]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/vmscan.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 #include <linux/sched/sysctl.h>
59
60 #include "internal.h"
61 #include "swap.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
88 /* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
104 /* Proactive reclaim invoked by userspace through memory.reclaim */
105 unsigned int proactive:1;
106
107 /*
108 * Cgroup memory below memory.low is protected as long as we
109 * don't threaten to OOM. If any cgroup is reclaimed at
110 * reduced force or passed over entirely due to its memory.low
111 * setting (memcg_low_skipped), and nothing is reclaimed as a
112 * result, then go back for one more cycle that reclaims the protected
113 * memory (memcg_low_reclaim) to avert OOM.
114 */
115 unsigned int memcg_low_reclaim:1;
116 unsigned int memcg_low_skipped:1;
117
118 unsigned int hibernation_mode:1;
119
120 /* One of the zones is ready for compaction */
121 unsigned int compaction_ready:1;
122
123 /* There is easily reclaimable cold cache in the current node */
124 unsigned int cache_trim_mode:1;
125
126 /* The file pages on the current node are dangerously low */
127 unsigned int file_is_tiny:1;
128
129 /* Always discard instead of demoting to lower tier memory */
130 unsigned int no_demotion:1;
131
132 /* Allocation order */
133 s8 order;
134
135 /* Scan (total_size >> priority) pages at once */
136 s8 priority;
137
138 /* The highest zone to isolate pages for reclaim from */
139 s8 reclaim_idx;
140
141 /* This context's GFP mask */
142 gfp_t gfp_mask;
143
144 /* Incremented by the number of inactive pages that were scanned */
145 unsigned long nr_scanned;
146
147 /* Number of pages freed so far during a call to shrink_zones() */
148 unsigned long nr_reclaimed;
149
150 struct {
151 unsigned int dirty;
152 unsigned int unqueued_dirty;
153 unsigned int congested;
154 unsigned int writeback;
155 unsigned int immediate;
156 unsigned int file_taken;
157 unsigned int taken;
158 } nr;
159
160 /* for recording the reclaimed slab by now */
161 struct reclaim_state reclaim_state;
162 };
163
164 #ifdef ARCH_HAS_PREFETCHW
165 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
166 do { \
167 if ((_folio)->lru.prev != _base) { \
168 struct folio *prev; \
169 \
170 prev = lru_to_folio(&(_folio->lru)); \
171 prefetchw(&prev->_field); \
172 } \
173 } while (0)
174 #else
175 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
176 #endif
177
178 /*
179 * From 0 .. 200. Higher means more swappy.
180 */
181 int vm_swappiness = 60;
182
183 static void set_task_reclaim_state(struct task_struct *task,
184 struct reclaim_state *rs)
185 {
186 /* Check for an overwrite */
187 WARN_ON_ONCE(rs && task->reclaim_state);
188
189 /* Check for the nulling of an already-nulled member */
190 WARN_ON_ONCE(!rs && !task->reclaim_state);
191
192 task->reclaim_state = rs;
193 }
194
195 LIST_HEAD(shrinker_list);
196 DECLARE_RWSEM(shrinker_rwsem);
197
198 #ifdef CONFIG_MEMCG
199 static int shrinker_nr_max;
200
201 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
202 static inline int shrinker_map_size(int nr_items)
203 {
204 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
205 }
206
207 static inline int shrinker_defer_size(int nr_items)
208 {
209 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
210 }
211
212 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
213 int nid)
214 {
215 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
216 lockdep_is_held(&shrinker_rwsem));
217 }
218
219 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
220 int map_size, int defer_size,
221 int old_map_size, int old_defer_size)
222 {
223 struct shrinker_info *new, *old;
224 struct mem_cgroup_per_node *pn;
225 int nid;
226 int size = map_size + defer_size;
227
228 for_each_node(nid) {
229 pn = memcg->nodeinfo[nid];
230 old = shrinker_info_protected(memcg, nid);
231 /* Not yet online memcg */
232 if (!old)
233 return 0;
234
235 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
236 if (!new)
237 return -ENOMEM;
238
239 new->nr_deferred = (atomic_long_t *)(new + 1);
240 new->map = (void *)new->nr_deferred + defer_size;
241
242 /* map: set all old bits, clear all new bits */
243 memset(new->map, (int)0xff, old_map_size);
244 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
245 /* nr_deferred: copy old values, clear all new values */
246 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
247 memset((void *)new->nr_deferred + old_defer_size, 0,
248 defer_size - old_defer_size);
249
250 rcu_assign_pointer(pn->shrinker_info, new);
251 kvfree_rcu(old, rcu);
252 }
253
254 return 0;
255 }
256
257 void free_shrinker_info(struct mem_cgroup *memcg)
258 {
259 struct mem_cgroup_per_node *pn;
260 struct shrinker_info *info;
261 int nid;
262
263 for_each_node(nid) {
264 pn = memcg->nodeinfo[nid];
265 info = rcu_dereference_protected(pn->shrinker_info, true);
266 kvfree(info);
267 rcu_assign_pointer(pn->shrinker_info, NULL);
268 }
269 }
270
271 int alloc_shrinker_info(struct mem_cgroup *memcg)
272 {
273 struct shrinker_info *info;
274 int nid, size, ret = 0;
275 int map_size, defer_size = 0;
276
277 down_write(&shrinker_rwsem);
278 map_size = shrinker_map_size(shrinker_nr_max);
279 defer_size = shrinker_defer_size(shrinker_nr_max);
280 size = map_size + defer_size;
281 for_each_node(nid) {
282 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
283 if (!info) {
284 free_shrinker_info(memcg);
285 ret = -ENOMEM;
286 break;
287 }
288 info->nr_deferred = (atomic_long_t *)(info + 1);
289 info->map = (void *)info->nr_deferred + defer_size;
290 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
291 }
292 up_write(&shrinker_rwsem);
293
294 return ret;
295 }
296
297 static inline bool need_expand(int nr_max)
298 {
299 return round_up(nr_max, BITS_PER_LONG) >
300 round_up(shrinker_nr_max, BITS_PER_LONG);
301 }
302
303 static int expand_shrinker_info(int new_id)
304 {
305 int ret = 0;
306 int new_nr_max = new_id + 1;
307 int map_size, defer_size = 0;
308 int old_map_size, old_defer_size = 0;
309 struct mem_cgroup *memcg;
310
311 if (!need_expand(new_nr_max))
312 goto out;
313
314 if (!root_mem_cgroup)
315 goto out;
316
317 lockdep_assert_held(&shrinker_rwsem);
318
319 map_size = shrinker_map_size(new_nr_max);
320 defer_size = shrinker_defer_size(new_nr_max);
321 old_map_size = shrinker_map_size(shrinker_nr_max);
322 old_defer_size = shrinker_defer_size(shrinker_nr_max);
323
324 memcg = mem_cgroup_iter(NULL, NULL, NULL);
325 do {
326 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
327 old_map_size, old_defer_size);
328 if (ret) {
329 mem_cgroup_iter_break(NULL, memcg);
330 goto out;
331 }
332 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
333 out:
334 if (!ret)
335 shrinker_nr_max = new_nr_max;
336
337 return ret;
338 }
339
340 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
341 {
342 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
343 struct shrinker_info *info;
344
345 rcu_read_lock();
346 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
347 /* Pairs with smp mb in shrink_slab() */
348 smp_mb__before_atomic();
349 set_bit(shrinker_id, info->map);
350 rcu_read_unlock();
351 }
352 }
353
354 static DEFINE_IDR(shrinker_idr);
355
356 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
357 {
358 int id, ret = -ENOMEM;
359
360 if (mem_cgroup_disabled())
361 return -ENOSYS;
362
363 down_write(&shrinker_rwsem);
364 /* This may call shrinker, so it must use down_read_trylock() */
365 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
366 if (id < 0)
367 goto unlock;
368
369 if (id >= shrinker_nr_max) {
370 if (expand_shrinker_info(id)) {
371 idr_remove(&shrinker_idr, id);
372 goto unlock;
373 }
374 }
375 shrinker->id = id;
376 ret = 0;
377 unlock:
378 up_write(&shrinker_rwsem);
379 return ret;
380 }
381
382 static void unregister_memcg_shrinker(struct shrinker *shrinker)
383 {
384 int id = shrinker->id;
385
386 BUG_ON(id < 0);
387
388 lockdep_assert_held(&shrinker_rwsem);
389
390 idr_remove(&shrinker_idr, id);
391 }
392
393 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
394 struct mem_cgroup *memcg)
395 {
396 struct shrinker_info *info;
397
398 info = shrinker_info_protected(memcg, nid);
399 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
400 }
401
402 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
403 struct mem_cgroup *memcg)
404 {
405 struct shrinker_info *info;
406
407 info = shrinker_info_protected(memcg, nid);
408 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
409 }
410
411 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
412 {
413 int i, nid;
414 long nr;
415 struct mem_cgroup *parent;
416 struct shrinker_info *child_info, *parent_info;
417
418 parent = parent_mem_cgroup(memcg);
419 if (!parent)
420 parent = root_mem_cgroup;
421
422 /* Prevent from concurrent shrinker_info expand */
423 down_read(&shrinker_rwsem);
424 for_each_node(nid) {
425 child_info = shrinker_info_protected(memcg, nid);
426 parent_info = shrinker_info_protected(parent, nid);
427 for (i = 0; i < shrinker_nr_max; i++) {
428 nr = atomic_long_read(&child_info->nr_deferred[i]);
429 atomic_long_add(nr, &parent_info->nr_deferred[i]);
430 }
431 }
432 up_read(&shrinker_rwsem);
433 }
434
435 static bool cgroup_reclaim(struct scan_control *sc)
436 {
437 return sc->target_mem_cgroup;
438 }
439
440 /**
441 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
442 * @sc: scan_control in question
443 *
444 * The normal page dirty throttling mechanism in balance_dirty_pages() is
445 * completely broken with the legacy memcg and direct stalling in
446 * shrink_page_list() is used for throttling instead, which lacks all the
447 * niceties such as fairness, adaptive pausing, bandwidth proportional
448 * allocation and configurability.
449 *
450 * This function tests whether the vmscan currently in progress can assume
451 * that the normal dirty throttling mechanism is operational.
452 */
453 static bool writeback_throttling_sane(struct scan_control *sc)
454 {
455 if (!cgroup_reclaim(sc))
456 return true;
457 #ifdef CONFIG_CGROUP_WRITEBACK
458 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
459 return true;
460 #endif
461 return false;
462 }
463 #else
464 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
465 {
466 return -ENOSYS;
467 }
468
469 static void unregister_memcg_shrinker(struct shrinker *shrinker)
470 {
471 }
472
473 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
474 struct mem_cgroup *memcg)
475 {
476 return 0;
477 }
478
479 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
480 struct mem_cgroup *memcg)
481 {
482 return 0;
483 }
484
485 static bool cgroup_reclaim(struct scan_control *sc)
486 {
487 return false;
488 }
489
490 static bool writeback_throttling_sane(struct scan_control *sc)
491 {
492 return true;
493 }
494 #endif
495
496 static long xchg_nr_deferred(struct shrinker *shrinker,
497 struct shrink_control *sc)
498 {
499 int nid = sc->nid;
500
501 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 nid = 0;
503
504 if (sc->memcg &&
505 (shrinker->flags & SHRINKER_MEMCG_AWARE))
506 return xchg_nr_deferred_memcg(nid, shrinker,
507 sc->memcg);
508
509 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
510 }
511
512
513 static long add_nr_deferred(long nr, struct shrinker *shrinker,
514 struct shrink_control *sc)
515 {
516 int nid = sc->nid;
517
518 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
519 nid = 0;
520
521 if (sc->memcg &&
522 (shrinker->flags & SHRINKER_MEMCG_AWARE))
523 return add_nr_deferred_memcg(nr, nid, shrinker,
524 sc->memcg);
525
526 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
527 }
528
529 static bool can_demote(int nid, struct scan_control *sc)
530 {
531 if (!numa_demotion_enabled)
532 return false;
533 if (sc && sc->no_demotion)
534 return false;
535 if (next_demotion_node(nid) == NUMA_NO_NODE)
536 return false;
537
538 return true;
539 }
540
541 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
542 int nid,
543 struct scan_control *sc)
544 {
545 if (memcg == NULL) {
546 /*
547 * For non-memcg reclaim, is there
548 * space in any swap device?
549 */
550 if (get_nr_swap_pages() > 0)
551 return true;
552 } else {
553 /* Is the memcg below its swap limit? */
554 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
555 return true;
556 }
557
558 /*
559 * The page can not be swapped.
560 *
561 * Can it be reclaimed from this node via demotion?
562 */
563 return can_demote(nid, sc);
564 }
565
566 /*
567 * This misses isolated pages which are not accounted for to save counters.
568 * As the data only determines if reclaim or compaction continues, it is
569 * not expected that isolated pages will be a dominating factor.
570 */
571 unsigned long zone_reclaimable_pages(struct zone *zone)
572 {
573 unsigned long nr;
574
575 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
576 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
577 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
578 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
579 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
580
581 return nr;
582 }
583
584 /**
585 * lruvec_lru_size - Returns the number of pages on the given LRU list.
586 * @lruvec: lru vector
587 * @lru: lru to use
588 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
589 */
590 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
591 int zone_idx)
592 {
593 unsigned long size = 0;
594 int zid;
595
596 for (zid = 0; zid <= zone_idx; zid++) {
597 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
598
599 if (!managed_zone(zone))
600 continue;
601
602 if (!mem_cgroup_disabled())
603 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
604 else
605 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
606 }
607 return size;
608 }
609
610 /*
611 * Add a shrinker callback to be called from the vm.
612 */
613 static int __prealloc_shrinker(struct shrinker *shrinker)
614 {
615 unsigned int size;
616 int err;
617
618 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
619 err = prealloc_memcg_shrinker(shrinker);
620 if (err != -ENOSYS)
621 return err;
622
623 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
624 }
625
626 size = sizeof(*shrinker->nr_deferred);
627 if (shrinker->flags & SHRINKER_NUMA_AWARE)
628 size *= nr_node_ids;
629
630 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
631 if (!shrinker->nr_deferred)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 #ifdef CONFIG_SHRINKER_DEBUG
638 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
639 {
640 va_list ap;
641 int err;
642
643 va_start(ap, fmt);
644 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
645 va_end(ap);
646 if (!shrinker->name)
647 return -ENOMEM;
648
649 err = __prealloc_shrinker(shrinker);
650 if (err) {
651 kfree_const(shrinker->name);
652 shrinker->name = NULL;
653 }
654
655 return err;
656 }
657 #else
658 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
659 {
660 return __prealloc_shrinker(shrinker);
661 }
662 #endif
663
664 void free_prealloced_shrinker(struct shrinker *shrinker)
665 {
666 #ifdef CONFIG_SHRINKER_DEBUG
667 kfree_const(shrinker->name);
668 shrinker->name = NULL;
669 #endif
670 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
671 down_write(&shrinker_rwsem);
672 unregister_memcg_shrinker(shrinker);
673 up_write(&shrinker_rwsem);
674 return;
675 }
676
677 kfree(shrinker->nr_deferred);
678 shrinker->nr_deferred = NULL;
679 }
680
681 void register_shrinker_prepared(struct shrinker *shrinker)
682 {
683 down_write(&shrinker_rwsem);
684 list_add_tail(&shrinker->list, &shrinker_list);
685 shrinker->flags |= SHRINKER_REGISTERED;
686 shrinker_debugfs_add(shrinker);
687 up_write(&shrinker_rwsem);
688 }
689
690 static int __register_shrinker(struct shrinker *shrinker)
691 {
692 int err = __prealloc_shrinker(shrinker);
693
694 if (err)
695 return err;
696 register_shrinker_prepared(shrinker);
697 return 0;
698 }
699
700 #ifdef CONFIG_SHRINKER_DEBUG
701 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
702 {
703 va_list ap;
704 int err;
705
706 va_start(ap, fmt);
707 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
708 va_end(ap);
709 if (!shrinker->name)
710 return -ENOMEM;
711
712 err = __register_shrinker(shrinker);
713 if (err) {
714 kfree_const(shrinker->name);
715 shrinker->name = NULL;
716 }
717 return err;
718 }
719 #else
720 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
721 {
722 return __register_shrinker(shrinker);
723 }
724 #endif
725 EXPORT_SYMBOL(register_shrinker);
726
727 /*
728 * Remove one
729 */
730 void unregister_shrinker(struct shrinker *shrinker)
731 {
732 if (!(shrinker->flags & SHRINKER_REGISTERED))
733 return;
734
735 down_write(&shrinker_rwsem);
736 list_del(&shrinker->list);
737 shrinker->flags &= ~SHRINKER_REGISTERED;
738 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
739 unregister_memcg_shrinker(shrinker);
740 shrinker_debugfs_remove(shrinker);
741 up_write(&shrinker_rwsem);
742
743 kfree(shrinker->nr_deferred);
744 shrinker->nr_deferred = NULL;
745 }
746 EXPORT_SYMBOL(unregister_shrinker);
747
748 /**
749 * synchronize_shrinkers - Wait for all running shrinkers to complete.
750 *
751 * This is equivalent to calling unregister_shrink() and register_shrinker(),
752 * but atomically and with less overhead. This is useful to guarantee that all
753 * shrinker invocations have seen an update, before freeing memory, similar to
754 * rcu.
755 */
756 void synchronize_shrinkers(void)
757 {
758 down_write(&shrinker_rwsem);
759 up_write(&shrinker_rwsem);
760 }
761 EXPORT_SYMBOL(synchronize_shrinkers);
762
763 #define SHRINK_BATCH 128
764
765 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
766 struct shrinker *shrinker, int priority)
767 {
768 unsigned long freed = 0;
769 unsigned long long delta;
770 long total_scan;
771 long freeable;
772 long nr;
773 long new_nr;
774 long batch_size = shrinker->batch ? shrinker->batch
775 : SHRINK_BATCH;
776 long scanned = 0, next_deferred;
777
778 freeable = shrinker->count_objects(shrinker, shrinkctl);
779 if (freeable == 0 || freeable == SHRINK_EMPTY)
780 return freeable;
781
782 /*
783 * copy the current shrinker scan count into a local variable
784 * and zero it so that other concurrent shrinker invocations
785 * don't also do this scanning work.
786 */
787 nr = xchg_nr_deferred(shrinker, shrinkctl);
788
789 if (shrinker->seeks) {
790 delta = freeable >> priority;
791 delta *= 4;
792 do_div(delta, shrinker->seeks);
793 } else {
794 /*
795 * These objects don't require any IO to create. Trim
796 * them aggressively under memory pressure to keep
797 * them from causing refetches in the IO caches.
