]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/vmscan.c
mm, vmscan: do not special-case slab reclaim when watermarks are boosted
[mirror_ubuntu-impish-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
91 /*
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
95 */
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
98
99 unsigned int hibernation_mode:1;
100
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
103
104 /* Allocation order */
105 s8 order;
106
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
109
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
112
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
115
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
118
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
121
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
131
132 /* for recording the reclaimed slab by now */
133 struct reclaim_state reclaim_state;
134 };
135
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
144 } \
145 } while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
155 \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
158 } \
159 } while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
163
164 /*
165 * From 0 .. 100. Higher means more swappy.
166 */
167 int vm_swappiness = 60;
168 /*
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
171 */
172 unsigned long vm_total_pages;
173
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
176
177 #ifdef CONFIG_MEMCG_KMEM
178
179 /*
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
186 *
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
189 */
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
191
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
194
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
196 {
197 int id, ret = -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 if (id < 0)
203 goto unlock;
204
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
208 goto unlock;
209 }
210
211 shrinker_nr_max = id + 1;
212 }
213 shrinker->id = id;
214 ret = 0;
215 unlock:
216 up_write(&shrinker_rwsem);
217 return ret;
218 }
219
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
221 {
222 int id = shrinker->id;
223
224 BUG_ON(id < 0);
225
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
229 }
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
232 {
233 return 0;
234 }
235
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 }
239 #endif /* CONFIG_MEMCG_KMEM */
240
241 static void set_task_reclaim_state(struct task_struct *task,
242 struct reclaim_state *rs)
243 {
244 /* Check for an overwrite */
245 WARN_ON_ONCE(rs && task->reclaim_state);
246
247 /* Check for the nulling of an already-nulled member */
248 WARN_ON_ONCE(!rs && !task->reclaim_state);
249
250 task->reclaim_state = rs;
251 }
252
253 #ifdef CONFIG_MEMCG
254 static bool global_reclaim(struct scan_control *sc)
255 {
256 return !sc->target_mem_cgroup;
257 }
258
259 /**
260 * sane_reclaim - is the usual dirty throttling mechanism operational?
261 * @sc: scan_control in question
262 *
263 * The normal page dirty throttling mechanism in balance_dirty_pages() is
264 * completely broken with the legacy memcg and direct stalling in
265 * shrink_page_list() is used for throttling instead, which lacks all the
266 * niceties such as fairness, adaptive pausing, bandwidth proportional
267 * allocation and configurability.
268 *
269 * This function tests whether the vmscan currently in progress can assume
270 * that the normal dirty throttling mechanism is operational.
271 */
272 static bool sane_reclaim(struct scan_control *sc)
273 {
274 struct mem_cgroup *memcg = sc->target_mem_cgroup;
275
276 if (!memcg)
277 return true;
278 #ifdef CONFIG_CGROUP_WRITEBACK
279 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
280 return true;
281 #endif
282 return false;
283 }
284
285 static void set_memcg_congestion(pg_data_t *pgdat,
286 struct mem_cgroup *memcg,
287 bool congested)
288 {
289 struct mem_cgroup_per_node *mn;
290
291 if (!memcg)
292 return;
293
294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 WRITE_ONCE(mn->congested, congested);
296 }
297
298 static bool memcg_congested(pg_data_t *pgdat,
299 struct mem_cgroup *memcg)
300 {
301 struct mem_cgroup_per_node *mn;
302
303 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
304 return READ_ONCE(mn->congested);
305
306 }
307 #else
308 static bool global_reclaim(struct scan_control *sc)
309 {
310 return true;
311 }
312
313 static bool sane_reclaim(struct scan_control *sc)
314 {
315 return true;
316 }
317
318 static inline void set_memcg_congestion(struct pglist_data *pgdat,
319 struct mem_cgroup *memcg, bool congested)
320 {
321 }
322
323 static inline bool memcg_congested(struct pglist_data *pgdat,
324 struct mem_cgroup *memcg)
325 {
326 return false;
327
328 }
329 #endif
330
331 /*
332 * This misses isolated pages which are not accounted for to save counters.
333 * As the data only determines if reclaim or compaction continues, it is
334 * not expected that isolated pages will be a dominating factor.
335 */
336 unsigned long zone_reclaimable_pages(struct zone *zone)
337 {
338 unsigned long nr;
339
340 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
342 if (get_nr_swap_pages() > 0)
343 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
345
346 return nr;
347 }
348
349 /**
350 * lruvec_lru_size - Returns the number of pages on the given LRU list.
351 * @lruvec: lru vector
352 * @lru: lru to use
353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
354 */
355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
356 {
357 unsigned long lru_size;
358 int zid;
359
360 if (!mem_cgroup_disabled())
361 lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
362 else
363 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
364
365 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
366 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
367 unsigned long size;
368
369 if (!managed_zone(zone))
370 continue;
371
372 if (!mem_cgroup_disabled())
373 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
374 else
375 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
376 NR_ZONE_LRU_BASE + lru);
377 lru_size -= min(size, lru_size);
378 }
379
380 return lru_size;
381
382 }
383
384 /*
385 * Add a shrinker callback to be called from the vm.
386 */
387 int prealloc_shrinker(struct shrinker *shrinker)
388 {
389 unsigned int size = sizeof(*shrinker->nr_deferred);
390
391 if (shrinker->flags & SHRINKER_NUMA_AWARE)
392 size *= nr_node_ids;
393
394 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
395 if (!shrinker->nr_deferred)
396 return -ENOMEM;
397
398 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
399 if (prealloc_memcg_shrinker(shrinker))
400 goto free_deferred;
401 }
402
403 return 0;
404
405 free_deferred:
406 kfree(shrinker->nr_deferred);
407 shrinker->nr_deferred = NULL;
408 return -ENOMEM;
409 }
410
411 void free_prealloced_shrinker(struct shrinker *shrinker)
412 {
413 if (!shrinker->nr_deferred)
414 return;
415
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 unregister_memcg_shrinker(shrinker);
418
419 kfree(shrinker->nr_deferred);
420 shrinker->nr_deferred = NULL;
421 }
422
423 void register_shrinker_prepared(struct shrinker *shrinker)
424 {
425 down_write(&shrinker_rwsem);
426 list_add_tail(&shrinker->list, &shrinker_list);
427 #ifdef CONFIG_MEMCG_KMEM
428 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
429 idr_replace(&shrinker_idr, shrinker, shrinker->id);
430 #endif
431 up_write(&shrinker_rwsem);
432 }
433
434 int register_shrinker(struct shrinker *shrinker)
435 {
436 int err = prealloc_shrinker(shrinker);
437
438 if (err)
439 return err;
440 register_shrinker_prepared(shrinker);
441 return 0;
442 }
443 EXPORT_SYMBOL(register_shrinker);
444
445 /*
446 * Remove one
447 */
448 void unregister_shrinker(struct shrinker *shrinker)
449 {
450 if (!shrinker->nr_deferred)
451 return;
452 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
453 unregister_memcg_shrinker(shrinker);
454 down_write(&shrinker_rwsem);
455 list_del(&shrinker->list);
456 up_write(&shrinker_rwsem);
457 kfree(shrinker->nr_deferred);
458 shrinker->nr_deferred = NULL;
459 }
460 EXPORT_SYMBOL(unregister_shrinker);
461
462 #define SHRINK_BATCH 128
463
464 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
465 struct shrinker *shrinker, int priority)
466 {
467 unsigned long freed = 0;
468 unsigned long long delta;
469 long total_scan;
470 long freeable;
471 long nr;
472 long new_nr;
473 int nid = shrinkctl->nid;
474 long batch_size = shrinker->batch ? shrinker->batch
475 : SHRINK_BATCH;
476 long scanned = 0, next_deferred;
477
478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 nid = 0;
480
481 freeable = shrinker->count_objects(shrinker, shrinkctl);
482 if (freeable == 0 || freeable == SHRINK_EMPTY)
483 return freeable;
484
485 /*
486 * copy the current shrinker scan count into a local variable
487 * and zero it so that other concurrent shrinker invocations
488 * don't also do this scanning work.
489 */
490 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
491
492 total_scan = nr;
493 if (shrinker->seeks) {
494 delta = freeable >> priority;
495 delta *= 4;
496 do_div(delta, shrinker->seeks);
497 } else {
498 /*
499 * These objects don't require any IO to create. Trim
500 * them aggressively under memory pressure to keep
501 * them from causing refetches in the IO caches.
502 */
503 delta = freeable / 2;
504 }
505
506 total_scan += delta;
507 if (total_scan < 0) {
508 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
509 shrinker->scan_objects, total_scan);
510 total_scan = freeable;
511 next_deferred = nr;
512 } else
513 next_deferred = total_scan;
514
515 /*
516 * We need to avoid excessive windup on filesystem shrinkers
517 * due to large numbers of GFP_NOFS allocations causing the
518 * shrinkers to return -1 all the time. This results in a large
519 * nr being built up so when a shrink that can do some work
520 * comes along it empties the entire cache due to nr >>>
521 * freeable. This is bad for sustaining a working set in
522 * memory.
523 *
524 * Hence only allow the shrinker to scan the entire cache when
525 * a large delta change is calculated directly.
526 */
527 if (delta < freeable / 4)
528 total_scan = min(total_scan, freeable / 2);
529
530 /*
531 * Avoid risking looping forever due to too large nr value:
532 * never try to free more than twice the estimate number of
533 * freeable entries.
534 */
535 if (total_scan > freeable * 2)
536 total_scan = freeable * 2;
537
538 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
539 freeable, delta, total_scan, priority);
540
541 /*
542 * Normally, we should not scan less than batch_size objects in one
543 * pass to avoid too frequent shrinker calls, but if the slab has less
544 * than batch_size objects in total and we are really tight on memory,
545 * we will try to reclaim all available objects, otherwise we can end
546 * up failing allocations although there are plenty of reclaimable
547 * objects spread over several slabs with usage less than the
548 * batch_size.
549 *
550 * We detect the "tight on memory" situations by looking at the total
551 * number of objects we want to scan (total_scan). If it is greater
552 * than the total number of objects on slab (freeable), we must be
553 * scanning at high prio and therefore should try to reclaim as much as
554 * possible.
555 */
556 while (total_scan >= batch_size ||
557 total_scan >= freeable) {
558 unsigned long ret;
559 unsigned long nr_to_scan = min(batch_size, total_scan);
560
561 shrinkctl->nr_to_scan = nr_to_scan;
562 shrinkctl->nr_scanned = nr_to_scan;
563 ret = shrinker->scan_objects(shrinker, shrinkctl);
564 if (ret == SHRINK_STOP)
565 break;
566 freed += ret;
567
568 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
569 total_scan -= shrinkctl->nr_scanned;
570 scanned += shrinkctl->nr_scanned;
571
572 cond_resched();
573 }
574
575 if (next_deferred >= scanned)
576 next_deferred -= scanned;
577 else
578 next_deferred = 0;
579 /*
580 * move the unused scan count back into the shrinker in a
581 * manner that handles concurrent updates. If we exhausted the
582 * scan, there is no need to do an update.
583 */
584 if (next_deferred > 0)
585 new_nr = atomic_long_add_return(next_deferred,
586 &shrinker->nr_deferred[nid]);
587 else
588 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
589
590 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
591 return freed;
592 }
593
594 #ifdef CONFIG_MEMCG_KMEM
595 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
596 struct mem_cgroup *memcg, int priority)
597 {
598 struct memcg_shrinker_map *map;
599 unsigned long ret, freed = 0;
600 int i;
601
602 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
603 return 0;
604
605 if (!down_read_trylock(&shrinker_rwsem))
606 return 0;
607
608 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
609 true);
610 if (unlikely(!map))
611 goto unlock;
612
613 for_each_set_bit(i, map->map, shrinker_nr_max) {
614 struct shrink_control sc = {
615 .gfp_mask = gfp_mask,
616 .nid = nid,
617 .memcg = memcg,
618 };
619 struct shrinker *shrinker;
620
621 shrinker = idr_find(&shrinker_idr, i);
622 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
623 if (!shrinker)
624 clear_bit(i, map->map);
625 continue;
626 }
627
628 ret = do_shrink_slab(&sc, shrinker, priority);
629 if (ret == SHRINK_EMPTY) {
630 clear_bit(i, map->map);
631 /*
632 * After the shrinker reported that it had no objects to
633 * free, but before we cleared the corresponding bit in
634 * the memcg shrinker map, a new object might have been
635 * added. To make sure, we have the bit set in this
636 * case, we invoke the shrinker one more time and reset
637 * the bit if it reports that it is not empty anymore.
