]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
b1139039122a05389019aa569b82dcde442f25d7
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 /*
140 * From 0 .. 100. Higher means more swappy.
141 */
142 int vm_swappiness = 60;
143 /*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147 unsigned long vm_total_pages;
148
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 return !sc->target_mem_cgroup;
156 }
157
158 /**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 return true;
180 #endif
181 return false;
182 }
183 #else
184 static bool global_reclaim(struct scan_control *sc)
185 {
186 return true;
187 }
188
189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 return true;
192 }
193 #endif
194
195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 int nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207 }
208
209 bool zone_reclaimable(struct zone *zone)
210 {
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
213 }
214
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
219
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
252 /*
253 * Remove one
254 */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263
264 #define SHRINK_BATCH 128
265
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
270 {
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
293 delta = (4 * nr_scanned) / shrinker->seeks;
294 delta *= freeable;
295 do_div(delta, nr_eligible + 1);
296 total_scan += delta;
297 if (total_scan < 0) {
298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 shrinker->scan_objects, total_scan);
300 total_scan = freeable;
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
309 * freeable. This is bad for sustaining a working set in
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
329
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
341 * than the total number of objects on slab (freeable), we must be
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
346 total_scan >= freeable) {
347 unsigned long ret;
348 unsigned long nr_to_scan = min(batch_size, total_scan);
349
350 shrinkctl->nr_to_scan = nr_to_scan;
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
355
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 return freed;
375 }
376
377 /**
378 * shrink_slab - shrink slab caches
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
381 * @memcg: memory cgroup whose slab caches to target
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
384 *
385 * Call the shrink functions to age shrinkable caches.
386 *
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
389 *
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
403 *
404 * Returns the number of reclaimed slab objects.
405 */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
410 {
411 struct shrinker *shrinker;
412 unsigned long freed = 0;
413
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
419
420 if (!down_read_trylock(&shrinker_rwsem)) {
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
428 goto out;
429 }
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
435 .memcg = memcg,
436 };
437
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
443
444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 }
446
447 up_read(&shrinker_rwsem);
448 out:
449 cond_resched();
450 return freed;
451 }
452
453 void drop_slab_node(int nid)
454 {
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466 }
467
468 void drop_slab(void)
469 {
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474 }
475
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
483 return page_count(page) - page_has_private(page) == 2;
484 }
485
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 if (current->flags & PF_SWAPWRITE)
489 return 1;
490 if (!inode_write_congested(inode))
491 return 1;
492 if (inode_to_bdi(inode) == current->backing_dev_info)
493 return 1;
494 return 0;
495 }
496
497 /*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509 static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511 {
512 lock_page(page);
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
515 unlock_page(page);
516 }
517
518 /* possible outcome of pageout() */
519 typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528 } pageout_t;
529
530 /*
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
533 */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 struct scan_control *sc)
536 {
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
544 * If this process is currently in __generic_file_write_iter() against
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
560 if (page_has_private(page)) {
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
563 pr_info("%s: orphaned page\n", __func__);
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
571 if (!may_write_to_inode(mapping->host, sc))
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
579 .range_start = 0,
580 .range_end = LLONG_MAX,
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
588 if (res == AOP_WRITEPAGE_ACTIVATE) {
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
592
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603 }
604
605 /*
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
608 */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
611 {
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
617
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
620 /*
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
644 */
645 if (!page_freeze_refs(page, 2))
646 goto cannot_free;
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
650 goto cannot_free;
651 }
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
655 mem_cgroup_swapout(page, swap);
656 __delete_from_swap_cache(page);
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
659 swapcache_free(swap);
660 } else {
661 void (*freepage)(struct page *);
662 void *shadow = NULL;
663
664 freepage = mapping->a_ops->freepage;
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
681
682 if (freepage != NULL)
683 freepage(page);
684 }
685
686 return 1;
687
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
691 return 0;
692 }
693
694 /*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 if (__remove_mapping(mapping, page, false)) {
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712 }
713
714 /**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
723 void putback_lru_page(struct page *page)
724 {
725 bool is_unevictable;
726 int was_unevictable = PageUnevictable(page);
727
728 VM_BUG_ON_PAGE(PageLRU(page), page);
729
730 redo:
731 ClearPageUnevictable(page);
732
733 if (page_evictable(page)) {
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
740 is_unevictable = false;
741 lru_cache_add(page);
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
747 is_unevictable = true;
748 add_page_to_unevictable_list(page);
749 /*
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
753 * isolation/check_move_unevictable_pages,
754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 * the page back to the evictable list.
756 *
757 * The other side is TestClearPageMlocked() or shmem_lock().
758 */
759 smp_mb();
760 }
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
767 if (is_unevictable && page_evictable(page)) {
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
778 if (was_unevictable && !is_unevictable)
779 count_vm_event(UNEVICTABLE_PGRESCUED);
780 else if (!was_unevictable && is_unevictable)
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
783 put_page(page); /* drop ref from isolate */
784 }
785
786 enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
789 PAGEREF_KEEP,
790 PAGEREF_ACTIVATE,
791 };
792
793 static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795 {
796 int referenced_ptes, referenced_page;
797 unsigned long vm_flags;
798
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
801 referenced_page = TestClearPageReferenced(page);
802
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
810 if (referenced_ptes) {
811 if (PageSwapBacked(page))
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
829 if (referenced_page || referenced_ptes > 1)
830 return PAGEREF_ACTIVATE;
831
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
838 return PAGEREF_KEEP;
839 }
840
841 /* Reclaim if clean, defer dirty pages to writeback */
842 if (referenced_page && !PageSwapBacked(page))
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
846 }
847
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851 {
852 struct address_space *mapping;
853
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876
877 /*
878 * shrink_page_list() returns the number of reclaimed pages
879 */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 struct zone *zone,
882 struct scan_control *sc,
883 enum ttu_flags ttu_flags,
884 unsigned long *ret_nr_dirty,
885 unsigned long *ret_nr_unqueued_dirty,
886 unsigned long *ret_nr_congested,
887 unsigned long *ret_nr_writeback,
888 unsigned long *ret_nr_immediate,
889 bool force_reclaim)
890 {
891 LIST_HEAD(ret_pages);
892 LIST_HEAD(free_pages);
893 int pgactivate = 0;
894 unsigned long nr_unqueued_dirty = 0;
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
897 unsigned long nr_reclaimed = 0;
898 unsigned long nr_writeback = 0;
899 unsigned long nr_immediate = 0;
900
901 cond_resched();
902
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 bool dirty, writeback;
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
915 if (!trylock_page(page))
916 goto keep;
917
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
920
921 sc->nr_scanned++;
922
923 if (unlikely(!page_evictable(page)))
924 goto cull_mlocked;
925
926 if (!sc->may_unmap && page_mapped(page))
927 goto keep_locked;
928
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
955 mapping = page_mapping(page);
956 if (((dirty || writeback) && mapping &&
957 inode_write_congested(mapping->host)) ||
958 (writeback && PageReclaim(page)))
959 nr_congested++;
960
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
974 *
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
979 * reclaim and continue scanning.
980 *
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
988 * 3) Legacy memcg encounters a page that is not already marked
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
993 */
994 if (PageWriteback(page)) {
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 nr_immediate++;
1000 goto keep_locked;
1001
1002 /* Case 2 above */
1003 } else if (sane_reclaim(sc) ||
1004 !PageReclaim(page) || !may_enter_fs) {
1005 /*
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1015 */
1016 SetPageReclaim(page);
1017 nr_writeback++;
1018
1019 goto keep_locked;
1020
1021 /* Case 3 above */
1022 } else {
1023 wait_on_page_writeback(page);
1024 }
1025 }
1026
1027 if (!force_reclaim)
1028 references = page_check_references(page, sc);
1029
1030 switch (references) {
1031 case PAGEREF_ACTIVATE:
1032 goto activate_locked;
1033 case PAGEREF_KEEP:
1034 goto keep_locked;
1035 case PAGEREF_RECLAIM:
1036 case PAGEREF_RECLAIM_CLEAN:
1037 ; /* try to reclaim the page below */
1038 }
1039
1040 /*
1041 * Anonymous process memory has backing store?
1042 * Try to allocate it some swap space here.
1043 */
1044 if (PageAnon(page) && !PageSwapCache(page)) {
1045 if (!(sc->gfp_mask & __GFP_IO))
1046 goto keep_locked;
1047 if (!add_to_swap(page, page_list))
1048 goto activate_locked;
1049 may_enter_fs = 1;
1050
1051 /* Adding to swap updated mapping */
1052 mapping = page_mapping(page);
1053 }
1054
1055 /*
1056 * The page is mapped into the page tables of one or more
1057 * processes. Try to unmap it here.
1058 */
1059 if (page_mapped(page) && mapping) {
1060 switch (try_to_unmap(page,
1061 ttu_flags|TTU_BATCH_FLUSH)) {
1062 case SWAP_FAIL:
1063 goto activate_locked;
1064 case SWAP_AGAIN:
1065 goto keep_locked;
1066 case SWAP_MLOCK:
1067 goto cull_mlocked;
1068 case SWAP_SUCCESS:
1069 ; /* try to free the page below */
1070 }
1071 }
1072
1073 if (PageDirty(page)) {
1074 /*
1075 * Only kswapd can writeback filesystem pages to
1076 * avoid risk of stack overflow but only writeback
1077 * if many dirty pages have been encountered.
1078 */
1079 if (page_is_file_cache(page) &&
1080 (!current_is_kswapd() ||
1081 !test_bit(ZONE_DIRTY, &zone->flags))) {
1082 /*
1083 * Immediately reclaim when written back.
1084 * Similar in principal to deactivate_page()
1085 * except we already have the page isolated
1086 * and know it's dirty
1087 */
1088 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1089 SetPageReclaim(page);
1090
1091 goto keep_locked;
1092 }
1093
1094 if (references == PAGEREF_RECLAIM_CLEAN)
1095 goto keep_locked;
1096 if (!may_enter_fs)
1097 goto keep_locked;
1098 if (!sc->may_writepage)
1099 goto keep_locked;
1100
1101 /*
1102 * Page is dirty. Flush the TLB if a writable entry
1103 * potentially exists to avoid CPU writes after IO
1104 * starts and then write it out here.
1105 */
1106 try_to_unmap_flush_dirty();
1107 switch (pageout(page, mapping, sc)) {
1108 case PAGE_KEEP:
1109 goto keep_locked;
1110 case PAGE_ACTIVATE:
1111 goto activate_locked;
1112 case PAGE_SUCCESS:
1113 if (PageWriteback(page))
1114 goto keep;
1115 if (PageDirty(page))
1116 goto keep;
1117
1118 /*
1119 * A synchronous write - probably a ramdisk. Go
1120 * ahead and try to reclaim the page.
1121 */
1122 if (!trylock_page(page))
1123 goto keep;
1124 if (PageDirty(page) || PageWriteback(page))
1125 goto keep_locked;
1126 mapping = page_mapping(page);
1127 case PAGE_CLEAN:
1128 ; /* try to free the page below */
1129 }
1130 }
1131
1132 /*
1133 * If the page has buffers, try to free the buffer mappings
1134 * associated with this page. If we succeed we try to free
1135 * the page as well.
1136 *
1137 * We do this even if the page is PageDirty().
1138 * try_to_release_page() does not perform I/O, but it is
1139 * possible for a page to have PageDirty set, but it is actually
1140 * clean (all its buffers are clean). This happens if the
1141 * buffers were written out directly, with submit_bh(). ext3
1142 * will do this, as well as the blockdev mapping.
1143 * try_to_release_page() will discover that cleanness and will
1144 * drop the buffers and mark the page clean - it can be freed.
1145 *
1146 * Rarely, pages can have buffers and no ->mapping. These are
1147 * the pages which were not successfully invalidated in
1148 * truncate_complete_page(). We try to drop those buffers here
1149 * and if that worked, and the page is no longer mapped into
1150 * process address space (page_count == 1) it can be freed.
1151 * Otherwise, leave the page on the LRU so it is swappable.
1152 */
1153 if (page_has_private(page)) {
1154 if (!try_to_release_page(page, sc->gfp_mask))
1155 goto activate_locked;
1156 if (!mapping && page_count(page) == 1) {
1157 unlock_page(page);
1158 if (put_page_testzero(page))
1159 goto free_it;
1160 else {
1161 /*
1162 * rare race with speculative reference.