798 */
799 delta = freeable / 2;
800 }
801
802 total_scan = nr >> priority;
803 total_scan += delta;
804 total_scan = min(total_scan, (2 * freeable));
805
806 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
807 freeable, delta, total_scan, priority);
808
809 /*
810 * Normally, we should not scan less than batch_size objects in one
811 * pass to avoid too frequent shrinker calls, but if the slab has less
812 * than batch_size objects in total and we are really tight on memory,
813 * we will try to reclaim all available objects, otherwise we can end
814 * up failing allocations although there are plenty of reclaimable
815 * objects spread over several slabs with usage less than the
816 * batch_size.
817 *
818 * We detect the "tight on memory" situations by looking at the total
819 * number of objects we want to scan (total_scan). If it is greater
820 * than the total number of objects on slab (freeable), we must be
821 * scanning at high prio and therefore should try to reclaim as much as
822 * possible.
823 */
824 while (total_scan >= batch_size ||
825 total_scan >= freeable) {
826 unsigned long ret;
827 unsigned long nr_to_scan = min(batch_size, total_scan);
828
829 shrinkctl->nr_to_scan = nr_to_scan;
830 shrinkctl->nr_scanned = nr_to_scan;
831 ret = shrinker->scan_objects(shrinker, shrinkctl);
832 if (ret == SHRINK_STOP)
833 break;
834 freed += ret;
835
836 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
837 total_scan -= shrinkctl->nr_scanned;
838 scanned += shrinkctl->nr_scanned;
839
840 cond_resched();
841 }
842
843 /*
844 * The deferred work is increased by any new work (delta) that wasn't
845 * done, decreased by old deferred work that was done now.
846 *
847 * And it is capped to two times of the freeable items.
848 */
849 next_deferred = max_t(long, (nr + delta - scanned), 0);
850 next_deferred = min(next_deferred, (2 * freeable));
851
852 /*
853 * move the unused scan count back into the shrinker in a
854 * manner that handles concurrent updates.
855 */
856 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
857
858 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
859 return freed;
860 }
861
862 #ifdef CONFIG_MEMCG
863 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
864 struct mem_cgroup *memcg, int priority)
865 {
866 struct shrinker_info *info;
867 unsigned long ret, freed = 0;
868 int i;
869
870 if (!mem_cgroup_online(memcg))
871 return 0;
872
873 if (!down_read_trylock(&shrinker_rwsem))
874 return 0;
875
876 info = shrinker_info_protected(memcg, nid);
877 if (unlikely(!info))
878 goto unlock;
879
880 for_each_set_bit(i, info->map, shrinker_nr_max) {
881 struct shrink_control sc = {
882 .gfp_mask = gfp_mask,
883 .nid = nid,
884 .memcg = memcg,
885 };
886 struct shrinker *shrinker;
887
888 shrinker = idr_find(&shrinker_idr, i);
889 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
890 if (!shrinker)
891 clear_bit(i, info->map);
892 continue;
893 }
894
895 /* Call non-slab shrinkers even though kmem is disabled */
896 if (!memcg_kmem_enabled() &&
897 !(shrinker->flags & SHRINKER_NONSLAB))
898 continue;
899
900 ret = do_shrink_slab(&sc, shrinker, priority);
901 if (ret == SHRINK_EMPTY) {
902 clear_bit(i, info->map);
903 /*
904 * After the shrinker reported that it had no objects to
905 * free, but before we cleared the corresponding bit in
906 * the memcg shrinker map, a new object might have been
907 * added. To make sure, we have the bit set in this
908 * case, we invoke the shrinker one more time and reset
909 * the bit if it reports that it is not empty anymore.
910 * The memory barrier here pairs with the barrier in
911 * set_shrinker_bit():
912 *
913 * list_lru_add() shrink_slab_memcg()
914 * list_add_tail() clear_bit()
915 * <MB> <MB>
916 * set_bit() do_shrink_slab()
917 */
918 smp_mb__after_atomic();
919 ret = do_shrink_slab(&sc, shrinker, priority);
920 if (ret == SHRINK_EMPTY)
921 ret = 0;
922 else
923 set_shrinker_bit(memcg, nid, i);
924 }
925 freed += ret;
926
927 if (rwsem_is_contended(&shrinker_rwsem)) {
928 freed = freed ? : 1;
929 break;
930 }
931 }
932 unlock:
933 up_read(&shrinker_rwsem);
934 return freed;
935 }
936 #else /* CONFIG_MEMCG */
937 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
938 struct mem_cgroup *memcg, int priority)
939 {
940 return 0;
941 }
942 #endif /* CONFIG_MEMCG */
943
944 /**
945 * shrink_slab - shrink slab caches
946 * @gfp_mask: allocation context
947 * @nid: node whose slab caches to target
948 * @memcg: memory cgroup whose slab caches to target
949 * @priority: the reclaim priority
950 *
951 * Call the shrink functions to age shrinkable caches.
952 *
953 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
954 * unaware shrinkers will receive a node id of 0 instead.
955 *
956 * @memcg specifies the memory cgroup to target. Unaware shrinkers
957 * are called only if it is the root cgroup.
958 *
959 * @priority is sc->priority, we take the number of objects and >> by priority
960 * in order to get the scan target.
961 *
962 * Returns the number of reclaimed slab objects.
963 */
964 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
965 struct mem_cgroup *memcg,
966 int priority)
967 {
968 unsigned long ret, freed = 0;
969 struct shrinker *shrinker;
970
971 /*
972 * The root memcg might be allocated even though memcg is disabled
973 * via "cgroup_disable=memory" boot parameter. This could make
974 * mem_cgroup_is_root() return false, then just run memcg slab
975 * shrink, but skip global shrink. This may result in premature
976 * oom.
977 */
978 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
979 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
980
981 if (!down_read_trylock(&shrinker_rwsem))
982 goto out;
983
984 list_for_each_entry(shrinker, &shrinker_list, list) {
985 struct shrink_control sc = {
986 .gfp_mask = gfp_mask,
987 .nid = nid,
988 .memcg = memcg,
989 };
990
991 ret = do_shrink_slab(&sc, shrinker, priority);
992 if (ret == SHRINK_EMPTY)
993 ret = 0;
994 freed += ret;
995 /*
996 * Bail out if someone want to register a new shrinker to
997 * prevent the registration from being stalled for long periods
998 * by parallel ongoing shrinking.
999 */
1000 if (rwsem_is_contended(&shrinker_rwsem)) {
1001 freed = freed ? : 1;
1002 break;
1003 }
1004 }
1005
1006 up_read(&shrinker_rwsem);
1007 out:
1008 cond_resched();
1009 return freed;
1010 }
1011
1012 static void drop_slab_node(int nid)
1013 {
1014 unsigned long freed;
1015 int shift = 0;
1016
1017 do {
1018 struct mem_cgroup *memcg = NULL;
1019
1020 if (fatal_signal_pending(current))
1021 return;
1022
1023 freed = 0;
1024 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1025 do {
1026 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1027 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1028 } while ((freed >> shift++) > 1);
1029 }
1030
1031 void drop_slab(void)
1032 {
1033 int nid;
1034
1035 for_each_online_node(nid)
1036 drop_slab_node(nid);
1037 }
1038
1039 static inline int is_page_cache_freeable(struct folio *folio)
1040 {
1041 /*
1042 * A freeable page cache page is referenced only by the caller
1043 * that isolated the page, the page cache and optional buffer
1044 * heads at page->private.
1045 */
1046 return folio_ref_count(folio) - folio_test_private(folio) ==
1047 1 + folio_nr_pages(folio);
1048 }
1049
1050 /*
1051 * We detected a synchronous write error writing a folio out. Probably
1052 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1053 * fsync(), msync() or close().
1054 *
1055 * The tricky part is that after writepage we cannot touch the mapping: nothing
1056 * prevents it from being freed up. But we have a ref on the folio and once
1057 * that folio is locked, the mapping is pinned.
1058 *
1059 * We're allowed to run sleeping folio_lock() here because we know the caller has
1060 * __GFP_FS.
1061 */
1062 static void handle_write_error(struct address_space *mapping,
1063 struct folio *folio, int error)
1064 {
1065 folio_lock(folio);
1066 if (folio_mapping(folio) == mapping)
1067 mapping_set_error(mapping, error);
1068 folio_unlock(folio);
1069 }
1070
1071 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1072 {
1073 int reclaimable = 0, write_pending = 0;
1074 int i;
1075
1076 /*
1077 * If kswapd is disabled, reschedule if necessary but do not
1078 * throttle as the system is likely near OOM.
1079 */
1080 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1081 return true;
1082
1083 /*
1084 * If there are a lot of dirty/writeback pages then do not
1085 * throttle as throttling will occur when the pages cycle
1086 * towards the end of the LRU if still under writeback.
1087 */
1088 for (i = 0; i < MAX_NR_ZONES; i++) {
1089 struct zone *zone = pgdat->node_zones + i;
1090
1091 if (!managed_zone(zone))
1092 continue;
1093
1094 reclaimable += zone_reclaimable_pages(zone);
1095 write_pending += zone_page_state_snapshot(zone,
1096 NR_ZONE_WRITE_PENDING);
1097 }
1098 if (2 * write_pending <= reclaimable)
1099 return true;
1100
1101 return false;
1102 }
1103
1104 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1105 {
1106 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1107 long timeout, ret;
1108 DEFINE_WAIT(wait);
1109
1110 /*
1111 * Do not throttle IO workers, kthreads other than kswapd or
1112 * workqueues. They may be required for reclaim to make
1113 * forward progress (e.g. journalling workqueues or kthreads).
1114 */
1115 if (!current_is_kswapd() &&
1116 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1117 cond_resched();
1118 return;
1119 }
1120
1121 /*
1122 * These figures are pulled out of thin air.
1123 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1124 * parallel reclaimers which is a short-lived event so the timeout is
1125 * short. Failing to make progress or waiting on writeback are
1126 * potentially long-lived events so use a longer timeout. This is shaky
1127 * logic as a failure to make progress could be due to anything from
1128 * writeback to a slow device to excessive references pages at the tail
1129 * of the inactive LRU.
1130 */
1131 switch(reason) {
1132 case VMSCAN_THROTTLE_WRITEBACK:
1133 timeout = HZ/10;
1134
1135 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1136 WRITE_ONCE(pgdat->nr_reclaim_start,
1137 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1138 }
1139
1140 break;
1141 case VMSCAN_THROTTLE_CONGESTED:
1142 fallthrough;
1143 case VMSCAN_THROTTLE_NOPROGRESS:
1144 if (skip_throttle_noprogress(pgdat)) {
1145 cond_resched();
1146 return;
1147 }
1148
1149 timeout = 1;
1150
1151 break;
1152 case VMSCAN_THROTTLE_ISOLATED:
1153 timeout = HZ/50;
1154 break;
1155 default:
1156 WARN_ON_ONCE(1);
1157 timeout = HZ;
1158 break;
1159 }
1160
1161 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1162 ret = schedule_timeout(timeout);
1163 finish_wait(wqh, &wait);
1164
1165 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1166 atomic_dec(&pgdat->nr_writeback_throttled);
1167
1168 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1169 jiffies_to_usecs(timeout - ret),
1170 reason);
1171 }
1172
1173 /*
1174 * Account for pages written if tasks are throttled waiting on dirty
1175 * pages to clean. If enough pages have been cleaned since throttling
1176 * started then wakeup the throttled tasks.
1177 */
1178 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1179 int nr_throttled)
1180 {
1181 unsigned long nr_written;
1182
1183 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1184
1185 /*
1186 * This is an inaccurate read as the per-cpu deltas may not
1187 * be synchronised. However, given that the system is
1188 * writeback throttled, it is not worth taking the penalty
1189 * of getting an accurate count. At worst, the throttle
1190 * timeout guarantees forward progress.
1191 */
1192 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1193 READ_ONCE(pgdat->nr_reclaim_start);
1194
1195 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1196 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1197 }
1198
1199 /* possible outcome of pageout() */
1200 typedef enum {
1201 /* failed to write page out, page is locked */
1202 PAGE_KEEP,
1203 /* move page to the active list, page is locked */
1204 PAGE_ACTIVATE,
1205 /* page has been sent to the disk successfully, page is unlocked */
1206 PAGE_SUCCESS,
1207 /* page is clean and locked */
1208 PAGE_CLEAN,
1209 } pageout_t;
1210
1211 /*
1212 * pageout is called by shrink_page_list() for each dirty page.
1213 * Calls ->writepage().
1214 */
1215 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1216 struct swap_iocb **plug)
1217 {
1218 /*
1219 * If the folio is dirty, only perform writeback if that write
1220 * will be non-blocking. To prevent this allocation from being
1221 * stalled by pagecache activity. But note that there may be
1222 * stalls if we need to run get_block(). We could test
1223 * PagePrivate for that.
1224 *
1225 * If this process is currently in __generic_file_write_iter() against
1226 * this folio's queue, we can perform writeback even if that
1227 * will block.
1228 *
1229 * If the folio is swapcache, write it back even if that would
1230 * block, for some throttling. This happens by accident, because
1231 * swap_backing_dev_info is bust: it doesn't reflect the
1232 * congestion state of the swapdevs. Easy to fix, if needed.
1233 */
1234 if (!is_page_cache_freeable(folio))
1235 return PAGE_KEEP;
1236 if (!mapping) {
1237 /*
1238 * Some data journaling orphaned folios can have
1239 * folio->mapping == NULL while being dirty with clean buffers.
1240 */
1241 if (folio_test_private(folio)) {
1242 if (try_to_free_buffers(folio)) {
1243 folio_clear_dirty(folio);
1244 pr_info("%s: orphaned folio\n", __func__);
1245 return PAGE_CLEAN;
1246 }
1247 }
1248 return PAGE_KEEP;
1249 }
1250 if (mapping->a_ops->writepage == NULL)
1251 return PAGE_ACTIVATE;
1252
1253 if (folio_clear_dirty_for_io(folio)) {
1254 int res;
1255 struct writeback_control wbc = {
1256 .sync_mode = WB_SYNC_NONE,
1257 .nr_to_write = SWAP_CLUSTER_MAX,
1258 .range_start = 0,
1259 .range_end = LLONG_MAX,
1260 .for_reclaim = 1,
1261 .swap_plug = plug,
1262 };
1263
1264 folio_set_reclaim(folio);
1265 res = mapping->a_ops->writepage(&folio->page, &wbc);
1266 if (res < 0)
1267 handle_write_error(mapping, folio, res);
1268 if (res == AOP_WRITEPAGE_ACTIVATE) {
1269 folio_clear_reclaim(folio);
1270 return PAGE_ACTIVATE;
1271 }
1272
1273 if (!folio_test_writeback(folio)) {
1274 /* synchronous write or broken a_ops? */
1275 folio_clear_reclaim(folio);
1276 }
1277 trace_mm_vmscan_write_folio(folio);
1278 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1279 return PAGE_SUCCESS;
1280 }
1281
1282 return PAGE_CLEAN;
1283 }
1284
1285 /*
1286 * Same as remove_mapping, but if the page is removed from the mapping, it
1287 * gets returned with a refcount of 0.
1288 */
1289 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1290 bool reclaimed, struct mem_cgroup *target_memcg)
1291 {
1292 int refcount;
1293 void *shadow = NULL;
1294
1295 BUG_ON(!folio_test_locked(folio));
1296 BUG_ON(mapping != folio_mapping(folio));
1297
1298 if (!folio_test_swapcache(folio))
1299 spin_lock(&mapping->host->i_lock);
1300 xa_lock_irq(&mapping->i_pages);
1301 /*
1302 * The non racy check for a busy page.
1303 *
1304 * Must be careful with the order of the tests. When someone has
1305 * a ref to the page, it may be possible that they dirty it then
1306 * drop the reference. So if PageDirty is tested before page_count
1307 * here, then the following race may occur:
1308 *
1309 * get_user_pages(&page);
1310 * [user mapping goes away]
1311 * write_to(page);
1312 * !PageDirty(page) [good]
1313 * SetPageDirty(page);
1314 * put_page(page);
1315 * !page_count(page) [good, discard it]
1316 *
1317 * [oops, our write_to data is lost]
1318 *
1319 * Reversing the order of the tests ensures such a situation cannot
1320 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1321 * load is not satisfied before that of page->_refcount.
1322 *
1323 * Note that if SetPageDirty is always performed via set_page_dirty,
1324 * and thus under the i_pages lock, then this ordering is not required.
1325 */
1326 refcount = 1 + folio_nr_pages(folio);
1327 if (!folio_ref_freeze(folio, refcount))
1328 goto cannot_free;
1329 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1330 if (unlikely(folio_test_dirty(folio))) {
1331 folio_ref_unfreeze(folio, refcount);
1332 goto cannot_free;
1333 }
1334
1335 if (folio_test_swapcache(folio)) {
1336 swp_entry_t swap = folio_swap_entry(folio);
1337 mem_cgroup_swapout(folio, swap);
1338 if (reclaimed && !mapping_exiting(mapping))
1339 shadow = workingset_eviction(folio, target_memcg);
1340 __delete_from_swap_cache(folio, swap, shadow);
1341 xa_unlock_irq(&mapping->i_pages);
1342 put_swap_page(&folio->page, swap);
1343 } else {
1344 void (*free_folio)(struct folio *);
1345
1346 free_folio = mapping->a_ops->free_folio;
1347 /*
1348 * Remember a shadow entry for reclaimed file cache in
1349 * order to detect refaults, thus thrashing, later on.
1350 *
1351 * But don't store shadows in an address space that is
1352 * already exiting. This is not just an optimization,
1353 * inode reclaim needs to empty out the radix tree or
1354 * the nodes are lost. Don't plant shadows behind its
1355 * back.
1356 *
1357 * We also don't store shadows for DAX mappings because the
1358 * only page cache pages found in these are zero pages
1359 * covering holes, and because we don't want to mix DAX
1360 * exceptional entries and shadow exceptional entries in the
1361 * same address_space.