638 * The memory barrier here pairs with the barrier in
639 * memcg_set_shrinker_bit():
640 *
641 * list_lru_add() shrink_slab_memcg()
642 * list_add_tail() clear_bit()
643 * <MB> <MB>
644 * set_bit() do_shrink_slab()
645 */
646 smp_mb__after_atomic();
647 ret = do_shrink_slab(&sc, shrinker, priority);
648 if (ret == SHRINK_EMPTY)
649 ret = 0;
650 else
651 memcg_set_shrinker_bit(memcg, nid, i);
652 }
653 freed += ret;
654
655 if (rwsem_is_contended(&shrinker_rwsem)) {
656 freed = freed ? : 1;
657 break;
658 }
659 }
660 unlock:
661 up_read(&shrinker_rwsem);
662 return freed;
663 }
664 #else /* CONFIG_MEMCG_KMEM */
665 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
666 struct mem_cgroup *memcg, int priority)
667 {
668 return 0;
669 }
670 #endif /* CONFIG_MEMCG_KMEM */
671
672 /**
673 * shrink_slab - shrink slab caches
674 * @gfp_mask: allocation context
675 * @nid: node whose slab caches to target
676 * @memcg: memory cgroup whose slab caches to target
677 * @priority: the reclaim priority
678 *
679 * Call the shrink functions to age shrinkable caches.
680 *
681 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
682 * unaware shrinkers will receive a node id of 0 instead.
683 *
684 * @memcg specifies the memory cgroup to target. Unaware shrinkers
685 * are called only if it is the root cgroup.
686 *
687 * @priority is sc->priority, we take the number of objects and >> by priority
688 * in order to get the scan target.
689 *
690 * Returns the number of reclaimed slab objects.
691 */
692 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
693 struct mem_cgroup *memcg,
694 int priority)
695 {
696 unsigned long ret, freed = 0;
697 struct shrinker *shrinker;
698
699 /*
700 * The root memcg might be allocated even though memcg is disabled
701 * via "cgroup_disable=memory" boot parameter. This could make
702 * mem_cgroup_is_root() return false, then just run memcg slab
703 * shrink, but skip global shrink. This may result in premature
704 * oom.
705 */
706 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
707 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
708
709 if (!down_read_trylock(&shrinker_rwsem))
710 goto out;
711
712 list_for_each_entry(shrinker, &shrinker_list, list) {
713 struct shrink_control sc = {
714 .gfp_mask = gfp_mask,
715 .nid = nid,
716 .memcg = memcg,
717 };
718
719 ret = do_shrink_slab(&sc, shrinker, priority);
720 if (ret == SHRINK_EMPTY)
721 ret = 0;
722 freed += ret;
723 /*
724 * Bail out if someone want to register a new shrinker to
725 * prevent the regsitration from being stalled for long periods
726 * by parallel ongoing shrinking.
727 */
728 if (rwsem_is_contended(&shrinker_rwsem)) {
729 freed = freed ? : 1;
730 break;
731 }
732 }
733
734 up_read(&shrinker_rwsem);
735 out:
736 cond_resched();
737 return freed;
738 }
739
740 void drop_slab_node(int nid)
741 {
742 unsigned long freed;
743
744 do {
745 struct mem_cgroup *memcg = NULL;
746
747 freed = 0;
748 memcg = mem_cgroup_iter(NULL, NULL, NULL);
749 do {
750 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
751 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
752 } while (freed > 10);
753 }
754
755 void drop_slab(void)
756 {
757 int nid;
758
759 for_each_online_node(nid)
760 drop_slab_node(nid);
761 }
762
763 static inline int is_page_cache_freeable(struct page *page)
764 {
765 /*
766 * A freeable page cache page is referenced only by the caller
767 * that isolated the page, the page cache and optional buffer
768 * heads at page->private.
769 */
770 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
771 HPAGE_PMD_NR : 1;
772 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
773 }
774
775 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
776 {
777 if (current->flags & PF_SWAPWRITE)
778 return 1;
779 if (!inode_write_congested(inode))
780 return 1;
781 if (inode_to_bdi(inode) == current->backing_dev_info)
782 return 1;
783 return 0;
784 }
785
786 /*
787 * We detected a synchronous write error writing a page out. Probably
788 * -ENOSPC. We need to propagate that into the address_space for a subsequent
789 * fsync(), msync() or close().
790 *
791 * The tricky part is that after writepage we cannot touch the mapping: nothing
792 * prevents it from being freed up. But we have a ref on the page and once
793 * that page is locked, the mapping is pinned.
794 *
795 * We're allowed to run sleeping lock_page() here because we know the caller has
796 * __GFP_FS.
797 */
798 static void handle_write_error(struct address_space *mapping,
799 struct page *page, int error)
800 {
801 lock_page(page);
802 if (page_mapping(page) == mapping)
803 mapping_set_error(mapping, error);
804 unlock_page(page);
805 }
806
807 /* possible outcome of pageout() */
808 typedef enum {
809 /* failed to write page out, page is locked */
810 PAGE_KEEP,
811 /* move page to the active list, page is locked */
812 PAGE_ACTIVATE,
813 /* page has been sent to the disk successfully, page is unlocked */
814 PAGE_SUCCESS,
815 /* page is clean and locked */
816 PAGE_CLEAN,
817 } pageout_t;
818
819 /*
820 * pageout is called by shrink_page_list() for each dirty page.
821 * Calls ->writepage().
822 */
823 static pageout_t pageout(struct page *page, struct address_space *mapping,
824 struct scan_control *sc)
825 {
826 /*
827 * If the page is dirty, only perform writeback if that write
828 * will be non-blocking. To prevent this allocation from being
829 * stalled by pagecache activity. But note that there may be
830 * stalls if we need to run get_block(). We could test
831 * PagePrivate for that.
832 *
833 * If this process is currently in __generic_file_write_iter() against
834 * this page's queue, we can perform writeback even if that
835 * will block.
836 *
837 * If the page is swapcache, write it back even if that would
838 * block, for some throttling. This happens by accident, because
839 * swap_backing_dev_info is bust: it doesn't reflect the
840 * congestion state of the swapdevs. Easy to fix, if needed.
841 */
842 if (!is_page_cache_freeable(page))
843 return PAGE_KEEP;
844 if (!mapping) {
845 /*
846 * Some data journaling orphaned pages can have
847 * page->mapping == NULL while being dirty with clean buffers.
848 */
849 if (page_has_private(page)) {
850 if (try_to_free_buffers(page)) {
851 ClearPageDirty(page);
852 pr_info("%s: orphaned page\n", __func__);
853 return PAGE_CLEAN;
854 }
855 }
856 return PAGE_KEEP;
857 }
858 if (mapping->a_ops->writepage == NULL)
859 return PAGE_ACTIVATE;
860 if (!may_write_to_inode(mapping->host, sc))
861 return PAGE_KEEP;
862
863 if (clear_page_dirty_for_io(page)) {
864 int res;
865 struct writeback_control wbc = {
866 .sync_mode = WB_SYNC_NONE,
867 .nr_to_write = SWAP_CLUSTER_MAX,
868 .range_start = 0,
869 .range_end = LLONG_MAX,
870 .for_reclaim = 1,
871 };
872
873 SetPageReclaim(page);
874 res = mapping->a_ops->writepage(page, &wbc);
875 if (res < 0)
876 handle_write_error(mapping, page, res);
877 if (res == AOP_WRITEPAGE_ACTIVATE) {
878 ClearPageReclaim(page);
879 return PAGE_ACTIVATE;
880 }
881
882 if (!PageWriteback(page)) {
883 /* synchronous write or broken a_ops? */
884 ClearPageReclaim(page);
885 }
886 trace_mm_vmscan_writepage(page);
887 inc_node_page_state(page, NR_VMSCAN_WRITE);
888 return PAGE_SUCCESS;
889 }
890
891 return PAGE_CLEAN;
892 }
893
894 /*
895 * Same as remove_mapping, but if the page is removed from the mapping, it
896 * gets returned with a refcount of 0.
897 */
898 static int __remove_mapping(struct address_space *mapping, struct page *page,
899 bool reclaimed)
900 {
901 unsigned long flags;
902 int refcount;
903
904 BUG_ON(!PageLocked(page));
905 BUG_ON(mapping != page_mapping(page));
906
907 xa_lock_irqsave(&mapping->i_pages, flags);
908 /*
909 * The non racy check for a busy page.
910 *
911 * Must be careful with the order of the tests. When someone has
912 * a ref to the page, it may be possible that they dirty it then
913 * drop the reference. So if PageDirty is tested before page_count
914 * here, then the following race may occur:
915 *
916 * get_user_pages(&page);
917 * [user mapping goes away]
918 * write_to(page);
919 * !PageDirty(page) [good]
920 * SetPageDirty(page);
921 * put_page(page);
922 * !page_count(page) [good, discard it]
923 *
924 * [oops, our write_to data is lost]
925 *
926 * Reversing the order of the tests ensures such a situation cannot
927 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
928 * load is not satisfied before that of page->_refcount.
929 *
930 * Note that if SetPageDirty is always performed via set_page_dirty,
931 * and thus under the i_pages lock, then this ordering is not required.
932 */
933 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
934 refcount = 1 + HPAGE_PMD_NR;
935 else
936 refcount = 2;
937 if (!page_ref_freeze(page, refcount))
938 goto cannot_free;
939 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
940 if (unlikely(PageDirty(page))) {
941 page_ref_unfreeze(page, refcount);
942 goto cannot_free;
943 }
944
945 if (PageSwapCache(page)) {
946 swp_entry_t swap = { .val = page_private(page) };
947 mem_cgroup_swapout(page, swap);
948 __delete_from_swap_cache(page, swap);
949 xa_unlock_irqrestore(&mapping->i_pages, flags);
950 put_swap_page(page, swap);
951 } else {
952 void (*freepage)(struct page *);
953 void *shadow = NULL;
954
955 freepage = mapping->a_ops->freepage;
956 /*
957 * Remember a shadow entry for reclaimed file cache in
958 * order to detect refaults, thus thrashing, later on.
959 *
960 * But don't store shadows in an address space that is
961 * already exiting. This is not just an optizimation,
962 * inode reclaim needs to empty out the radix tree or
963 * the nodes are lost. Don't plant shadows behind its
964 * back.
965 *
966 * We also don't store shadows for DAX mappings because the
967 * only page cache pages found in these are zero pages
968 * covering holes, and because we don't want to mix DAX
969 * exceptional entries and shadow exceptional entries in the
970 * same address_space.
971 */
972 if (reclaimed && page_is_file_cache(page) &&
973 !mapping_exiting(mapping) && !dax_mapping(mapping))
974 shadow = workingset_eviction(page);
975 __delete_from_page_cache(page, shadow);
976 xa_unlock_irqrestore(&mapping->i_pages, flags);
977
978 if (freepage != NULL)
979 freepage(page);
980 }
981
982 return 1;
983
984 cannot_free:
985 xa_unlock_irqrestore(&mapping->i_pages, flags);
986 return 0;
987 }
988
989 /*
990 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
991 * someone else has a ref on the page, abort and return 0. If it was
992 * successfully detached, return 1. Assumes the caller has a single ref on
993 * this page.
994 */
995 int remove_mapping(struct address_space *mapping, struct page *page)
996 {
997 if (__remove_mapping(mapping, page, false)) {
998 /*
999 * Unfreezing the refcount with 1 rather than 2 effectively
1000 * drops the pagecache ref for us without requiring another
1001 * atomic operation.
