woken prematurely then reset kswapd_highest_zoneidx and
3811 * order. The values will either be from a wakeup request or
3812 * the previous request that slept prematurely.
3813 */
3814 if (remaining) {
3815 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3816 kswapd_highest_zoneidx(pgdat,
3817 highest_zoneidx));
3818
3819 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3820 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3821 }
3822
3823 finish_wait(&pgdat->kswapd_wait, &wait);
3824 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3825 }
3826
3827 /*
3828 * After a short sleep, check if it was a premature sleep. If not, then
3829 * go fully to sleep until explicitly woken up.
3830 */
3831 if (!remaining &&
3832 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3833 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3834
3835 /*
3836 * vmstat counters are not perfectly accurate and the estimated
3837 * value for counters such as NR_FREE_PAGES can deviate from the
3838 * true value by nr_online_cpus * threshold. To avoid the zone
3839 * watermarks being breached while under pressure, we reduce the
3840 * per-cpu vmstat threshold while kswapd is awake and restore
3841 * them before going back to sleep.
3842 */
3843 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3844
3845 if (!kthread_should_stop())
3846 schedule();
3847
3848 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3849 } else {
3850 if (remaining)
3851 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3852 else
3853 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3854 }
3855 finish_wait(&pgdat->kswapd_wait, &wait);
3856 }
3857
3858 /*
3859 * The background pageout daemon, started as a kernel thread
3860 * from the init process.
3861 *
3862 * This basically trickles out pages so that we have _some_
3863 * free memory available even if there is no other activity
3864 * that frees anything up. This is needed for things like routing
3865 * etc, where we otherwise might have all activity going on in
3866 * asynchronous contexts that cannot page things out.
3867 *
3868 * If there are applications that are active memory-allocators
3869 * (most normal use), this basically shouldn't matter.
3870 */
3871 static int kswapd(void *p)
3872 {
3873 unsigned int alloc_order, reclaim_order;
3874 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3875 pg_data_t *pgdat = (pg_data_t*)p;
3876 struct task_struct *tsk = current;
3877 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3878
3879 if (!cpumask_empty(cpumask))
3880 set_cpus_allowed_ptr(tsk, cpumask);
3881
3882 /*
3883 * Tell the memory management that we're a "memory allocator",
3884 * and that if we need more memory we should get access to it
3885 * regardless (see "__alloc_pages()"). "kswapd" should
3886 * never get caught in the normal page freeing logic.
3887 *
3888 * (Kswapd normally doesn't need memory anyway, but sometimes
3889 * you need a small amount of memory in order to be able to
3890 * page out something else, and this flag essentially protects
3891 * us from recursively trying to free more memory as we're
3892 * trying to free the first piece of memory in the first place).
3893 */
3894 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3895 set_freezable();
3896
3897 WRITE_ONCE(pgdat->kswapd_order, 0);
3898 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3899 for ( ; ; ) {
3900 bool ret;
3901
3902 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3903 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3904 highest_zoneidx);
3905
3906 kswapd_try_sleep:
3907 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3908 highest_zoneidx);
3909
3910 /* Read the new order and highest_zoneidx */
3911 alloc_order = READ_ONCE(pgdat->kswapd_order);
3912 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3913 highest_zoneidx);
3914 WRITE_ONCE(pgdat->kswapd_order, 0);
3915 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3916
3917 ret = try_to_freeze();
3918 if (kthread_should_stop())
3919 break;
3920
3921 /*
3922 * We can speed up thawing tasks if we don't call balance_pgdat
3923 * after returning from the refrigerator
3924 */
3925 if (ret)
3926 continue;
3927
3928 /*
3929 * Reclaim begins at the requested order but if a high-order
3930 * reclaim fails then kswapd falls back to reclaiming for
3931 * order-0. If that happens, kswapd will consider sleeping
3932 * for the order it finished reclaiming at (reclaim_order)
3933 * but kcompactd is woken to compact for the original
3934 * request (alloc_order).
3935 */
3936 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3937 alloc_order);
3938 reclaim_order = balance_pgdat(pgdat, alloc_order,
3939 highest_zoneidx);
3940 if (reclaim_order < alloc_order)
3941 goto kswapd_try_sleep;
3942 }
3943
3944 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3945
3946 return 0;
3947 }
3948
3949 /*
3950 * A zone is low on free memory or too fragmented for high-order memory. If
3951 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3952 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3953 * has failed or is not needed, still wake up kcompactd if only compaction is
3954 * needed.
3955 */
3956 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3957 enum zone_type highest_zoneidx)
3958 {
3959 pg_data_t *pgdat;
3960 enum zone_type curr_idx;
3961
3962 if (!managed_zone(zone))
3963 return;
3964
3965 if (!cpuset_zone_allowed(zone, gfp_flags))
3966 return;
3967
3968 pgdat = zone->zone_pgdat;
3969 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3970
3971 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3972 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3973
3974 if (READ_ONCE(pgdat->kswapd_order) < order)
3975 WRITE_ONCE(pgdat->kswapd_order, order);
3976
3977 if (!waitqueue_active(&pgdat->kswapd_wait))
3978 return;
3979
3980 /* Hopeless node, leave it to direct reclaim if possible */
3981 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3982 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3983 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3984 /*
3985 * There may be plenty of free memory available, but it's too
3986 * fragmented for high-order allocations. Wake up kcompactd
3987 * and rely on compaction_suitable() to determine if it's
3988 * needed. If it fails, it will defer subsequent attempts to
3989 * ratelimit its work.