1163 * the speculative reference will free
1164 * this page shortly, so we may
1165 * increment nr_reclaimed here (and
1166 * leave it off the LRU).
1167 */
1168 nr_reclaimed++;
1169 continue;
1170 }
1171 }
1172 }
1173
1174 if (!mapping || !__remove_mapping(mapping, page, true))
1175 goto keep_locked;
1176
1177 /*
1178 * At this point, we have no other references and there is
1179 * no way to pick any more up (removed from LRU, removed
1180 * from pagecache). Can use non-atomic bitops now (and
1181 * we obviously don't have to worry about waking up a process
1182 * waiting on the page lock, because there are no references.
1183 */
1184 __clear_page_locked(page);
1185 free_it:
1186 nr_reclaimed++;
1187
1188 /*
1189 * Is there need to periodically free_page_list? It would
1190 * appear not as the counts should be low
1191 */
1192 list_add(&page->lru, &free_pages);
1193 continue;
1194
1195 cull_mlocked:
1196 if (PageSwapCache(page))
1197 try_to_free_swap(page);
1198 unlock_page(page);
1199 putback_lru_page(page);
1200 continue;
1201
1202 activate_locked:
1203 /* Not a candidate for swapping, so reclaim swap space. */
1204 if (PageSwapCache(page) && vm_swap_full())
1205 try_to_free_swap(page);
1206 VM_BUG_ON_PAGE(PageActive(page), page);
1207 SetPageActive(page);
1208 pgactivate++;
1209 keep_locked:
1210 unlock_page(page);
1211 keep:
1212 list_add(&page->lru, &ret_pages);
1213 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1214 }
1215
1216 mem_cgroup_uncharge_list(&free_pages);
1217 try_to_unmap_flush();
1218 free_hot_cold_page_list(&free_pages, true);
1219
1220 list_splice(&ret_pages, page_list);
1221 count_vm_events(PGACTIVATE, pgactivate);
1222
1223 *ret_nr_dirty += nr_dirty;
1224 *ret_nr_congested += nr_congested;
1225 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1226 *ret_nr_writeback += nr_writeback;
1227 *ret_nr_immediate += nr_immediate;
1228 return nr_reclaimed;
1229 }
1230
1231 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1232 struct list_head *page_list)
1233 {
1234 struct scan_control sc = {
1235 .gfp_mask = GFP_KERNEL,
1236 .priority = DEF_PRIORITY,
1237 .may_unmap = 1,
1238 };
1239 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1240 struct page *page, *next;
1241 LIST_HEAD(clean_pages);
1242
1243 list_for_each_entry_safe(page, next, page_list, lru) {
1244 if (page_is_file_cache(page) && !PageDirty(page) &&
1245 !isolated_balloon_page(page)) {
1246 ClearPageActive(page);
1247 list_move(&page->lru, &clean_pages);
1248 }
1249 }
1250
1251 ret = shrink_page_list(&clean_pages, zone, &sc,
1252 TTU_UNMAP|TTU_IGNORE_ACCESS,
1253 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1254 list_splice(&clean_pages, page_list);
1255 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1256 return ret;
1257 }
1258
1259 /*
1260 * Attempt to remove the specified page from its LRU. Only take this page
1261 * if it is of the appropriate PageActive status. Pages which are being
1262 * freed elsewhere are also ignored.
1263 *
1264 * page: page to consider
1265 * mode: one of the LRU isolation modes defined above
1266 *
1267 * returns 0 on success, -ve errno on failure.
1268 */
1269 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1270 {
1271 int ret = -EINVAL;
1272
1273 /* Only take pages on the LRU. */
1274 if (!PageLRU(page))
1275 return ret;
1276
1277 /* Compaction should not handle unevictable pages but CMA can do so */
1278 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1279 return ret;
1280
1281 ret = -EBUSY;
1282
1283 /*
1284 * To minimise LRU disruption, the caller can indicate that it only
1285 * wants to isolate pages it will be able to operate on without
1286 * blocking - clean pages for the most part.
1287 *
1288 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1289 * is used by reclaim when it is cannot write to backing storage
1290 *
1291 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1292 * that it is possible to migrate without blocking
1293 */
1294 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1295 /* All the caller can do on PageWriteback is block */
1296 if (PageWriteback(page))
1297 return ret;
1298
1299 if (PageDirty(page)) {
1300 struct address_space *mapping;
1301
1302 /* ISOLATE_CLEAN means only clean pages */
1303 if (mode & ISOLATE_CLEAN)
1304 return ret;
1305
1306 /*
1307 * Only pages without mappings or that have a
1308 * ->migratepage callback are possible to migrate
1309 * without blocking
1310 */
1311 mapping = page_mapping(page);
1312 if (mapping && !mapping->a_ops->migratepage)
1313 return ret;
1314 }
1315 }
1316
1317 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1318 return ret;
1319
1320 if (likely(get_page_unless_zero(page))) {
1321 /*
1322 * Be careful not to clear PageLRU until after we're
1323 * sure the page is not being freed elsewhere -- the
1324 * page release code relies on it.
1325 */
1326 ClearPageLRU(page);
1327 ret = 0;
1328 }
1329
1330 return ret;
1331 }
1332
1333 /*
1334 * zone->lru_lock is heavily contended. Some of the functions that
1335 * shrink the lists perform better by taking out a batch of pages
1336 * and working on them outside the LRU lock.
1337 *
1338 * For pagecache intensive workloads, this function is the hottest
1339 * spot in the kernel (apart from copy_*_user functions).
1340 *
1341 * Appropriate locks must be held before calling this function.
1342 *
1343 * @nr_to_scan: The number of pages to look through on the list.
1344 * @lruvec: The LRU vector to pull pages from.
1345 * @dst: The temp list to put pages on to.
1346 * @nr_scanned: The number of pages that were scanned.
1347 * @sc: The scan_control struct for this reclaim session
1348 * @mode: One of the LRU isolation modes
1349 * @lru: LRU list id for isolating
1350 *
1351 * returns how many pages were moved onto *@dst.
1352 */
1353 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1354 struct lruvec *lruvec, struct list_head *dst,
1355 unsigned long *nr_scanned, struct scan_control *sc,
1356 isolate_mode_t mode, enum lru_list lru)
1357 {
1358 struct list_head *src = &lruvec->lists[lru];
1359 unsigned long nr_taken = 0;
1360 unsigned long scan;
1361
1362 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1363 struct page *page;
1364 int nr_pages;
1365
1366 page = lru_to_page(src);
1367 prefetchw_prev_lru_page(page, src, flags);
1368
1369 VM_BUG_ON_PAGE(!PageLRU(page), page);
1370
1371 switch (__isolate_lru_page(page, mode)) {
1372 case 0:
1373 nr_pages = hpage_nr_pages(page);
1374 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1375 list_move(&page->lru, dst);
1376 nr_taken += nr_pages;
1377 break;
1378
1379 case -EBUSY:
1380 /* else it is being freed elsewhere */
1381 list_move(&page->lru, src);
1382 continue;
1383
1384 default:
1385 BUG();
1386 }
1387 }
1388
1389 *nr_scanned = scan;
1390 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1391 nr_taken, mode, is_file_lru(lru));
1392 return nr_taken;
1393 }
1394
1395 /**
1396 * isolate_lru_page - tries to isolate a page from its LRU list
1397 * @page: page to isolate from its LRU list
1398 *
1399 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1400 * vmstat statistic corresponding to whatever LRU list the page was on.
1401 *
1402 * Returns 0 if the page was removed from an LRU list.
1403 * Returns -EBUSY if the page was not on an LRU list.
1404 *
1405 * The returned page will have PageLRU() cleared. If it was found on
1406 * the active list, it will have PageActive set. If it was found on
1407 * the unevictable list, it will have the PageUnevictable bit set. That flag
1408 * may need to be cleared by the caller before letting the page go.
1409 *
1410 * The vmstat statistic corresponding to the list on which the page was
1411 * found will be decremented.
1412 *
1413 * Restrictions:
1414 * (1) Must be called with an elevated refcount on the page. This is a
1415 * fundamentnal difference from isolate_lru_pages (which is called
1416 * without a stable reference).
1417 * (2) the lru_lock must not be held.
1418 * (3) interrupts must be enabled.
1419 */
1420 int isolate_lru_page(struct page *page)
1421 {
1422 int ret = -EBUSY;
1423
1424 VM_BUG_ON_PAGE(!page_count(page), page);
1425
1426 if (PageLRU(page)) {
1427 struct zone *zone = page_zone(page);
1428 struct lruvec *lruvec;
1429
1430 spin_lock_irq(&zone->lru_lock);
1431 lruvec = mem_cgroup_page_lruvec(page, zone);
1432 if (PageLRU(page)) {
1433 int lru = page_lru(page);
1434 get_page(page);
1435 ClearPageLRU(page);
1436 del_page_from_lru_list(page, lruvec, lru);
1437 ret = 0;
1438 }
1439 spin_unlock_irq(&zone->lru_lock);
1440 }
1441 return ret;
1442 }
1443
1444 /*
1445 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1446 * then get resheduled. When there are massive number of tasks doing page
1447 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1448 * the LRU list will go small and be scanned faster than necessary, leading to
1449 * unnecessary swapping, thrashing and OOM.
1450 */
1451 static int too_many_isolated(struct zone *zone, int file,
1452 struct scan_control *sc)
1453 {
1454 unsigned long inactive, isolated;
1455
1456 if (current_is_kswapd())
1457 return 0;
1458
1459 if (!sane_reclaim(sc))
1460 return 0;
1461
1462 if (file) {
1463 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1464 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1465 } else {
1466 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1467 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1468 }
1469
1470 /*
1471 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1472 * won't get blocked by normal direct-reclaimers, forming a circular
1473 * deadlock.
1474 */
1475 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1476 inactive >>= 3;
1477
1478 return isolated > inactive;
1479 }
1480
1481 static noinline_for_stack void
1482 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1483 {
1484 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1485 struct zone *zone = lruvec_zone(lruvec);
1486 LIST_HEAD(pages_to_free);
1487
1488 /*
1489 * Put back any unfreeable pages.
1490 */
1491 while (!list_empty(page_list)) {
1492 struct page *page = lru_to_page(page_list);
1493 int lru;
1494
1495 VM_BUG_ON_PAGE(PageLRU(page), page);
1496 list_del(&page->lru);
1497 if (unlikely(!page_evictable(page))) {
1498 spin_unlock_irq(&zone->lru_lock);
1499 putback_lru_page(page);
1500 spin_lock_irq(&zone->lru_lock);
1501 continue;
1502 }
1503
1504 lruvec = mem_cgroup_page_lruvec(page, zone);
1505
1506 SetPageLRU(page);
1507 lru = page_lru(page);
1508 add_page_to_lru_list(page, lruvec, lru);
1509
1510 if (is_active_lru(lru)) {
1511 int file = is_file_lru(lru);
1512 int numpages = hpage_nr_pages(page);
1513 reclaim_stat->recent_rotated[file] += numpages;
1514 }
1515 if (put_page_testzero(page)) {
1516 __ClearPageLRU(page);
1517 __ClearPageActive(page);
1518 del_page_from_lru_list(page, lruvec, lru);
1519
1520 if (unlikely(PageCompound(page))) {
1521 spin_unlock_irq(&zone->lru_lock);
1522 mem_cgroup_uncharge(page);
1523 (*get_compound_page_dtor(page))(page);
1524 spin_lock_irq(&zone->lru_lock);
1525 } else
1526 list_add(&page->lru, &pages_to_free);
1527 }
1528 }
1529
1530 /*
1531 * To save our caller's stack, now use input list for pages to free.
1532 */
1533 list_splice(&pages_to_free, page_list);
1534 }
1535
1536 /*
1537 * If a kernel thread (such as nfsd for loop-back mounts) services
1538 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1539 * In that case we should only throttle if the backing device it is
1540 * writing to is congested. In other cases it is safe to throttle.