1002 */
1003 page_ref_unfreeze(page, 1);
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009 /**
1010 * putback_lru_page - put previously isolated page onto appropriate LRU list
1011 * @page: page to be put back to appropriate lru list
1012 *
1013 * Add previously isolated @page to appropriate LRU list.
1014 * Page may still be unevictable for other reasons.
1015 *
1016 * lru_lock must not be held, interrupts must be enabled.
1017 */
1018 void putback_lru_page(struct page *page)
1019 {
1020 lru_cache_add(page);
1021 put_page(page); /* drop ref from isolate */
1022 }
1023
1024 enum page_references {
1025 PAGEREF_RECLAIM,
1026 PAGEREF_RECLAIM_CLEAN,
1027 PAGEREF_KEEP,
1028 PAGEREF_ACTIVATE,
1029 };
1030
1031 static enum page_references page_check_references(struct page *page,
1032 struct scan_control *sc)
1033 {
1034 int referenced_ptes, referenced_page;
1035 unsigned long vm_flags;
1036
1037 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038 &vm_flags);
1039 referenced_page = TestClearPageReferenced(page);
1040
1041 /*
1042 * Mlock lost the isolation race with us. Let try_to_unmap()
1043 * move the page to the unevictable list.
1044 */
1045 if (vm_flags & VM_LOCKED)
1046 return PAGEREF_RECLAIM;
1047
1048 if (referenced_ptes) {
1049 if (PageSwapBacked(page))
1050 return PAGEREF_ACTIVATE;
1051 /*
1052 * All mapped pages start out with page table
1053 * references from the instantiating fault, so we need
1054 * to look twice if a mapped file page is used more
1055 * than once.
1056 *
1057 * Mark it and spare it for another trip around the
1058 * inactive list. Another page table reference will
1059 * lead to its activation.
1060 *
1061 * Note: the mark is set for activated pages as well
1062 * so that recently deactivated but used pages are
1063 * quickly recovered.
1064 */
1065 SetPageReferenced(page);
1066
1067 if (referenced_page || referenced_ptes > 1)
1068 return PAGEREF_ACTIVATE;
1069
1070 /*
1071 * Activate file-backed executable pages after first usage.
1072 */
1073 if (vm_flags & VM_EXEC)
1074 return PAGEREF_ACTIVATE;
1075
1076 return PAGEREF_KEEP;
1077 }
1078
1079 /* Reclaim if clean, defer dirty pages to writeback */
1080 if (referenced_page && !PageSwapBacked(page))
1081 return PAGEREF_RECLAIM_CLEAN;
1082
1083 return PAGEREF_RECLAIM;
1084 }
1085
1086 /* Check if a page is dirty or under writeback */
1087 static void page_check_dirty_writeback(struct page *page,
1088 bool *dirty, bool *writeback)
1089 {
1090 struct address_space *mapping;
1091
1092 /*
1093 * Anonymous pages are not handled by flushers and must be written
1094 * from reclaim context. Do not stall reclaim based on them
1095 */
1096 if (!page_is_file_cache(page) ||
1097 (PageAnon(page) && !PageSwapBacked(page))) {
1098 *dirty = false;
1099 *writeback = false;
1100 return;
1101 }
1102
1103 /* By default assume that the page flags are accurate */
1104 *dirty = PageDirty(page);
1105 *writeback = PageWriteback(page);
1106
1107 /* Verify dirty/writeback state if the filesystem supports it */
1108 if (!page_has_private(page))
1109 return;
1110
1111 mapping = page_mapping(page);
1112 if (mapping && mapping->a_ops->is_dirty_writeback)
1113 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1114 }
1115
1116 /*
1117 * shrink_page_list() returns the number of reclaimed pages
1118 */
1119 static unsigned long shrink_page_list(struct list_head *page_list,
1120 struct pglist_data *pgdat,
1121 struct scan_control *sc,
1122 enum ttu_flags ttu_flags,
1123 struct reclaim_stat *stat,
1124 bool force_reclaim)
1125 {
1126 LIST_HEAD(ret_pages);
1127 LIST_HEAD(free_pages);
1128 unsigned nr_reclaimed = 0;
1129 unsigned pgactivate = 0;
1130
1131 memset(stat, 0, sizeof(*stat));
1132 cond_resched();
1133
1134 while (!list_empty(page_list)) {
1135 struct address_space *mapping;
1136 struct page *page;
1137 int may_enter_fs;
1138 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1139 bool dirty, writeback;
1140 unsigned int nr_pages;
1141
1142 cond_resched();
1143
1144 page = lru_to_page(page_list);
1145 list_del(&page->lru);
1146
1147 if (!trylock_page(page))
1148 goto keep;
1149
1150 VM_BUG_ON_PAGE(PageActive(page), page);
1151
1152 nr_pages = 1 << compound_order(page);
1153
1154 /* Account the number of base pages even though THP */
1155 sc->nr_scanned += nr_pages;
1156
1157 if (unlikely(!page_evictable(page)))
1158 goto activate_locked;
1159
1160 if (!sc->may_unmap && page_mapped(page))
1161 goto keep_locked;
1162
1163 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165
1166 /*
1167 * The number of dirty pages determines if a node is marked
1168 * reclaim_congested which affects wait_iff_congested. kswapd
1169 * will stall and start writing pages if the tail of the LRU
1170 * is all dirty unqueued pages.
1171 */
1172 page_check_dirty_writeback(page, &dirty, &writeback);
1173 if (dirty || writeback)
1174 stat->nr_dirty++;
1175
1176 if (dirty && !writeback)
1177 stat->nr_unqueued_dirty++;
1178
1179 /*
1180 * Treat this page as congested if the underlying BDI is or if
1181 * pages are cycling through the LRU so quickly that the
1182 * pages marked for immediate reclaim are making it to the
1183 * end of the LRU a second time.
1184 */
1185 mapping = page_mapping(page);
1186 if (((dirty || writeback) && mapping &&
1187 inode_write_congested(mapping->host)) ||
1188 (writeback && PageReclaim(page)))
1189 stat->nr_congested++;
1190
1191 /*
1192 * If a page at the tail of the LRU is under writeback, there
1193 * are three cases to consider.
1194 *
1195 * 1) If reclaim is encountering an excessive number of pages
1196 * under writeback and this page is both under writeback and
1197 * PageReclaim then it indicates that pages are being queued
1198 * for IO but are being recycled through the LRU before the
1199 * IO can complete. Waiting on the page itself risks an
1200 * indefinite stall if it is impossible to writeback the
1201 * page due to IO error or disconnected storage so instead
1202 * note that the LRU is being scanned too quickly and the
1203 * caller can stall after page list has been processed.
1204 *
1205 * 2) Global or new memcg reclaim encounters a page that is
1206 * not marked for immediate reclaim, or the caller does not
1207 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208 * not to fs). In this case mark the page for immediate
1209 * reclaim and continue scanning.
1210 *
1211 * Require may_enter_fs because we would wait on fs, which
1212 * may not have submitted IO yet. And the loop driver might
1213 * enter reclaim, and deadlock if it waits on a page for
1214 * which it is needed to do the write (loop masks off
1215 * __GFP_IO|__GFP_FS for this reason); but more thought
1216 * would probably show more reasons.
1217 *
1218 * 3) Legacy memcg encounters a page that is already marked
1219 * PageReclaim. memcg does not have any dirty pages
1220 * throttling so we could easily OOM just because too many
1221 * pages are in writeback and there is nothing else to
1222 * reclaim. Wait for the writeback to complete.
1223 *
1224 * In cases 1) and 2) we activate the pages to get them out of
1225 * the way while we continue scanning for clean pages on the
1226 * inactive list and refilling from the active list. The
1227 * observation here is that waiting for disk writes is more
1228 * expensive than potentially causing reloads down the line.
1229 * Since they're marked for immediate reclaim, they won't put
1230 * memory pressure on the cache working set any longer than it
1231 * takes to write them to disk.
1232 */
1233 if (PageWriteback(page)) {
1234 /* Case 1 above */
1235 if (current_is_kswapd() &&
1236 PageReclaim(page) &&
1237 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238 stat->nr_immediate++;
1239 goto activate_locked;
1240
1241 /* Case 2 above */
1242 } else if (sane_reclaim(sc) ||
1243 !PageReclaim(page) || !may_enter_fs) {
1244 /*
1245 * This is slightly racy - end_page_writeback()
1246 * might have just cleared PageReclaim, then
1247 * setting PageReclaim here end up interpreted
1248 * as PageReadahead - but that does not matter
1249 * enough to care. What we do want is for this
1250 * page to have PageReclaim set next time memcg
1251 * reclaim reaches the tests above, so it will
1252 * then wait_on_page_writeback() to avoid OOM;
1253 * and it's also appropriate in global reclaim.
1254 */
1255 SetPageReclaim(page);
1256 stat->nr_writeback++;
1257 goto activate_locked;
1258
1259 /* Case 3 above */
1260 } else {
1261 unlock_page(page);
1262 wait_on_page_writeback(page);
1263 /* then go back and try same page again */
1264 list_add_tail(&page->lru, page_list);
1265 continue;
1266 }
1267 }
1268
1269 if (!force_reclaim)
1270 references = page_check_references(page, sc);
1271
1272 switch (references) {
1273 case PAGEREF_ACTIVATE:
1274 goto activate_locked;
1275 case PAGEREF_KEEP:
1276 stat->nr_ref_keep += nr_pages;
1277 goto keep_locked;
1278 case PAGEREF_RECLAIM:
1279 case PAGEREF_RECLAIM_CLEAN:
1280 ; /* try to reclaim the page below */
1281 }
1282
1283 /*
1284 * Anonymous process memory has backing store?
1285 * Try to allocate it some swap space here.
1286 * Lazyfree page could be freed directly
1287 */
1288 if (PageAnon(page) && PageSwapBacked(page)) {
1289 if (!PageSwapCache(page)) {
1290 if (!(sc->gfp_mask & __GFP_IO))
1291 goto keep_locked;
1292 if (PageTransHuge(page)) {
1293 /* cannot split THP, skip it */
1294 if (!can_split_huge_page(page, NULL))
1295 goto activate_locked;
1296 /*
1297 * Split pages without a PMD map right
1298 * away. Chances are some or all of the
1299 * tail pages can be freed without IO.
1300 */
1301 if (!compound_mapcount(page) &&
1302 split_huge_page_to_list(page,
1303 page_list))
1304 goto activate_locked;
1305 }
1306 if (!add_to_swap(page)) {
1307 if (!PageTransHuge(page))
1308 goto activate_locked_split;
1309 /* Fallback to swap normal pages */
1310 if (split_huge_page_to_list(page,
1311 page_list))
1312 goto activate_locked;
1313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314 count_vm_event(THP_SWPOUT_FALLBACK);
1315 #endif
1316 if (!add_to_swap(page))
1317 goto activate_locked_split;
1318 }
1319
1320 may_enter_fs = 1;
1321
1322 /* Adding to swap updated mapping */
1323 mapping = page_mapping(page);
1324 }
1325 } else if (unlikely(PageTransHuge(page))) {
1326 /* Split file THP */
1327 if (split_huge_page_to_list(page, page_list))
1328 goto keep_locked;
1329 }
1330
1331 /*
1332 * THP may get split above, need minus tail pages and update
1333 * nr_pages to avoid accounting tail pages twice.
1334 *
1335 * The tail pages that are added into swap cache successfully
1336 * reach here.
1337 */
1338 if ((nr_pages > 1) && !PageTransHuge(page)) {
1339 sc->nr_scanned -= (nr_pages - 1);
1340 nr_pages = 1;
1341 }
1342
1343 /*
1344 * The page is mapped into the page tables of one or more
1345 * processes. Try to unmap it here.