3990 */
3991 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3992 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3993 return;
3994 }
3995
3996 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3997 gfp_flags);
3998 wake_up_interruptible(&pgdat->kswapd_wait);
3999 }
4000
4001 #ifdef CONFIG_HIBERNATION
4002 /*
4003 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4004 * freed pages.
4005 *
4006 * Rather than trying to age LRUs the aim is to preserve the overall
4007 * LRU order by reclaiming preferentially
4008 * inactive > active > active referenced > active mapped
4009 */
4010 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4011 {
4012 struct scan_control sc = {
4013 .nr_to_reclaim = nr_to_reclaim,
4014 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4015 .reclaim_idx = MAX_NR_ZONES - 1,
4016 .priority = DEF_PRIORITY,
4017 .may_writepage = 1,
4018 .may_unmap = 1,
4019 .may_swap = 1,
4020 .hibernation_mode = 1,
4021 };
4022 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4023 unsigned long nr_reclaimed;
4024 unsigned int noreclaim_flag;
4025
4026 fs_reclaim_acquire(sc.gfp_mask);
4027 noreclaim_flag = memalloc_noreclaim_save();
4028 set_task_reclaim_state(current, &sc.reclaim_state);
4029
4030 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4031
4032 set_task_reclaim_state(current, NULL);
4033 memalloc_noreclaim_restore(noreclaim_flag);
4034 fs_reclaim_release(sc.gfp_mask);
4035
4036 return nr_reclaimed;
4037 }
4038 #endif /* CONFIG_HIBERNATION */
4039
4040 /*
4041 * This kswapd start function will be called by init and node-hot-add.
4042 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4043 */
4044 int kswapd_run(int nid)
4045 {
4046 pg_data_t *pgdat = NODE_DATA(nid);
4047 int ret = 0;
4048
4049 if (pgdat->kswapd)
4050 return 0;
4051
4052 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4053 if (IS_ERR(pgdat->kswapd)) {
4054 /* failure at boot is fatal */
4055 BUG_ON(system_state < SYSTEM_RUNNING);
4056 pr_err("Failed to start kswapd on node %d\n", nid);
4057 ret = PTR_ERR(pgdat->kswapd);
4058 pgdat->kswapd = NULL;
4059 }
4060 return ret;
4061 }
4062
4063 /*
4064 * Called by memory hotplug when all memory in a node is offlined. Caller must
4065 * hold mem_hotplug_begin/end().
4066 */
4067 void kswapd_stop(int nid)
4068 {
4069 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4070
4071 if (kswapd) {
4072 kthread_stop(kswapd);
4073 NODE_DATA(nid)->kswapd = NULL;
4074 }
4075 }
4076
4077 static int __init kswapd_init(void)
4078 {
4079 int nid;
4080
4081 swap_setup();
4082 for_each_node_state(nid, N_MEMORY)
4083 kswapd_run(nid);
4084 return 0;
4085 }
4086
4087 module_init(kswapd_init)
4088
4089 #ifdef CONFIG_NUMA
4090 /*
4091 * Node reclaim mode
4092 *
4093 * If non-zero call node_reclaim when the number of free pages falls below
4094 * the watermarks.
4095 */
4096 int node_reclaim_mode __read_mostly;
4097
4098 /*
4099 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4100 * ABI. New bits are OK, but existing bits can never change.
4101 */
4102 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4103 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4104 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4105
4106 /*
4107 * Priority for NODE_RECLAIM. This determines the fraction of pages
4108 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4109 * a zone.
4110 */
4111 #define NODE_RECLAIM_PRIORITY 4
4112
4113 /*
4114 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4115 * occur.
4116 */
4117 int sysctl_min_unmapped_ratio = 1;
4118
4119 /*
4120 * If the number of slab pages in a zone grows beyond this percentage then
4121 * slab reclaim needs to occur.
4122 */
4123 int sysctl_min_slab_ratio = 5;
4124
4125 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4126 {
4127 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4128 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4129 node_page_state(pgdat, NR_ACTIVE_FILE);
4130
4131 /*
4132 * It's possible for there to be more file mapped pages than
4133 * accounted for by the pages on the file LRU lists because
4134 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4135 */
4136 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4137 }
4138
4139 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4140 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4141 {
4142 unsigned long nr_pagecache_reclaimable;
4143 unsigned long delta = 0;
4144
4145 /*
4146 * If RECLAIM_UNMAP is set, then all file pages are considered
4147 * potentially reclaimable. Otherwise, we have to worry about
4148 * pages like swapcache and node_unmapped_file_pages() provides
4149 * a better estimate
4150 */
4151 if (node_reclaim_mode & RECLAIM_UNMAP)
4152 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4153 else
4154 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4155
4156 /* If we can't clean pages, remove dirty pages from consideration */
4157 if (!(node_reclaim_mode & RECLAIM_WRITE))
4158 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4159
4160 /* Watch for any possible underflows due to delta */
4161 if (unlikely(delta > nr_pagecache_reclaimable))
4162 delta = nr_pagecache_reclaimable;
4163
4164 return nr_pagecache_reclaimable - delta;
4165 }
4166
4167 /*
4168 * Try to free up some pages from this node through reclaim.