1541 */
1542 static int current_may_throttle(void)
1543 {
1544 return !(current->flags & PF_LESS_THROTTLE) ||
1545 current->backing_dev_info == NULL ||
1546 bdi_write_congested(current->backing_dev_info);
1547 }
1548
1549 /*
1550 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1551 * of reclaimed pages
1552 */
1553 static noinline_for_stack unsigned long
1554 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1555 struct scan_control *sc, enum lru_list lru)
1556 {
1557 LIST_HEAD(page_list);
1558 unsigned long nr_scanned;
1559 unsigned long nr_reclaimed = 0;
1560 unsigned long nr_taken;
1561 unsigned long nr_dirty = 0;
1562 unsigned long nr_congested = 0;
1563 unsigned long nr_unqueued_dirty = 0;
1564 unsigned long nr_writeback = 0;
1565 unsigned long nr_immediate = 0;
1566 isolate_mode_t isolate_mode = 0;
1567 int file = is_file_lru(lru);
1568 struct zone *zone = lruvec_zone(lruvec);
1569 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1570
1571 while (unlikely(too_many_isolated(zone, file, sc))) {
1572 congestion_wait(BLK_RW_ASYNC, HZ/10);
1573
1574 /* We are about to die and free our memory. Return now. */
1575 if (fatal_signal_pending(current))
1576 return SWAP_CLUSTER_MAX;
1577 }
1578
1579 lru_add_drain();
1580
1581 if (!sc->may_unmap)
1582 isolate_mode |= ISOLATE_UNMAPPED;
1583 if (!sc->may_writepage)
1584 isolate_mode |= ISOLATE_CLEAN;
1585
1586 spin_lock_irq(&zone->lru_lock);
1587
1588 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1589 &nr_scanned, sc, isolate_mode, lru);
1590
1591 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1592 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1593
1594 if (global_reclaim(sc)) {
1595 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1596 if (current_is_kswapd())
1597 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1598 else
1599 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1600 }
1601 spin_unlock_irq(&zone->lru_lock);
1602
1603 if (nr_taken == 0)
1604 return 0;
1605
1606 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1607 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1608 &nr_writeback, &nr_immediate,
1609 false);
1610
1611 spin_lock_irq(&zone->lru_lock);
1612
1613 reclaim_stat->recent_scanned[file] += nr_taken;
1614
1615 if (global_reclaim(sc)) {
1616 if (current_is_kswapd())
1617 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1618 nr_reclaimed);
1619 else
1620 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1621 nr_reclaimed);
1622 }
1623
1624 putback_inactive_pages(lruvec, &page_list);
1625
1626 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1627
1628 spin_unlock_irq(&zone->lru_lock);
1629
1630 mem_cgroup_uncharge_list(&page_list);
1631 free_hot_cold_page_list(&page_list, true);
1632
1633 /*
1634 * If reclaim is isolating dirty pages under writeback, it implies
1635 * that the long-lived page allocation rate is exceeding the page
1636 * laundering rate. Either the global limits are not being effective
1637 * at throttling processes due to the page distribution throughout
1638 * zones or there is heavy usage of a slow backing device. The
1639 * only option is to throttle from reclaim context which is not ideal
1640 * as there is no guarantee the dirtying process is throttled in the
1641 * same way balance_dirty_pages() manages.
1642 *
1643 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1644 * of pages under pages flagged for immediate reclaim and stall if any
1645 * are encountered in the nr_immediate check below.
1646 */
1647 if (nr_writeback && nr_writeback == nr_taken)
1648 set_bit(ZONE_WRITEBACK, &zone->flags);
1649
1650 /*
1651 * Legacy memcg will stall in page writeback so avoid forcibly
1652 * stalling here.
1653 */
1654 if (sane_reclaim(sc)) {
1655 /*
1656 * Tag a zone as congested if all the dirty pages scanned were
1657 * backed by a congested BDI and wait_iff_congested will stall.
1658 */
1659 if (nr_dirty && nr_dirty == nr_congested)
1660 set_bit(ZONE_CONGESTED, &zone->flags);
1661
1662 /*
1663 * If dirty pages are scanned that are not queued for IO, it
1664 * implies that flushers are not keeping up. In this case, flag
1665 * the zone ZONE_DIRTY and kswapd will start writing pages from
1666 * reclaim context.
1667 */
1668 if (nr_unqueued_dirty == nr_taken)
1669 set_bit(ZONE_DIRTY, &zone->flags);
1670
1671 /*
1672 * If kswapd scans pages marked marked for immediate
1673 * reclaim and under writeback (nr_immediate), it implies
1674 * that pages are cycling through the LRU faster than
1675 * they are written so also forcibly stall.
1676 */
1677 if (nr_immediate && current_may_throttle())
1678 congestion_wait(BLK_RW_ASYNC, HZ/10);
1679 }
1680
1681 /*
1682 * Stall direct reclaim for IO completions if underlying BDIs or zone
1683 * is congested. Allow kswapd to continue until it starts encountering
1684 * unqueued dirty pages or cycling through the LRU too quickly.
1685 */
1686 if (!sc->hibernation_mode && !current_is_kswapd() &&
1687 current_may_throttle())
1688 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1689
1690 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1691 zone_idx(zone),
1692 nr_scanned, nr_reclaimed,
1693 sc->priority,
1694 trace_shrink_flags(file));
1695 return nr_reclaimed;
1696 }
1697
1698 /*
1699 * This moves pages from the active list to the inactive list.
1700 *
1701 * We move them the other way if the page is referenced by one or more
1702 * processes, from rmap.
1703 *
1704 * If the pages are mostly unmapped, the processing is fast and it is
1705 * appropriate to hold zone->lru_lock across the whole operation. But if
1706 * the pages are mapped, the processing is slow (page_referenced()) so we
1707 * should drop zone->lru_lock around each page. It's impossible to balance
1708 * this, so instead we remove the pages from the LRU while processing them.
1709 * It is safe to rely on PG_active against the non-LRU pages in here because
1710 * nobody will play with that bit on a non-LRU page.
1711 *
1712 * The downside is that we have to touch page->_count against each page.
1713 * But we had to alter page->flags anyway.
1714 */
1715
1716 static void move_active_pages_to_lru(struct lruvec *lruvec,
1717 struct list_head *list,
1718 struct list_head *pages_to_free,
1719 enum lru_list lru)
1720 {
1721 struct zone *zone = lruvec_zone(lruvec);
1722 unsigned long pgmoved = 0;
1723 struct page *page;
1724 int nr_pages;
1725
1726 while (!list_empty(list)) {
1727 page = lru_to_page(list);
1728 lruvec = mem_cgroup_page_lruvec(page, zone);
1729
1730 VM_BUG_ON_PAGE(PageLRU(page), page);
1731 SetPageLRU(page);
1732
1733 nr_pages = hpage_nr_pages(page);
1734 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1735 list_move(&page->lru, &lruvec->lists[lru]);
1736 pgmoved += nr_pages;
1737
1738 if (put_page_testzero(page)) {
1739 __ClearPageLRU(page);
1740 __ClearPageActive(page);
1741 del_page_from_lru_list(page, lruvec, lru);
1742
1743 if (unlikely(PageCompound(page))) {
1744 spin_unlock_irq(&zone->lru_lock);
1745 mem_cgroup_uncharge(page);
1746 (*get_compound_page_dtor(page))(page);
1747 spin_lock_irq(&zone->lru_lock);
1748 } else
1749 list_add(&page->lru, pages_to_free);
1750 }
1751 }
1752 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1753 if (!is_active_lru(lru))
1754 __count_vm_events(PGDEACTIVATE, pgmoved);
1755 }
1756
1757 static void shrink_active_list(unsigned long nr_to_scan,
1758 struct lruvec *lruvec,
1759 struct scan_control *sc,
1760 enum lru_list lru)
1761 {
1762 unsigned long nr_taken;
1763 unsigned long nr_scanned;
1764 unsigned long vm_flags;
1765 LIST_HEAD(l_hold); /* The pages which were snipped off */
1766 LIST_HEAD(l_active);
1767 LIST_HEAD(l_inactive);
1768 struct page *page;
1769 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1770 unsigned long nr_rotated = 0;
1771 isolate_mode_t isolate_mode = 0;
1772 int file = is_file_lru(lru);
1773 struct zone *zone = lruvec_zone(lruvec);
1774
1775 lru_add_drain();
1776
1777 if (!sc->may_unmap)
1778 isolate_mode |= ISOLATE_UNMAPPED;
1779 if (!sc->may_writepage)
1780 isolate_mode |= ISOLATE_CLEAN;
1781
1782 spin_lock_irq(&zone->lru_lock);
1783
1784 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1785 &nr_scanned, sc, isolate_mode, lru);
1786 if (global_reclaim(sc))
1787 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1788
1789 reclaim_stat->recent_scanned[file] += nr_taken;
1790
1791 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1792 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1793 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1794 spin_unlock_irq(&zone->lru_lock);
1795
1796 while (!list_empty(&l_hold)) {
1797 cond_resched();
1798 page = lru_to_page(&l_hold);
1799 list_del(&page->lru);
1800
1801 if (unlikely(!page_evictable(page))) {
1802 putback_lru_page(page);
1803 continue;
1804 }
1805
1806 if (unlikely(buffer_heads_over_limit)) {
1807 if (page_has_private(page) && trylock_page(page)) {
1808 if (page_has_private(page))
1809 try_to_release_page(page, 0);
1810 unlock_page(page);
1811 }
1812 }
1813
1814 if (page_referenced(page, 0, sc->target_mem_cgroup,
1815 &vm_flags)) {
1816 nr_rotated += hpage_nr_pages(page);
1817 /*
1818 * Identify referenced, file-backed active pages and
1819 * give them one more trip around the active list. So
1820 * that executable code get better chances to stay in
1821 * memory under moderate memory pressure. Anon pages
1822 * are not likely to be evicted by use-once streaming
1823 * IO, plus JVM can create lots of anon VM_EXEC pages,
1824 * so we ignore them here.
1825 */
1826 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1827 list_add(&page->lru, &l_active);
1828 continue;
1829 }
1830 }
1831
1832 ClearPageActive(page); /* we are de-activating */
1833 list_add(&page->lru, &l_inactive);
1834 }
1835
1836 /*
1837 * Move pages back to the lru list.
1838 */
1839 spin_lock_irq(&zone->lru_lock);
1840 /*
1841 * Count referenced pages from currently used mappings as rotated,
1842 * even though only some of them are actually re-activated. This
1843 * helps balance scan pressure between file and anonymous pages in
1844 * get_scan_count.
1845 */
1846 reclaim_stat->recent_rotated[file] += nr_rotated;
1847
1848 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1849 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1850 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1851 spin_unlock_irq(&zone->lru_lock);
1852
1853 mem_cgroup_uncharge_list(&l_hold);
1854 free_hot_cold_page_list(&l_hold, true);
1855 }
1856
1857 #ifdef CONFIG_SWAP
1858 static int inactive_anon_is_low_global(struct zone *zone)
1859 {
1860 unsigned long active, inactive;
1861
1862 active = zone_page_state(zone, NR_ACTIVE_ANON);
1863 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1864
1865 if (inactive * zone->inactive_ratio < active)
1866 return 1;
1867
1868 return 0;
1869 }
1870
1871 /**
1872 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1873 * @lruvec: LRU vector to check
1874 *
1875 * Returns true if the zone does not have enough inactive anon pages,
1876 * meaning some active anon pages need to be deactivated.
1877 */
1878 static int inactive_anon_is_low(struct lruvec *lruvec)
1879 {
1880 /*
1881 * If we don't have swap space, anonymous page deactivation
1882 * is pointless.
1883 */
1884 if (!total_swap_pages)
1885 return 0;
1886
1887 if (!mem_cgroup_disabled())
1888 return mem_cgroup_inactive_anon_is_low(lruvec);
1889
1890 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1891 }
1892 #else
1893 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1894 {
1895 return 0;
1896 }
1897 #endif
1898
1899 /**
1900 * inactive_file_is_low - check if file pages need to be deactivated
1901 * @lruvec: LRU vector to check
1902 *
1903 * When the system is doing streaming IO, memory pressure here
1904 * ensures that active file pages get deactivated, until more
1905 * than half of the file pages are on the inactive list.
1906 *
1907 * Once we get to that situation, protect the system's working
1908 * set from being evicted by disabling active file page aging.
1909 *
1910 * This uses a different ratio than the anonymous pages, because
1911 * the page cache uses a use-once replacement algorithm.