1346 */
1347 if (page_mapped(page)) {
1348 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1349
1350 if (unlikely(PageTransHuge(page)))
1351 flags |= TTU_SPLIT_HUGE_PMD;
1352 if (!try_to_unmap(page, flags)) {
1353 stat->nr_unmap_fail += nr_pages;
1354 goto activate_locked;
1355 }
1356 }
1357
1358 if (PageDirty(page)) {
1359 /*
1360 * Only kswapd can writeback filesystem pages
1361 * to avoid risk of stack overflow. But avoid
1362 * injecting inefficient single-page IO into
1363 * flusher writeback as much as possible: only
1364 * write pages when we've encountered many
1365 * dirty pages, and when we've already scanned
1366 * the rest of the LRU for clean pages and see
1367 * the same dirty pages again (PageReclaim).
1368 */
1369 if (page_is_file_cache(page) &&
1370 (!current_is_kswapd() || !PageReclaim(page) ||
1371 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372 /*
1373 * Immediately reclaim when written back.
1374 * Similar in principal to deactivate_page()
1375 * except we already have the page isolated
1376 * and know it's dirty
1377 */
1378 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379 SetPageReclaim(page);
1380
1381 goto activate_locked;
1382 }
1383
1384 if (references == PAGEREF_RECLAIM_CLEAN)
1385 goto keep_locked;
1386 if (!may_enter_fs)
1387 goto keep_locked;
1388 if (!sc->may_writepage)
1389 goto keep_locked;
1390
1391 /*
1392 * Page is dirty. Flush the TLB if a writable entry
1393 * potentially exists to avoid CPU writes after IO
1394 * starts and then write it out here.
1395 */
1396 try_to_unmap_flush_dirty();
1397 switch (pageout(page, mapping, sc)) {
1398 case PAGE_KEEP:
1399 goto keep_locked;
1400 case PAGE_ACTIVATE:
1401 goto activate_locked;
1402 case PAGE_SUCCESS:
1403 if (PageWriteback(page))
1404 goto keep;
1405 if (PageDirty(page))
1406 goto keep;
1407
1408 /*
1409 * A synchronous write - probably a ramdisk. Go
1410 * ahead and try to reclaim the page.
1411 */
1412 if (!trylock_page(page))
1413 goto keep;
1414 if (PageDirty(page) || PageWriteback(page))
1415 goto keep_locked;
1416 mapping = page_mapping(page);
1417 case PAGE_CLEAN:
1418 ; /* try to free the page below */
1419 }
1420 }
1421
1422 /*
1423 * If the page has buffers, try to free the buffer mappings
1424 * associated with this page. If we succeed we try to free
1425 * the page as well.
1426 *
1427 * We do this even if the page is PageDirty().
1428 * try_to_release_page() does not perform I/O, but it is
1429 * possible for a page to have PageDirty set, but it is actually
1430 * clean (all its buffers are clean). This happens if the
1431 * buffers were written out directly, with submit_bh(). ext3
1432 * will do this, as well as the blockdev mapping.
1433 * try_to_release_page() will discover that cleanness and will
1434 * drop the buffers and mark the page clean - it can be freed.
1435 *
1436 * Rarely, pages can have buffers and no ->mapping. These are
1437 * the pages which were not successfully invalidated in
1438 * truncate_complete_page(). We try to drop those buffers here
1439 * and if that worked, and the page is no longer mapped into
1440 * process address space (page_count == 1) it can be freed.
1441 * Otherwise, leave the page on the LRU so it is swappable.
1442 */
1443 if (page_has_private(page)) {
1444 if (!try_to_release_page(page, sc->gfp_mask))
1445 goto activate_locked;
1446 if (!mapping && page_count(page) == 1) {
1447 unlock_page(page);
1448 if (put_page_testzero(page))
1449 goto free_it;
1450 else {
1451 /*
1452 * rare race with speculative reference.
1453 * the speculative reference will free
1454 * this page shortly, so we may
1455 * increment nr_reclaimed here (and
1456 * leave it off the LRU).
1457 */
1458 nr_reclaimed++;
1459 continue;
1460 }
1461 }
1462 }
1463
1464 if (PageAnon(page) && !PageSwapBacked(page)) {
1465 /* follow __remove_mapping for reference */
1466 if (!page_ref_freeze(page, 1))
1467 goto keep_locked;
1468 if (PageDirty(page)) {
1469 page_ref_unfreeze(page, 1);
1470 goto keep_locked;
1471 }
1472
1473 count_vm_event(PGLAZYFREED);
1474 count_memcg_page_event(page, PGLAZYFREED);
1475 } else if (!mapping || !__remove_mapping(mapping, page, true))
1476 goto keep_locked;
1477
1478 unlock_page(page);
1479 free_it:
1480 /*
1481 * THP may get swapped out in a whole, need account
1482 * all base pages.
1483 */
1484 nr_reclaimed += nr_pages;
1485
1486 /*
1487 * Is there need to periodically free_page_list? It would
1488 * appear not as the counts should be low
1489 */
1490 if (unlikely(PageTransHuge(page))) {
1491 mem_cgroup_uncharge(page);
1492 (*get_compound_page_dtor(page))(page);
1493 } else
1494 list_add(&page->lru, &free_pages);
1495 continue;
1496
1497 activate_locked_split:
1498 /*
1499 * The tail pages that are failed to add into swap cache
1500 * reach here. Fixup nr_scanned and nr_pages.
1501 */
1502 if (nr_pages > 1) {
1503 sc->nr_scanned -= (nr_pages - 1);
1504 nr_pages = 1;
1505 }
1506 activate_locked:
1507 /* Not a candidate for swapping, so reclaim swap space. */
1508 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1509 PageMlocked(page)))
1510 try_to_free_swap(page);
1511 VM_BUG_ON_PAGE(PageActive(page), page);
1512 if (!PageMlocked(page)) {
1513 int type = page_is_file_cache(page);
1514 SetPageActive(page);
1515 stat->nr_activate[type] += nr_pages;
1516 count_memcg_page_event(page, PGACTIVATE);
1517 }
1518 keep_locked:
1519 unlock_page(page);
1520 keep:
1521 list_add(&page->lru, &ret_pages);
1522 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1523 }
1524
1525 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1526
1527 mem_cgroup_uncharge_list(&free_pages);
1528 try_to_unmap_flush();
1529 free_unref_page_list(&free_pages);
1530
1531 list_splice(&ret_pages, page_list);
1532 count_vm_events(PGACTIVATE, pgactivate);
1533
1534 return nr_reclaimed;
1535 }
1536
1537 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1538 struct list_head *page_list)
1539 {
1540 struct scan_control sc = {
1541 .gfp_mask = GFP_KERNEL,
1542 .priority = DEF_PRIORITY,
1543 .may_unmap = 1,
1544 };
1545 struct reclaim_stat dummy_stat;
1546 unsigned long ret;
1547 struct page *page, *next;
1548 LIST_HEAD(clean_pages);
1549
1550 list_for_each_entry_safe(page, next, page_list, lru) {
1551 if (page_is_file_cache(page) && !PageDirty(page) &&
1552 !__PageMovable(page) && !PageUnevictable(page)) {
1553 ClearPageActive(page);
1554 list_move(&page->lru, &clean_pages);
1555 }
1556 }
1557
1558 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1559 TTU_IGNORE_ACCESS, &dummy_stat, true);
1560 list_splice(&clean_pages, page_list);
1561 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1562 return ret;
1563 }
1564
1565 /*
1566 * Attempt to remove the specified page from its LRU. Only take this page
1567 * if it is of the appropriate PageActive status. Pages which are being
1568 * freed elsewhere are also ignored.
1569 *
1570 * page: page to consider
1571 * mode: one of the LRU isolation modes defined above
1572 *
1573 * returns 0 on success, -ve errno on failure.
1574 */
1575 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1576 {
1577 int ret = -EINVAL;
1578
1579 /* Only take pages on the LRU. */
1580 if (!PageLRU(page))
1581 return ret;
1582
1583 /* Compaction should not handle unevictable pages but CMA can do so */
1584 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1585 return ret;
1586
1587 ret = -EBUSY;
1588
1589 /*
1590 * To minimise LRU disruption, the caller can indicate that it only
1591 * wants to isolate pages it will be able to operate on without
1592 * blocking - clean pages for the most part.
1593 *
1594 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1595 * that it is possible to migrate without blocking
1596 */
1597 if (mode & ISOLATE_ASYNC_MIGRATE) {
1598 /* All the caller can do on PageWriteback is block */
1599 if (PageWriteback(page))
1600 return ret;
1601
1602 if (PageDirty(page)) {
1603 struct address_space *mapping;
1604 bool migrate_dirty;
1605
1606 /*
1607 * Only pages without mappings or that have a
1608 * ->migratepage callback are possible to migrate
1609 * without blocking. However, we can be racing with
1610 * truncation so it's necessary to lock the page
1611 * to stabilise the mapping as truncation holds
1612 * the page lock until after the page is removed
1613 * from the page cache.
1614 */
1615 if (!trylock_page(page))
1616 return ret;
1617
1618 mapping = page_mapping(page);
1619 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1620 unlock_page(page);
1621 if (!migrate_dirty)
1622 return ret;
1623 }
1624 }
1625
1626 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1627 return ret;
1628
1629 if (likely(get_page_unless_zero(page))) {
1630 /*
1631 * Be careful not to clear PageLRU until after we're
1632 * sure the page is not being freed elsewhere -- the
1633 * page release code relies on it.
1634 */
1635 ClearPageLRU(page);
1636 ret = 0;
1637 }
1638
1639 return ret;
1640 }
1641
1642
1643 /*
1644 * Update LRU sizes after isolating pages. The LRU size updates must
1645 * be complete before mem_cgroup_update_lru_size due to a santity check.
1646 */
1647 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1648 enum lru_list lru, unsigned long *nr_zone_taken)
1649 {
1650 int zid;
1651
1652 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1653 if (!nr_zone_taken[zid])
1654 continue;
1655
1656 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1657 #ifdef CONFIG_MEMCG
1658 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1659 #endif
1660 }
1661
1662 }
1663
1664 /**
1665 * pgdat->lru_lock is heavily contended. Some of the functions that
1666 * shrink the lists perform better by taking out a batch of pages
1667 * and working on them outside the LRU lock.
1668 *
1669 * For pagecache intensive workloads, this function is the hottest
1670 * spot in the kernel (apart from copy_*_user functions).
1671 *
1672 * Appropriate locks must be held before calling this function.
1673 *
1674 * @nr_to_scan: The number of eligible pages to look through on the list.
1675 * @lruvec: The LRU vector to pull pages from.
1676 * @dst: The temp list to put pages on to.
1677 * @nr_scanned: The number of pages that were scanned.
1678 * @sc: The scan_control struct for this reclaim session
1679 * @mode: One of the LRU isolation modes
1680 * @lru: LRU list id for isolating
1681 *
1682 * returns how many pages were moved onto *@dst.
1683 */
1684 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1685 struct lruvec *lruvec, struct list_head *dst,
1686 unsigned long *nr_scanned, struct scan_control *sc,
1687 enum lru_list lru)
1688 {
1689 struct list_head *src = &lruvec->lists[lru];
1690 unsigned long nr_taken = 0;
1691 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1692 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1693 unsigned long skipped = 0;
1694 unsigned long scan, total_scan, nr_pages;
1695 LIST_HEAD(pages_skipped);
1696 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1697
1698 total_scan = 0;
1699 scan = 0;
1700 while (scan < nr_to_scan && !list_empty(src)) {
1701 struct page *page;
1702
1703 page = lru_to_page(src);
1704 prefetchw_prev_lru_page(page, src, flags);
1705
1706 VM_BUG_ON_PAGE(!PageLRU(page), page);
1707
1708 nr_pages = 1 << compound_order(page);
1709 total_scan += nr_pages;
1710
1711 if (page_zonenum(page) > sc->reclaim_idx) {
1712 list_move(&page->lru, &pages_skipped);
1713 nr_skipped[page_zonenum(page)] += nr_pages;
1714 continue;
1715 }
1716
1717 /*
1718 * Do not count skipped pages because that makes the function
1719 * return with no isolated pages if the LRU mostly contains
1720 * ineligible pages. This causes the VM to not reclaim any
1721 * pages, triggering a premature OOM.