4169 */
4170 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4171 {
4172 /* Minimum pages needed in order to stay on node */
4173 const unsigned long nr_pages = 1 << order;
4174 struct task_struct *p = current;
4175 unsigned int noreclaim_flag;
4176 struct scan_control sc = {
4177 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4178 .gfp_mask = current_gfp_context(gfp_mask),
4179 .order = order,
4180 .priority = NODE_RECLAIM_PRIORITY,
4181 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4182 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4183 .may_swap = 1,
4184 .reclaim_idx = gfp_zone(gfp_mask),
4185 };
4186
4187 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4188 sc.gfp_mask);
4189
4190 cond_resched();
4191 fs_reclaim_acquire(sc.gfp_mask);
4192 /*
4193 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4194 * and we also need to be able to write out pages for RECLAIM_WRITE
4195 * and RECLAIM_UNMAP.
4196 */
4197 noreclaim_flag = memalloc_noreclaim_save();
4198 p->flags |= PF_SWAPWRITE;
4199 set_task_reclaim_state(p, &sc.reclaim_state);
4200
4201 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4202 /*
4203 * Free memory by calling shrink node with increasing
4204 * priorities until we have enough memory freed.
4205 */
4206 do {
4207 shrink_node(pgdat, &sc);
4208 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4209 }
4210
4211 set_task_reclaim_state(p, NULL);
4212 current->flags &= ~PF_SWAPWRITE;
4213 memalloc_noreclaim_restore(noreclaim_flag);
4214 fs_reclaim_release(sc.gfp_mask);
4215
4216 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4217
4218 return sc.nr_reclaimed >= nr_pages;
4219 }
4220
4221 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4222 {
4223 int ret;
4224
4225 /*
4226 * Node reclaim reclaims unmapped file backed pages and
4227 * slab pages if we are over the defined limits.
4228 *
4229 * A small portion of unmapped file backed pages is needed for
4230 * file I/O otherwise pages read by file I/O will be immediately
4231 * thrown out if the node is overallocated. So we do not reclaim
4232 * if less than a specified percentage of the node is used by
4233 * unmapped file backed pages.
4234 */
4235 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4236 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4237 pgdat->min_slab_pages)
4238 return NODE_RECLAIM_FULL;
4239
4240 /*
4241 * Do not scan if the allocation should not be delayed.
4242 */
4243 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4244 return NODE_RECLAIM_NOSCAN;
4245
4246 /*
4247 * Only run node reclaim on the local node or on nodes that do not
4248 * have associated processors. This will favor the local processor
4249 * over remote processors and spread off node memory allocations
4250 * as wide as possible.
4251 */
4252 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4253 return NODE_RECLAIM_NOSCAN;
4254
4255 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4256 return NODE_RECLAIM_NOSCAN;
4257
4258 ret = __node_reclaim(pgdat, gfp_mask, order);
4259 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4260
4261 if (!ret)
4262 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4263
4264 return ret;
4265 }
4266 #endif
4267
4268 /**
4269 * check_move_unevictable_pages - check pages for evictability and move to
4270 * appropriate zone lru list
4271 * @pvec: pagevec with lru pages to check
4272 *
4273 * Checks pages for evictability, if an evictable page is in the unevictable
4274 * lru list, moves it to the appropriate evictable lru list. This function
4275 * should be only used for lru pages.
4276 */
4277 void check_move_unevictable_pages(struct pagevec *pvec)
4278 {
4279 struct lruvec *lruvec = NULL;
4280 int pgscanned = 0;
4281 int pgrescued = 0;
4282 int i;
4283
4284 for (i = 0; i < pvec->nr; i++) {
4285 struct page *page = pvec->pages[i];
4286 int nr_pages;
4287
4288 if (PageTransTail(page))
4289 continue;
4290
4291 nr_pages = thp_nr_pages(page);
4292 pgscanned += nr_pages;
4293
4294 /* block memcg migration during page moving between lru */
4295 if (!TestClearPageLRU(page))
4296 continue;
4297
4298 lruvec = relock_page_lruvec_irq(page, lruvec);
4299 if (page_evictable(page) && PageUnevictable(page)) {
4300 enum lru_list lru = page_lru_base_type(page);
4301
4302 VM_BUG_ON_PAGE(PageActive(page), page);
4303 ClearPageUnevictable(page);
4304 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4305 add_page_to_lru_list(page, lruvec, lru);
4306 pgrescued += nr_pages;
4307 }
4308 SetPageLRU(page);
4309 }
4310
4311 if (lruvec) {
4312 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4313 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4314 unlock_page_lruvec_irq(lruvec);
4315 } else if (pgscanned) {
4316 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4317 }
4318 }
4319 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);