1362 */
1363 if (reclaimed && folio_is_file_lru(folio) &&
1364 !mapping_exiting(mapping) && !dax_mapping(mapping))
1365 shadow = workingset_eviction(folio, target_memcg);
1366 __filemap_remove_folio(folio, shadow);
1367 xa_unlock_irq(&mapping->i_pages);
1368 if (mapping_shrinkable(mapping))
1369 inode_add_lru(mapping->host);
1370 spin_unlock(&mapping->host->i_lock);
1371
1372 if (free_folio)
1373 free_folio(folio);
1374 }
1375
1376 return 1;
1377
1378 cannot_free:
1379 xa_unlock_irq(&mapping->i_pages);
1380 if (!folio_test_swapcache(folio))
1381 spin_unlock(&mapping->host->i_lock);
1382 return 0;
1383 }
1384
1385 /**
1386 * remove_mapping() - Attempt to remove a folio from its mapping.
1387 * @mapping: The address space.
1388 * @folio: The folio to remove.
1389 *
1390 * If the folio is dirty, under writeback or if someone else has a ref
1391 * on it, removal will fail.
1392 * Return: The number of pages removed from the mapping. 0 if the folio
1393 * could not be removed.
1394 * Context: The caller should have a single refcount on the folio and
1395 * hold its lock.
1396 */
1397 long remove_mapping(struct address_space *mapping, struct folio *folio)
1398 {
1399 if (__remove_mapping(mapping, folio, false, NULL)) {
1400 /*
1401 * Unfreezing the refcount with 1 effectively
1402 * drops the pagecache ref for us without requiring another
1403 * atomic operation.
1404 */
1405 folio_ref_unfreeze(folio, 1);
1406 return folio_nr_pages(folio);
1407 }
1408 return 0;
1409 }
1410
1411 /**
1412 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1413 * @folio: Folio to be returned to an LRU list.
1414 *
1415 * Add previously isolated @folio to appropriate LRU list.
1416 * The folio may still be unevictable for other reasons.
1417 *
1418 * Context: lru_lock must not be held, interrupts must be enabled.
1419 */
1420 void folio_putback_lru(struct folio *folio)
1421 {
1422 folio_add_lru(folio);
1423 folio_put(folio); /* drop ref from isolate */
1424 }
1425
1426 enum page_references {
1427 PAGEREF_RECLAIM,
1428 PAGEREF_RECLAIM_CLEAN,
1429 PAGEREF_KEEP,
1430 PAGEREF_ACTIVATE,
1431 };
1432
1433 static enum page_references folio_check_references(struct folio *folio,
1434 struct scan_control *sc)
1435 {
1436 int referenced_ptes, referenced_folio;
1437 unsigned long vm_flags;
1438
1439 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1440 &vm_flags);
1441 referenced_folio = folio_test_clear_referenced(folio);
1442
1443 /*
1444 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1445 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1446 */
1447 if (vm_flags & VM_LOCKED)
1448 return PAGEREF_ACTIVATE;
1449
1450 /* rmap lock contention: rotate */
1451 if (referenced_ptes == -1)
1452 return PAGEREF_KEEP;
1453
1454 if (referenced_ptes) {
1455 /*
1456 * All mapped folios start out with page table
1457 * references from the instantiating fault, so we need
1458 * to look twice if a mapped file/anon folio is used more
1459 * than once.
1460 *
1461 * Mark it and spare it for another trip around the
1462 * inactive list. Another page table reference will
1463 * lead to its activation.
1464 *
1465 * Note: the mark is set for activated folios as well
1466 * so that recently deactivated but used folios are
1467 * quickly recovered.
1468 */
1469 folio_set_referenced(folio);
1470
1471 if (referenced_folio || referenced_ptes > 1)
1472 return PAGEREF_ACTIVATE;
1473
1474 /*
1475 * Activate file-backed executable folios after first usage.
1476 */
1477 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1478 return PAGEREF_ACTIVATE;
1479
1480 return PAGEREF_KEEP;
1481 }
1482
1483 /* Reclaim if clean, defer dirty folios to writeback */
1484 if (referenced_folio && folio_is_file_lru(folio))
1485 return PAGEREF_RECLAIM_CLEAN;
1486
1487 return PAGEREF_RECLAIM;
1488 }
1489
1490 /* Check if a page is dirty or under writeback */
1491 static void folio_check_dirty_writeback(struct folio *folio,
1492 bool *dirty, bool *writeback)
1493 {
1494 struct address_space *mapping;
1495
1496 /*
1497 * Anonymous pages are not handled by flushers and must be written
1498 * from reclaim context. Do not stall reclaim based on them.
1499 * MADV_FREE anonymous pages are put into inactive file list too.
1500 * They could be mistakenly treated as file lru. So further anon
1501 * test is needed.
1502 */
1503 if (!folio_is_file_lru(folio) ||
1504 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1505 *dirty = false;
1506 *writeback = false;
1507 return;
1508 }
1509
1510 /* By default assume that the folio flags are accurate */
1511 *dirty = folio_test_dirty(folio);
1512 *writeback = folio_test_writeback(folio);
1513
1514 /* Verify dirty/writeback state if the filesystem supports it */
1515 if (!folio_test_private(folio))
1516 return;
1517
1518 mapping = folio_mapping(folio);
1519 if (mapping && mapping->a_ops->is_dirty_writeback)
1520 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1521 }
1522
1523 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1524 {
1525 struct migration_target_control mtc = {
1526 /*
1527 * Allocate from 'node', or fail quickly and quietly.
1528 * When this happens, 'page' will likely just be discarded
1529 * instead of migrated.
1530 */
1531 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1532 __GFP_THISNODE | __GFP_NOWARN |
1533 __GFP_NOMEMALLOC | GFP_NOWAIT,
1534 .nid = node
1535 };
1536
1537 return alloc_migration_target(page, (unsigned long)&mtc);
1538 }
1539
1540 /*
1541 * Take pages on @demote_list and attempt to demote them to
1542 * another node. Pages which are not demoted are left on
1543 * @demote_pages.
1544 */
1545 static unsigned int demote_page_list(struct list_head *demote_pages,
1546 struct pglist_data *pgdat)
1547 {
1548 int target_nid = next_demotion_node(pgdat->node_id);
1549 unsigned int nr_succeeded;
1550
1551 if (list_empty(demote_pages))
1552 return 0;
1553
1554 if (target_nid == NUMA_NO_NODE)
1555 return 0;
1556
1557 /* Demotion ignores all cpuset and mempolicy settings */
1558 migrate_pages(demote_pages, alloc_demote_page, NULL,
1559 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1560 &nr_succeeded);
1561
1562 if (current_is_kswapd())
1563 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1564 else
1565 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1566
1567 return nr_succeeded;
1568 }
1569
1570 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1571 {
1572 if (gfp_mask & __GFP_FS)
1573 return true;
1574 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1575 return false;
1576 /*
1577 * We can "enter_fs" for swap-cache with only __GFP_IO
1578 * providing this isn't SWP_FS_OPS.
1579 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1580 * but that will never affect SWP_FS_OPS, so the data_race
1581 * is safe.
1582 */
1583 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1584 }
1585
1586 /*
1587 * shrink_page_list() returns the number of reclaimed pages
1588 */
1589 static unsigned int shrink_page_list(struct list_head *page_list,
1590 struct pglist_data *pgdat,
1591 struct scan_control *sc,
1592 struct reclaim_stat *stat,
1593 bool ignore_references)
1594 {
1595 LIST_HEAD(ret_pages);
1596 LIST_HEAD(free_pages);
1597 LIST_HEAD(demote_pages);
1598 unsigned int nr_reclaimed = 0;
1599 unsigned int pgactivate = 0;
1600 bool do_demote_pass;
1601 struct swap_iocb *plug = NULL;
1602
1603 memset(stat, 0, sizeof(*stat));
1604 cond_resched();
1605 do_demote_pass = can_demote(pgdat->node_id, sc);
1606
1607 retry:
1608 while (!list_empty(page_list)) {
1609 struct address_space *mapping;
1610 struct folio *folio;
1611 enum page_references references = PAGEREF_RECLAIM;
1612 bool dirty, writeback;
1613 unsigned int nr_pages;
1614
1615 cond_resched();
1616
1617 folio = lru_to_folio(page_list);
1618 list_del(&folio->lru);
1619
1620 if (!folio_trylock(folio))
1621 goto keep;
1622
1623 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1624
1625 nr_pages = folio_nr_pages(folio);
1626
1627 /* Account the number of base pages */
1628 sc->nr_scanned += nr_pages;
1629
1630 if (unlikely(!folio_evictable(folio)))
1631 goto activate_locked;
1632
1633 if (!sc->may_unmap && folio_mapped(folio))
1634 goto keep_locked;
1635
1636 /*
1637 * The number of dirty pages determines if a node is marked
1638 * reclaim_congested. kswapd will stall and start writing
1639 * folios if the tail of the LRU is all dirty unqueued folios.
1640 */
1641 folio_check_dirty_writeback(folio, &dirty, &writeback);
1642 if (dirty || writeback)
1643 stat->nr_dirty += nr_pages;
1644
1645 if (dirty && !writeback)
1646 stat->nr_unqueued_dirty += nr_pages;
1647
1648 /*
1649 * Treat this folio as congested if folios are cycling
1650 * through the LRU so quickly that the folios marked
1651 * for immediate reclaim are making it to the end of
1652 * the LRU a second time.
1653 */
1654 if (writeback && folio_test_reclaim(folio))
1655 stat->nr_congested += nr_pages;
1656
1657 /*
1658 * If a folio at the tail of the LRU is under writeback, there
1659 * are three cases to consider.
1660 *
1661 * 1) If reclaim is encountering an excessive number
1662 * of folios under writeback and this folio has both
1663 * the writeback and reclaim flags set, then it
1664 * indicates that folios are being queued for I/O but
1665 * are being recycled through the LRU before the I/O
1666 * can complete. Waiting on the folio itself risks an
1667 * indefinite stall if it is impossible to writeback
1668 * the folio due to I/O error or disconnected storage
1669 * so instead note that the LRU is being scanned too
1670 * quickly and the caller can stall after the folio
1671 * list has been processed.
1672 *
1673 * 2) Global or new memcg reclaim encounters a folio that is
1674 * not marked for immediate reclaim, or the caller does not
1675 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1676 * not to fs). In this case mark the folio for immediate
1677 * reclaim and continue scanning.
1678 *
1679 * Require may_enter_fs() because we would wait on fs, which
1680 * may not have submitted I/O yet. And the loop driver might
1681 * enter reclaim, and deadlock if it waits on a folio for
1682 * which it is needed to do the write (loop masks off
1683 * __GFP_IO|__GFP_FS for this reason); but more thought
1684 * would probably show more reasons.
1685 *
1686 * 3) Legacy memcg encounters a folio that already has the
1687 * reclaim flag set. memcg does not have any dirty folio
1688 * throttling so we could easily OOM just because too many
1689 * folios are in writeback and there is nothing else to
1690 * reclaim. Wait for the writeback to complete.
1691 *
1692 * In cases 1) and 2) we activate the folios to get them out of
1693 * the way while we continue scanning for clean folios on the
1694 * inactive list and refilling from the active list. The
1695 * observation here is that waiting for disk writes is more
1696 * expensive than potentially causing reloads down the line.
1697 * Since they're marked for immediate reclaim, they won't put
1698 * memory pressure on the cache working set any longer than it
1699 * takes to write them to disk.
1700 */
1701 if (folio_test_writeback(folio)) {
1702 /* Case 1 above */
1703 if (current_is_kswapd() &&
1704 folio_test_reclaim(folio) &&
1705 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1706 stat->nr_immediate += nr_pages;
1707 goto activate_locked;
1708
1709 /* Case 2 above */
1710 } else if (writeback_throttling_sane(sc) ||
1711 !folio_test_reclaim(folio) ||
1712 !may_enter_fs(folio, sc->gfp_mask)) {
1713 /*
1714 * This is slightly racy -
1715 * folio_end_writeback() might have
1716 * just cleared the reclaim flag, then
1717 * setting the reclaim flag here ends up
1718 * interpreted as the readahead flag - but
1719 * that does not matter enough to care.
1720 * What we do want is for this folio to
1721 * have the reclaim flag set next time
1722 * memcg reclaim reaches the tests above,
1723 * so it will then wait for writeback to
1724 * avoid OOM; and it's also appropriate
1725 * in global reclaim.
1726 */
1727 folio_set_reclaim(folio);
1728 stat->nr_writeback += nr_pages;
1729 goto activate_locked;
1730
1731 /* Case 3 above */
1732 } else {
1733 folio_unlock(folio);
1734 folio_wait_writeback(folio);
1735 /* then go back and try same folio again */
1736 list_add_tail(&folio->lru, page_list);
1737 continue;
1738 }
1739 }
1740
1741 if (!ignore_references)
1742 references = folio_check_references(folio, sc);
1743
1744 switch (references) {
1745 case PAGEREF_ACTIVATE:
1746 goto activate_locked;
1747 case PAGEREF_KEEP:
1748 stat->nr_ref_keep += nr_pages;
1749 goto keep_locked;
1750 case PAGEREF_RECLAIM:
1751 case PAGEREF_RECLAIM_CLEAN:
1752 ; /* try to reclaim the folio below */
1753 }
1754
1755 /*
1756 * Before reclaiming the folio, try to relocate
1757 * its contents to another node.
1758 */
1759 if (do_demote_pass &&
1760 (thp_migration_supported() || !folio_test_large(folio))) {
1761 list_add(&folio->lru, &demote_pages);
1762 folio_unlock(folio);
1763 continue;
1764 }
1765
1766 /*
1767 * Anonymous process memory has backing store?
1768 * Try to allocate it some swap space here.
1769 * Lazyfree folio could be freed directly
1770 */
1771 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1772 if (!folio_test_swapcache(folio)) {
1773 if (!(sc->gfp_mask & __GFP_IO))
1774 goto keep_locked;
1775 if (folio_maybe_dma_pinned(folio))
1776 goto keep_locked;
1777 if (folio_test_large(folio)) {
1778 /* cannot split folio, skip it */
1779 if (!can_split_folio(folio, NULL))
1780 goto activate_locked;
1781 /*
1782 * Split folios without a PMD map right
1783 * away. Chances are some or all of the
1784 * tail pages can be freed without IO.
1785 */
1786 if (!folio_entire_mapcount(folio) &&
1787 split_folio_to_list(folio,
1788 page_list))
1789 goto activate_locked;
1790 }
1791 if (!add_to_swap(folio)) {
1792 if (!folio_test_large(folio))
1793 goto activate_locked_split;
1794 /* Fallback to swap normal pages */
1795 if (split_folio_to_list(folio,
1796 page_list))
1797 goto activate_locked;
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799 count_vm_event(THP_SWPOUT_FALLBACK);
1800 #endif
1801 if (!add_to_swap(folio))
1802 goto activate_locked_split;
1803 }
1804 }
1805 } else if (folio_test_swapbacked(folio) &&
1806 folio_test_large(folio)) {
1807 /* Split shmem folio */
1808 if (split_folio_to_list(folio, page_list))
1809 goto keep_locked;
1810 }
1811
1812 /*
1813 * If the folio was split above, the tail pages will make
1814 * their own pass through this function and be accounted
1815 * then.
1816 */
1817 if ((nr_pages > 1) && !folio_test_large(folio)) {
1818 sc->nr_scanned -= (nr_pages - 1);
1819 nr_pages = 1;
1820 }
1821
1822 /*
1823 * The folio is mapped into the page tables of one or more
1824 * processes. Try to unmap it here.
1825 */
1826 if (folio_mapped(folio)) {
1827 enum ttu_flags flags = TTU_BATCH_FLUSH;
1828 bool was_swapbacked = folio_test_swapbacked(folio);
1829
1830 if (folio_test_pmd_mappable(folio))
1831 flags |= TTU_SPLIT_HUGE_PMD;
1832
1833 try_to_unmap(folio, flags);
1834 if (folio_mapped(folio)) {
1835 stat->nr_unmap_fail += nr_pages;
1836 if (!was_swapbacked &&
1837 folio_test_swapbacked(folio))
1838 stat->nr_lazyfree_fail += nr_pages;
1839 goto activate_locked;
1840 }
1841 }
1842
1843 mapping = folio_mapping(folio);
1844 if (folio_test_dirty(folio)) {
1845 /*
1846 * Only kswapd can writeback filesystem folios
1847 * to avoid risk of stack overflow. But avoid
1848 * injecting inefficient single-folio I/O into
1849 * flusher writeback as much as possible: only
1850 * write folios when we've encountered many
1851 * dirty folios, and when we've already scanned
1852 * the rest of the LRU for clean folios and see
1853 * the same dirty folios again (with the reclaim
1854 * flag set).
1855 */
1856 if (folio_is_file_lru(folio) &&
1857 (!current_is_kswapd() ||
1858 !folio_test_reclaim(folio) ||
1859 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1860 /*
1861 * Immediately reclaim when written back.
1862 * Similar in principle to deactivate_page()
1863 * except we already have the folio isolated
1864 * and know it's dirty
1865 */
1866 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1867 nr_pages);
1868 folio_set_reclaim(folio);
1869
1870 goto activate_locked;
1871 }
1872
1873 if (references == PAGEREF_RECLAIM_CLEAN)
1874 goto keep_locked;
1875 if (!may_enter_fs(folio, sc->gfp_mask))
1876 goto keep_locked;
1877 if (!sc->may_writepage)
1878 goto keep_locked;
1879
1880 /*
1881 * Folio is dirty. Flush the TLB if a writable entry
1882 * potentially exists to avoid CPU writes after I/O
1883 * starts and then write it out here.
1884 */
1885 try_to_unmap_flush_dirty();
1886 switch (pageout(folio, mapping, &plug)) {
1887 case PAGE_KEEP:
1888 goto keep_locked;
1889 case PAGE_ACTIVATE:
1890 goto activate_locked;
1891 case PAGE_SUCCESS:
1892 stat->nr_pageout += nr_pages;
1893
1894 if (folio_test_writeback(folio))
1895 goto keep;
1896 if (folio_test_dirty(folio))
1897 goto keep;
1898
1899 /*
1900 * A synchronous write - probably a ramdisk. Go
1901 * ahead and try to reclaim the folio.
1902 */
1903 if (!folio_trylock(folio))
1904 goto keep;
1905 if (folio_test_dirty(folio) ||
1906 folio_test_writeback(folio))
1907 goto keep_locked;
1908 mapping = folio_mapping(folio);
1909 fallthrough;
1910 case PAGE_CLEAN:
1911 ; /* try to free the folio below */
1912 }
1913 }
1914
1915 /*
1916 * If the folio has buffers, try to free the buffer
1917 * mappings associated with this folio. If we succeed
1918 * we try to free the folio as well.
1919 *
1920 * We do this even if the folio is dirty.