1722 *
1723 * Account all tail pages of THP. This would not cause
1724 * premature OOM since __isolate_lru_page() returns -EBUSY
1725 * only when the page is being freed somewhere else.
1726 */
1727 scan += nr_pages;
1728 switch (__isolate_lru_page(page, mode)) {
1729 case 0:
1730 nr_taken += nr_pages;
1731 nr_zone_taken[page_zonenum(page)] += nr_pages;
1732 list_move(&page->lru, dst);
1733 break;
1734
1735 case -EBUSY:
1736 /* else it is being freed elsewhere */
1737 list_move(&page->lru, src);
1738 continue;
1739
1740 default:
1741 BUG();
1742 }
1743 }
1744
1745 /*
1746 * Splice any skipped pages to the start of the LRU list. Note that
1747 * this disrupts the LRU order when reclaiming for lower zones but
1748 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1749 * scanning would soon rescan the same pages to skip and put the
1750 * system at risk of premature OOM.
1751 */
1752 if (!list_empty(&pages_skipped)) {
1753 int zid;
1754
1755 list_splice(&pages_skipped, src);
1756 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757 if (!nr_skipped[zid])
1758 continue;
1759
1760 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1761 skipped += nr_skipped[zid];
1762 }
1763 }
1764 *nr_scanned = total_scan;
1765 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1766 total_scan, skipped, nr_taken, mode, lru);
1767 update_lru_sizes(lruvec, lru, nr_zone_taken);
1768 return nr_taken;
1769 }
1770
1771 /**
1772 * isolate_lru_page - tries to isolate a page from its LRU list
1773 * @page: page to isolate from its LRU list
1774 *
1775 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1776 * vmstat statistic corresponding to whatever LRU list the page was on.
1777 *
1778 * Returns 0 if the page was removed from an LRU list.
1779 * Returns -EBUSY if the page was not on an LRU list.
1780 *
1781 * The returned page will have PageLRU() cleared. If it was found on
1782 * the active list, it will have PageActive set. If it was found on
1783 * the unevictable list, it will have the PageUnevictable bit set. That flag
1784 * may need to be cleared by the caller before letting the page go.
1785 *
1786 * The vmstat statistic corresponding to the list on which the page was
1787 * found will be decremented.
1788 *
1789 * Restrictions:
1790 *
1791 * (1) Must be called with an elevated refcount on the page. This is a
1792 * fundamentnal difference from isolate_lru_pages (which is called
1793 * without a stable reference).
1794 * (2) the lru_lock must not be held.
1795 * (3) interrupts must be enabled.
1796 */
1797 int isolate_lru_page(struct page *page)
1798 {
1799 int ret = -EBUSY;
1800
1801 VM_BUG_ON_PAGE(!page_count(page), page);
1802 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1803
1804 if (PageLRU(page)) {
1805 pg_data_t *pgdat = page_pgdat(page);
1806 struct lruvec *lruvec;
1807
1808 spin_lock_irq(&pgdat->lru_lock);
1809 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1810 if (PageLRU(page)) {
1811 int lru = page_lru(page);
1812 get_page(page);
1813 ClearPageLRU(page);
1814 del_page_from_lru_list(page, lruvec, lru);
1815 ret = 0;
1816 }
1817 spin_unlock_irq(&pgdat->lru_lock);
1818 }
1819 return ret;
1820 }
1821
1822 /*
1823 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1824 * then get resheduled. When there are massive number of tasks doing page
1825 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1826 * the LRU list will go small and be scanned faster than necessary, leading to
1827 * unnecessary swapping, thrashing and OOM.
1828 */
1829 static int too_many_isolated(struct pglist_data *pgdat, int file,
1830 struct scan_control *sc)
1831 {
1832 unsigned long inactive, isolated;
1833
1834 if (current_is_kswapd())
1835 return 0;
1836
1837 if (!sane_reclaim(sc))
1838 return 0;
1839
1840 if (file) {
1841 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1842 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1843 } else {
1844 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1845 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1846 }
1847
1848 /*
1849 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1850 * won't get blocked by normal direct-reclaimers, forming a circular
1851 * deadlock.
1852 */
1853 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1854 inactive >>= 3;
1855
1856 return isolated > inactive;
1857 }
1858
1859 /*
1860 * This moves pages from @list to corresponding LRU list.
1861 *
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1864 *
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation. But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page. It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1872 *
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1875 *
1876 * Returns the number of pages moved to the given lruvec.
1877 */
1878
1879 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1880 struct list_head *list)
1881 {
1882 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883 int nr_pages, nr_moved = 0;
1884 LIST_HEAD(pages_to_free);
1885 struct page *page;
1886 enum lru_list lru;
1887
1888 while (!list_empty(list)) {
1889 page = lru_to_page(list);
1890 VM_BUG_ON_PAGE(PageLRU(page), page);
1891 if (unlikely(!page_evictable(page))) {
1892 list_del(&page->lru);
1893 spin_unlock_irq(&pgdat->lru_lock);
1894 putback_lru_page(page);
1895 spin_lock_irq(&pgdat->lru_lock);
1896 continue;
1897 }
1898 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1899
1900 SetPageLRU(page);
1901 lru = page_lru(page);
1902
1903 nr_pages = hpage_nr_pages(page);
1904 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1905 list_move(&page->lru, &lruvec->lists[lru]);
1906
1907 if (put_page_testzero(page)) {
1908 __ClearPageLRU(page);
1909 __ClearPageActive(page);
1910 del_page_from_lru_list(page, lruvec, lru);
1911
1912 if (unlikely(PageCompound(page))) {
1913 spin_unlock_irq(&pgdat->lru_lock);
1914 mem_cgroup_uncharge(page);
1915 (*get_compound_page_dtor(page))(page);
1916 spin_lock_irq(&pgdat->lru_lock);
1917 } else
1918 list_add(&page->lru, &pages_to_free);
1919 } else {
1920 nr_moved += nr_pages;
1921 }
1922 }
1923
1924 /*
1925 * To save our caller's stack, now use input list for pages to free.
1926 */
1927 list_splice(&pages_to_free, list);
1928
1929 return nr_moved;
1930 }
1931
1932 /*
1933 * If a kernel thread (such as nfsd for loop-back mounts) services
1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935 * In that case we should only throttle if the backing device it is
1936 * writing to is congested. In other cases it is safe to throttle.
1937 */
1938 static int current_may_throttle(void)
1939 {
1940 return !(current->flags & PF_LESS_THROTTLE) ||
1941 current->backing_dev_info == NULL ||
1942 bdi_write_congested(current->backing_dev_info);
1943 }
1944
1945 /*
1946 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1947 * of reclaimed pages
1948 */
1949 static noinline_for_stack unsigned long
1950 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951 struct scan_control *sc, enum lru_list lru)
1952 {
1953 LIST_HEAD(page_list);
1954 unsigned long nr_scanned;
1955 unsigned long nr_reclaimed = 0;
1956 unsigned long nr_taken;
1957 struct reclaim_stat stat;
1958 int file = is_file_lru(lru);
1959 enum vm_event_item item;
1960 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962 bool stalled = false;
1963
1964 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965 if (stalled)
1966 return 0;
1967
1968 /* wait a bit for the reclaimer. */
1969 msleep(100);
1970 stalled = true;
1971
1972 /* We are about to die and free our memory. Return now. */
1973 if (fatal_signal_pending(current))
1974 return SWAP_CLUSTER_MAX;
1975 }
1976
1977 lru_add_drain();
1978
1979 spin_lock_irq(&pgdat->lru_lock);
1980
1981 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982 &nr_scanned, sc, lru);
1983
1984 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985 reclaim_stat->recent_scanned[file] += nr_taken;
1986
1987 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988 if (global_reclaim(sc))
1989 __count_vm_events(item, nr_scanned);
1990 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1991 spin_unlock_irq(&pgdat->lru_lock);
1992
1993 if (nr_taken == 0)
1994 return 0;
1995
1996 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997 &stat, false);
1998
1999 spin_lock_irq(&pgdat->lru_lock);
2000
2001 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002 if (global_reclaim(sc))
2003 __count_vm_events(item, nr_reclaimed);
2004 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2007
2008 move_pages_to_lru(lruvec, &page_list);
2009
2010 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2011
2012 spin_unlock_irq(&pgdat->lru_lock);
2013
2014 mem_cgroup_uncharge_list(&page_list);
2015 free_unref_page_list(&page_list);
2016
2017 /*
2018 * If dirty pages are scanned that are not queued for IO, it
2019 * implies that flushers are not doing their job. This can
2020 * happen when memory pressure pushes dirty pages to the end of
2021 * the LRU before the dirty limits are breached and the dirty
2022 * data has expired. It can also happen when the proportion of
2023 * dirty pages grows not through writes but through memory
2024 * pressure reclaiming all the clean cache. And in some cases,
2025 * the flushers simply cannot keep up with the allocation
2026 * rate. Nudge the flusher threads in case they are asleep.
2027 */
2028 if (stat.nr_unqueued_dirty == nr_taken)
2029 wakeup_flusher_threads(WB_REASON_VMSCAN);
2030
2031 sc->nr.dirty += stat.nr_dirty;
2032 sc->nr.congested += stat.nr_congested;
2033 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034 sc->nr.writeback += stat.nr_writeback;
2035 sc->nr.immediate += stat.nr_immediate;
2036 sc->nr.taken += nr_taken;
2037 if (file)
2038 sc->nr.file_taken += nr_taken;
2039
2040 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042 return nr_reclaimed;
2043 }
2044
2045 static void shrink_active_list(unsigned long nr_to_scan,
2046 struct lruvec *lruvec,
2047 struct scan_control *sc,
2048 enum lru_list lru)
2049 {
2050 unsigned long nr_taken;
2051 unsigned long nr_scanned;
2052 unsigned long vm_flags;
2053 LIST_HEAD(l_hold); /* The pages which were snipped off */
2054 LIST_HEAD(l_active);
2055 LIST_HEAD(l_inactive);
2056 struct page *page;
2057 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058 unsigned nr_deactivate, nr_activate;
2059 unsigned nr_rotated = 0;
2060 int file = is_file_lru(lru);
2061 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2062
2063 lru_add_drain();
2064
2065 spin_lock_irq(&pgdat->lru_lock);
2066
2067 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068 &nr_scanned, sc, lru);
2069
2070 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071 reclaim_stat->recent_scanned[file] += nr_taken;
2072
2073 __count_vm_events(PGREFILL, nr_scanned);
2074 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2075
2076 spin_unlock_irq(&pgdat->lru_lock);
2077
2078 while (!list_empty(&l_hold)) {
2079 cond_resched();
2080 page = lru_to_page(&l_hold);
2081 list_del(&page->lru);
2082
2083 if (unlikely(!page_evictable(page))) {
2084 putback_lru_page(page);
2085 continue;
2086 }
2087
2088 if (unlikely(buffer_heads_over_limit)) {
2089 if (page_has_private(page) && trylock_page(page)) {
2090 if (page_has_private(page))
2091 try_to_release_page(page, 0);
2092 unlock_page(page);
2093 }
2094 }
2095
2096 if (page_referenced(page, 0, sc->target_mem_cgroup,
2097 &vm_flags)) {
2098 nr_rotated += hpage_nr_pages(page);
2099 /*
2100 * Identify referenced, file-backed active pages and
2101 * give them one more trip around the active list. So
2102 * that executable code get better chances to stay in
2103 * memory under moderate memory pressure. Anon pages
2104 * are not likely to be evicted by use-once streaming
2105 * IO, plus JVM can create lots of anon VM_EXEC pages,
2106 * so we ignore them here.
2107 */
2108 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109 list_add(&page->lru, &l_active);
2110 continue;
2111 }
2112 }
2113
2114 ClearPageActive(page); /* we are de-activating */
2115 SetPageWorkingset(page);
2116 list_add(&page->lru, &l_inactive);
2117 }
2118
2119 /*
2120 * Move pages back to the lru list.