1912 */
1913 static int inactive_file_is_low(struct lruvec *lruvec)
1914 {
1915 unsigned long inactive;
1916 unsigned long active;
1917
1918 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1919 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1920
1921 return active > inactive;
1922 }
1923
1924 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1925 {
1926 if (is_file_lru(lru))
1927 return inactive_file_is_low(lruvec);
1928 else
1929 return inactive_anon_is_low(lruvec);
1930 }
1931
1932 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1933 struct lruvec *lruvec, struct scan_control *sc)
1934 {
1935 if (is_active_lru(lru)) {
1936 if (inactive_list_is_low(lruvec, lru))
1937 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1938 return 0;
1939 }
1940
1941 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1942 }
1943
1944 enum scan_balance {
1945 SCAN_EQUAL,
1946 SCAN_FRACT,
1947 SCAN_ANON,
1948 SCAN_FILE,
1949 };
1950
1951 /*
1952 * Determine how aggressively the anon and file LRU lists should be
1953 * scanned. The relative value of each set of LRU lists is determined
1954 * by looking at the fraction of the pages scanned we did rotate back
1955 * onto the active list instead of evict.
1956 *
1957 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1958 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1959 */
1960 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1961 struct scan_control *sc, unsigned long *nr,
1962 unsigned long *lru_pages)
1963 {
1964 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1965 u64 fraction[2];
1966 u64 denominator = 0; /* gcc */
1967 struct zone *zone = lruvec_zone(lruvec);
1968 unsigned long anon_prio, file_prio;
1969 enum scan_balance scan_balance;
1970 unsigned long anon, file;
1971 bool force_scan = false;
1972 unsigned long ap, fp;
1973 enum lru_list lru;
1974 bool some_scanned;
1975 int pass;
1976
1977 /*
1978 * If the zone or memcg is small, nr[l] can be 0. This
1979 * results in no scanning on this priority and a potential
1980 * priority drop. Global direct reclaim can go to the next
1981 * zone and tends to have no problems. Global kswapd is for
1982 * zone balancing and it needs to scan a minimum amount. When
1983 * reclaiming for a memcg, a priority drop can cause high
1984 * latencies, so it's better to scan a minimum amount there as
1985 * well.
1986 */
1987 if (current_is_kswapd()) {
1988 if (!zone_reclaimable(zone))
1989 force_scan = true;
1990 if (!mem_cgroup_lruvec_online(lruvec))
1991 force_scan = true;
1992 }
1993 if (!global_reclaim(sc))
1994 force_scan = true;
1995
1996 /* If we have no swap space, do not bother scanning anon pages. */
1997 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1998 scan_balance = SCAN_FILE;
1999 goto out;
2000 }
2001
2002 /*
2003 * Global reclaim will swap to prevent OOM even with no
2004 * swappiness, but memcg users want to use this knob to
2005 * disable swapping for individual groups completely when
2006 * using the memory controller's swap limit feature would be
2007 * too expensive.
2008 */
2009 if (!global_reclaim(sc) && !swappiness) {
2010 scan_balance = SCAN_FILE;
2011 goto out;
2012 }
2013
2014 /*
2015 * Do not apply any pressure balancing cleverness when the
2016 * system is close to OOM, scan both anon and file equally
2017 * (unless the swappiness setting disagrees with swapping).
2018 */
2019 if (!sc->priority && swappiness) {
2020 scan_balance = SCAN_EQUAL;
2021 goto out;
2022 }
2023
2024 /*
2025 * Prevent the reclaimer from falling into the cache trap: as
2026 * cache pages start out inactive, every cache fault will tip
2027 * the scan balance towards the file LRU. And as the file LRU
2028 * shrinks, so does the window for rotation from references.
2029 * This means we have a runaway feedback loop where a tiny
2030 * thrashing file LRU becomes infinitely more attractive than
2031 * anon pages. Try to detect this based on file LRU size.
2032 */
2033 if (global_reclaim(sc)) {
2034 unsigned long zonefile;
2035 unsigned long zonefree;
2036
2037 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2038 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2039 zone_page_state(zone, NR_INACTIVE_FILE);
2040
2041 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2042 scan_balance = SCAN_ANON;
2043 goto out;
2044 }
2045 }
2046
2047 /*
2048 * There is enough inactive page cache, do not reclaim
2049 * anything from the anonymous working set right now.
2050 */
2051 if (!inactive_file_is_low(lruvec)) {
2052 scan_balance = SCAN_FILE;
2053 goto out;
2054 }
2055
2056 scan_balance = SCAN_FRACT;
2057
2058 /*
2059 * With swappiness at 100, anonymous and file have the same priority.
2060 * This scanning priority is essentially the inverse of IO cost.
2061 */
2062 anon_prio = swappiness;
2063 file_prio = 200 - anon_prio;
2064
2065 /*
2066 * OK, so we have swap space and a fair amount of page cache
2067 * pages. We use the recently rotated / recently scanned
2068 * ratios to determine how valuable each cache is.
2069 *
2070 * Because workloads change over time (and to avoid overflow)
2071 * we keep these statistics as a floating average, which ends
2072 * up weighing recent references more than old ones.
2073 *
2074 * anon in [0], file in [1]
2075 */
2076
2077 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2078 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2079 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2080 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2081
2082 spin_lock_irq(&zone->lru_lock);
2083 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2084 reclaim_stat->recent_scanned[0] /= 2;
2085 reclaim_stat->recent_rotated[0] /= 2;
2086 }
2087
2088 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2089 reclaim_stat->recent_scanned[1] /= 2;
2090 reclaim_stat->recent_rotated[1] /= 2;
2091 }
2092
2093 /*
2094 * The amount of pressure on anon vs file pages is inversely
2095 * proportional to the fraction of recently scanned pages on
2096 * each list that were recently referenced and in active use.
2097 */
2098 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2099 ap /= reclaim_stat->recent_rotated[0] + 1;
2100
2101 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2102 fp /= reclaim_stat->recent_rotated[1] + 1;
2103 spin_unlock_irq(&zone->lru_lock);
2104
2105 fraction[0] = ap;
2106 fraction[1] = fp;
2107 denominator = ap + fp + 1;
2108 out:
2109 some_scanned = false;
2110 /* Only use force_scan on second pass. */
2111 for (pass = 0; !some_scanned && pass < 2; pass++) {
2112 *lru_pages = 0;
2113 for_each_evictable_lru(lru) {
2114 int file = is_file_lru(lru);
2115 unsigned long size;
2116 unsigned long scan;
2117
2118 size = get_lru_size(lruvec, lru);
2119 scan = size >> sc->priority;
2120
2121 if (!scan && pass && force_scan)
2122 scan = min(size, SWAP_CLUSTER_MAX);
2123
2124 switch (scan_balance) {
2125 case SCAN_EQUAL:
2126 /* Scan lists relative to size */
2127 break;
2128 case SCAN_FRACT:
2129 /*
2130 * Scan types proportional to swappiness and
2131 * their relative recent reclaim efficiency.
2132 */
2133 scan = div64_u64(scan * fraction[file],
2134 denominator);
2135 break;
2136 case SCAN_FILE:
2137 case SCAN_ANON:
2138 /* Scan one type exclusively */
2139 if ((scan_balance == SCAN_FILE) != file) {
2140 size = 0;
2141 scan = 0;
2142 }
2143 break;
2144 default:
2145 /* Look ma, no brain */
2146 BUG();
2147 }
2148
2149 *lru_pages += size;
2150 nr[lru] = scan;
2151
2152 /*
2153 * Skip the second pass and don't force_scan,
2154 * if we found something to scan.
2155 */
2156 some_scanned |= !!scan;
2157 }
2158 }
2159 }
2160
2161 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2162 static void init_tlb_ubc(void)
2163 {
2164 /*
2165 * This deliberately does not clear the cpumask as it's expensive
2166 * and unnecessary. If there happens to be data in there then the
2167 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2168 * then will be cleared.
2169 */
2170 current->tlb_ubc.flush_required = false;
2171 }
2172 #else
2173 static inline void init_tlb_ubc(void)
2174 {
2175 }
2176 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2177
2178 /*
2179 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2180 */
2181 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2182 struct scan_control *sc, unsigned long *lru_pages)
2183 {
2184 unsigned long nr[NR_LRU_LISTS];
2185 unsigned long targets[NR_LRU_LISTS];
2186 unsigned long nr_to_scan;
2187 enum lru_list lru;
2188 unsigned long nr_reclaimed = 0;
2189 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2190 struct blk_plug plug;
2191 bool scan_adjusted;
2192
2193 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2194
2195 /* Record the original scan target for proportional adjustments later */
2196 memcpy(targets, nr, sizeof(nr));
2197
2198 /*
2199 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2200 * event that can occur when there is little memory pressure e.g.
2201 * multiple streaming readers/writers. Hence, we do not abort scanning
2202 * when the requested number of pages are reclaimed when scanning at
2203 * DEF_PRIORITY on the assumption that the fact we are direct
2204 * reclaiming implies that kswapd is not keeping up and it is best to
2205 * do a batch of work at once. For memcg reclaim one check is made to
2206 * abort proportional reclaim if either the file or anon lru has already
2207 * dropped to zero at the first pass.
2208 */
2209 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2210 sc->priority == DEF_PRIORITY);
2211
2212 init_tlb_ubc();
2213
2214 blk_start_plug(&plug);
2215 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2216 nr[LRU_INACTIVE_FILE]) {
2217 unsigned long nr_anon, nr_file, percentage;
2218 unsigned long nr_scanned;
2219
2220 for_each_evictable_lru(lru) {
2221 if (nr[lru]) {
2222 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2223 nr[lru] -= nr_to_scan;
2224
2225 nr_reclaimed += shrink_list(lru, nr_to_scan,
2226 lruvec, sc);
2227 }
2228 }
2229
2230 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2231 continue;
2232
2233 /*
2234 * For kswapd and memcg, reclaim at least the number of pages
2235 * requested. Ensure that the anon and file LRUs are scanned
2236 * proportionally what was requested by get_scan_count(). We
2237 * stop reclaiming one LRU and reduce the amount scanning
2238 * proportional to the original scan target.
2239 */
2240 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2241 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2242
2243 /*
2244 * It's just vindictive to attack the larger once the smaller
2245 * has gone to zero. And given the way we stop scanning the
2246 * smaller below, this makes sure that we only make one nudge
2247 * towards proportionality once we've got nr_to_reclaim.
2248 */
2249 if (!nr_file || !nr_anon)
2250 break;
2251
2252 if (nr_file > nr_anon) {
2253 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2254 targets[LRU_ACTIVE_ANON] + 1;
2255 lru = LRU_BASE;
2256 percentage = nr_anon * 100 / scan_target;
2257 } else {
2258 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2259 targets[LRU_ACTIVE_FILE] + 1;
2260 lru = LRU_FILE;
2261 percentage = nr_file * 100 / scan_target;
2262 }
2263
2264 /* Stop scanning the smaller of the LRU */
2265 nr[lru] = 0;
2266 nr[lru + LRU_ACTIVE] = 0;
2267
2268 /*
2269 * Recalculate the other LRU scan count based on its original
2270 * scan target and the percentage scanning already complete
2271 */
2272 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2273 nr_scanned = targets[lru] - nr[lru];
2274 nr[lru] = targets[lru] * (100 - percentage) / 100;
2275 nr[lru] -= min(nr[lru], nr_scanned);
2276
2277 lru += LRU_ACTIVE;
2278 nr_scanned = targets[lru] - nr[lru];
2279 nr[lru] = targets[lru] * (100 - percentage) / 100;
2280 nr[lru] -= min(nr[lru], nr_scanned);
2281
2282 scan_adjusted = true;
2283 }
2284 blk_finish_plug(&plug);
2285 sc->nr_reclaimed += nr_reclaimed;
2286
2287 /*
2288 * Even if we did not try to evict anon pages at all, we want to
2289 * rebalance the anon lru active/inactive ratio.
2290 */
2291 if (inactive_anon_is_low(lruvec))
2292 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2293 sc, LRU_ACTIVE_ANON);
2294
2295 throttle_vm_writeout(sc->gfp_mask);
2296 }
2297
2298 /* Use reclaim/compaction for costly allocs or under memory pressure */
2299 static bool in_reclaim_compaction(struct scan_control *sc)
2300 {
2301 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2302 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2303 sc->priority < DEF_PRIORITY - 2))
2304 return true;
2305
2306 return false;
2307 }
2308
2309 /*
2310 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2311 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2312 * true if more pages should be reclaimed such that when the page allocator
2313 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2314 * It will give up earlier than that if there is difficulty reclaiming pages.