1921 * filemap_release_folio() does not perform I/O, but it
1922 * is possible for a folio to have the dirty flag set,
1923 * but it is actually clean (all its buffers are clean).
1924 * This happens if the buffers were written out directly,
1925 * with submit_bh(). ext3 will do this, as well as
1926 * the blockdev mapping. filemap_release_folio() will
1927 * discover that cleanness and will drop the buffers
1928 * and mark the folio clean - it can be freed.
1929 *
1930 * Rarely, folios can have buffers and no ->mapping.
1931 * These are the folios which were not successfully
1932 * invalidated in truncate_cleanup_folio(). We try to
1933 * drop those buffers here and if that worked, and the
1934 * folio is no longer mapped into process address space
1935 * (refcount == 1) it can be freed. Otherwise, leave
1936 * the folio on the LRU so it is swappable.
1937 */
1938 if (folio_has_private(folio)) {
1939 if (!filemap_release_folio(folio, sc->gfp_mask))
1940 goto activate_locked;
1941 if (!mapping && folio_ref_count(folio) == 1) {
1942 folio_unlock(folio);
1943 if (folio_put_testzero(folio))
1944 goto free_it;
1945 else {
1946 /*
1947 * rare race with speculative reference.
1948 * the speculative reference will free
1949 * this folio shortly, so we may
1950 * increment nr_reclaimed here (and
1951 * leave it off the LRU).
1952 */
1953 nr_reclaimed += nr_pages;
1954 continue;
1955 }
1956 }
1957 }
1958
1959 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1960 /* follow __remove_mapping for reference */
1961 if (!folio_ref_freeze(folio, 1))
1962 goto keep_locked;
1963 /*
1964 * The folio has only one reference left, which is
1965 * from the isolation. After the caller puts the
1966 * folio back on the lru and drops the reference, the
1967 * folio will be freed anyway. It doesn't matter
1968 * which lru it goes on. So we don't bother checking
1969 * the dirty flag here.
1970 */
1971 count_vm_events(PGLAZYFREED, nr_pages);
1972 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1973 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1974 sc->target_mem_cgroup))
1975 goto keep_locked;
1976
1977 folio_unlock(folio);
1978 free_it:
1979 /*
1980 * Folio may get swapped out as a whole, need to account
1981 * all pages in it.
1982 */
1983 nr_reclaimed += nr_pages;
1984
1985 /*
1986 * Is there need to periodically free_page_list? It would
1987 * appear not as the counts should be low
1988 */
1989 if (unlikely(folio_test_large(folio)))
1990 destroy_large_folio(folio);
1991 else
1992 list_add(&folio->lru, &free_pages);
1993 continue;
1994
1995 activate_locked_split:
1996 /*
1997 * The tail pages that are failed to add into swap cache
1998 * reach here. Fixup nr_scanned and nr_pages.
1999 */
2000 if (nr_pages > 1) {
2001 sc->nr_scanned -= (nr_pages - 1);
2002 nr_pages = 1;
2003 }
2004 activate_locked:
2005 /* Not a candidate for swapping, so reclaim swap space. */
2006 if (folio_test_swapcache(folio) &&
2007 (mem_cgroup_swap_full(&folio->page) ||
2008 folio_test_mlocked(folio)))
2009 try_to_free_swap(&folio->page);
2010 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2011 if (!folio_test_mlocked(folio)) {
2012 int type = folio_is_file_lru(folio);
2013 folio_set_active(folio);
2014 stat->nr_activate[type] += nr_pages;
2015 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2016 }
2017 keep_locked:
2018 folio_unlock(folio);
2019 keep:
2020 list_add(&folio->lru, &ret_pages);
2021 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2022 folio_test_unevictable(folio), folio);
2023 }
2024 /* 'page_list' is always empty here */
2025
2026 /* Migrate folios selected for demotion */
2027 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
2028 /* Folios that could not be demoted are still in @demote_pages */
2029 if (!list_empty(&demote_pages)) {
2030 /* Folios which weren't demoted go back on @page_list for retry: */
2031 list_splice_init(&demote_pages, page_list);
2032 do_demote_pass = false;
2033 goto retry;
2034 }
2035
2036 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2037
2038 mem_cgroup_uncharge_list(&free_pages);
2039 try_to_unmap_flush();
2040 free_unref_page_list(&free_pages);
2041
2042 list_splice(&ret_pages, page_list);
2043 count_vm_events(PGACTIVATE, pgactivate);
2044
2045 if (plug)
2046 swap_write_unplug(plug);
2047 return nr_reclaimed;
2048 }
2049
2050 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2051 struct list_head *folio_list)
2052 {
2053 struct scan_control sc = {
2054 .gfp_mask = GFP_KERNEL,
2055 .may_unmap = 1,
2056 };
2057 struct reclaim_stat stat;
2058 unsigned int nr_reclaimed;
2059 struct folio *folio, *next;
2060 LIST_HEAD(clean_folios);
2061 unsigned int noreclaim_flag;
2062
2063 list_for_each_entry_safe(folio, next, folio_list, lru) {
2064 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2065 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2066 !folio_test_unevictable(folio)) {
2067 folio_clear_active(folio);
2068 list_move(&folio->lru, &clean_folios);
2069 }
2070 }
2071
2072 /*
2073 * We should be safe here since we are only dealing with file pages and
2074 * we are not kswapd and therefore cannot write dirty file pages. But
2075 * call memalloc_noreclaim_save() anyway, just in case these conditions
2076 * change in the future.
2077 */
2078 noreclaim_flag = memalloc_noreclaim_save();
2079 nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
2080 &stat, true);
2081 memalloc_noreclaim_restore(noreclaim_flag);
2082
2083 list_splice(&clean_folios, folio_list);
2084 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2085 -(long)nr_reclaimed);
2086 /*
2087 * Since lazyfree pages are isolated from file LRU from the beginning,
2088 * they will rotate back to anonymous LRU in the end if it failed to
2089 * discard so isolated count will be mismatched.
2090 * Compensate the isolated count for both LRU lists.
2091 */
2092 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2093 stat.nr_lazyfree_fail);
2094 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2095 -(long)stat.nr_lazyfree_fail);
2096 return nr_reclaimed;
2097 }
2098
2099 /*
2100 * Update LRU sizes after isolating pages. The LRU size updates must
2101 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2102 */
2103 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2104 enum lru_list lru, unsigned long *nr_zone_taken)
2105 {
2106 int zid;
2107
2108 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2109 if (!nr_zone_taken[zid])
2110 continue;
2111
2112 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2113 }
2114
2115 }
2116
2117 /*
2118 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2119 *
2120 * lruvec->lru_lock is heavily contended. Some of the functions that
2121 * shrink the lists perform better by taking out a batch of pages
2122 * and working on them outside the LRU lock.
2123 *
2124 * For pagecache intensive workloads, this function is the hottest
2125 * spot in the kernel (apart from copy_*_user functions).
2126 *
2127 * Lru_lock must be held before calling this function.
2128 *
2129 * @nr_to_scan: The number of eligible pages to look through on the list.
2130 * @lruvec: The LRU vector to pull pages from.
2131 * @dst: The temp list to put pages on to.
2132 * @nr_scanned: The number of pages that were scanned.
2133 * @sc: The scan_control struct for this reclaim session
2134 * @lru: LRU list id for isolating
2135 *
2136 * returns how many pages were moved onto *@dst.
2137 */
2138 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2139 struct lruvec *lruvec, struct list_head *dst,
2140 unsigned long *nr_scanned, struct scan_control *sc,
2141 enum lru_list lru)
2142 {
2143 struct list_head *src = &lruvec->lists[lru];
2144 unsigned long nr_taken = 0;
2145 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2146 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2147 unsigned long skipped = 0;
2148 unsigned long scan, total_scan, nr_pages;
2149 LIST_HEAD(folios_skipped);
2150
2151 total_scan = 0;
2152 scan = 0;
2153 while (scan < nr_to_scan && !list_empty(src)) {
2154 struct list_head *move_to = src;
2155 struct folio *folio;
2156
2157 folio = lru_to_folio(src);
2158 prefetchw_prev_lru_folio(folio, src, flags);
2159
2160 nr_pages = folio_nr_pages(folio);
2161 total_scan += nr_pages;
2162
2163 if (folio_zonenum(folio) > sc->reclaim_idx) {
2164 nr_skipped[folio_zonenum(folio)] += nr_pages;
2165 move_to = &folios_skipped;
2166 goto move;
2167 }
2168
2169 /*
2170 * Do not count skipped folios because that makes the function
2171 * return with no isolated folios if the LRU mostly contains
2172 * ineligible folios. This causes the VM to not reclaim any
2173 * folios, triggering a premature OOM.
2174 * Account all pages in a folio.
2175 */
2176 scan += nr_pages;
2177
2178 if (!folio_test_lru(folio))
2179 goto move;
2180 if (!sc->may_unmap && folio_mapped(folio))
2181 goto move;
2182
2183 /*
2184 * Be careful not to clear the lru flag until after we're
2185 * sure the folio is not being freed elsewhere -- the
2186 * folio release code relies on it.
2187 */
2188 if (unlikely(!folio_try_get(folio)))
2189 goto move;
2190
2191 if (!folio_test_clear_lru(folio)) {
2192 /* Another thread is already isolating this folio */
2193 folio_put(folio);
2194 goto move;
2195 }
2196
2197 nr_taken += nr_pages;
2198 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2199 move_to = dst;
2200 move:
2201 list_move(&folio->lru, move_to);
2202 }
2203
2204 /*
2205 * Splice any skipped folios to the start of the LRU list. Note that
2206 * this disrupts the LRU order when reclaiming for lower zones but
2207 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2208 * scanning would soon rescan the same folios to skip and waste lots
2209 * of cpu cycles.
2210 */
2211 if (!list_empty(&folios_skipped)) {
2212 int zid;
2213
2214 list_splice(&folios_skipped, src);
2215 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2216 if (!nr_skipped[zid])
2217 continue;
2218
2219 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2220 skipped += nr_skipped[zid];
2221 }
2222 }
2223 *nr_scanned = total_scan;
2224 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2225 total_scan, skipped, nr_taken,
2226 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2227 update_lru_sizes(lruvec, lru, nr_zone_taken);
2228 return nr_taken;
2229 }
2230
2231 /**
2232 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2233 * @folio: Folio to isolate from its LRU list.
2234 *
2235 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2236 * corresponding to whatever LRU list the folio was on.
2237 *
2238 * The folio will have its LRU flag cleared. If it was found on the
2239 * active list, it will have the Active flag set. If it was found on the
2240 * unevictable list, it will have the Unevictable flag set. These flags
2241 * may need to be cleared by the caller before letting the page go.
2242 *
2243 * Context:
2244 *
2245 * (1) Must be called with an elevated refcount on the page. This is a
2246 * fundamental difference from isolate_lru_pages() (which is called
2247 * without a stable reference).
2248 * (2) The lru_lock must not be held.
2249 * (3) Interrupts must be enabled.
2250 *
2251 * Return: 0 if the folio was removed from an LRU list.
2252 * -EBUSY if the folio was not on an LRU list.
2253 */
2254 int folio_isolate_lru(struct folio *folio)
2255 {
2256 int ret = -EBUSY;
2257
2258 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2259
2260 if (folio_test_clear_lru(folio)) {
2261 struct lruvec *lruvec;
2262
2263 folio_get(folio);
2264 lruvec = folio_lruvec_lock_irq(folio);
2265 lruvec_del_folio(lruvec, folio);
2266 unlock_page_lruvec_irq(lruvec);
2267 ret = 0;
2268 }
2269
2270 return ret;
2271 }
2272
2273 /*
2274 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2275 * then get rescheduled. When there are massive number of tasks doing page
2276 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2277 * the LRU list will go small and be scanned faster than necessary, leading to
2278 * unnecessary swapping, thrashing and OOM.
2279 */
2280 static int too_many_isolated(struct pglist_data *pgdat, int file,
2281 struct scan_control *sc)
2282 {
2283 unsigned long inactive, isolated;
2284 bool too_many;
2285
2286 if (current_is_kswapd())
2287 return 0;
2288
2289 if (!writeback_throttling_sane(sc))
2290 return 0;
2291
2292 if (file) {
2293 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2294 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2295 } else {
2296 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2297 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2298 }
2299
2300 /*
2301 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2302 * won't get blocked by normal direct-reclaimers, forming a circular
2303 * deadlock.
2304 */
2305 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2306 inactive >>= 3;
2307
2308 too_many = isolated > inactive;
2309
2310 /* Wake up tasks throttled due to too_many_isolated. */
2311 if (!too_many)
2312 wake_throttle_isolated(pgdat);
2313
2314 return too_many;
2315 }
2316
2317 /*
2318 * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
2319 * On return, @list is reused as a list of folios to be freed by the caller.
2320 *
2321 * Returns the number of pages moved to the given lruvec.
2322 */
2323 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2324 struct list_head *list)
2325 {
2326 int nr_pages, nr_moved = 0;
2327 LIST_HEAD(folios_to_free);
2328
2329 while (!list_empty(list)) {
2330 struct folio *folio = lru_to_folio(list);
2331
2332 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2333 list_del(&folio->lru);
2334 if (unlikely(!folio_evictable(folio))) {
2335 spin_unlock_irq(&lruvec->lru_lock);
2336 folio_putback_lru(folio);
2337 spin_lock_irq(&lruvec->lru_lock);
2338 continue;
2339 }
2340
2341 /*
2342 * The folio_set_lru needs to be kept here for list integrity.
2343 * Otherwise:
2344 * #0 move_pages_to_lru #1 release_pages
2345 * if (!folio_put_testzero())
2346 * if (folio_put_testzero())
2347 * !lru //skip lru_lock
2348 * folio_set_lru()
2349 * list_add(&folio->lru,)
2350 * list_add(&folio->lru,)
2351 */
2352 folio_set_lru(folio);
2353
2354 if (unlikely(folio_put_testzero(folio))) {
2355 __folio_clear_lru_flags(folio);
2356
2357 if (unlikely(folio_test_large(folio))) {
2358 spin_unlock_irq(&lruvec->lru_lock);
2359 destroy_large_folio(folio);
2360 spin_lock_irq(&lruvec->lru_lock);
2361 } else
2362 list_add(&folio->lru, &folios_to_free);
2363
2364 continue;
2365 }
2366
2367 /*
2368 * All pages were isolated from the same lruvec (and isolation
2369 * inhibits memcg migration).
2370 */
2371 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2372 lruvec_add_folio(lruvec, folio);
2373 nr_pages = folio_nr_pages(folio);
2374 nr_moved += nr_pages;
2375 if (folio_test_active(folio))
2376 workingset_age_nonresident(lruvec, nr_pages);
2377 }
2378
2379 /*
2380 * To save our caller's stack, now use input list for pages to free.
2381 */
2382 list_splice(&folios_to_free, list);
2383
2384 return nr_moved;
2385 }
2386
2387 /*
2388 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2389 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2390 * we should not throttle. Otherwise it is safe to do so.
2391 */
2392 static int current_may_throttle(void)
2393 {
2394 return !(current->flags & PF_LOCAL_THROTTLE);
2395 }
2396
2397 /*
2398 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2399 * of reclaimed pages
2400 */
2401 static unsigned long
2402 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2403 struct scan_control *sc, enum lru_list lru)
2404 {
2405 LIST_HEAD(page_list);
2406 unsigned long nr_scanned;
2407 unsigned int nr_reclaimed = 0;
2408 unsigned long nr_taken;
2409 struct reclaim_stat stat;
2410 bool file = is_file_lru(lru);
2411 enum vm_event_item item;
2412 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2413 bool stalled = false;
2414
2415 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2416 if (stalled)
2417 return 0;
2418
2419 /* wait a bit for the reclaimer. */
2420 stalled = true;
2421 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2422
2423 /* We are about to die and free our memory. Return now. */
2424 if (fatal_signal_pending(current))
2425 return SWAP_CLUSTER_MAX;
2426 }
2427
2428 lru_add_drain();
2429
2430 spin_lock_irq(&lruvec->lru_lock);
2431
2432 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2433 &nr_scanned, sc, lru);
2434
2435 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2436 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2437 if (!cgroup_reclaim(sc))
2438 __count_vm_events(item, nr_scanned);
2439 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2440 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2441
2442 spin_unlock_irq(&lruvec->lru_lock);
2443
2444 if (nr_taken == 0)
2445 return 0;
2446
2447 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2448
2449 spin_lock_irq(&lruvec->lru_lock);
2450 move_pages_to_lru(lruvec, &page_list);
2451
2452 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2453 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2454 if (!cgroup_reclaim(sc))
2455 __count_vm_events(item, nr_reclaimed);
2456 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2457 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2458 spin_unlock_irq(&lruvec->lru_lock);
2459
2460 lru_note_cost(lruvec, file, stat.nr_pageout);
2461 mem_cgroup_uncharge_list(&page_list);
2462 free_unref_page_list(&page_list);
2463
2464 /*
2465 * If dirty pages are scanned that are not queued for IO, it
2466 * implies that flushers are not doing their job. This can
2467 * happen when memory pressure pushes dirty pages to the end of
2468 * the LRU before the dirty limits are breached and the dirty
2469 * data has expired. It can also happen when the proportion of
2470 * dirty pages grows not through writes but through memory
2471 * pressure reclaiming all the clean cache. And in some cases,
2472 * the flushers simply cannot keep up with the allocation
2473 * rate. Nudge the flusher threads in case they are asleep.
2474 */
2475 if (stat.nr_unqueued_dirty == nr_taken)
2476 wakeup_flusher_threads(WB_REASON_VMSCAN);
2477
2478 sc->nr.dirty += stat.nr_dirty;
2479 sc->nr.congested += stat.nr_congested;
2480 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2481 sc->nr.writeback += stat.nr_writeback;
2482 sc->nr.immediate += stat.nr_immediate;
2483 sc->nr.taken += nr_taken;
2484 if (file)
2485 sc->nr.file_taken += nr_taken;
2486
2487 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2488 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2489 return nr_reclaimed;
2490 }
2491
2492 /*
2493 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2494 *
2495 * We move them the other way if the folio is referenced by one or more
2496 * processes.
2497 *
2498 * If the folios are mostly unmapped, the processing is fast and it is
2499 * appropriate to hold lru_lock across the whole operation. But if
2500 * the folios are mapped, the processing is slow (folio_referenced()), so
2501 * we should drop lru_lock around each folio. It's impossible to balance
2502 * this, so instead we remove the folios from the LRU while processing them.
2503 * It is safe to rely on the active flag against the non-LRU folios in here
2504 * because nobody will play with that bit on a non-LRU folio.