2121 */
2122 spin_lock_irq(&pgdat->lru_lock);
2123 /*
2124 * Count referenced pages from currently used mappings as rotated,
2125 * even though only some of them are actually re-activated. This
2126 * helps balance scan pressure between file and anonymous pages in
2127 * get_scan_count.
2128 */
2129 reclaim_stat->recent_rotated[file] += nr_rotated;
2130
2131 nr_activate = move_pages_to_lru(lruvec, &l_active);
2132 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133 /* Keep all free pages in l_active list */
2134 list_splice(&l_inactive, &l_active);
2135
2136 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2137 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2138
2139 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140 spin_unlock_irq(&pgdat->lru_lock);
2141
2142 mem_cgroup_uncharge_list(&l_active);
2143 free_unref_page_list(&l_active);
2144 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145 nr_deactivate, nr_rotated, sc->priority, file);
2146 }
2147
2148 /*
2149 * The inactive anon list should be small enough that the VM never has
2150 * to do too much work.
2151 *
2152 * The inactive file list should be small enough to leave most memory
2153 * to the established workingset on the scan-resistant active list,
2154 * but large enough to avoid thrashing the aggregate readahead window.
2155 *
2156 * Both inactive lists should also be large enough that each inactive
2157 * page has a chance to be referenced again before it is reclaimed.
2158 *
2159 * If that fails and refaulting is observed, the inactive list grows.
2160 *
2161 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2162 * on this LRU, maintained by the pageout code. An inactive_ratio
2163 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2164 *
2165 * total target max
2166 * memory ratio inactive
2167 * -------------------------------------
2168 * 10MB 1 5MB
2169 * 100MB 1 50MB
2170 * 1GB 3 250MB
2171 * 10GB 10 0.9GB
2172 * 100GB 31 3GB
2173 * 1TB 101 10GB
2174 * 10TB 320 32GB
2175 */
2176 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2177 struct scan_control *sc, bool trace)
2178 {
2179 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2180 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2181 enum lru_list inactive_lru = file * LRU_FILE;
2182 unsigned long inactive, active;
2183 unsigned long inactive_ratio;
2184 unsigned long refaults;
2185 unsigned long gb;
2186
2187 /*
2188 * If we don't have swap space, anonymous page deactivation
2189 * is pointless.
2190 */
2191 if (!file && !total_swap_pages)
2192 return false;
2193
2194 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2195 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2196
2197 /*
2198 * When refaults are being observed, it means a new workingset
2199 * is being established. Disable active list protection to get
2200 * rid of the stale workingset quickly.
2201 */
2202 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2203 if (file && lruvec->refaults != refaults) {
2204 inactive_ratio = 0;
2205 } else {
2206 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2207 if (gb)
2208 inactive_ratio = int_sqrt(10 * gb);
2209 else
2210 inactive_ratio = 1;
2211 }
2212
2213 if (trace)
2214 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2215 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2216 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2217 inactive_ratio, file);
2218
2219 return inactive * inactive_ratio < active;
2220 }
2221
2222 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2223 struct lruvec *lruvec, struct scan_control *sc)
2224 {
2225 if (is_active_lru(lru)) {
2226 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2227 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2228 return 0;
2229 }
2230
2231 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2232 }
2233
2234 enum scan_balance {
2235 SCAN_EQUAL,
2236 SCAN_FRACT,
2237 SCAN_ANON,
2238 SCAN_FILE,
2239 };
2240
2241 /*
2242 * Determine how aggressively the anon and file LRU lists should be
2243 * scanned. The relative value of each set of LRU lists is determined
2244 * by looking at the fraction of the pages scanned we did rotate back
2245 * onto the active list instead of evict.
2246 *
2247 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2248 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2249 */
2250 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2251 struct scan_control *sc, unsigned long *nr,
2252 unsigned long *lru_pages)
2253 {
2254 int swappiness = mem_cgroup_swappiness(memcg);
2255 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2256 u64 fraction[2];
2257 u64 denominator = 0; /* gcc */
2258 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2259 unsigned long anon_prio, file_prio;
2260 enum scan_balance scan_balance;
2261 unsigned long anon, file;
2262 unsigned long ap, fp;
2263 enum lru_list lru;
2264
2265 /* If we have no swap space, do not bother scanning anon pages. */
2266 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2267 scan_balance = SCAN_FILE;
2268 goto out;
2269 }
2270
2271 /*
2272 * Global reclaim will swap to prevent OOM even with no
2273 * swappiness, but memcg users want to use this knob to
2274 * disable swapping for individual groups completely when
2275 * using the memory controller's swap limit feature would be
2276 * too expensive.
2277 */
2278 if (!global_reclaim(sc) && !swappiness) {
2279 scan_balance = SCAN_FILE;
2280 goto out;
2281 }
2282
2283 /*
2284 * Do not apply any pressure balancing cleverness when the
2285 * system is close to OOM, scan both anon and file equally
2286 * (unless the swappiness setting disagrees with swapping).
2287 */
2288 if (!sc->priority && swappiness) {
2289 scan_balance = SCAN_EQUAL;
2290 goto out;
2291 }
2292
2293 /*
2294 * Prevent the reclaimer from falling into the cache trap: as
2295 * cache pages start out inactive, every cache fault will tip
2296 * the scan balance towards the file LRU. And as the file LRU
2297 * shrinks, so does the window for rotation from references.
2298 * This means we have a runaway feedback loop where a tiny
2299 * thrashing file LRU becomes infinitely more attractive than
2300 * anon pages. Try to detect this based on file LRU size.
2301 */
2302 if (global_reclaim(sc)) {
2303 unsigned long pgdatfile;
2304 unsigned long pgdatfree;
2305 int z;
2306 unsigned long total_high_wmark = 0;
2307
2308 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2309 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2310 node_page_state(pgdat, NR_INACTIVE_FILE);
2311
2312 for (z = 0; z < MAX_NR_ZONES; z++) {
2313 struct zone *zone = &pgdat->node_zones[z];
2314 if (!managed_zone(zone))
2315 continue;
2316
2317 total_high_wmark += high_wmark_pages(zone);
2318 }
2319
2320 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2321 /*
2322 * Force SCAN_ANON if there are enough inactive
2323 * anonymous pages on the LRU in eligible zones.
2324 * Otherwise, the small LRU gets thrashed.
2325 */
2326 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2327 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2328 >> sc->priority) {
2329 scan_balance = SCAN_ANON;
2330 goto out;
2331 }
2332 }
2333 }
2334
2335 /*
2336 * If there is enough inactive page cache, i.e. if the size of the
2337 * inactive list is greater than that of the active list *and* the
2338 * inactive list actually has some pages to scan on this priority, we
2339 * do not reclaim anything from the anonymous working set right now.
2340 * Without the second condition we could end up never scanning an
2341 * lruvec even if it has plenty of old anonymous pages unless the
2342 * system is under heavy pressure.
2343 */
2344 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2345 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2346 scan_balance = SCAN_FILE;
2347 goto out;
2348 }
2349
2350 scan_balance = SCAN_FRACT;
2351
2352 /*
2353 * With swappiness at 100, anonymous and file have the same priority.
2354 * This scanning priority is essentially the inverse of IO cost.
2355 */
2356 anon_prio = swappiness;
2357 file_prio = 200 - anon_prio;
2358
2359 /*
2360 * OK, so we have swap space and a fair amount of page cache
2361 * pages. We use the recently rotated / recently scanned
2362 * ratios to determine how valuable each cache is.
2363 *
2364 * Because workloads change over time (and to avoid overflow)
2365 * we keep these statistics as a floating average, which ends
2366 * up weighing recent references more than old ones.
2367 *
2368 * anon in [0], file in [1]
2369 */
2370
2371 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2372 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2373 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2374 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2375
2376 spin_lock_irq(&pgdat->lru_lock);
2377 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2378 reclaim_stat->recent_scanned[0] /= 2;
2379 reclaim_stat->recent_rotated[0] /= 2;
2380 }
2381
2382 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2383 reclaim_stat->recent_scanned[1] /= 2;
2384 reclaim_stat->recent_rotated[1] /= 2;
2385 }
2386
2387 /*
2388 * The amount of pressure on anon vs file pages is inversely
2389 * proportional to the fraction of recently scanned pages on
2390 * each list that were recently referenced and in active use.
2391 */
2392 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2393 ap /= reclaim_stat->recent_rotated[0] + 1;
2394
2395 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2396 fp /= reclaim_stat->recent_rotated[1] + 1;
2397 spin_unlock_irq(&pgdat->lru_lock);
2398
2399 fraction[0] = ap;
2400 fraction[1] = fp;
2401 denominator = ap + fp + 1;
2402 out:
2403 *lru_pages = 0;
2404 for_each_evictable_lru(lru) {
2405 int file = is_file_lru(lru);
2406 unsigned long size;
2407 unsigned long scan;
2408
2409 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2410 scan = size >> sc->priority;
2411 /*
2412 * If the cgroup's already been deleted, make sure to
2413 * scrape out the remaining cache.
2414 */
2415 if (!scan && !mem_cgroup_online(memcg))
2416 scan = min(size, SWAP_CLUSTER_MAX);
2417
2418 switch (scan_balance) {
2419 case SCAN_EQUAL:
2420 /* Scan lists relative to size */
2421 break;
2422 case SCAN_FRACT:
2423 /*
2424 * Scan types proportional to swappiness and
2425 * their relative recent reclaim efficiency.
2426 * Make sure we don't miss the last page
2427 * because of a round-off error.
2428 */
2429 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2430 denominator);
2431 break;
2432 case SCAN_FILE:
2433 case SCAN_ANON:
2434 /* Scan one type exclusively */
2435 if ((scan_balance == SCAN_FILE) != file) {
2436 size = 0;
2437 scan = 0;
2438 }
2439 break;
2440 default:
2441 /* Look ma, no brain */
2442 BUG();
2443 }
2444
2445 *lru_pages += size;
2446 nr[lru] = scan;
2447 }
2448 }
2449
2450 /*
2451 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2452 */
2453 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2454 struct scan_control *sc, unsigned long *lru_pages)
2455 {
2456 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2457 unsigned long nr[NR_LRU_LISTS];
2458 unsigned long targets[NR_LRU_LISTS];
2459 unsigned long nr_to_scan;
2460 enum lru_list lru;
2461 unsigned long nr_reclaimed = 0;
2462 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2463 struct blk_plug plug;
2464 bool scan_adjusted;
2465
2466 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2467
2468 /* Record the original scan target for proportional adjustments later */
2469 memcpy(targets, nr, sizeof(nr));
2470
2471 /*
2472 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2473 * event that can occur when there is little memory pressure e.g.
2474 * multiple streaming readers/writers. Hence, we do not abort scanning
2475 * when the requested number of pages are reclaimed when scanning at
2476 * DEF_PRIORITY on the assumption that the fact we are direct
2477 * reclaiming implies that kswapd is not keeping up and it is best to
2478 * do a batch of work at once. For memcg reclaim one check is made to
2479 * abort proportional reclaim if either the file or anon lru has already
2480 * dropped to zero at the first pass.
2481 */
2482 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2483 sc->priority == DEF_PRIORITY);
2484
2485 blk_start_plug(&plug);
2486 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2487 nr[LRU_INACTIVE_FILE]) {
2488 unsigned long nr_anon, nr_file, percentage;
2489 unsigned long nr_scanned;
2490
2491 for_each_evictable_lru(lru) {
2492 if (nr[lru]) {
2493 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2494 nr[lru] -= nr_to_scan;
2495
2496 nr_reclaimed += shrink_list(lru, nr_to_scan,
2497 lruvec, sc);
2498 }
2499 }
2500
2501 cond_resched();
2502
2503 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2504 continue;
2505
2506 /*
2507 * For kswapd and memcg, reclaim at least the number of pages
2508 * requested. Ensure that the anon and file LRUs are scanned
2509 * proportionally what was requested by get_scan_count(). We
2510 * stop reclaiming one LRU and reduce the amount scanning
2511 * proportional to the original scan target.