2315 */
2316 static inline bool should_continue_reclaim(struct zone *zone,
2317 unsigned long nr_reclaimed,
2318 unsigned long nr_scanned,
2319 struct scan_control *sc)
2320 {
2321 unsigned long pages_for_compaction;
2322 unsigned long inactive_lru_pages;
2323
2324 /* If not in reclaim/compaction mode, stop */
2325 if (!in_reclaim_compaction(sc))
2326 return false;
2327
2328 /* Consider stopping depending on scan and reclaim activity */
2329 if (sc->gfp_mask & __GFP_REPEAT) {
2330 /*
2331 * For __GFP_REPEAT allocations, stop reclaiming if the
2332 * full LRU list has been scanned and we are still failing
2333 * to reclaim pages. This full LRU scan is potentially
2334 * expensive but a __GFP_REPEAT caller really wants to succeed
2335 */
2336 if (!nr_reclaimed && !nr_scanned)
2337 return false;
2338 } else {
2339 /*
2340 * For non-__GFP_REPEAT allocations which can presumably
2341 * fail without consequence, stop if we failed to reclaim
2342 * any pages from the last SWAP_CLUSTER_MAX number of
2343 * pages that were scanned. This will return to the
2344 * caller faster at the risk reclaim/compaction and
2345 * the resulting allocation attempt fails
2346 */
2347 if (!nr_reclaimed)
2348 return false;
2349 }
2350
2351 /*
2352 * If we have not reclaimed enough pages for compaction and the
2353 * inactive lists are large enough, continue reclaiming
2354 */
2355 pages_for_compaction = (2UL << sc->order);
2356 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2357 if (get_nr_swap_pages() > 0)
2358 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2359 if (sc->nr_reclaimed < pages_for_compaction &&
2360 inactive_lru_pages > pages_for_compaction)
2361 return true;
2362
2363 /* If compaction would go ahead or the allocation would succeed, stop */
2364 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2365 case COMPACT_PARTIAL:
2366 case COMPACT_CONTINUE:
2367 return false;
2368 default:
2369 return true;
2370 }
2371 }
2372
2373 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2374 bool is_classzone)
2375 {
2376 struct reclaim_state *reclaim_state = current->reclaim_state;
2377 unsigned long nr_reclaimed, nr_scanned;
2378 bool reclaimable = false;
2379
2380 do {
2381 struct mem_cgroup *root = sc->target_mem_cgroup;
2382 struct mem_cgroup_reclaim_cookie reclaim = {
2383 .zone = zone,
2384 .priority = sc->priority,
2385 };
2386 unsigned long zone_lru_pages = 0;
2387 struct mem_cgroup *memcg;
2388
2389 nr_reclaimed = sc->nr_reclaimed;
2390 nr_scanned = sc->nr_scanned;
2391
2392 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2393 do {
2394 unsigned long lru_pages;
2395 unsigned long scanned;
2396 struct lruvec *lruvec;
2397 int swappiness;
2398
2399 if (mem_cgroup_low(root, memcg)) {
2400 if (!sc->may_thrash)
2401 continue;
2402 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2403 }
2404
2405 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2406 swappiness = mem_cgroup_swappiness(memcg);
2407 scanned = sc->nr_scanned;
2408
2409 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2410 zone_lru_pages += lru_pages;
2411
2412 if (memcg && is_classzone)
2413 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2414 memcg, sc->nr_scanned - scanned,
2415 lru_pages);
2416
2417 /*
2418 * Direct reclaim and kswapd have to scan all memory
2419 * cgroups to fulfill the overall scan target for the
2420 * zone.
2421 *
2422 * Limit reclaim, on the other hand, only cares about
2423 * nr_to_reclaim pages to be reclaimed and it will
2424 * retry with decreasing priority if one round over the
2425 * whole hierarchy is not sufficient.
2426 */
2427 if (!global_reclaim(sc) &&
2428 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2429 mem_cgroup_iter_break(root, memcg);
2430 break;
2431 }
2432 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2433
2434 /*
2435 * Shrink the slab caches in the same proportion that
2436 * the eligible LRU pages were scanned.
2437 */
2438 if (global_reclaim(sc) && is_classzone)
2439 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2440 sc->nr_scanned - nr_scanned,
2441 zone_lru_pages);
2442
2443 if (reclaim_state) {
2444 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2445 reclaim_state->reclaimed_slab = 0;
2446 }
2447
2448 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2449 sc->nr_scanned - nr_scanned,
2450 sc->nr_reclaimed - nr_reclaimed);
2451
2452 if (sc->nr_reclaimed - nr_reclaimed)
2453 reclaimable = true;
2454
2455 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2456 sc->nr_scanned - nr_scanned, sc));
2457
2458 return reclaimable;
2459 }
2460
2461 /*
2462 * Returns true if compaction should go ahead for a high-order request, or
2463 * the high-order allocation would succeed without compaction.
2464 */
2465 static inline bool compaction_ready(struct zone *zone, int order)
2466 {
2467 unsigned long balance_gap, watermark;
2468 bool watermark_ok;
2469
2470 /*
2471 * Compaction takes time to run and there are potentially other
2472 * callers using the pages just freed. Continue reclaiming until
2473 * there is a buffer of free pages available to give compaction
2474 * a reasonable chance of completing and allocating the page
2475 */
2476 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2477 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2478 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2479 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2480
2481 /*
2482 * If compaction is deferred, reclaim up to a point where
2483 * compaction will have a chance of success when re-enabled
2484 */
2485 if (compaction_deferred(zone, order))
2486 return watermark_ok;
2487
2488 /*
2489 * If compaction is not ready to start and allocation is not likely
2490 * to succeed without it, then keep reclaiming.
2491 */
2492 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2493 return false;
2494
2495 return watermark_ok;
2496 }
2497
2498 /*
2499 * This is the direct reclaim path, for page-allocating processes. We only
2500 * try to reclaim pages from zones which will satisfy the caller's allocation
2501 * request.
2502 *
2503 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2504 * Because:
2505 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2506 * allocation or
2507 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2508 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2509 * zone defense algorithm.
2510 *
2511 * If a zone is deemed to be full of pinned pages then just give it a light
2512 * scan then give up on it.
2513 *
2514 * Returns true if a zone was reclaimable.
2515 */
2516 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2517 {
2518 struct zoneref *z;
2519 struct zone *zone;
2520 unsigned long nr_soft_reclaimed;
2521 unsigned long nr_soft_scanned;
2522 gfp_t orig_mask;
2523 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2524 bool reclaimable = false;
2525
2526 /*
2527 * If the number of buffer_heads in the machine exceeds the maximum
2528 * allowed level, force direct reclaim to scan the highmem zone as
2529 * highmem pages could be pinning lowmem pages storing buffer_heads
2530 */
2531 orig_mask = sc->gfp_mask;
2532 if (buffer_heads_over_limit)
2533 sc->gfp_mask |= __GFP_HIGHMEM;
2534
2535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2536 requested_highidx, sc->nodemask) {
2537 enum zone_type classzone_idx;
2538
2539 if (!populated_zone(zone))
2540 continue;
2541
2542 classzone_idx = requested_highidx;
2543 while (!populated_zone(zone->zone_pgdat->node_zones +
2544 classzone_idx))
2545 classzone_idx--;
2546
2547 /*
2548 * Take care memory controller reclaiming has small influence
2549 * to global LRU.
2550 */
2551 if (global_reclaim(sc)) {
2552 if (!cpuset_zone_allowed(zone,
2553 GFP_KERNEL | __GFP_HARDWALL))
2554 continue;
2555
2556 if (sc->priority != DEF_PRIORITY &&
2557 !zone_reclaimable(zone))
2558 continue; /* Let kswapd poll it */
2559
2560 /*
2561 * If we already have plenty of memory free for
2562 * compaction in this zone, don't free any more.
2563 * Even though compaction is invoked for any
2564 * non-zero order, only frequent costly order
2565 * reclamation is disruptive enough to become a
2566 * noticeable problem, like transparent huge
2567 * page allocations.
2568 */
2569 if (IS_ENABLED(CONFIG_COMPACTION) &&
2570 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2571 zonelist_zone_idx(z) <= requested_highidx &&
2572 compaction_ready(zone, sc->order)) {
2573 sc->compaction_ready = true;
2574 continue;
2575 }
2576
2577 /*
2578 * This steals pages from memory cgroups over softlimit
2579 * and returns the number of reclaimed pages and
2580 * scanned pages. This works for global memory pressure
2581 * and balancing, not for a memcg's limit.
2582 */
2583 nr_soft_scanned = 0;
2584 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2585 sc->order, sc->gfp_mask,
2586 &nr_soft_scanned);
2587 sc->nr_reclaimed += nr_soft_reclaimed;
2588 sc->nr_scanned += nr_soft_scanned;
2589 if (nr_soft_reclaimed)
2590 reclaimable = true;
2591 /* need some check for avoid more shrink_zone() */
2592 }
2593
2594 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2595 reclaimable = true;
2596
2597 if (global_reclaim(sc) &&
2598 !reclaimable && zone_reclaimable(zone))
2599 reclaimable = true;
2600 }
2601
2602 /*
2603 * Restore to original mask to avoid the impact on the caller if we
2604 * promoted it to __GFP_HIGHMEM.
2605 */
2606 sc->gfp_mask = orig_mask;
2607
2608 return reclaimable;
2609 }
2610
2611 /*
2612 * This is the main entry point to direct page reclaim.
2613 *
2614 * If a full scan of the inactive list fails to free enough memory then we
2615 * are "out of memory" and something needs to be killed.
2616 *
2617 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2618 * high - the zone may be full of dirty or under-writeback pages, which this
2619 * caller can't do much about. We kick the writeback threads and take explicit
2620 * naps in the hope that some of these pages can be written. But if the
2621 * allocating task holds filesystem locks which prevent writeout this might not
2622 * work, and the allocation attempt will fail.
2623 *
2624 * returns: 0, if no pages reclaimed
2625 * else, the number of pages reclaimed
2626 */
2627 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2628 struct scan_control *sc)
2629 {
2630 int initial_priority = sc->priority;
2631 unsigned long total_scanned = 0;
2632 unsigned long writeback_threshold;
2633 bool zones_reclaimable;
2634 retry:
2635 delayacct_freepages_start();
2636
2637 if (global_reclaim(sc))
2638 count_vm_event(ALLOCSTALL);
2639
2640 do {
2641 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2642 sc->priority);
2643 sc->nr_scanned = 0;
2644 zones_reclaimable = shrink_zones(zonelist, sc);
2645
2646 total_scanned += sc->nr_scanned;
2647 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2648 break;
2649
2650 if (sc->compaction_ready)
2651 break;
2652
2653 /*
2654 * If we're getting trouble reclaiming, start doing
2655 * writepage even in laptop mode.
2656 */
2657 if (sc->priority < DEF_PRIORITY - 2)
2658 sc->may_writepage = 1;
2659
2660 /*
2661 * Try to write back as many pages as we just scanned. This
2662 * tends to cause slow streaming writers to write data to the
2663 * disk smoothly, at the dirtying rate, which is nice. But
2664 * that's undesirable in laptop mode, where we *want* lumpy
2665 * writeout. So in laptop mode, write out the whole world.