2505 *
2506 * The downside is that we have to touch folio->_refcount against each folio.
2507 * But we had to alter folio->flags anyway.
2508 */
2509 static void shrink_active_list(unsigned long nr_to_scan,
2510 struct lruvec *lruvec,
2511 struct scan_control *sc,
2512 enum lru_list lru)
2513 {
2514 unsigned long nr_taken;
2515 unsigned long nr_scanned;
2516 unsigned long vm_flags;
2517 LIST_HEAD(l_hold); /* The folios which were snipped off */
2518 LIST_HEAD(l_active);
2519 LIST_HEAD(l_inactive);
2520 unsigned nr_deactivate, nr_activate;
2521 unsigned nr_rotated = 0;
2522 int file = is_file_lru(lru);
2523 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2524
2525 lru_add_drain();
2526
2527 spin_lock_irq(&lruvec->lru_lock);
2528
2529 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2530 &nr_scanned, sc, lru);
2531
2532 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2533
2534 if (!cgroup_reclaim(sc))
2535 __count_vm_events(PGREFILL, nr_scanned);
2536 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2537
2538 spin_unlock_irq(&lruvec->lru_lock);
2539
2540 while (!list_empty(&l_hold)) {
2541 struct folio *folio;
2542
2543 cond_resched();
2544 folio = lru_to_folio(&l_hold);
2545 list_del(&folio->lru);
2546
2547 if (unlikely(!folio_evictable(folio))) {
2548 folio_putback_lru(folio);
2549 continue;
2550 }
2551
2552 if (unlikely(buffer_heads_over_limit)) {
2553 if (folio_get_private(folio) && folio_trylock(folio)) {
2554 if (folio_get_private(folio))
2555 filemap_release_folio(folio, 0);
2556 folio_unlock(folio);
2557 }
2558 }
2559
2560 /* Referenced or rmap lock contention: rotate */
2561 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2562 &vm_flags) != 0) {
2563 /*
2564 * Identify referenced, file-backed active folios and
2565 * give them one more trip around the active list. So
2566 * that executable code get better chances to stay in
2567 * memory under moderate memory pressure. Anon folios
2568 * are not likely to be evicted by use-once streaming
2569 * IO, plus JVM can create lots of anon VM_EXEC folios,
2570 * so we ignore them here.
2571 */
2572 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2573 nr_rotated += folio_nr_pages(folio);
2574 list_add(&folio->lru, &l_active);
2575 continue;
2576 }
2577 }
2578
2579 folio_clear_active(folio); /* we are de-activating */
2580 folio_set_workingset(folio);
2581 list_add(&folio->lru, &l_inactive);
2582 }
2583
2584 /*
2585 * Move folios back to the lru list.
2586 */
2587 spin_lock_irq(&lruvec->lru_lock);
2588
2589 nr_activate = move_pages_to_lru(lruvec, &l_active);
2590 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2591 /* Keep all free folios in l_active list */
2592 list_splice(&l_inactive, &l_active);
2593
2594 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2595 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2596
2597 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2598 spin_unlock_irq(&lruvec->lru_lock);
2599
2600 mem_cgroup_uncharge_list(&l_active);
2601 free_unref_page_list(&l_active);
2602 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2603 nr_deactivate, nr_rotated, sc->priority, file);
2604 }
2605
2606 static unsigned int reclaim_page_list(struct list_head *page_list,
2607 struct pglist_data *pgdat)
2608 {
2609 struct reclaim_stat dummy_stat;
2610 unsigned int nr_reclaimed;
2611 struct folio *folio;
2612 struct scan_control sc = {
2613 .gfp_mask = GFP_KERNEL,
2614 .may_writepage = 1,
2615 .may_unmap = 1,
2616 .may_swap = 1,
2617 .no_demotion = 1,
2618 };
2619
2620 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2621 while (!list_empty(page_list)) {
2622 folio = lru_to_folio(page_list);
2623 list_del(&folio->lru);
2624 folio_putback_lru(folio);
2625 }
2626
2627 return nr_reclaimed;
2628 }
2629
2630 unsigned long reclaim_pages(struct list_head *folio_list)
2631 {
2632 int nid;
2633 unsigned int nr_reclaimed = 0;
2634 LIST_HEAD(node_folio_list);
2635 unsigned int noreclaim_flag;
2636
2637 if (list_empty(folio_list))
2638 return nr_reclaimed;
2639
2640 noreclaim_flag = memalloc_noreclaim_save();
2641
2642 nid = folio_nid(lru_to_folio(folio_list));
2643 do {
2644 struct folio *folio = lru_to_folio(folio_list);
2645
2646 if (nid == folio_nid(folio)) {
2647 folio_clear_active(folio);
2648 list_move(&folio->lru, &node_folio_list);
2649 continue;
2650 }
2651
2652 nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2653 nid = folio_nid(lru_to_folio(folio_list));
2654 } while (!list_empty(folio_list));
2655
2656 nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2657
2658 memalloc_noreclaim_restore(noreclaim_flag);
2659
2660 return nr_reclaimed;
2661 }
2662
2663 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2664 struct lruvec *lruvec, struct scan_control *sc)
2665 {
2666 if (is_active_lru(lru)) {
2667 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2668 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2669 else
2670 sc->skipped_deactivate = 1;
2671 return 0;
2672 }
2673
2674 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2675 }
2676
2677 /*
2678 * The inactive anon list should be small enough that the VM never has
2679 * to do too much work.
2680 *
2681 * The inactive file list should be small enough to leave most memory
2682 * to the established workingset on the scan-resistant active list,
2683 * but large enough to avoid thrashing the aggregate readahead window.
2684 *
2685 * Both inactive lists should also be large enough that each inactive
2686 * page has a chance to be referenced again before it is reclaimed.
2687 *
2688 * If that fails and refaulting is observed, the inactive list grows.
2689 *
2690 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2691 * on this LRU, maintained by the pageout code. An inactive_ratio
2692 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2693 *
2694 * total target max
2695 * memory ratio inactive
2696 * -------------------------------------
2697 * 10MB 1 5MB
2698 * 100MB 1 50MB
2699 * 1GB 3 250MB
2700 * 10GB 10 0.9GB
2701 * 100GB 31 3GB
2702 * 1TB 101 10GB
2703 * 10TB 320 32GB
2704 */
2705 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2706 {
2707 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2708 unsigned long inactive, active;
2709 unsigned long inactive_ratio;
2710 unsigned long gb;
2711
2712 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2713 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2714
2715 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2716 if (gb)
2717 inactive_ratio = int_sqrt(10 * gb);
2718 else
2719 inactive_ratio = 1;
2720
2721 return inactive * inactive_ratio < active;
2722 }
2723
2724 enum scan_balance {
2725 SCAN_EQUAL,
2726 SCAN_FRACT,
2727 SCAN_ANON,
2728 SCAN_FILE,
2729 };
2730
2731 /*
2732 * Determine how aggressively the anon and file LRU lists should be
2733 * scanned.
2734 *
2735 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2736 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2737 */
2738 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2739 unsigned long *nr)
2740 {
2741 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2742 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2743 unsigned long anon_cost, file_cost, total_cost;
2744 int swappiness = mem_cgroup_swappiness(memcg);
2745 u64 fraction[ANON_AND_FILE];
2746 u64 denominator = 0; /* gcc */
2747 enum scan_balance scan_balance;
2748 unsigned long ap, fp;
2749 enum lru_list lru;
2750
2751 /* If we have no swap space, do not bother scanning anon pages. */
2752 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2753 scan_balance = SCAN_FILE;
2754 goto out;
2755 }
2756
2757 /*
2758 * Global reclaim will swap to prevent OOM even with no
2759 * swappiness, but memcg users want to use this knob to
2760 * disable swapping for individual groups completely when
2761 * using the memory controller's swap limit feature would be
2762 * too expensive.
2763 */
2764 if (cgroup_reclaim(sc) && !swappiness) {
2765 scan_balance = SCAN_FILE;
2766 goto out;
2767 }
2768
2769 /*
2770 * Do not apply any pressure balancing cleverness when the
2771 * system is close to OOM, scan both anon and file equally
2772 * (unless the swappiness setting disagrees with swapping).
2773 */
2774 if (!sc->priority && swappiness) {
2775 scan_balance = SCAN_EQUAL;
2776 goto out;
2777 }
2778
2779 /*
2780 * If the system is almost out of file pages, force-scan anon.
2781 */
2782 if (sc->file_is_tiny) {
2783 scan_balance = SCAN_ANON;
2784 goto out;
2785 }
2786
2787 /*
2788 * If there is enough inactive page cache, we do not reclaim
2789 * anything from the anonymous working right now.
2790 */
2791 if (sc->cache_trim_mode) {
2792 scan_balance = SCAN_FILE;
2793 goto out;
2794 }
2795
2796 scan_balance = SCAN_FRACT;
2797 /*
2798 * Calculate the pressure balance between anon and file pages.
2799 *
2800 * The amount of pressure we put on each LRU is inversely
2801 * proportional to the cost of reclaiming each list, as
2802 * determined by the share of pages that are refaulting, times
2803 * the relative IO cost of bringing back a swapped out
2804 * anonymous page vs reloading a filesystem page (swappiness).
2805 *
2806 * Although we limit that influence to ensure no list gets
2807 * left behind completely: at least a third of the pressure is
2808 * applied, before swappiness.
2809 *
2810 * With swappiness at 100, anon and file have equal IO cost.
2811 */
2812 total_cost = sc->anon_cost + sc->file_cost;
2813 anon_cost = total_cost + sc->anon_cost;
2814 file_cost = total_cost + sc->file_cost;
2815 total_cost = anon_cost + file_cost;
2816
2817 ap = swappiness * (total_cost + 1);
2818 ap /= anon_cost + 1;
2819
2820 fp = (200 - swappiness) * (total_cost + 1);
2821 fp /= file_cost + 1;
2822
2823 fraction[0] = ap;
2824 fraction[1] = fp;
2825 denominator = ap + fp;
2826 out:
2827 for_each_evictable_lru(lru) {
2828 int file = is_file_lru(lru);
2829 unsigned long lruvec_size;
2830 unsigned long low, min;
2831 unsigned long scan;
2832
2833 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2834 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2835 &min, &low);
2836
2837 if (min || low) {
2838 /*
2839 * Scale a cgroup's reclaim pressure by proportioning
2840 * its current usage to its memory.low or memory.min
2841 * setting.
2842 *
2843 * This is important, as otherwise scanning aggression
2844 * becomes extremely binary -- from nothing as we
2845 * approach the memory protection threshold, to totally
2846 * nominal as we exceed it. This results in requiring
2847 * setting extremely liberal protection thresholds. It
2848 * also means we simply get no protection at all if we
2849 * set it too low, which is not ideal.
2850 *
2851 * If there is any protection in place, we reduce scan
2852 * pressure by how much of the total memory used is
2853 * within protection thresholds.
2854 *
2855 * There is one special case: in the first reclaim pass,
2856 * we skip over all groups that are within their low
2857 * protection. If that fails to reclaim enough pages to
2858 * satisfy the reclaim goal, we come back and override
2859 * the best-effort low protection. However, we still
2860 * ideally want to honor how well-behaved groups are in
2861 * that case instead of simply punishing them all
2862 * equally. As such, we reclaim them based on how much
2863 * memory they are using, reducing the scan pressure
2864 * again by how much of the total memory used is under
2865 * hard protection.
2866 */
2867 unsigned long cgroup_size = mem_cgroup_size(memcg);
2868 unsigned long protection;
2869
2870 /* memory.low scaling, make sure we retry before OOM */
2871 if (!sc->memcg_low_reclaim && low > min) {
2872 protection = low;
2873 sc->memcg_low_skipped = 1;
2874 } else {
2875 protection = min;
2876 }
2877
2878 /* Avoid TOCTOU with earlier protection check */
2879 cgroup_size = max(cgroup_size, protection);
2880
2881 scan = lruvec_size - lruvec_size * protection /
2882 (cgroup_size + 1);
2883
2884 /*
2885 * Minimally target SWAP_CLUSTER_MAX pages to keep
2886 * reclaim moving forwards, avoiding decrementing
2887 * sc->priority further than desirable.
2888 */
2889 scan = max(scan, SWAP_CLUSTER_MAX);
2890 } else {
2891 scan = lruvec_size;
2892 }
2893
2894 scan >>= sc->priority;
2895
2896 /*
2897 * If the cgroup's already been deleted, make sure to
2898 * scrape out the remaining cache.
2899 */
2900 if (!scan && !mem_cgroup_online(memcg))
2901 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2902
2903 switch (scan_balance) {
2904 case SCAN_EQUAL:
2905 /* Scan lists relative to size */
2906 break;
2907 case SCAN_FRACT:
2908 /*
2909 * Scan types proportional to swappiness and
2910 * their relative recent reclaim efficiency.
2911 * Make sure we don't miss the last page on
2912 * the offlined memory cgroups because of a
2913 * round-off error.
2914 */
2915 scan = mem_cgroup_online(memcg) ?
2916 div64_u64(scan * fraction[file], denominator) :
2917 DIV64_U64_ROUND_UP(scan * fraction[file],
2918 denominator);
2919 break;
2920 case SCAN_FILE:
2921 case SCAN_ANON:
2922 /* Scan one type exclusively */
2923 if ((scan_balance == SCAN_FILE) != file)
2924 scan = 0;
2925 break;
2926 default:
2927 /* Look ma, no brain */
2928 BUG();
2929 }
2930
2931 nr[lru] = scan;
2932 }
2933 }
2934
2935 /*
2936 * Anonymous LRU management is a waste if there is
2937 * ultimately no way to reclaim the memory.
2938 */
2939 static bool can_age_anon_pages(struct pglist_data *pgdat,
2940 struct scan_control *sc)
2941 {
2942 /* Aging the anon LRU is valuable if swap is present: */
2943 if (total_swap_pages > 0)
2944 return true;
2945
2946 /* Also valuable if anon pages can be demoted: */
2947 return can_demote(pgdat->node_id, sc);
2948 }
2949
2950 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2951 {
2952 unsigned long nr[NR_LRU_LISTS];
2953 unsigned long targets[NR_LRU_LISTS];
2954 unsigned long nr_to_scan;
2955 enum lru_list lru;
2956 unsigned long nr_reclaimed = 0;
2957 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2958 struct blk_plug plug;
2959 bool scan_adjusted;
2960
2961 get_scan_count(lruvec, sc, nr);
2962
2963 /* Record the original scan target for proportional adjustments later */
2964 memcpy(targets, nr, sizeof(nr));
2965
2966 /*
2967 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2968 * event that can occur when there is little memory pressure e.g.
2969 * multiple streaming readers/writers. Hence, we do not abort scanning
2970 * when the requested number of pages are reclaimed when scanning at
2971 * DEF_PRIORITY on the assumption that the fact we are direct
2972 * reclaiming implies that kswapd is not keeping up and it is best to
2973 * do a batch of work at once. For memcg reclaim one check is made to
2974 * abort proportional reclaim if either the file or anon lru has already
2975 * dropped to zero at the first pass.
2976 */
2977 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2978 sc->priority == DEF_PRIORITY);
2979
2980 blk_start_plug(&plug);
2981 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2982 nr[LRU_INACTIVE_FILE]) {
2983 unsigned long nr_anon, nr_file, percentage;
2984 unsigned long nr_scanned;
2985
2986 for_each_evictable_lru(lru) {
2987 if (nr[lru]) {
2988 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2989 nr[lru] -= nr_to_scan;
2990
2991 nr_reclaimed += shrink_list(lru, nr_to_scan,
2992 lruvec, sc);
2993 }
2994 }
2995
2996 cond_resched();
2997
2998 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2999 continue;
3000
3001 /*
3002 * For kswapd and memcg, reclaim at least the number of pages
3003 * requested. Ensure that the anon and file LRUs are scanned
3004 * proportionally what was requested by get_scan_count(). We
3005 * stop reclaiming one LRU and reduce the amount scanning
3006 * proportional to the original scan target.
3007 */
3008 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3009 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3010
3011 /*
3012 * It's just vindictive to attack the larger once the smaller
3013 * has gone to zero. And given the way we stop scanning the
3014 * smaller below, this makes sure that we only make one nudge
3015 * towards proportionality once we've got nr_to_reclaim.
3016 */
3017 if (!nr_file || !nr_anon)
3018 break;
3019
3020 if (nr_file > nr_anon) {
3021 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3022 targets[LRU_ACTIVE_ANON] + 1;
3023 lru = LRU_BASE;
3024 percentage = nr_anon * 100 / scan_target;
3025 } else {
3026 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3027 targets[LRU_ACTIVE_FILE] + 1;
3028 lru = LRU_FILE;
3029 percentage = nr_file * 100 / scan_target;
3030 }
3031
3032 /* Stop scanning the smaller of the LRU */
3033 nr[lru] = 0;
3034 nr[lru + LRU_ACTIVE] = 0;
3035
3036 /*
3037 * Recalculate the other LRU scan count based on its original
3038 * scan target and the percentage scanning already complete
3039 */
3040 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3041 nr_scanned = targets[lru] - nr[lru];
3042 nr[lru] = targets[lru] * (100 - percentage) / 100;
3043 nr[lru] -= min(nr[lru], nr_scanned);
3044
3045 lru += LRU_ACTIVE;
3046 nr_scanned = targets[lru] - nr[lru];
3047 nr[lru] = targets[lru] * (100 - percentage) / 100;
3048 nr[lru] -= min(nr[lru], nr_scanned);
3049
3050 scan_adjusted = true;
3051 }
3052 blk_finish_plug(&plug);
3053 sc->nr_reclaimed += nr_reclaimed;
3054
3055 /*
3056 * Even if we did not try to evict anon pages at all, we want to
3057 * rebalance the anon lru active/inactive ratio.
3058 */
3059 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3060 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3061 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3062 sc, LRU_ACTIVE_ANON);
3063 }
3064
3065 /* Use reclaim/compaction for costly allocs or under memory pressure */
3066 static bool in_reclaim_compaction(struct scan_control *sc)
3067 {
3068 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3069 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3070 sc->priority < DEF_PRIORITY - 2))
3071 return true;
3072
3073 return false;
3074 }
3075
3076 /*
3077 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3078 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3079 * true if more pages should be reclaimed such that when the page allocator
3080 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3081 * It will give up earlier than that if there is difficulty reclaiming pages.