2512 */
2513 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2514 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2515
2516 /*
2517 * It's just vindictive to attack the larger once the smaller
2518 * has gone to zero. And given the way we stop scanning the
2519 * smaller below, this makes sure that we only make one nudge
2520 * towards proportionality once we've got nr_to_reclaim.
2521 */
2522 if (!nr_file || !nr_anon)
2523 break;
2524
2525 if (nr_file > nr_anon) {
2526 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2527 targets[LRU_ACTIVE_ANON] + 1;
2528 lru = LRU_BASE;
2529 percentage = nr_anon * 100 / scan_target;
2530 } else {
2531 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2532 targets[LRU_ACTIVE_FILE] + 1;
2533 lru = LRU_FILE;
2534 percentage = nr_file * 100 / scan_target;
2535 }
2536
2537 /* Stop scanning the smaller of the LRU */
2538 nr[lru] = 0;
2539 nr[lru + LRU_ACTIVE] = 0;
2540
2541 /*
2542 * Recalculate the other LRU scan count based on its original
2543 * scan target and the percentage scanning already complete
2544 */
2545 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2546 nr_scanned = targets[lru] - nr[lru];
2547 nr[lru] = targets[lru] * (100 - percentage) / 100;
2548 nr[lru] -= min(nr[lru], nr_scanned);
2549
2550 lru += LRU_ACTIVE;
2551 nr_scanned = targets[lru] - nr[lru];
2552 nr[lru] = targets[lru] * (100 - percentage) / 100;
2553 nr[lru] -= min(nr[lru], nr_scanned);
2554
2555 scan_adjusted = true;
2556 }
2557 blk_finish_plug(&plug);
2558 sc->nr_reclaimed += nr_reclaimed;
2559
2560 /*
2561 * Even if we did not try to evict anon pages at all, we want to
2562 * rebalance the anon lru active/inactive ratio.
2563 */
2564 if (inactive_list_is_low(lruvec, false, sc, true))
2565 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2566 sc, LRU_ACTIVE_ANON);
2567 }
2568
2569 /* Use reclaim/compaction for costly allocs or under memory pressure */
2570 static bool in_reclaim_compaction(struct scan_control *sc)
2571 {
2572 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2573 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574 sc->priority < DEF_PRIORITY - 2))
2575 return true;
2576
2577 return false;
2578 }
2579
2580 /*
2581 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2582 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2583 * true if more pages should be reclaimed such that when the page allocator
2584 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2585 * It will give up earlier than that if there is difficulty reclaiming pages.
2586 */
2587 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588 unsigned long nr_reclaimed,
2589 unsigned long nr_scanned,
2590 struct scan_control *sc)
2591 {
2592 unsigned long pages_for_compaction;
2593 unsigned long inactive_lru_pages;
2594 int z;
2595
2596 /* If not in reclaim/compaction mode, stop */
2597 if (!in_reclaim_compaction(sc))
2598 return false;
2599
2600 /* Consider stopping depending on scan and reclaim activity */
2601 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2602 /*
2603 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2604 * full LRU list has been scanned and we are still failing
2605 * to reclaim pages. This full LRU scan is potentially
2606 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2607 */
2608 if (!nr_reclaimed && !nr_scanned)
2609 return false;
2610 } else {
2611 /*
2612 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2613 * fail without consequence, stop if we failed to reclaim
2614 * any pages from the last SWAP_CLUSTER_MAX number of
2615 * pages that were scanned. This will return to the
2616 * caller faster at the risk reclaim/compaction and
2617 * the resulting allocation attempt fails
2618 */
2619 if (!nr_reclaimed)
2620 return false;
2621 }
2622
2623 /*
2624 * If we have not reclaimed enough pages for compaction and the
2625 * inactive lists are large enough, continue reclaiming
2626 */
2627 pages_for_compaction = compact_gap(sc->order);
2628 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2629 if (get_nr_swap_pages() > 0)
2630 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2631 if (sc->nr_reclaimed < pages_for_compaction &&
2632 inactive_lru_pages > pages_for_compaction)
2633 return true;
2634
2635 /* If compaction would go ahead or the allocation would succeed, stop */
2636 for (z = 0; z <= sc->reclaim_idx; z++) {
2637 struct zone *zone = &pgdat->node_zones[z];
2638 if (!managed_zone(zone))
2639 continue;
2640
2641 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2642 case COMPACT_SUCCESS:
2643 case COMPACT_CONTINUE:
2644 return false;
2645 default:
2646 /* check next zone */
2647 ;
2648 }
2649 }
2650 return true;
2651 }
2652
2653 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2654 {
2655 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2656 (memcg && memcg_congested(pgdat, memcg));
2657 }
2658
2659 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2660 {
2661 struct reclaim_state *reclaim_state = current->reclaim_state;
2662 unsigned long nr_reclaimed, nr_scanned;
2663 bool reclaimable = false;
2664
2665 do {
2666 struct mem_cgroup *root = sc->target_mem_cgroup;
2667 struct mem_cgroup_reclaim_cookie reclaim = {
2668 .pgdat = pgdat,
2669 .priority = sc->priority,
2670 };
2671 unsigned long node_lru_pages = 0;
2672 struct mem_cgroup *memcg;
2673
2674 memset(&sc->nr, 0, sizeof(sc->nr));
2675
2676 nr_reclaimed = sc->nr_reclaimed;
2677 nr_scanned = sc->nr_scanned;
2678
2679 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2680 do {
2681 unsigned long lru_pages;
2682 unsigned long reclaimed;
2683 unsigned long scanned;
2684
2685 switch (mem_cgroup_protected(root, memcg)) {
2686 case MEMCG_PROT_MIN:
2687 /*
2688 * Hard protection.
2689 * If there is no reclaimable memory, OOM.
2690 */
2691 continue;
2692 case MEMCG_PROT_LOW:
2693 /*
2694 * Soft protection.
2695 * Respect the protection only as long as
2696 * there is an unprotected supply
2697 * of reclaimable memory from other cgroups.
2698 */
2699 if (!sc->memcg_low_reclaim) {
2700 sc->memcg_low_skipped = 1;
2701 continue;
2702 }
2703 memcg_memory_event(memcg, MEMCG_LOW);
2704 break;
2705 case MEMCG_PROT_NONE:
2706 break;
2707 }
2708
2709 reclaimed = sc->nr_reclaimed;
2710 scanned = sc->nr_scanned;
2711 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2712 node_lru_pages += lru_pages;
2713
2714 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2715 sc->priority);
2716
2717 /* Record the group's reclaim efficiency */
2718 vmpressure(sc->gfp_mask, memcg, false,
2719 sc->nr_scanned - scanned,
2720 sc->nr_reclaimed - reclaimed);
2721
2722 /*
2723 * Kswapd have to scan all memory cgroups to fulfill
2724 * the overall scan target for the node.
2725 *
2726 * Limit reclaim, on the other hand, only cares about
2727 * nr_to_reclaim pages to be reclaimed and it will
2728 * retry with decreasing priority if one round over the
2729 * whole hierarchy is not sufficient.
2730 */
2731 if (!current_is_kswapd() &&
2732 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2733 mem_cgroup_iter_break(root, memcg);
2734 break;
2735 }
2736 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2737
2738 if (reclaim_state) {
2739 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2740 reclaim_state->reclaimed_slab = 0;
2741 }
2742
2743 /* Record the subtree's reclaim efficiency */
2744 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2745 sc->nr_scanned - nr_scanned,
2746 sc->nr_reclaimed - nr_reclaimed);
2747
2748 if (sc->nr_reclaimed - nr_reclaimed)
2749 reclaimable = true;
2750
2751 if (current_is_kswapd()) {
2752 /*
2753 * If reclaim is isolating dirty pages under writeback,
2754 * it implies that the long-lived page allocation rate
2755 * is exceeding the page laundering rate. Either the
2756 * global limits are not being effective at throttling
2757 * processes due to the page distribution throughout
2758 * zones or there is heavy usage of a slow backing
2759 * device. The only option is to throttle from reclaim
2760 * context which is not ideal as there is no guarantee
2761 * the dirtying process is throttled in the same way
2762 * balance_dirty_pages() manages.
2763 *
2764 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2765 * count the number of pages under pages flagged for
2766 * immediate reclaim and stall if any are encountered
2767 * in the nr_immediate check below.
2768 */
2769 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2770 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2771
2772 /*
2773 * Tag a node as congested if all the dirty pages
2774 * scanned were backed by a congested BDI and
2775 * wait_iff_congested will stall.
2776 */
2777 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2778 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2779
2780 /* Allow kswapd to start writing pages during reclaim.*/
2781 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2782 set_bit(PGDAT_DIRTY, &pgdat->flags);
2783
2784 /*
2785 * If kswapd scans pages marked marked for immediate
2786 * reclaim and under writeback (nr_immediate), it
2787 * implies that pages are cycling through the LRU
2788 * faster than they are written so also forcibly stall.
2789 */
2790 if (sc->nr.immediate)
2791 congestion_wait(BLK_RW_ASYNC, HZ/10);
2792 }
2793
2794 /*
2795 * Legacy memcg will stall in page writeback so avoid forcibly
2796 * stalling in wait_iff_congested().
2797 */
2798 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2799 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2800 set_memcg_congestion(pgdat, root, true);
2801
2802 /*
2803 * Stall direct reclaim for IO completions if underlying BDIs
2804 * and node is congested. Allow kswapd to continue until it
2805 * starts encountering unqueued dirty pages or cycling through
2806 * the LRU too quickly.
2807 */
2808 if (!sc->hibernation_mode && !current_is_kswapd() &&
2809 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2810 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2811
2812 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2813 sc->nr_scanned - nr_scanned, sc));
2814
2815 /*
2816 * Kswapd gives up on balancing particular nodes after too
2817 * many failures to reclaim anything from them and goes to
2818 * sleep. On reclaim progress, reset the failure counter. A
2819 * successful direct reclaim run will revive a dormant kswapd.
2820 */
2821 if (reclaimable)
2822 pgdat->kswapd_failures = 0;
2823
2824 return reclaimable;
2825 }
2826
2827 /*
2828 * Returns true if compaction should go ahead for a costly-order request, or
2829 * the allocation would already succeed without compaction. Return false if we
2830 * should reclaim first.
2831 */
2832 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2833 {
2834 unsigned long watermark;
2835 enum compact_result suitable;
2836
2837 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2838 if (suitable == COMPACT_SUCCESS)
2839 /* Allocation should succeed already. Don't reclaim. */
2840 return true;
2841 if (suitable == COMPACT_SKIPPED)
2842 /* Compaction cannot yet proceed. Do reclaim. */
2843 return false;
2844
2845 /*
2846 * Compaction is already possible, but it takes time to run and there
2847 * are potentially other callers using the pages just freed. So proceed
2848 * with reclaim to make a buffer of free pages available to give
2849 * compaction a reasonable chance of completing and allocating the page.
2850 * Note that we won't actually reclaim the whole buffer in one attempt
2851 * as the target watermark in should_continue_reclaim() is lower. But if
2852 * we are already above the high+gap watermark, don't reclaim at all.
2853 */
2854 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2855
2856 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2857 }
2858
2859 /*
2860 * This is the direct reclaim path, for page-allocating processes. We only
2861 * try to reclaim pages from zones which will satisfy the caller's allocation
2862 * request.
2863 *
2864 * If a zone is deemed to be full of pinned pages then just give it a light
2865 * scan then give up on it.
2866 */
2867 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2868 {
2869 struct zoneref *z;
2870 struct zone *zone;
2871 unsigned long nr_soft_reclaimed;
2872 unsigned long nr_soft_scanned;
2873 gfp_t orig_mask;
2874 pg_data_t *last_pgdat = NULL;
2875
2876 /*
2877 * If the number of buffer_heads in the machine exceeds the maximum
2878 * allowed level, force direct reclaim to scan the highmem zone as
2879 * highmem pages could be pinning lowmem pages storing buffer_heads
2880 */
2881 orig_mask = sc->gfp_mask;
2882 if (buffer_heads_over_limit) {
2883 sc->gfp_mask |= __GFP_HIGHMEM;
2884 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2885 }
2886
2887 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2888 sc->reclaim_idx, sc->nodemask) {
2889 /*
2890 * Take care memory controller reclaiming has small influence
2891 * to global LRU.