2666 */
2667 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2668 if (total_scanned > writeback_threshold) {
2669 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2670 WB_REASON_TRY_TO_FREE_PAGES);
2671 sc->may_writepage = 1;
2672 }
2673 } while (--sc->priority >= 0);
2674
2675 delayacct_freepages_end();
2676
2677 if (sc->nr_reclaimed)
2678 return sc->nr_reclaimed;
2679
2680 /* Aborted reclaim to try compaction? don't OOM, then */
2681 if (sc->compaction_ready)
2682 return 1;
2683
2684 /* Untapped cgroup reserves? Don't OOM, retry. */
2685 if (!sc->may_thrash) {
2686 sc->priority = initial_priority;
2687 sc->may_thrash = 1;
2688 goto retry;
2689 }
2690
2691 /* Any of the zones still reclaimable? Don't OOM. */
2692 if (zones_reclaimable)
2693 return 1;
2694
2695 return 0;
2696 }
2697
2698 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2699 {
2700 struct zone *zone;
2701 unsigned long pfmemalloc_reserve = 0;
2702 unsigned long free_pages = 0;
2703 int i;
2704 bool wmark_ok;
2705
2706 for (i = 0; i <= ZONE_NORMAL; i++) {
2707 zone = &pgdat->node_zones[i];
2708 if (!populated_zone(zone) ||
2709 zone_reclaimable_pages(zone) == 0)
2710 continue;
2711
2712 pfmemalloc_reserve += min_wmark_pages(zone);
2713 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2714 }
2715
2716 /* If there are no reserves (unexpected config) then do not throttle */
2717 if (!pfmemalloc_reserve)
2718 return true;
2719
2720 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2721
2722 /* kswapd must be awake if processes are being throttled */
2723 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2724 pgdat->classzone_idx = min(pgdat->classzone_idx,
2725 (enum zone_type)ZONE_NORMAL);
2726 wake_up_interruptible(&pgdat->kswapd_wait);
2727 }
2728
2729 return wmark_ok;
2730 }
2731
2732 /*
2733 * Throttle direct reclaimers if backing storage is backed by the network
2734 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2735 * depleted. kswapd will continue to make progress and wake the processes
2736 * when the low watermark is reached.
2737 *
2738 * Returns true if a fatal signal was delivered during throttling. If this
2739 * happens, the page allocator should not consider triggering the OOM killer.
2740 */
2741 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2742 nodemask_t *nodemask)
2743 {
2744 struct zoneref *z;
2745 struct zone *zone;
2746 pg_data_t *pgdat = NULL;
2747
2748 /*
2749 * Kernel threads should not be throttled as they may be indirectly
2750 * responsible for cleaning pages necessary for reclaim to make forward
2751 * progress. kjournald for example may enter direct reclaim while
2752 * committing a transaction where throttling it could forcing other
2753 * processes to block on log_wait_commit().
2754 */
2755 if (current->flags & PF_KTHREAD)
2756 goto out;
2757
2758 /*
2759 * If a fatal signal is pending, this process should not throttle.
2760 * It should return quickly so it can exit and free its memory
2761 */
2762 if (fatal_signal_pending(current))
2763 goto out;
2764
2765 /*
2766 * Check if the pfmemalloc reserves are ok by finding the first node
2767 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2768 * GFP_KERNEL will be required for allocating network buffers when
2769 * swapping over the network so ZONE_HIGHMEM is unusable.
2770 *
2771 * Throttling is based on the first usable node and throttled processes
2772 * wait on a queue until kswapd makes progress and wakes them. There
2773 * is an affinity then between processes waking up and where reclaim
2774 * progress has been made assuming the process wakes on the same node.
2775 * More importantly, processes running on remote nodes will not compete
2776 * for remote pfmemalloc reserves and processes on different nodes
2777 * should make reasonable progress.
2778 */
2779 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2780 gfp_zone(gfp_mask), nodemask) {
2781 if (zone_idx(zone) > ZONE_NORMAL)
2782 continue;
2783
2784 /* Throttle based on the first usable node */
2785 pgdat = zone->zone_pgdat;
2786 if (pfmemalloc_watermark_ok(pgdat))
2787 goto out;
2788 break;
2789 }
2790
2791 /* If no zone was usable by the allocation flags then do not throttle */
2792 if (!pgdat)
2793 goto out;
2794
2795 /* Account for the throttling */
2796 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2797
2798 /*
2799 * If the caller cannot enter the filesystem, it's possible that it
2800 * is due to the caller holding an FS lock or performing a journal
2801 * transaction in the case of a filesystem like ext[3|4]. In this case,
2802 * it is not safe to block on pfmemalloc_wait as kswapd could be
2803 * blocked waiting on the same lock. Instead, throttle for up to a
2804 * second before continuing.
2805 */
2806 if (!(gfp_mask & __GFP_FS)) {
2807 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2808 pfmemalloc_watermark_ok(pgdat), HZ);
2809
2810 goto check_pending;
2811 }
2812
2813 /* Throttle until kswapd wakes the process */
2814 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2815 pfmemalloc_watermark_ok(pgdat));
2816
2817 check_pending:
2818 if (fatal_signal_pending(current))
2819 return true;
2820
2821 out:
2822 return false;
2823 }
2824
2825 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2826 gfp_t gfp_mask, nodemask_t *nodemask)
2827 {
2828 unsigned long nr_reclaimed;
2829 struct scan_control sc = {
2830 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2831 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2832 .order = order,
2833 .nodemask = nodemask,
2834 .priority = DEF_PRIORITY,
2835 .may_writepage = !laptop_mode,
2836 .may_unmap = 1,
2837 .may_swap = 1,
2838 };
2839
2840 /*
2841 * Do not enter reclaim if fatal signal was delivered while throttled.
2842 * 1 is returned so that the page allocator does not OOM kill at this
2843 * point.
2844 */
2845 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2846 return 1;
2847
2848 trace_mm_vmscan_direct_reclaim_begin(order,
2849 sc.may_writepage,
2850 gfp_mask);
2851
2852 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2853
2854 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2855
2856 return nr_reclaimed;
2857 }
2858
2859 #ifdef CONFIG_MEMCG
2860
2861 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2862 gfp_t gfp_mask, bool noswap,
2863 struct zone *zone,
2864 unsigned long *nr_scanned)
2865 {
2866 struct scan_control sc = {
2867 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2868 .target_mem_cgroup = memcg,
2869 .may_writepage = !laptop_mode,
2870 .may_unmap = 1,
2871 .may_swap = !noswap,
2872 };
2873 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2874 int swappiness = mem_cgroup_swappiness(memcg);
2875 unsigned long lru_pages;
2876
2877 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2878 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2879
2880 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2881 sc.may_writepage,
2882 sc.gfp_mask);
2883
2884 /*
2885 * NOTE: Although we can get the priority field, using it
2886 * here is not a good idea, since it limits the pages we can scan.
2887 * if we don't reclaim here, the shrink_zone from balance_pgdat
2888 * will pick up pages from other mem cgroup's as well. We hack
2889 * the priority and make it zero.
2890 */
2891 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2892
2893 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2894
2895 *nr_scanned = sc.nr_scanned;
2896 return sc.nr_reclaimed;
2897 }
2898
2899 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2900 unsigned long nr_pages,
2901 gfp_t gfp_mask,
2902 bool may_swap)
2903 {
2904 struct zonelist *zonelist;
2905 unsigned long nr_reclaimed;
2906 int nid;
2907 struct scan_control sc = {
2908 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2909 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2910 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2911 .target_mem_cgroup = memcg,
2912 .priority = DEF_PRIORITY,
2913 .may_writepage = !laptop_mode,
2914 .may_unmap = 1,
2915 .may_swap = may_swap,
2916 };
2917
2918 /*
2919 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2920 * take care of from where we get pages. So the node where we start the
2921 * scan does not need to be the current node.
2922 */
2923 nid = mem_cgroup_select_victim_node(memcg);
2924
2925 zonelist = NODE_DATA(nid)->node_zonelists;
2926
2927 trace_mm_vmscan_memcg_reclaim_begin(0,
2928 sc.may_writepage,
2929 sc.gfp_mask);
2930
2931 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2932
2933 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2934
2935 return nr_reclaimed;
2936 }
2937 #endif
2938
2939 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2940 {
2941 struct mem_cgroup *memcg;
2942
2943 if (!total_swap_pages)
2944 return;
2945
2946 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2947 do {
2948 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2949
2950 if (inactive_anon_is_low(lruvec))
2951 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2952 sc, LRU_ACTIVE_ANON);
2953
2954 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2955 } while (memcg);
2956 }
2957
2958 static bool zone_balanced(struct zone *zone, int order,
2959 unsigned long balance_gap, int classzone_idx)
2960 {
2961 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2962 balance_gap, classzone_idx, 0))
2963 return false;
2964
2965 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2966 order, 0, classzone_idx) == COMPACT_SKIPPED)
2967 return false;
2968
2969 return true;
2970 }
2971
2972 /*
2973 * pgdat_balanced() is used when checking if a node is balanced.
2974 *
2975 * For order-0, all zones must be balanced!
2976 *
2977 * For high-order allocations only zones that meet watermarks and are in a
2978 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2979 * total of balanced pages must be at least 25% of the zones allowed by
2980 * classzone_idx for the node to be considered balanced. Forcing all zones to
2981 * be balanced for high orders can cause excessive reclaim when there are
2982 * imbalanced zones.
2983 * The choice of 25% is due to
2984 * o a 16M DMA zone that is balanced will not balance a zone on any
2985 * reasonable sized machine
2986 * o On all other machines, the top zone must be at least a reasonable
2987 * percentage of the middle zones. For example, on 32-bit x86, highmem
2988 * would need to be at least 256M for it to be balance a whole node.
2989 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2990 * to balance a node on its own. These seemed like reasonable ratios.
2991 */
2992 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2993 {
2994 unsigned long managed_pages = 0;
2995 unsigned long balanced_pages = 0;
2996 int i;
2997
2998 /* Check the watermark levels */
2999 for (i = 0; i <= classzone_idx; i++) {
3000 struct zone *zone = pgdat->node_zones + i;
3001
3002 if (!populated_zone(zone))
3003 continue;
3004
3005 managed_pages += zone->managed_pages;
3006
3007 /*
3008 * A special case here:
3009 *
3010 * balance_pgdat() skips over all_unreclaimable after
3011 * DEF_PRIORITY. Effectively, it considers them balanced so
3012 * they must be considered balanced here as well!
3013 */
3014 if (!zone_reclaimable(zone)) {
3015 balanced_pages += zone->managed_pages;
3016 continue;
3017 }
3018
3019 if (zone_balanced(zone, order, 0, i))
3020 balanced_pages += zone->managed_pages;
3021 else if (!order)
3022 return false;
3023 }
3024
3025 if (order)
3026 return balanced_pages >= (managed_pages >> 2);
3027 else
3028 return true;
3029 }
3030
3031 /*
3032 * Prepare kswapd for sleeping. This verifies that there are no processes
3033 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3034 *
3035 * Returns true if kswapd is ready to sleep
3036 */
3037 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3038 int classzone_idx)
3039 {
3040 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3041 if (remaining)
3042 return false;
3043
3044 /*
3045 * The throttled processes are normally woken up in balance_pgdat() as
3046 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3047 * race between when kswapd checks the watermarks and a process gets
3048 * throttled. There is also a potential race if processes get
3049 * throttled, kswapd wakes, a large process exits thereby balancing the
3050 * zones, which causes kswapd to exit balance_pgdat() before reaching
3051 * the wake up checks. If kswapd is going to sleep, no process should
3052 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3053 * the wake up is premature, processes will wake kswapd and get
3054 * throttled again. The difference from wake ups in balance_pgdat() is
3055 * that here we are under prepare_to_wait().
3056 */
3057 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3058 wake_up_all(&pgdat->pfmemalloc_wait);
3059
3060 return pgdat_balanced(pgdat, order, classzone_idx);
3061 }
3062
3063 /*
3064 * kswapd shrinks the zone by the number of pages required to reach
3065 * the high watermark.
3066 *
3067 * Returns true if kswapd scanned at least the requested number of pages to
3068 * reclaim or if the lack of progress was due to pages under writeback.
3069 * This is used to determine if the scanning priority needs to be raised.
3070 */
3071 static bool kswapd_shrink_zone(struct zone *zone,
3072 int classzone_idx,
3073 struct scan_control *sc,
3074 unsigned long *nr_attempted)
3075 {
3076 int testorder = sc->order;
3077 unsigned long balance_gap;
3078 bool lowmem_pressure;
3079
3080 /* Reclaim above the high watermark. */
3081 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3082
3083 /*
3084 * Kswapd reclaims only single pages with compaction enabled. Trying
3085 * too hard to reclaim until contiguous free pages have become
3086 * available can hurt performance by evicting too much useful data
3087 * from memory. Do not reclaim more than needed for compaction.