3082 */
3083 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3084 unsigned long nr_reclaimed,
3085 struct scan_control *sc)
3086 {
3087 unsigned long pages_for_compaction;
3088 unsigned long inactive_lru_pages;
3089 int z;
3090
3091 /* If not in reclaim/compaction mode, stop */
3092 if (!in_reclaim_compaction(sc))
3093 return false;
3094
3095 /*
3096 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3097 * number of pages that were scanned. This will return to the caller
3098 * with the risk reclaim/compaction and the resulting allocation attempt
3099 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3100 * allocations through requiring that the full LRU list has been scanned
3101 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3102 * scan, but that approximation was wrong, and there were corner cases
3103 * where always a non-zero amount of pages were scanned.
3104 */
3105 if (!nr_reclaimed)
3106 return false;
3107
3108 /* If compaction would go ahead or the allocation would succeed, stop */
3109 for (z = 0; z <= sc->reclaim_idx; z++) {
3110 struct zone *zone = &pgdat->node_zones[z];
3111 if (!managed_zone(zone))
3112 continue;
3113
3114 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3115 case COMPACT_SUCCESS:
3116 case COMPACT_CONTINUE:
3117 return false;
3118 default:
3119 /* check next zone */
3120 ;
3121 }
3122 }
3123
3124 /*
3125 * If we have not reclaimed enough pages for compaction and the
3126 * inactive lists are large enough, continue reclaiming
3127 */
3128 pages_for_compaction = compact_gap(sc->order);
3129 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3130 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3131 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3132
3133 return inactive_lru_pages > pages_for_compaction;
3134 }
3135
3136 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3137 {
3138 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3139 struct mem_cgroup *memcg;
3140
3141 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3142 do {
3143 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3144 unsigned long reclaimed;
3145 unsigned long scanned;
3146
3147 /*
3148 * This loop can become CPU-bound when target memcgs
3149 * aren't eligible for reclaim - either because they
3150 * don't have any reclaimable pages, or because their
3151 * memory is explicitly protected. Avoid soft lockups.
3152 */
3153 cond_resched();
3154
3155 mem_cgroup_calculate_protection(target_memcg, memcg);
3156
3157 if (mem_cgroup_below_min(memcg)) {
3158 /*
3159 * Hard protection.
3160 * If there is no reclaimable memory, OOM.
3161 */
3162 continue;
3163 } else if (mem_cgroup_below_low(memcg)) {
3164 /*
3165 * Soft protection.
3166 * Respect the protection only as long as
3167 * there is an unprotected supply
3168 * of reclaimable memory from other cgroups.
3169 */
3170 if (!sc->memcg_low_reclaim) {
3171 sc->memcg_low_skipped = 1;
3172 continue;
3173 }
3174 memcg_memory_event(memcg, MEMCG_LOW);
3175 }
3176
3177 reclaimed = sc->nr_reclaimed;
3178 scanned = sc->nr_scanned;
3179
3180 shrink_lruvec(lruvec, sc);
3181
3182 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3183 sc->priority);
3184
3185 /* Record the group's reclaim efficiency */
3186 if (!sc->proactive)
3187 vmpressure(sc->gfp_mask, memcg, false,
3188 sc->nr_scanned - scanned,
3189 sc->nr_reclaimed - reclaimed);
3190
3191 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3192 }
3193
3194 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3195 {
3196 struct reclaim_state *reclaim_state = current->reclaim_state;
3197 unsigned long nr_reclaimed, nr_scanned;
3198 struct lruvec *target_lruvec;
3199 bool reclaimable = false;
3200 unsigned long file;
3201
3202 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3203
3204 again:
3205 /*
3206 * Flush the memory cgroup stats, so that we read accurate per-memcg
3207 * lruvec stats for heuristics.
3208 */
3209 mem_cgroup_flush_stats();
3210
3211 memset(&sc->nr, 0, sizeof(sc->nr));
3212
3213 nr_reclaimed = sc->nr_reclaimed;
3214 nr_scanned = sc->nr_scanned;
3215
3216 /*
3217 * Determine the scan balance between anon and file LRUs.
3218 */
3219 spin_lock_irq(&target_lruvec->lru_lock);
3220 sc->anon_cost = target_lruvec->anon_cost;
3221 sc->file_cost = target_lruvec->file_cost;
3222 spin_unlock_irq(&target_lruvec->lru_lock);
3223
3224 /*
3225 * Target desirable inactive:active list ratios for the anon
3226 * and file LRU lists.
3227 */
3228 if (!sc->force_deactivate) {
3229 unsigned long refaults;
3230
3231 refaults = lruvec_page_state(target_lruvec,
3232 WORKINGSET_ACTIVATE_ANON);
3233 if (refaults != target_lruvec->refaults[0] ||
3234 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3235 sc->may_deactivate |= DEACTIVATE_ANON;
3236 else
3237 sc->may_deactivate &= ~DEACTIVATE_ANON;
3238
3239 /*
3240 * When refaults are being observed, it means a new
3241 * workingset is being established. Deactivate to get
3242 * rid of any stale active pages quickly.
3243 */
3244 refaults = lruvec_page_state(target_lruvec,
3245 WORKINGSET_ACTIVATE_FILE);
3246 if (refaults != target_lruvec->refaults[1] ||
3247 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3248 sc->may_deactivate |= DEACTIVATE_FILE;
3249 else
3250 sc->may_deactivate &= ~DEACTIVATE_FILE;
3251 } else
3252 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3253
3254 /*
3255 * If we have plenty of inactive file pages that aren't
3256 * thrashing, try to reclaim those first before touching
3257 * anonymous pages.
3258 */
3259 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3260 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3261 sc->cache_trim_mode = 1;
3262 else
3263 sc->cache_trim_mode = 0;
3264
3265 /*
3266 * Prevent the reclaimer from falling into the cache trap: as
3267 * cache pages start out inactive, every cache fault will tip
3268 * the scan balance towards the file LRU. And as the file LRU
3269 * shrinks, so does the window for rotation from references.
3270 * This means we have a runaway feedback loop where a tiny
3271 * thrashing file LRU becomes infinitely more attractive than
3272 * anon pages. Try to detect this based on file LRU size.
3273 */
3274 if (!cgroup_reclaim(sc)) {
3275 unsigned long total_high_wmark = 0;
3276 unsigned long free, anon;
3277 int z;
3278
3279 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3280 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3281 node_page_state(pgdat, NR_INACTIVE_FILE);
3282
3283 for (z = 0; z < MAX_NR_ZONES; z++) {
3284 struct zone *zone = &pgdat->node_zones[z];
3285 if (!managed_zone(zone))
3286 continue;
3287
3288 total_high_wmark += high_wmark_pages(zone);
3289 }
3290
3291 /*
3292 * Consider anon: if that's low too, this isn't a
3293 * runaway file reclaim problem, but rather just
3294 * extreme pressure. Reclaim as per usual then.
3295 */
3296 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3297
3298 sc->file_is_tiny =
3299 file + free <= total_high_wmark &&
3300 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3301 anon >> sc->priority;
3302 }
3303
3304 shrink_node_memcgs(pgdat, sc);
3305
3306 if (reclaim_state) {
3307 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3308 reclaim_state->reclaimed_slab = 0;
3309 }
3310
3311 /* Record the subtree's reclaim efficiency */
3312 if (!sc->proactive)
3313 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3314 sc->nr_scanned - nr_scanned,
3315 sc->nr_reclaimed - nr_reclaimed);
3316
3317 if (sc->nr_reclaimed - nr_reclaimed)
3318 reclaimable = true;
3319
3320 if (current_is_kswapd()) {
3321 /*
3322 * If reclaim is isolating dirty pages under writeback,
3323 * it implies that the long-lived page allocation rate
3324 * is exceeding the page laundering rate. Either the
3325 * global limits are not being effective at throttling
3326 * processes due to the page distribution throughout
3327 * zones or there is heavy usage of a slow backing
3328 * device. The only option is to throttle from reclaim
3329 * context which is not ideal as there is no guarantee
3330 * the dirtying process is throttled in the same way
3331 * balance_dirty_pages() manages.
3332 *
3333 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3334 * count the number of pages under pages flagged for
3335 * immediate reclaim and stall if any are encountered
3336 * in the nr_immediate check below.
3337 */
3338 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3339 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3340
3341 /* Allow kswapd to start writing pages during reclaim.*/
3342 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3343 set_bit(PGDAT_DIRTY, &pgdat->flags);
3344
3345 /*
3346 * If kswapd scans pages marked for immediate
3347 * reclaim and under writeback (nr_immediate), it
3348 * implies that pages are cycling through the LRU
3349 * faster than they are written so forcibly stall
3350 * until some pages complete writeback.
3351 */
3352 if (sc->nr.immediate)
3353 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3354 }
3355
3356 /*
3357 * Tag a node/memcg as congested if all the dirty pages were marked
3358 * for writeback and immediate reclaim (counted in nr.congested).
3359 *
3360 * Legacy memcg will stall in page writeback so avoid forcibly
3361 * stalling in reclaim_throttle().
3362 */
3363 if ((current_is_kswapd() ||
3364 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3365 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3366 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3367
3368 /*
3369 * Stall direct reclaim for IO completions if the lruvec is
3370 * node is congested. Allow kswapd to continue until it
3371 * starts encountering unqueued dirty pages or cycling through
3372 * the LRU too quickly.
3373 */
3374 if (!current_is_kswapd() && current_may_throttle() &&
3375 !sc->hibernation_mode &&
3376 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3377 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3378
3379 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3380 sc))
3381 goto again;
3382
3383 /*
3384 * Kswapd gives up on balancing particular nodes after too
3385 * many failures to reclaim anything from them and goes to
3386 * sleep. On reclaim progress, reset the failure counter. A
3387 * successful direct reclaim run will revive a dormant kswapd.
3388 */
3389 if (reclaimable)
3390 pgdat->kswapd_failures = 0;
3391 }
3392
3393 /*
3394 * Returns true if compaction should go ahead for a costly-order request, or
3395 * the allocation would already succeed without compaction. Return false if we
3396 * should reclaim first.
3397 */
3398 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3399 {
3400 unsigned long watermark;
3401 enum compact_result suitable;
3402
3403 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3404 if (suitable == COMPACT_SUCCESS)
3405 /* Allocation should succeed already. Don't reclaim. */
3406 return true;
3407 if (suitable == COMPACT_SKIPPED)
3408 /* Compaction cannot yet proceed. Do reclaim. */
3409 return false;
3410
3411 /*
3412 * Compaction is already possible, but it takes time to run and there
3413 * are potentially other callers using the pages just freed. So proceed
3414 * with reclaim to make a buffer of free pages available to give
3415 * compaction a reasonable chance of completing and allocating the page.
3416 * Note that we won't actually reclaim the whole buffer in one attempt
3417 * as the target watermark in should_continue_reclaim() is lower. But if
3418 * we are already above the high+gap watermark, don't reclaim at all.
3419 */
3420 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3421
3422 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3423 }
3424
3425 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3426 {
3427 /*
3428 * If reclaim is making progress greater than 12% efficiency then
3429 * wake all the NOPROGRESS throttled tasks.
3430 */
3431 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3432 wait_queue_head_t *wqh;
3433
3434 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3435 if (waitqueue_active(wqh))
3436 wake_up(wqh);
3437
3438 return;
3439 }
3440
3441 /*
3442 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3443 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3444 * under writeback and marked for immediate reclaim at the tail of the
3445 * LRU.
3446 */
3447 if (current_is_kswapd() || cgroup_reclaim(sc))
3448 return;
3449
3450 /* Throttle if making no progress at high prioities. */
3451 if (sc->priority == 1 && !sc->nr_reclaimed)
3452 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3453 }
3454
3455 /*
3456 * This is the direct reclaim path, for page-allocating processes. We only
3457 * try to reclaim pages from zones which will satisfy the caller's allocation
3458 * request.
3459 *
3460 * If a zone is deemed to be full of pinned pages then just give it a light
3461 * scan then give up on it.
3462 */
3463 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3464 {
3465 struct zoneref *z;
3466 struct zone *zone;
3467 unsigned long nr_soft_reclaimed;
3468 unsigned long nr_soft_scanned;
3469 gfp_t orig_mask;
3470 pg_data_t *last_pgdat = NULL;
3471 pg_data_t *first_pgdat = NULL;
3472
3473 /*
3474 * If the number of buffer_heads in the machine exceeds the maximum
3475 * allowed level, force direct reclaim to scan the highmem zone as
3476 * highmem pages could be pinning lowmem pages storing buffer_heads
3477 */
3478 orig_mask = sc->gfp_mask;
3479 if (buffer_heads_over_limit) {
3480 sc->gfp_mask |= __GFP_HIGHMEM;
3481 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3482 }
3483
3484 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3485 sc->reclaim_idx, sc->nodemask) {
3486 /*
3487 * Take care memory controller reclaiming has small influence
3488 * to global LRU.
3489 */
3490 if (!cgroup_reclaim(sc)) {
3491 if (!cpuset_zone_allowed(zone,
3492 GFP_KERNEL | __GFP_HARDWALL))
3493 continue;
3494
3495 /*
3496 * If we already have plenty of memory free for
3497 * compaction in this zone, don't free any more.
3498 * Even though compaction is invoked for any
3499 * non-zero order, only frequent costly order
3500 * reclamation is disruptive enough to become a
3501 * noticeable problem, like transparent huge
3502 * page allocations.
3503 */
3504 if (IS_ENABLED(CONFIG_COMPACTION) &&
3505 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3506 compaction_ready(zone, sc)) {
3507 sc->compaction_ready = true;
3508 continue;
3509 }
3510
3511 /*
3512 * Shrink each node in the zonelist once. If the
3513 * zonelist is ordered by zone (not the default) then a
3514 * node may be shrunk multiple times but in that case
3515 * the user prefers lower zones being preserved.
3516 */
3517 if (zone->zone_pgdat == last_pgdat)
3518 continue;
3519
3520 /*
3521 * This steals pages from memory cgroups over softlimit
3522 * and returns the number of reclaimed pages and
3523 * scanned pages. This works for global memory pressure
3524 * and balancing, not for a memcg's limit.
3525 */
3526 nr_soft_scanned = 0;
3527 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3528 sc->order, sc->gfp_mask,
3529 &nr_soft_scanned);
3530 sc->nr_reclaimed += nr_soft_reclaimed;
3531 sc->nr_scanned += nr_soft_scanned;
3532 /* need some check for avoid more shrink_zone() */
3533 }
3534
3535 if (!first_pgdat)
3536 first_pgdat = zone->zone_pgdat;
3537
3538 /* See comment about same check for global reclaim above */
3539 if (zone->zone_pgdat == last_pgdat)
3540 continue;
3541 last_pgdat = zone->zone_pgdat;
3542 shrink_node(zone->zone_pgdat, sc);
3543 }
3544
3545 if (first_pgdat)
3546 consider_reclaim_throttle(first_pgdat, sc);
3547
3548 /*
3549 * Restore to original mask to avoid the impact on the caller if we
3550 * promoted it to __GFP_HIGHMEM.
3551 */
3552 sc->gfp_mask = orig_mask;
3553 }
3554
3555 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3556 {
3557 struct lruvec *target_lruvec;
3558 unsigned long refaults;
3559
3560 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3561 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3562 target_lruvec->refaults[0] = refaults;
3563 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3564 target_lruvec->refaults[1] = refaults;
3565 }
3566
3567 /*
3568 * This is the main entry point to direct page reclaim.
3569 *
3570 * If a full scan of the inactive list fails to free enough memory then we
3571 * are "out of memory" and something needs to be killed.
3572 *
3573 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3574 * high - the zone may be full of dirty or under-writeback pages, which this
3575 * caller can't do much about. We kick the writeback threads and take explicit
3576 * naps in the hope that some of these pages can be written. But if the
3577 * allocating task holds filesystem locks which prevent writeout this might not
3578 * work, and the allocation attempt will fail.
3579 *
3580 * returns: 0, if no pages reclaimed
3581 * else, the number of pages reclaimed
3582 */
3583 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3584 struct scan_control *sc)
3585 {
3586 int initial_priority = sc->priority;
3587 pg_data_t *last_pgdat;
3588 struct zoneref *z;
3589 struct zone *zone;
3590 retry:
3591 delayacct_freepages_start();
3592
3593 if (!cgroup_reclaim(sc))
3594 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3595
3596 do {
3597 if (!sc->proactive)
3598 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3599 sc->priority);
3600 sc->nr_scanned = 0;
3601 shrink_zones(zonelist, sc);
3602
3603 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3604 break;
3605
3606 if (sc->compaction_ready)
3607 break;
3608
3609 /*
3610 * If we're getting trouble reclaiming, start doing
3611 * writepage even in laptop mode.
3612 */
3613 if (sc->priority < DEF_PRIORITY - 2)
3614 sc->may_writepage = 1;
3615 } while (--sc->priority >= 0);
3616
3617 last_pgdat = NULL;
3618 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3619 sc->nodemask) {
3620 if (zone->zone_pgdat == last_pgdat)
3621 continue;
3622 last_pgdat = zone->zone_pgdat;
3623
3624 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3625
3626 if (cgroup_reclaim(sc)) {
3627 struct lruvec *lruvec;
3628
3629 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3630 zone->zone_pgdat);
3631 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3632 }
3633 }
3634
3635 delayacct_freepages_end();
3636
3637 if (sc->nr_reclaimed)
3638 return sc->nr_reclaimed;
3639
3640 /* Aborted reclaim to try compaction? don't OOM, then */
3641 if (sc->compaction_ready)
3642 return 1;
3643
3644 /*
3645 * We make inactive:active ratio decisions based on the node's
3646 * composition of memory, but a restrictive reclaim_idx or a
3647 * memory.low cgroup setting can exempt large amounts of
3648 * memory from reclaim. Neither of which are very common, so
3649 * instead of doing costly eligibility calculations of the
3650 * entire cgroup subtree up front, we assume the estimates are
3651 * good, and retry with forcible deactivation if that fails.