3088 */
3089 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3090 compaction_suitable(zone, sc->order, 0, classzone_idx)
3091 != COMPACT_SKIPPED)
3092 testorder = 0;
3093
3094 /*
3095 * We put equal pressure on every zone, unless one zone has way too
3096 * many pages free already. The "too many pages" is defined as the
3097 * high wmark plus a "gap" where the gap is either the low
3098 * watermark or 1% of the zone, whichever is smaller.
3099 */
3100 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3101 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3102
3103 /*
3104 * If there is no low memory pressure or the zone is balanced then no
3105 * reclaim is necessary
3106 */
3107 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3108 if (!lowmem_pressure && zone_balanced(zone, testorder,
3109 balance_gap, classzone_idx))
3110 return true;
3111
3112 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3113
3114 /* Account for the number of pages attempted to reclaim */
3115 *nr_attempted += sc->nr_to_reclaim;
3116
3117 clear_bit(ZONE_WRITEBACK, &zone->flags);
3118
3119 /*
3120 * If a zone reaches its high watermark, consider it to be no longer
3121 * congested. It's possible there are dirty pages backed by congested
3122 * BDIs but as pressure is relieved, speculatively avoid congestion
3123 * waits.
3124 */
3125 if (zone_reclaimable(zone) &&
3126 zone_balanced(zone, testorder, 0, classzone_idx)) {
3127 clear_bit(ZONE_CONGESTED, &zone->flags);
3128 clear_bit(ZONE_DIRTY, &zone->flags);
3129 }
3130
3131 return sc->nr_scanned >= sc->nr_to_reclaim;
3132 }
3133
3134 /*
3135 * For kswapd, balance_pgdat() will work across all this node's zones until
3136 * they are all at high_wmark_pages(zone).
3137 *
3138 * Returns the final order kswapd was reclaiming at
3139 *
3140 * There is special handling here for zones which are full of pinned pages.
3141 * This can happen if the pages are all mlocked, or if they are all used by
3142 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3143 * What we do is to detect the case where all pages in the zone have been
3144 * scanned twice and there has been zero successful reclaim. Mark the zone as
3145 * dead and from now on, only perform a short scan. Basically we're polling
3146 * the zone for when the problem goes away.
3147 *
3148 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3149 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3150 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3151 * lower zones regardless of the number of free pages in the lower zones. This
3152 * interoperates with the page allocator fallback scheme to ensure that aging
3153 * of pages is balanced across the zones.
3154 */
3155 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3156 int *classzone_idx)
3157 {
3158 int i;
3159 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3160 unsigned long nr_soft_reclaimed;
3161 unsigned long nr_soft_scanned;
3162 struct scan_control sc = {
3163 .gfp_mask = GFP_KERNEL,
3164 .order = order,
3165 .priority = DEF_PRIORITY,
3166 .may_writepage = !laptop_mode,
3167 .may_unmap = 1,
3168 .may_swap = 1,
3169 };
3170 count_vm_event(PAGEOUTRUN);
3171
3172 do {
3173 unsigned long nr_attempted = 0;
3174 bool raise_priority = true;
3175 bool pgdat_needs_compaction = (order > 0);
3176
3177 sc.nr_reclaimed = 0;
3178
3179 /*
3180 * Scan in the highmem->dma direction for the highest
3181 * zone which needs scanning
3182 */
3183 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3184 struct zone *zone = pgdat->node_zones + i;
3185
3186 if (!populated_zone(zone))
3187 continue;
3188
3189 if (sc.priority != DEF_PRIORITY &&
3190 !zone_reclaimable(zone))
3191 continue;
3192
3193 /*
3194 * Do some background aging of the anon list, to give
3195 * pages a chance to be referenced before reclaiming.
3196 */
3197 age_active_anon(zone, &sc);
3198
3199 /*
3200 * If the number of buffer_heads in the machine
3201 * exceeds the maximum allowed level and this node
3202 * has a highmem zone, force kswapd to reclaim from
3203 * it to relieve lowmem pressure.
3204 */
3205 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3206 end_zone = i;
3207 break;
3208 }
3209
3210 if (!zone_balanced(zone, order, 0, 0)) {
3211 end_zone = i;
3212 break;
3213 } else {
3214 /*
3215 * If balanced, clear the dirty and congested
3216 * flags
3217 */
3218 clear_bit(ZONE_CONGESTED, &zone->flags);
3219 clear_bit(ZONE_DIRTY, &zone->flags);
3220 }
3221 }
3222
3223 if (i < 0)
3224 goto out;
3225
3226 for (i = 0; i <= end_zone; i++) {
3227 struct zone *zone = pgdat->node_zones + i;
3228
3229 if (!populated_zone(zone))
3230 continue;
3231
3232 /*
3233 * If any zone is currently balanced then kswapd will
3234 * not call compaction as it is expected that the
3235 * necessary pages are already available.
3236 */
3237 if (pgdat_needs_compaction &&
3238 zone_watermark_ok(zone, order,
3239 low_wmark_pages(zone),
3240 *classzone_idx, 0))
3241 pgdat_needs_compaction = false;
3242 }
3243
3244 /*
3245 * If we're getting trouble reclaiming, start doing writepage
3246 * even in laptop mode.
3247 */
3248 if (sc.priority < DEF_PRIORITY - 2)
3249 sc.may_writepage = 1;
3250
3251 /*
3252 * Now scan the zone in the dma->highmem direction, stopping
3253 * at the last zone which needs scanning.
3254 *
3255 * We do this because the page allocator works in the opposite
3256 * direction. This prevents the page allocator from allocating
3257 * pages behind kswapd's direction of progress, which would
3258 * cause too much scanning of the lower zones.
3259 */
3260 for (i = 0; i <= end_zone; i++) {
3261 struct zone *zone = pgdat->node_zones + i;
3262
3263 if (!populated_zone(zone))
3264 continue;
3265
3266 if (sc.priority != DEF_PRIORITY &&
3267 !zone_reclaimable(zone))
3268 continue;
3269
3270 sc.nr_scanned = 0;
3271
3272 nr_soft_scanned = 0;
3273 /*
3274 * Call soft limit reclaim before calling shrink_zone.
3275 */
3276 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3277 order, sc.gfp_mask,
3278 &nr_soft_scanned);
3279 sc.nr_reclaimed += nr_soft_reclaimed;
3280
3281 /*
3282 * There should be no need to raise the scanning
3283 * priority if enough pages are already being scanned
3284 * that that high watermark would be met at 100%
3285 * efficiency.
3286 */
3287 if (kswapd_shrink_zone(zone, end_zone,
3288 &sc, &nr_attempted))
3289 raise_priority = false;
3290 }
3291
3292 /*
3293 * If the low watermark is met there is no need for processes
3294 * to be throttled on pfmemalloc_wait as they should not be
3295 * able to safely make forward progress. Wake them
3296 */
3297 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3298 pfmemalloc_watermark_ok(pgdat))
3299 wake_up_all(&pgdat->pfmemalloc_wait);
3300
3301 /*
3302 * Fragmentation may mean that the system cannot be rebalanced
3303 * for high-order allocations in all zones. If twice the
3304 * allocation size has been reclaimed and the zones are still
3305 * not balanced then recheck the watermarks at order-0 to
3306 * prevent kswapd reclaiming excessively. Assume that a
3307 * process requested a high-order can direct reclaim/compact.
3308 */
3309 if (order && sc.nr_reclaimed >= 2UL << order)
3310 order = sc.order = 0;
3311
3312 /* Check if kswapd should be suspending */
3313 if (try_to_freeze() || kthread_should_stop())
3314 break;
3315
3316 /*
3317 * Compact if necessary and kswapd is reclaiming at least the
3318 * high watermark number of pages as requsted
3319 */
3320 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3321 compact_pgdat(pgdat, order);
3322
3323 /*
3324 * Raise priority if scanning rate is too low or there was no
3325 * progress in reclaiming pages
3326 */
3327 if (raise_priority || !sc.nr_reclaimed)
3328 sc.priority--;
3329 } while (sc.priority >= 1 &&
3330 !pgdat_balanced(pgdat, order, *classzone_idx));
3331
3332 out:
3333 /*
3334 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3335 * makes a decision on the order we were last reclaiming at. However,
3336 * if another caller entered the allocator slow path while kswapd
3337 * was awake, order will remain at the higher level
3338 */
3339 *classzone_idx = end_zone;
3340 return order;
3341 }
3342
3343 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3344 {
3345 long remaining = 0;
3346 DEFINE_WAIT(wait);
3347
3348 if (freezing(current) || kthread_should_stop())
3349 return;
3350
3351 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3352
3353 /* Try to sleep for a short interval */
3354 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3355 remaining = schedule_timeout(HZ/10);
3356 finish_wait(&pgdat->kswapd_wait, &wait);
3357 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3358 }
3359
3360 /*
3361 * After a short sleep, check if it was a premature sleep. If not, then
3362 * go fully to sleep until explicitly woken up.
3363 */
3364 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3365 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3366
3367 /*
3368 * vmstat counters are not perfectly accurate and the estimated
3369 * value for counters such as NR_FREE_PAGES can deviate from the
3370 * true value by nr_online_cpus * threshold. To avoid the zone
3371 * watermarks being breached while under pressure, we reduce the
3372 * per-cpu vmstat threshold while kswapd is awake and restore
3373 * them before going back to sleep.
3374 */
3375 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3376
3377 /*
3378 * Compaction records what page blocks it recently failed to
3379 * isolate pages from and skips them in the future scanning.
3380 * When kswapd is going to sleep, it is reasonable to assume
3381 * that pages and compaction may succeed so reset the cache.
3382 */
3383 reset_isolation_suitable(pgdat);
3384
3385 if (!kthread_should_stop())
3386 schedule();
3387
3388 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3389 } else {
3390 if (remaining)
3391 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3392 else
3393 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3394 }
3395 finish_wait(&pgdat->kswapd_wait, &wait);
3396 }
3397
3398 /*
3399 * The background pageout daemon, started as a kernel thread
3400 * from the init process.
3401 *
3402 * This basically trickles out pages so that we have _some_
3403 * free memory available even if there is no other activity
3404 * that frees anything up. This is needed for things like routing
3405 * etc, where we otherwise might have all activity going on in
3406 * asynchronous contexts that cannot page things out.
3407 *
3408 * If there are applications that are active memory-allocators
3409 * (most normal use), this basically shouldn't matter.
3410 */
3411 static int kswapd(void *p)
3412 {
3413 unsigned long order, new_order;
3414 unsigned balanced_order;
3415 int classzone_idx, new_classzone_idx;
3416 int balanced_classzone_idx;
3417 pg_data_t *pgdat = (pg_data_t*)p;
3418 struct task_struct *tsk = current;
3419
3420 struct reclaim_state reclaim_state = {
3421 .reclaimed_slab = 0,
3422 };
3423 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3424
3425 lockdep_set_current_reclaim_state(GFP_KERNEL);
3426
3427 if (!cpumask_empty(cpumask))
3428 set_cpus_allowed_ptr(tsk, cpumask);
3429 current->reclaim_state = &reclaim_state;
3430
3431 /*
3432 * Tell the memory management that we're a "memory allocator",
3433 * and that if we need more memory we should get access to it
3434 * regardless (see "__alloc_pages()"). "kswapd" should
3435 * never get caught in the normal page freeing logic.
3436 *
3437 * (Kswapd normally doesn't need memory anyway, but sometimes
3438 * you need a small amount of memory in order to be able to
3439 * page out something else, and this flag essentially protects
3440 * us from recursively trying to free more memory as we're
3441 * trying to free the first piece of memory in the first place).