3652 */
3653 if (sc->skipped_deactivate) {
3654 sc->priority = initial_priority;
3655 sc->force_deactivate = 1;
3656 sc->skipped_deactivate = 0;
3657 goto retry;
3658 }
3659
3660 /* Untapped cgroup reserves? Don't OOM, retry. */
3661 if (sc->memcg_low_skipped) {
3662 sc->priority = initial_priority;
3663 sc->force_deactivate = 0;
3664 sc->memcg_low_reclaim = 1;
3665 sc->memcg_low_skipped = 0;
3666 goto retry;
3667 }
3668
3669 return 0;
3670 }
3671
3672 static bool allow_direct_reclaim(pg_data_t *pgdat)
3673 {
3674 struct zone *zone;
3675 unsigned long pfmemalloc_reserve = 0;
3676 unsigned long free_pages = 0;
3677 int i;
3678 bool wmark_ok;
3679
3680 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3681 return true;
3682
3683 for (i = 0; i <= ZONE_NORMAL; i++) {
3684 zone = &pgdat->node_zones[i];
3685 if (!managed_zone(zone))
3686 continue;
3687
3688 if (!zone_reclaimable_pages(zone))
3689 continue;
3690
3691 pfmemalloc_reserve += min_wmark_pages(zone);
3692 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3693 }
3694
3695 /* If there are no reserves (unexpected config) then do not throttle */
3696 if (!pfmemalloc_reserve)
3697 return true;
3698
3699 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3700
3701 /* kswapd must be awake if processes are being throttled */
3702 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3703 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3704 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3705
3706 wake_up_interruptible(&pgdat->kswapd_wait);
3707 }
3708
3709 return wmark_ok;
3710 }
3711
3712 /*
3713 * Throttle direct reclaimers if backing storage is backed by the network
3714 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3715 * depleted. kswapd will continue to make progress and wake the processes
3716 * when the low watermark is reached.
3717 *
3718 * Returns true if a fatal signal was delivered during throttling. If this
3719 * happens, the page allocator should not consider triggering the OOM killer.
3720 */
3721 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3722 nodemask_t *nodemask)
3723 {
3724 struct zoneref *z;
3725 struct zone *zone;
3726 pg_data_t *pgdat = NULL;
3727
3728 /*
3729 * Kernel threads should not be throttled as they may be indirectly
3730 * responsible for cleaning pages necessary for reclaim to make forward
3731 * progress. kjournald for example may enter direct reclaim while
3732 * committing a transaction where throttling it could forcing other
3733 * processes to block on log_wait_commit().
3734 */
3735 if (current->flags & PF_KTHREAD)
3736 goto out;
3737
3738 /*
3739 * If a fatal signal is pending, this process should not throttle.
3740 * It should return quickly so it can exit and free its memory
3741 */
3742 if (fatal_signal_pending(current))
3743 goto out;
3744
3745 /*
3746 * Check if the pfmemalloc reserves are ok by finding the first node
3747 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3748 * GFP_KERNEL will be required for allocating network buffers when
3749 * swapping over the network so ZONE_HIGHMEM is unusable.
3750 *
3751 * Throttling is based on the first usable node and throttled processes
3752 * wait on a queue until kswapd makes progress and wakes them. There
3753 * is an affinity then between processes waking up and where reclaim
3754 * progress has been made assuming the process wakes on the same node.
3755 * More importantly, processes running on remote nodes will not compete
3756 * for remote pfmemalloc reserves and processes on different nodes
3757 * should make reasonable progress.
3758 */
3759 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3760 gfp_zone(gfp_mask), nodemask) {
3761 if (zone_idx(zone) > ZONE_NORMAL)
3762 continue;
3763
3764 /* Throttle based on the first usable node */
3765 pgdat = zone->zone_pgdat;
3766 if (allow_direct_reclaim(pgdat))
3767 goto out;
3768 break;
3769 }
3770
3771 /* If no zone was usable by the allocation flags then do not throttle */
3772 if (!pgdat)
3773 goto out;
3774
3775 /* Account for the throttling */
3776 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3777
3778 /*
3779 * If the caller cannot enter the filesystem, it's possible that it
3780 * is due to the caller holding an FS lock or performing a journal
3781 * transaction in the case of a filesystem like ext[3|4]. In this case,
3782 * it is not safe to block on pfmemalloc_wait as kswapd could be
3783 * blocked waiting on the same lock. Instead, throttle for up to a
3784 * second before continuing.
3785 */
3786 if (!(gfp_mask & __GFP_FS))
3787 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3788 allow_direct_reclaim(pgdat), HZ);
3789 else
3790 /* Throttle until kswapd wakes the process */
3791 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3792 allow_direct_reclaim(pgdat));
3793
3794 if (fatal_signal_pending(current))
3795 return true;
3796
3797 out:
3798 return false;
3799 }
3800
3801 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3802 gfp_t gfp_mask, nodemask_t *nodemask)
3803 {
3804 unsigned long nr_reclaimed;
3805 struct scan_control sc = {
3806 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3807 .gfp_mask = current_gfp_context(gfp_mask),
3808 .reclaim_idx = gfp_zone(gfp_mask),
3809 .order = order,
3810 .nodemask = nodemask,
3811 .priority = DEF_PRIORITY,
3812 .may_writepage = !laptop_mode,
3813 .may_unmap = 1,
3814 .may_swap = 1,
3815 };
3816
3817 /*
3818 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3819 * Confirm they are large enough for max values.
3820 */
3821 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3822 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3823 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3824
3825 /*
3826 * Do not enter reclaim if fatal signal was delivered while throttled.
3827 * 1 is returned so that the page allocator does not OOM kill at this
3828 * point.
3829 */
3830 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3831 return 1;
3832
3833 set_task_reclaim_state(current, &sc.reclaim_state);
3834 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3835
3836 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3837
3838 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3839 set_task_reclaim_state(current, NULL);
3840
3841 return nr_reclaimed;
3842 }
3843
3844 #ifdef CONFIG_MEMCG
3845
3846 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3847 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3848 gfp_t gfp_mask, bool noswap,
3849 pg_data_t *pgdat,
3850 unsigned long *nr_scanned)
3851 {
3852 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3853 struct scan_control sc = {
3854 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3855 .target_mem_cgroup = memcg,
3856 .may_writepage = !laptop_mode,
3857 .may_unmap = 1,
3858 .reclaim_idx = MAX_NR_ZONES - 1,
3859 .may_swap = !noswap,
3860 };
3861
3862 WARN_ON_ONCE(!current->reclaim_state);
3863
3864 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3865 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3866
3867 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3868 sc.gfp_mask);
3869
3870 /*
3871 * NOTE: Although we can get the priority field, using it
3872 * here is not a good idea, since it limits the pages we can scan.
3873 * if we don't reclaim here, the shrink_node from balance_pgdat
3874 * will pick up pages from other mem cgroup's as well. We hack
3875 * the priority and make it zero.
3876 */
3877 shrink_lruvec(lruvec, &sc);
3878
3879 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3880
3881 *nr_scanned = sc.nr_scanned;
3882
3883 return sc.nr_reclaimed;
3884 }
3885
3886 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3887 unsigned long nr_pages,
3888 gfp_t gfp_mask,
3889 unsigned int reclaim_options)
3890 {
3891 unsigned long nr_reclaimed;
3892 unsigned int noreclaim_flag;
3893 struct scan_control sc = {
3894 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3895 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3896 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3897 .reclaim_idx = MAX_NR_ZONES - 1,
3898 .target_mem_cgroup = memcg,
3899 .priority = DEF_PRIORITY,
3900 .may_writepage = !laptop_mode,
3901 .may_unmap = 1,
3902 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
3903 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
3904 };
3905 /*
3906 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3907 * equal pressure on all the nodes. This is based on the assumption that
3908 * the reclaim does not bail out early.
3909 */
3910 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3911
3912 set_task_reclaim_state(current, &sc.reclaim_state);
3913 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3914 noreclaim_flag = memalloc_noreclaim_save();
3915
3916 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3917
3918 memalloc_noreclaim_restore(noreclaim_flag);
3919 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3920 set_task_reclaim_state(current, NULL);
3921
3922 return nr_reclaimed;
3923 }
3924 #endif
3925
3926 static void age_active_anon(struct pglist_data *pgdat,
3927 struct scan_control *sc)
3928 {
3929 struct mem_cgroup *memcg;
3930 struct lruvec *lruvec;
3931
3932 if (!can_age_anon_pages(pgdat, sc))
3933 return;
3934
3935 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3936 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3937 return;
3938
3939 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3940 do {
3941 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3942 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3943 sc, LRU_ACTIVE_ANON);
3944 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3945 } while (memcg);
3946 }
3947
3948 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3949 {
3950 int i;
3951 struct zone *zone;
3952
3953 /*
3954 * Check for watermark boosts top-down as the higher zones
3955 * are more likely to be boosted. Both watermarks and boosts
3956 * should not be checked at the same time as reclaim would
3957 * start prematurely when there is no boosting and a lower
3958 * zone is balanced.
3959 */
3960 for (i = highest_zoneidx; i >= 0; i--) {
3961 zone = pgdat->node_zones + i;
3962 if (!managed_zone(zone))
3963 continue;
3964
3965 if (zone->watermark_boost)
3966 return true;
3967 }
3968
3969 return false;
3970 }
3971
3972 /*
3973 * Returns true if there is an eligible zone balanced for the request order
3974 * and highest_zoneidx
3975 */
3976 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3977 {
3978 int i;
3979 unsigned long mark = -1;
3980 struct zone *zone;
3981
3982 /*
3983 * Check watermarks bottom-up as lower zones are more likely to
3984 * meet watermarks.
3985 */
3986 for (i = 0; i <= highest_zoneidx; i++) {
3987 zone = pgdat->node_zones + i;
3988
3989 if (!managed_zone(zone))
3990 continue;
3991
3992 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3993 mark = wmark_pages(zone, WMARK_PROMO);
3994 else
3995 mark = high_wmark_pages(zone);
3996 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3997 return true;
3998 }
3999
4000 /*
4001 * If a node has no managed zone within highest_zoneidx, it does not
4002 * need balancing by definition. This can happen if a zone-restricted
4003 * allocation tries to wake a remote kswapd.
4004 */
4005 if (mark == -1)
4006 return true;
4007
4008 return false;
4009 }
4010
4011 /* Clear pgdat state for congested, dirty or under writeback. */
4012 static void clear_pgdat_congested(pg_data_t *pgdat)
4013 {
4014 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4015
4016 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4017 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4018 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4019 }
4020
4021 /*
4022 * Prepare kswapd for sleeping. This verifies that there are no processes
4023 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4024 *
4025 * Returns true if kswapd is ready to sleep
4026 */
4027 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4028 int highest_zoneidx)
4029 {
4030 /*
4031 * The throttled processes are normally woken up in balance_pgdat() as
4032 * soon as allow_direct_reclaim() is true. But there is a potential
4033 * race between when kswapd checks the watermarks and a process gets
4034 * throttled. There is also a potential race if processes get
4035 * throttled, kswapd wakes, a large process exits thereby balancing the
4036 * zones, which causes kswapd to exit balance_pgdat() before reaching
4037 * the wake up checks. If kswapd is going to sleep, no process should
4038 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4039 * the wake up is premature, processes will wake kswapd and get
4040 * throttled again. The difference from wake ups in balance_pgdat() is
4041 * that here we are under prepare_to_wait().
4042 */
4043 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4044 wake_up_all(&pgdat->pfmemalloc_wait);
4045
4046 /* Hopeless node, leave it to direct reclaim */
4047 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4048 return true;
4049
4050 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4051 clear_pgdat_congested(pgdat);
4052 return true;
4053 }
4054
4055 return false;
4056 }
4057
4058 /*
4059 * kswapd shrinks a node of pages that are at or below the highest usable
4060 * zone that is currently unbalanced.
4061 *
4062 * Returns true if kswapd scanned at least the requested number of pages to
4063 * reclaim or if the lack of progress was due to pages under writeback.
4064 * This is used to determine if the scanning priority needs to be raised.
4065 */
4066 static bool kswapd_shrink_node(pg_data_t *pgdat,
4067 struct scan_control *sc)
4068 {
4069 struct zone *zone;
4070 int z;
4071
4072 /* Reclaim a number of pages proportional to the number of zones */
4073 sc->nr_to_reclaim = 0;
4074 for (z = 0; z <= sc->reclaim_idx; z++) {
4075 zone = pgdat->node_zones + z;
4076 if (!managed_zone(zone))
4077 continue;
4078
4079 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4080 }
4081
4082 /*
4083 * Historically care was taken to put equal pressure on all zones but
4084 * now pressure is applied based on node LRU order.
4085 */
4086 shrink_node(pgdat, sc);
4087
4088 /*
4089 * Fragmentation may mean that the system cannot be rebalanced for
4090 * high-order allocations. If twice the allocation size has been
4091 * reclaimed then recheck watermarks only at order-0 to prevent
4092 * excessive reclaim. Assume that a process requested a high-order
4093 * can direct reclaim/compact.
4094 */
4095 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4096 sc->order = 0;
4097
4098 return sc->nr_scanned >= sc->nr_to_reclaim;
4099 }
4100
4101 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4102 static inline void
4103 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4104 {
4105 int i;
4106 struct zone *zone;
4107
4108 for (i = 0; i <= highest_zoneidx; i++) {
4109 zone = pgdat->node_zones + i;
4110
4111 if (!managed_zone(zone))
4112 continue;
4113
4114 if (active)
4115 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4116 else
4117 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4118 }
4119 }
4120
4121 static inline void
4122 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4123 {
4124 update_reclaim_active(pgdat, highest_zoneidx, true);
4125 }
4126
4127 static inline void
4128 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4129 {
4130 update_reclaim_active(pgdat, highest_zoneidx, false);
4131 }
4132
4133 /*
4134 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4135 * that are eligible for use by the caller until at least one zone is
4136 * balanced.
4137 *
4138 * Returns the order kswapd finished reclaiming at.
4139 *
4140 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4141 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4142 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4143 * or lower is eligible for reclaim until at least one usable zone is
4144 * balanced.
4145 */
4146 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4147 {
4148 int i;
4149 unsigned long nr_soft_reclaimed;
4150 unsigned long nr_soft_scanned;
4151 unsigned long pflags;
4152 unsigned long nr_boost_reclaim;
4153 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4154 bool boosted;
4155 struct zone *zone;
4156 struct scan_control sc = {
4157 .gfp_mask = GFP_KERNEL,
4158 .order = order,
4159 .may_unmap = 1,
4160 };
4161
4162 set_task_reclaim_state(current, &sc.reclaim_state);
4163 psi_memstall_enter(&pflags);
4164 __fs_reclaim_acquire(_THIS_IP_);
4165
4166 count_vm_event(PAGEOUTRUN);
4167
4168 /*
4169 * Account for the reclaim boost. Note that the zone boost is left in
4170 * place so that parallel allocations that are near the watermark will
4171 * stall or direct reclaim until kswapd is finished.
4172 */
4173 nr_boost_reclaim = 0;
4174 for (i = 0; i <= highest_zoneidx; i++) {
4175 zone = pgdat->node_zones + i;
4176 if (!managed_zone(zone))
4177 continue;
4178
4179 nr_boost_reclaim += zone->watermark_boost;
4180 zone_boosts[i] = zone->watermark_boost;
4181 }
4182 boosted = nr_boost_reclaim;
4183
4184 restart:
4185 set_reclaim_active(pgdat, highest_zoneidx);
4186 sc.priority = DEF_PRIORITY;
4187 do {
4188 unsigned long nr_reclaimed = sc.nr_reclaimed;
4189 bool raise_priority = true;
4190 bool balanced;
4191 bool ret;
4192
4193 sc.reclaim_idx = highest_zoneidx;
4194
4195 /*
4196 * If the number of buffer_heads exceeds the maximum allowed
4197 * then consider reclaiming from all zones. This has a dual
4198 * purpose -- on 64-bit systems it is expected that
4199 * buffer_heads are stripped during active rotation. On 32-bit
4200 * systems, highmem pages can pin lowmem memory and shrinking
4201 * buffers can relieve lowmem pressure. Reclaim may still not
4202 * go ahead if all eligible zones for the original allocation
4203 * request are balanced to avoid excessive reclaim from kswapd.
4204 */
4205 if (buffer_heads_over_limit) {
4206 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4207 zone = pgdat->node_zones + i;
4208 if (!managed_zone(zone))
4209 continue;
4210
4211 sc.reclaim_idx = i;
4212 break;
4213 }
4214 }
4215
4216 /*
4217 * If the pgdat is imbalanced then ignore boosting and preserve
4218 * the watermarks for a later time and restart. Note that the
4219 * zone watermarks will be still reset at the end of balancing
4220 * on the grounds that the normal reclaim should be enough to
4221 * re-evaluate if boosting is required when kswapd next wakes.
4222 */
4223 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4224 if (!balanced && nr_boost_reclaim) {
4225 nr_boost_reclaim = 0;
4226 goto restart;
4227 }
4228
4229 /*
4230 * If boosting is not active then only reclaim if there are no
4231 * eligible zones. Note that sc.reclaim_idx is not used as
4232 * buffer_heads_over_limit may have adjusted it.
4233 */
4234 if (!nr_boost_reclaim && balanced)
4235 goto out;
4236
4237 /* Limit the priority of boosting to avoid reclaim writeback */
4238 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4239 raise_priority = false;
4240
4241 /*
4242 * Do not writeback or swap pages for boosted reclaim. The
4243 * intent is to relieve pressure not issue sub-optimal IO
4244 * from reclaim context. If no pages are reclaimed, the
4245 * reclaim will be aborted.
4246 */
4247 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4248 sc.may_swap = !nr_boost_reclaim;
4249
4250 /*
4251 * Do some background aging of the anon list, to give
4252 * pages a chance to be referenced before reclaiming. All
4253 * pages are rotated regardless of classzone as this is
4254 * about consistent aging.
4255 */
4256 age_active_anon(pgdat, &sc);
4257
4258 /*
4259 * If we're getting trouble reclaiming, start doing writepage
4260 * even in laptop mode.
4261 */
4262 if (sc.priority < DEF_PRIORITY - 2)
4263 sc.may_writepage = 1;
4264
4265 /* Call soft limit reclaim before calling shrink_node. */
4266 sc.nr_scanned = 0;
4267 nr_soft_scanned = 0;
4268 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4269 sc.gfp_mask, &nr_soft_scanned);
4270 sc.nr_reclaimed += nr_soft_reclaimed;
4271
4272 /*
4273 * There should be no need to raise the scanning priority if
4274 * enough pages are already being scanned that that high
4275 * watermark would be met at 100% efficiency.