3442 */
3443 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3444 set_freezable();
3445
3446 order = new_order = 0;
3447 balanced_order = 0;
3448 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3449 balanced_classzone_idx = classzone_idx;
3450 for ( ; ; ) {
3451 bool ret;
3452
3453 /*
3454 * If the last balance_pgdat was unsuccessful it's unlikely a
3455 * new request of a similar or harder type will succeed soon
3456 * so consider going to sleep on the basis we reclaimed at
3457 */
3458 if (balanced_classzone_idx >= new_classzone_idx &&
3459 balanced_order == new_order) {
3460 new_order = pgdat->kswapd_max_order;
3461 new_classzone_idx = pgdat->classzone_idx;
3462 pgdat->kswapd_max_order = 0;
3463 pgdat->classzone_idx = pgdat->nr_zones - 1;
3464 }
3465
3466 if (order < new_order || classzone_idx > new_classzone_idx) {
3467 /*
3468 * Don't sleep if someone wants a larger 'order'
3469 * allocation or has tigher zone constraints
3470 */
3471 order = new_order;
3472 classzone_idx = new_classzone_idx;
3473 } else {
3474 kswapd_try_to_sleep(pgdat, balanced_order,
3475 balanced_classzone_idx);
3476 order = pgdat->kswapd_max_order;
3477 classzone_idx = pgdat->classzone_idx;
3478 new_order = order;
3479 new_classzone_idx = classzone_idx;
3480 pgdat->kswapd_max_order = 0;
3481 pgdat->classzone_idx = pgdat->nr_zones - 1;
3482 }
3483
3484 ret = try_to_freeze();
3485 if (kthread_should_stop())
3486 break;
3487
3488 /*
3489 * We can speed up thawing tasks if we don't call balance_pgdat
3490 * after returning from the refrigerator
3491 */
3492 if (!ret) {
3493 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3494 balanced_classzone_idx = classzone_idx;
3495 balanced_order = balance_pgdat(pgdat, order,
3496 &balanced_classzone_idx);
3497 }
3498 }
3499
3500 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3501 current->reclaim_state = NULL;
3502 lockdep_clear_current_reclaim_state();
3503
3504 return 0;
3505 }
3506
3507 /*
3508 * A zone is low on free memory, so wake its kswapd task to service it.
3509 */
3510 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3511 {
3512 pg_data_t *pgdat;
3513
3514 if (!populated_zone(zone))
3515 return;
3516
3517 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3518 return;
3519 pgdat = zone->zone_pgdat;
3520 if (pgdat->kswapd_max_order < order) {
3521 pgdat->kswapd_max_order = order;
3522 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3523 }
3524 if (!waitqueue_active(&pgdat->kswapd_wait))
3525 return;
3526 if (zone_balanced(zone, order, 0, 0))
3527 return;
3528
3529 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3530 wake_up_interruptible(&pgdat->kswapd_wait);
3531 }
3532
3533 #ifdef CONFIG_HIBERNATION
3534 /*
3535 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3536 * freed pages.
3537 *
3538 * Rather than trying to age LRUs the aim is to preserve the overall
3539 * LRU order by reclaiming preferentially
3540 * inactive > active > active referenced > active mapped
3541 */
3542 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3543 {
3544 struct reclaim_state reclaim_state;
3545 struct scan_control sc = {
3546 .nr_to_reclaim = nr_to_reclaim,
3547 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3548 .priority = DEF_PRIORITY,
3549 .may_writepage = 1,
3550 .may_unmap = 1,
3551 .may_swap = 1,
3552 .hibernation_mode = 1,
3553 };
3554 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3555 struct task_struct *p = current;
3556 unsigned long nr_reclaimed;
3557
3558 p->flags |= PF_MEMALLOC;
3559 lockdep_set_current_reclaim_state(sc.gfp_mask);
3560 reclaim_state.reclaimed_slab = 0;
3561 p->reclaim_state = &reclaim_state;
3562
3563 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3564
3565 p->reclaim_state = NULL;
3566 lockdep_clear_current_reclaim_state();
3567 p->flags &= ~PF_MEMALLOC;
3568
3569 return nr_reclaimed;
3570 }
3571 #endif /* CONFIG_HIBERNATION */
3572
3573 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3574 not required for correctness. So if the last cpu in a node goes
3575 away, we get changed to run anywhere: as the first one comes back,
3576 restore their cpu bindings. */
3577 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3578 void *hcpu)
3579 {
3580 int nid;
3581
3582 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3583 for_each_node_state(nid, N_MEMORY) {
3584 pg_data_t *pgdat = NODE_DATA(nid);
3585 const struct cpumask *mask;
3586
3587 mask = cpumask_of_node(pgdat->node_id);
3588
3589 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3590 /* One of our CPUs online: restore mask */
3591 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3592 }
3593 }
3594 return NOTIFY_OK;
3595 }
3596
3597 /*
3598 * This kswapd start function will be called by init and node-hot-add.
3599 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3600 */
3601 int kswapd_run(int nid)
3602 {
3603 pg_data_t *pgdat = NODE_DATA(nid);
3604 int ret = 0;
3605
3606 if (pgdat->kswapd)
3607 return 0;
3608
3609 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3610 if (IS_ERR(pgdat->kswapd)) {
3611 /* failure at boot is fatal */
3612 BUG_ON(system_state == SYSTEM_BOOTING);
3613 pr_err("Failed to start kswapd on node %d\n", nid);
3614 ret = PTR_ERR(pgdat->kswapd);
3615 pgdat->kswapd = NULL;
3616 }
3617 return ret;
3618 }
3619
3620 /*
3621 * Called by memory hotplug when all memory in a node is offlined. Caller must
3622 * hold mem_hotplug_begin/end().
3623 */
3624 void kswapd_stop(int nid)
3625 {
3626 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3627
3628 if (kswapd) {
3629 kthread_stop(kswapd);
3630 NODE_DATA(nid)->kswapd = NULL;
3631 }
3632 }
3633
3634 static int __init kswapd_init(void)
3635 {
3636 int nid;
3637
3638 swap_setup();
3639 for_each_node_state(nid, N_MEMORY)
3640 kswapd_run(nid);
3641 hotcpu_notifier(cpu_callback, 0);
3642 return 0;
3643 }
3644
3645 module_init(kswapd_init)
3646
3647 #ifdef CONFIG_NUMA
3648 /*
3649 * Zone reclaim mode
3650 *
3651 * If non-zero call zone_reclaim when the number of free pages falls below
3652 * the watermarks.
3653 */
3654 int zone_reclaim_mode __read_mostly;
3655
3656 #define RECLAIM_OFF 0
3657 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3658 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3659 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3660
3661 /*
3662 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3663 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3664 * a zone.
3665 */
3666 #define ZONE_RECLAIM_PRIORITY 4
3667
3668 /*
3669 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3670 * occur.
3671 */
3672 int sysctl_min_unmapped_ratio = 1;
3673
3674 /*
3675 * If the number of slab pages in a zone grows beyond this percentage then
3676 * slab reclaim needs to occur.
3677 */
3678 int sysctl_min_slab_ratio = 5;
3679
3680 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3681 {
3682 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3683 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3684 zone_page_state(zone, NR_ACTIVE_FILE);
3685
3686 /*
3687 * It's possible for there to be more file mapped pages than
3688 * accounted for by the pages on the file LRU lists because
3689 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3690 */
3691 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3692 }
3693
3694 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3695 static long zone_pagecache_reclaimable(struct zone *zone)
3696 {
3697 long nr_pagecache_reclaimable;
3698 long delta = 0;
3699
3700 /*
3701 * If RECLAIM_UNMAP is set, then all file pages are considered
3702 * potentially reclaimable. Otherwise, we have to worry about
3703 * pages like swapcache and zone_unmapped_file_pages() provides
3704 * a better estimate
3705 */
3706 if (zone_reclaim_mode & RECLAIM_UNMAP)
3707 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3708 else
3709 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3710
3711 /* If we can't clean pages, remove dirty pages from consideration */
3712 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3713 delta += zone_page_state(zone, NR_FILE_DIRTY);
3714
3715 /* Watch for any possible underflows due to delta */
3716 if (unlikely(delta > nr_pagecache_reclaimable))
3717 delta = nr_pagecache_reclaimable;
3718
3719 return nr_pagecache_reclaimable - delta;
3720 }
3721
3722 /*
3723 * Try to free up some pages from this zone through reclaim.
3724 */
3725 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3726 {
3727 /* Minimum pages needed in order to stay on node */
3728 const unsigned long nr_pages = 1 << order;
3729 struct task_struct *p = current;
3730 struct reclaim_state reclaim_state;
3731 struct scan_control sc = {
3732 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3733 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3734 .order = order,
3735 .priority = ZONE_RECLAIM_PRIORITY,
3736 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3737 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3738 .may_swap = 1,
3739 };
3740
3741 cond_resched();
3742 /*
3743 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3744 * and we also need to be able to write out pages for RECLAIM_WRITE
3745 * and RECLAIM_UNMAP.
3746 */
3747 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3748 lockdep_set_current_reclaim_state(gfp_mask);
3749 reclaim_state.reclaimed_slab = 0;
3750 p->reclaim_state = &reclaim_state;
3751
3752 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3753 /*
3754 * Free memory by calling shrink zone with increasing
3755 * priorities until we have enough memory freed.
3756 */
3757 do {
3758 shrink_zone(zone, &sc, true);
3759 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3760 }
3761
3762 p->reclaim_state = NULL;
3763 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3764 lockdep_clear_current_reclaim_state();
3765 return sc.nr_reclaimed >= nr_pages;
3766 }
3767
3768 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3769 {
3770 int node_id;
3771 int ret;
3772
3773 /*
3774 * Zone reclaim reclaims unmapped file backed pages and
3775 * slab pages if we are over the defined limits.
3776 *
3777 * A small portion of unmapped file backed pages is needed for
3778 * file I/O otherwise pages read by file I/O will be immediately
3779 * thrown out if the zone is overallocated. So we do not reclaim
3780 * if less than a specified percentage of the zone is used by
3781 * unmapped file backed pages.
3782 */
3783 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3784 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3785 return ZONE_RECLAIM_FULL;
3786
3787 if (!zone_reclaimable(zone))
3788 return ZONE_RECLAIM_FULL;
3789
3790 /*
3791 * Do not scan if the allocation should not be delayed.
3792 */
3793 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3794 return ZONE_RECLAIM_NOSCAN;
3795
3796 /*
3797 * Only run zone reclaim on the local zone or on zones that do not
3798 * have associated processors. This will favor the local processor
3799 * over remote processors and spread off node memory allocations
3800 * as wide as possible.
3801 */
3802 node_id = zone_to_nid(zone);
3803 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3804 return ZONE_RECLAIM_NOSCAN;
3805
3806 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3807 return ZONE_RECLAIM_NOSCAN;
3808
3809 ret = __zone_reclaim(zone, gfp_mask, order);
3810 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3811
3812 if (!ret)
3813 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3814
3815 return ret;
3816 }
3817 #endif
3818
3819 /*
3820 * page_evictable - test whether a page is evictable
3821 * @page: the page to test
3822 *
3823 * Test whether page is evictable--i.e., should be placed on active/inactive
3824 * lists vs unevictable list.
3825 *
3826 * Reasons page might not be evictable:
3827 * (1) page's mapping marked unevictable
3828 * (2) page is part of an mlocked VMA
3829 *
3830 */
3831 int page_evictable(struct page *page)
3832 {
3833 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3834 }
3835
3836 #ifdef CONFIG_SHMEM
3837 /**
3838 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3839 * @pages: array of pages to check
3840 * @nr_pages: number of pages to check
3841 *
3842 * Checks pages for evictability and moves them to the appropriate lru list.
3843 *
3844 * This function is only used for SysV IPC SHM_UNLOCK.
3845 */
3846 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3847 {
3848 struct lruvec *lruvec;
3849 struct zone *zone = NULL;
3850 int pgscanned = 0;
3851 int pgrescued = 0;
3852 int i;
3853
3854 for (i = 0; i < nr_pages; i++) {
3855 struct page *page = pages[i];
3856 struct zone *pagezone;
3857
3858 pgscanned++;
3859 pagezone = page_zone(page);
3860 if (pagezone != zone) {
3861 if (zone)
3862 spin_unlock_irq(&zone->lru_lock);
3863 zone = pagezone;
3864 spin_lock_irq(&zone->lru_lock);
3865 }
3866 lruvec = mem_cgroup_page_lruvec(page, zone);
3867
3868 if (!PageLRU(page) || !PageUnevictable(page))
3869 continue;
3870
3871 if (page_evictable(page)) {
3872 enum lru_list lru = page_lru_base_type(page);
3873
3874 VM_BUG_ON_PAGE(PageActive(page), page);
3875 ClearPageUnevictable(page);
3876 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3877 add_page_to_lru_list(page, lruvec, lru);
3878 pgrescued++;
3879 }
3880 }
3881
3882 if (zone) {
3883 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3884 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3885 spin_unlock_irq(&zone->lru_lock);
3886 }
3887 }
3888 #endif /* CONFIG_SHMEM */