4276 */
4277 if (kswapd_shrink_node(pgdat, &sc))
4278 raise_priority = false;
4279
4280 /*
4281 * If the low watermark is met there is no need for processes
4282 * to be throttled on pfmemalloc_wait as they should not be
4283 * able to safely make forward progress. Wake them
4284 */
4285 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4286 allow_direct_reclaim(pgdat))
4287 wake_up_all(&pgdat->pfmemalloc_wait);
4288
4289 /* Check if kswapd should be suspending */
4290 __fs_reclaim_release(_THIS_IP_);
4291 ret = try_to_freeze();
4292 __fs_reclaim_acquire(_THIS_IP_);
4293 if (ret || kthread_should_stop())
4294 break;
4295
4296 /*
4297 * Raise priority if scanning rate is too low or there was no
4298 * progress in reclaiming pages
4299 */
4300 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4301 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4302
4303 /*
4304 * If reclaim made no progress for a boost, stop reclaim as
4305 * IO cannot be queued and it could be an infinite loop in
4306 * extreme circumstances.
4307 */
4308 if (nr_boost_reclaim && !nr_reclaimed)
4309 break;
4310
4311 if (raise_priority || !nr_reclaimed)
4312 sc.priority--;
4313 } while (sc.priority >= 1);
4314
4315 if (!sc.nr_reclaimed)
4316 pgdat->kswapd_failures++;
4317
4318 out:
4319 clear_reclaim_active(pgdat, highest_zoneidx);
4320
4321 /* If reclaim was boosted, account for the reclaim done in this pass */
4322 if (boosted) {
4323 unsigned long flags;
4324
4325 for (i = 0; i <= highest_zoneidx; i++) {
4326 if (!zone_boosts[i])
4327 continue;
4328
4329 /* Increments are under the zone lock */
4330 zone = pgdat->node_zones + i;
4331 spin_lock_irqsave(&zone->lock, flags);
4332 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4333 spin_unlock_irqrestore(&zone->lock, flags);
4334 }
4335
4336 /*
4337 * As there is now likely space, wakeup kcompact to defragment
4338 * pageblocks.
4339 */
4340 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4341 }
4342
4343 snapshot_refaults(NULL, pgdat);
4344 __fs_reclaim_release(_THIS_IP_);
4345 psi_memstall_leave(&pflags);
4346 set_task_reclaim_state(current, NULL);
4347
4348 /*
4349 * Return the order kswapd stopped reclaiming at as
4350 * prepare_kswapd_sleep() takes it into account. If another caller
4351 * entered the allocator slow path while kswapd was awake, order will
4352 * remain at the higher level.
4353 */
4354 return sc.order;
4355 }
4356
4357 /*
4358 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4359 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4360 * not a valid index then either kswapd runs for first time or kswapd couldn't
4361 * sleep after previous reclaim attempt (node is still unbalanced). In that
4362 * case return the zone index of the previous kswapd reclaim cycle.
4363 */
4364 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4365 enum zone_type prev_highest_zoneidx)
4366 {
4367 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4368
4369 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4370 }
4371
4372 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4373 unsigned int highest_zoneidx)
4374 {
4375 long remaining = 0;
4376 DEFINE_WAIT(wait);
4377
4378 if (freezing(current) || kthread_should_stop())
4379 return;
4380
4381 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4382
4383 /*
4384 * Try to sleep for a short interval. Note that kcompactd will only be
4385 * woken if it is possible to sleep for a short interval. This is
4386 * deliberate on the assumption that if reclaim cannot keep an
4387 * eligible zone balanced that it's also unlikely that compaction will
4388 * succeed.
4389 */
4390 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4391 /*
4392 * Compaction records what page blocks it recently failed to
4393 * isolate pages from and skips them in the future scanning.
4394 * When kswapd is going to sleep, it is reasonable to assume
4395 * that pages and compaction may succeed so reset the cache.
4396 */
4397 reset_isolation_suitable(pgdat);
4398
4399 /*
4400 * We have freed the memory, now we should compact it to make
4401 * allocation of the requested order possible.
4402 */
4403 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4404
4405 remaining = schedule_timeout(HZ/10);
4406
4407 /*
4408 * If woken prematurely then reset kswapd_highest_zoneidx and
4409 * order. The values will either be from a wakeup request or
4410 * the previous request that slept prematurely.
4411 */
4412 if (remaining) {
4413 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4414 kswapd_highest_zoneidx(pgdat,
4415 highest_zoneidx));
4416
4417 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4418 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4419 }
4420
4421 finish_wait(&pgdat->kswapd_wait, &wait);
4422 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4423 }
4424
4425 /*
4426 * After a short sleep, check if it was a premature sleep. If not, then
4427 * go fully to sleep until explicitly woken up.
4428 */
4429 if (!remaining &&
4430 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4431 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4432
4433 /*
4434 * vmstat counters are not perfectly accurate and the estimated
4435 * value for counters such as NR_FREE_PAGES can deviate from the
4436 * true value by nr_online_cpus * threshold. To avoid the zone
4437 * watermarks being breached while under pressure, we reduce the
4438 * per-cpu vmstat threshold while kswapd is awake and restore
4439 * them before going back to sleep.
4440 */
4441 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4442
4443 if (!kthread_should_stop())
4444 schedule();
4445
4446 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4447 } else {
4448 if (remaining)
4449 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4450 else
4451 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4452 }
4453 finish_wait(&pgdat->kswapd_wait, &wait);
4454 }
4455
4456 /*
4457 * The background pageout daemon, started as a kernel thread
4458 * from the init process.
4459 *
4460 * This basically trickles out pages so that we have _some_
4461 * free memory available even if there is no other activity
4462 * that frees anything up. This is needed for things like routing
4463 * etc, where we otherwise might have all activity going on in
4464 * asynchronous contexts that cannot page things out.
4465 *
4466 * If there are applications that are active memory-allocators
4467 * (most normal use), this basically shouldn't matter.
4468 */
4469 static int kswapd(void *p)
4470 {
4471 unsigned int alloc_order, reclaim_order;
4472 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4473 pg_data_t *pgdat = (pg_data_t *)p;
4474 struct task_struct *tsk = current;
4475 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4476
4477 if (!cpumask_empty(cpumask))
4478 set_cpus_allowed_ptr(tsk, cpumask);
4479
4480 /*
4481 * Tell the memory management that we're a "memory allocator",
4482 * and that if we need more memory we should get access to it
4483 * regardless (see "__alloc_pages()"). "kswapd" should
4484 * never get caught in the normal page freeing logic.
4485 *
4486 * (Kswapd normally doesn't need memory anyway, but sometimes
4487 * you need a small amount of memory in order to be able to
4488 * page out something else, and this flag essentially protects
4489 * us from recursively trying to free more memory as we're
4490 * trying to free the first piece of memory in the first place).
4491 */
4492 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4493 set_freezable();
4494
4495 WRITE_ONCE(pgdat->kswapd_order, 0);
4496 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4497 atomic_set(&pgdat->nr_writeback_throttled, 0);
4498 for ( ; ; ) {
4499 bool ret;
4500
4501 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4502 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4503 highest_zoneidx);
4504
4505 kswapd_try_sleep:
4506 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4507 highest_zoneidx);
4508
4509 /* Read the new order and highest_zoneidx */
4510 alloc_order = READ_ONCE(pgdat->kswapd_order);
4511 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4512 highest_zoneidx);
4513 WRITE_ONCE(pgdat->kswapd_order, 0);
4514 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4515
4516 ret = try_to_freeze();
4517 if (kthread_should_stop())
4518 break;
4519
4520 /*
4521 * We can speed up thawing tasks if we don't call balance_pgdat
4522 * after returning from the refrigerator
4523 */
4524 if (ret)
4525 continue;
4526
4527 /*
4528 * Reclaim begins at the requested order but if a high-order
4529 * reclaim fails then kswapd falls back to reclaiming for
4530 * order-0. If that happens, kswapd will consider sleeping
4531 * for the order it finished reclaiming at (reclaim_order)
4532 * but kcompactd is woken to compact for the original
4533 * request (alloc_order).
4534 */
4535 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4536 alloc_order);
4537 reclaim_order = balance_pgdat(pgdat, alloc_order,
4538 highest_zoneidx);
4539 if (reclaim_order < alloc_order)
4540 goto kswapd_try_sleep;
4541 }
4542
4543 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4544
4545 return 0;
4546 }
4547
4548 /*
4549 * A zone is low on free memory or too fragmented for high-order memory. If
4550 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4551 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4552 * has failed or is not needed, still wake up kcompactd if only compaction is
4553 * needed.
4554 */
4555 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4556 enum zone_type highest_zoneidx)
4557 {
4558 pg_data_t *pgdat;
4559 enum zone_type curr_idx;
4560
4561 if (!managed_zone(zone))
4562 return;
4563
4564 if (!cpuset_zone_allowed(zone, gfp_flags))
4565 return;
4566
4567 pgdat = zone->zone_pgdat;
4568 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4569
4570 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4571 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4572
4573 if (READ_ONCE(pgdat->kswapd_order) < order)
4574 WRITE_ONCE(pgdat->kswapd_order, order);
4575
4576 if (!waitqueue_active(&pgdat->kswapd_wait))
4577 return;
4578
4579 /* Hopeless node, leave it to direct reclaim if possible */
4580 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4581 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4582 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4583 /*
4584 * There may be plenty of free memory available, but it's too
4585 * fragmented for high-order allocations. Wake up kcompactd
4586 * and rely on compaction_suitable() to determine if it's
4587 * needed. If it fails, it will defer subsequent attempts to
4588 * ratelimit its work.
4589 */
4590 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4591 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4592 return;
4593 }
4594
4595 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4596 gfp_flags);
4597 wake_up_interruptible(&pgdat->kswapd_wait);
4598 }
4599
4600 #ifdef CONFIG_HIBERNATION
4601 /*
4602 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4603 * freed pages.
4604 *
4605 * Rather than trying to age LRUs the aim is to preserve the overall
4606 * LRU order by reclaiming preferentially
4607 * inactive > active > active referenced > active mapped
4608 */
4609 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4610 {
4611 struct scan_control sc = {
4612 .nr_to_reclaim = nr_to_reclaim,
4613 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4614 .reclaim_idx = MAX_NR_ZONES - 1,
4615 .priority = DEF_PRIORITY,
4616 .may_writepage = 1,
4617 .may_unmap = 1,
4618 .may_swap = 1,
4619 .hibernation_mode = 1,
4620 };
4621 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4622 unsigned long nr_reclaimed;
4623 unsigned int noreclaim_flag;
4624
4625 fs_reclaim_acquire(sc.gfp_mask);
4626 noreclaim_flag = memalloc_noreclaim_save();
4627 set_task_reclaim_state(current, &sc.reclaim_state);
4628
4629 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4630
4631 set_task_reclaim_state(current, NULL);
4632 memalloc_noreclaim_restore(noreclaim_flag);
4633 fs_reclaim_release(sc.gfp_mask);
4634
4635 return nr_reclaimed;
4636 }
4637 #endif /* CONFIG_HIBERNATION */
4638
4639 /*
4640 * This kswapd start function will be called by init and node-hot-add.
4641 */
4642 void kswapd_run(int nid)
4643 {
4644 pg_data_t *pgdat = NODE_DATA(nid);
4645
4646 if (pgdat->kswapd)
4647 return;
4648
4649 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4650 if (IS_ERR(pgdat->kswapd)) {
4651 /* failure at boot is fatal */
4652 BUG_ON(system_state < SYSTEM_RUNNING);
4653 pr_err("Failed to start kswapd on node %d\n", nid);
4654 pgdat->kswapd = NULL;
4655 }
4656 }
4657
4658 /*
4659 * Called by memory hotplug when all memory in a node is offlined. Caller must
4660 * be holding mem_hotplug_begin/done().
4661 */
4662 void kswapd_stop(int nid)
4663 {
4664 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4665
4666 if (kswapd) {
4667 kthread_stop(kswapd);
4668 NODE_DATA(nid)->kswapd = NULL;
4669 }
4670 }
4671
4672 static int __init kswapd_init(void)
4673 {
4674 int nid;
4675
4676 swap_setup();
4677 for_each_node_state(nid, N_MEMORY)
4678 kswapd_run(nid);
4679 return 0;
4680 }
4681
4682 module_init(kswapd_init)
4683
4684 #ifdef CONFIG_NUMA
4685 /*
4686 * Node reclaim mode
4687 *
4688 * If non-zero call node_reclaim when the number of free pages falls below
4689 * the watermarks.
4690 */
4691 int node_reclaim_mode __read_mostly;
4692
4693 /*
4694 * Priority for NODE_RECLAIM. This determines the fraction of pages
4695 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4696 * a zone.
4697 */
4698 #define NODE_RECLAIM_PRIORITY 4
4699
4700 /*
4701 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4702 * occur.
4703 */
4704 int sysctl_min_unmapped_ratio = 1;
4705
4706 /*
4707 * If the number of slab pages in a zone grows beyond this percentage then
4708 * slab reclaim needs to occur.
4709 */
4710 int sysctl_min_slab_ratio = 5;
4711
4712 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4713 {
4714 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4715 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4716 node_page_state(pgdat, NR_ACTIVE_FILE);
4717
4718 /*
4719 * It's possible for there to be more file mapped pages than
4720 * accounted for by the pages on the file LRU lists because
4721 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4722 */
4723 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4724 }
4725
4726 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4727 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4728 {
4729 unsigned long nr_pagecache_reclaimable;
4730 unsigned long delta = 0;
4731
4732 /*
4733 * If RECLAIM_UNMAP is set, then all file pages are considered
4734 * potentially reclaimable. Otherwise, we have to worry about
4735 * pages like swapcache and node_unmapped_file_pages() provides
4736 * a better estimate
4737 */
4738 if (node_reclaim_mode & RECLAIM_UNMAP)
4739 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4740 else
4741 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4742
4743 /* If we can't clean pages, remove dirty pages from consideration */
4744 if (!(node_reclaim_mode & RECLAIM_WRITE))
4745 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4746
4747 /* Watch for any possible underflows due to delta */
4748 if (unlikely(delta > nr_pagecache_reclaimable))
4749 delta = nr_pagecache_reclaimable;
4750
4751 return nr_pagecache_reclaimable - delta;
4752 }
4753
4754 /*
4755 * Try to free up some pages from this node through reclaim.
4756 */
4757 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4758 {
4759 /* Minimum pages needed in order to stay on node */
4760 const unsigned long nr_pages = 1 << order;
4761 struct task_struct *p = current;
4762 unsigned int noreclaim_flag;
4763 struct scan_control sc = {
4764 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4765 .gfp_mask = current_gfp_context(gfp_mask),
4766 .order = order,
4767 .priority = NODE_RECLAIM_PRIORITY,
4768 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4769 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4770 .may_swap = 1,
4771 .reclaim_idx = gfp_zone(gfp_mask),
4772 };
4773 unsigned long pflags;
4774
4775 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4776 sc.gfp_mask);
4777
4778 cond_resched();
4779 psi_memstall_enter(&pflags);
4780 fs_reclaim_acquire(sc.gfp_mask);
4781 /*
4782 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4783 */
4784 noreclaim_flag = memalloc_noreclaim_save();
4785 set_task_reclaim_state(p, &sc.reclaim_state);
4786
4787 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4788 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
4789 /*
4790 * Free memory by calling shrink node with increasing
4791 * priorities until we have enough memory freed.
4792 */
4793 do {
4794 shrink_node(pgdat, &sc);
4795 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4796 }
4797
4798 set_task_reclaim_state(p, NULL);
4799 memalloc_noreclaim_restore(noreclaim_flag);
4800 fs_reclaim_release(sc.gfp_mask);
4801 psi_memstall_leave(&pflags);
4802
4803 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4804
4805 return sc.nr_reclaimed >= nr_pages;
4806 }
4807
4808 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4809 {
4810 int ret;
4811
4812 /*
4813 * Node reclaim reclaims unmapped file backed pages and
4814 * slab pages if we are over the defined limits.
4815 *
4816 * A small portion of unmapped file backed pages is needed for
4817 * file I/O otherwise pages read by file I/O will be immediately
4818 * thrown out if the node is overallocated. So we do not reclaim
4819 * if less than a specified percentage of the node is used by
4820 * unmapped file backed pages.
4821 */
4822 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4823 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4824 pgdat->min_slab_pages)
4825 return NODE_RECLAIM_FULL;
4826
4827 /*
4828 * Do not scan if the allocation should not be delayed.
4829 */
4830 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4831 return NODE_RECLAIM_NOSCAN;
4832
4833 /*
4834 * Only run node reclaim on the local node or on nodes that do not
4835 * have associated processors. This will favor the local processor
4836 * over remote processors and spread off node memory allocations
4837 * as wide as possible.
4838 */
4839 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4840 return NODE_RECLAIM_NOSCAN;
4841
4842 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4843 return NODE_RECLAIM_NOSCAN;
4844
4845 ret = __node_reclaim(pgdat, gfp_mask, order);
4846 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4847
4848 if (!ret)
4849 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4850
4851 return ret;
4852 }
4853 #endif
4854
4855 void check_move_unevictable_pages(struct pagevec *pvec)
4856 {
4857 struct folio_batch fbatch;
4858 unsigned i;
4859
4860 folio_batch_init(&fbatch);
4861 for (i = 0; i < pvec->nr; i++) {
4862 struct page *page = pvec->pages[i];
4863
4864 if (PageTransTail(page))
4865 continue;
4866 folio_batch_add(&fbatch, page_folio(page));
4867 }
4868 check_move_unevictable_folios(&fbatch);
4869 }
4870 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4871
4872 /**
4873 * check_move_unevictable_folios - Move evictable folios to appropriate zone
4874 * lru list
4875 * @fbatch: Batch of lru folios to check.
4876 *
4877 * Checks folios for evictability, if an evictable folio is in the unevictable
4878 * lru list, moves it to the appropriate evictable lru list. This function
4879 * should be only used for lru folios.
4880 */
4881 void check_move_unevictable_folios(struct folio_batch *fbatch)
4882 {
4883 struct lruvec *lruvec = NULL;
4884 int pgscanned = 0;
4885 int pgrescued = 0;
4886 int i;
4887
4888 for (i = 0; i < fbatch->nr; i++) {
4889 struct folio *folio = fbatch->folios[i];
4890 int nr_pages = folio_nr_pages(folio);
4891
4892 pgscanned += nr_pages;
4893
4894 /* block memcg migration while the folio moves between lrus */
4895 if (!folio_test_clear_lru(folio))
4896 continue;
4897
4898 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4899 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
4900 lruvec_del_folio(lruvec, folio);
4901 folio_clear_unevictable(folio);
4902 lruvec_add_folio(lruvec, folio);
4903 pgrescued += nr_pages;
4904 }
4905 folio_set_lru(folio);
4906 }
4907
4908 if (lruvec) {
4909 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4910 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4911 unlock_page_lruvec_irq(lruvec);
4912 } else if (pgscanned) {
4913 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4914 }
4915 }
4916 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);