2892 */
2893 if (global_reclaim(sc)) {
2894 if (!cpuset_zone_allowed(zone,
2895 GFP_KERNEL | __GFP_HARDWALL))
2896 continue;
2897
2898 /*
2899 * If we already have plenty of memory free for
2900 * compaction in this zone, don't free any more.
2901 * Even though compaction is invoked for any
2902 * non-zero order, only frequent costly order
2903 * reclamation is disruptive enough to become a
2904 * noticeable problem, like transparent huge
2905 * page allocations.
2906 */
2907 if (IS_ENABLED(CONFIG_COMPACTION) &&
2908 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2909 compaction_ready(zone, sc)) {
2910 sc->compaction_ready = true;
2911 continue;
2912 }
2913
2914 /*
2915 * Shrink each node in the zonelist once. If the
2916 * zonelist is ordered by zone (not the default) then a
2917 * node may be shrunk multiple times but in that case
2918 * the user prefers lower zones being preserved.
2919 */
2920 if (zone->zone_pgdat == last_pgdat)
2921 continue;
2922
2923 /*
2924 * This steals pages from memory cgroups over softlimit
2925 * and returns the number of reclaimed pages and
2926 * scanned pages. This works for global memory pressure
2927 * and balancing, not for a memcg's limit.
2928 */
2929 nr_soft_scanned = 0;
2930 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2931 sc->order, sc->gfp_mask,
2932 &nr_soft_scanned);
2933 sc->nr_reclaimed += nr_soft_reclaimed;
2934 sc->nr_scanned += nr_soft_scanned;
2935 /* need some check for avoid more shrink_zone() */
2936 }
2937
2938 /* See comment about same check for global reclaim above */
2939 if (zone->zone_pgdat == last_pgdat)
2940 continue;
2941 last_pgdat = zone->zone_pgdat;
2942 shrink_node(zone->zone_pgdat, sc);
2943 }
2944
2945 /*
2946 * Restore to original mask to avoid the impact on the caller if we
2947 * promoted it to __GFP_HIGHMEM.
2948 */
2949 sc->gfp_mask = orig_mask;
2950 }
2951
2952 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2953 {
2954 struct mem_cgroup *memcg;
2955
2956 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2957 do {
2958 unsigned long refaults;
2959 struct lruvec *lruvec;
2960
2961 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2962 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2963 lruvec->refaults = refaults;
2964 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2965 }
2966
2967 /*
2968 * This is the main entry point to direct page reclaim.
2969 *
2970 * If a full scan of the inactive list fails to free enough memory then we
2971 * are "out of memory" and something needs to be killed.
2972 *
2973 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2974 * high - the zone may be full of dirty or under-writeback pages, which this
2975 * caller can't do much about. We kick the writeback threads and take explicit
2976 * naps in the hope that some of these pages can be written. But if the
2977 * allocating task holds filesystem locks which prevent writeout this might not
2978 * work, and the allocation attempt will fail.
2979 *
2980 * returns: 0, if no pages reclaimed
2981 * else, the number of pages reclaimed
2982 */
2983 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2984 struct scan_control *sc)
2985 {
2986 int initial_priority = sc->priority;
2987 pg_data_t *last_pgdat;
2988 struct zoneref *z;
2989 struct zone *zone;
2990 retry:
2991 delayacct_freepages_start();
2992
2993 if (global_reclaim(sc))
2994 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2995
2996 do {
2997 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2998 sc->priority);
2999 sc->nr_scanned = 0;
3000 shrink_zones(zonelist, sc);
3001
3002 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3003 break;
3004
3005 if (sc->compaction_ready)
3006 break;
3007
3008 /*
3009 * If we're getting trouble reclaiming, start doing
3010 * writepage even in laptop mode.
3011 */
3012 if (sc->priority < DEF_PRIORITY - 2)
3013 sc->may_writepage = 1;
3014 } while (--sc->priority >= 0);
3015
3016 last_pgdat = NULL;
3017 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3018 sc->nodemask) {
3019 if (zone->zone_pgdat == last_pgdat)
3020 continue;
3021 last_pgdat = zone->zone_pgdat;
3022 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3023 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3024 }
3025
3026 delayacct_freepages_end();
3027
3028 if (sc->nr_reclaimed)
3029 return sc->nr_reclaimed;
3030
3031 /* Aborted reclaim to try compaction? don't OOM, then */
3032 if (sc->compaction_ready)
3033 return 1;
3034
3035 /* Untapped cgroup reserves? Don't OOM, retry. */
3036 if (sc->memcg_low_skipped) {
3037 sc->priority = initial_priority;
3038 sc->memcg_low_reclaim = 1;
3039 sc->memcg_low_skipped = 0;
3040 goto retry;
3041 }
3042
3043 return 0;
3044 }
3045
3046 static bool allow_direct_reclaim(pg_data_t *pgdat)
3047 {
3048 struct zone *zone;
3049 unsigned long pfmemalloc_reserve = 0;
3050 unsigned long free_pages = 0;
3051 int i;
3052 bool wmark_ok;
3053
3054 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3055 return true;
3056
3057 for (i = 0; i <= ZONE_NORMAL; i++) {
3058 zone = &pgdat->node_zones[i];
3059 if (!managed_zone(zone))
3060 continue;
3061
3062 if (!zone_reclaimable_pages(zone))
3063 continue;
3064
3065 pfmemalloc_reserve += min_wmark_pages(zone);
3066 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3067 }
3068
3069 /* If there are no reserves (unexpected config) then do not throttle */
3070 if (!pfmemalloc_reserve)
3071 return true;
3072
3073 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3074
3075 /* kswapd must be awake if processes are being throttled */
3076 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3077 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3078 (enum zone_type)ZONE_NORMAL);
3079 wake_up_interruptible(&pgdat->kswapd_wait);
3080 }
3081
3082 return wmark_ok;
3083 }
3084
3085 /*
3086 * Throttle direct reclaimers if backing storage is backed by the network
3087 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3088 * depleted. kswapd will continue to make progress and wake the processes
3089 * when the low watermark is reached.
3090 *
3091 * Returns true if a fatal signal was delivered during throttling. If this
3092 * happens, the page allocator should not consider triggering the OOM killer.
3093 */
3094 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3095 nodemask_t *nodemask)
3096 {
3097 struct zoneref *z;
3098 struct zone *zone;
3099 pg_data_t *pgdat = NULL;
3100
3101 /*
3102 * Kernel threads should not be throttled as they may be indirectly
3103 * responsible for cleaning pages necessary for reclaim to make forward
3104 * progress. kjournald for example may enter direct reclaim while
3105 * committing a transaction where throttling it could forcing other
3106 * processes to block on log_wait_commit().
3107 */
3108 if (current->flags & PF_KTHREAD)
3109 goto out;
3110
3111 /*
3112 * If a fatal signal is pending, this process should not throttle.
3113 * It should return quickly so it can exit and free its memory
3114 */
3115 if (fatal_signal_pending(current))
3116 goto out;
3117
3118 /*
3119 * Check if the pfmemalloc reserves are ok by finding the first node
3120 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3121 * GFP_KERNEL will be required for allocating network buffers when
3122 * swapping over the network so ZONE_HIGHMEM is unusable.
3123 *
3124 * Throttling is based on the first usable node and throttled processes
3125 * wait on a queue until kswapd makes progress and wakes them. There
3126 * is an affinity then between processes waking up and where reclaim
3127 * progress has been made assuming the process wakes on the same node.
3128 * More importantly, processes running on remote nodes will not compete
3129 * for remote pfmemalloc reserves and processes on different nodes
3130 * should make reasonable progress.
3131 */
3132 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3133 gfp_zone(gfp_mask), nodemask) {
3134 if (zone_idx(zone) > ZONE_NORMAL)
3135 continue;
3136
3137 /* Throttle based on the first usable node */
3138 pgdat = zone->zone_pgdat;
3139 if (allow_direct_reclaim(pgdat))
3140 goto out;
3141 break;
3142 }
3143
3144 /* If no zone was usable by the allocation flags then do not throttle */
3145 if (!pgdat)
3146 goto out;
3147
3148 /* Account for the throttling */
3149 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3150
3151 /*
3152 * If the caller cannot enter the filesystem, it's possible that it
3153 * is due to the caller holding an FS lock or performing a journal
3154 * transaction in the case of a filesystem like ext[3|4]. In this case,
3155 * it is not safe to block on pfmemalloc_wait as kswapd could be
3156 * blocked waiting on the same lock. Instead, throttle for up to a
3157 * second before continuing.
3158 */
3159 if (!(gfp_mask & __GFP_FS)) {
3160 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3161 allow_direct_reclaim(pgdat), HZ);
3162
3163 goto check_pending;
3164 }
3165
3166 /* Throttle until kswapd wakes the process */
3167 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3168 allow_direct_reclaim(pgdat));
3169
3170 check_pending:
3171 if (fatal_signal_pending(current))
3172 return true;
3173
3174 out:
3175 return false;
3176 }
3177
3178 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3179 gfp_t gfp_mask, nodemask_t *nodemask)
3180 {
3181 unsigned long nr_reclaimed;
3182 struct scan_control sc = {
3183 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3184 .gfp_mask = current_gfp_context(gfp_mask),
3185 .reclaim_idx = gfp_zone(gfp_mask),
3186 .order = order,
3187 .nodemask = nodemask,
3188 .priority = DEF_PRIORITY,
3189 .may_writepage = !laptop_mode,
3190 .may_unmap = 1,
3191 .may_swap = 1,
3192 };
3193
3194 /*
3195 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3196 * Confirm they are large enough for max values.
3197 */
3198 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3199 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3200 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3201
3202 /*
3203 * Do not enter reclaim if fatal signal was delivered while throttled.
3204 * 1 is returned so that the page allocator does not OOM kill at this
3205 * point.
3206 */
3207 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3208 return 1;
3209
3210 set_task_reclaim_state(current, &sc.reclaim_state);
3211 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3212
3213 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3214
3215 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3216 set_task_reclaim_state(current, NULL);
3217
3218 return nr_reclaimed;
3219 }
3220
3221 #ifdef CONFIG_MEMCG
3222
3223 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3224 gfp_t gfp_mask, bool noswap,
3225 pg_data_t *pgdat,
3226 unsigned long *nr_scanned)
3227 {
3228 struct scan_control sc = {
3229 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3230 .target_mem_cgroup = memcg,
3231 .may_writepage = !laptop_mode,
3232 .may_unmap = 1,
3233 .reclaim_idx = MAX_NR_ZONES - 1,
3234 .may_swap = !noswap,
3235 };
3236 unsigned long lru_pages;
3237
3238 set_task_reclaim_state(current, &sc.reclaim_state);
3239 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3240 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3241
3242 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3243 sc.gfp_mask);
3244
3245 /*
3246 * NOTE: Although we can get the priority field, using it
3247 * here is not a good idea, since it limits the pages we can scan.
3248 * if we don't reclaim here, the shrink_node from balance_pgdat
3249 * will pick up pages from other mem cgroup's as well. We hack
3250 * the priority and make it zero.
3251 */
3252 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3253
3254 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3255
3256 set_task_reclaim_state(current, NULL);
3257 *nr_scanned = sc.nr_scanned;
3258
3259 return sc.nr_reclaimed;
3260 }
3261
3262 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3263 unsigned long nr_pages,
3264 gfp_t gfp_mask,
3265 bool may_swap)
3266 {
3267 struct zonelist *zonelist;
3268 unsigned long nr_reclaimed;
3269 unsigned long pflags;
3270 int nid;
3271 unsigned int noreclaim_flag;
3272 struct scan_control sc = {
3273 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3274 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3276 .reclaim_idx = MAX_NR_ZONES - 1,
3277 .target_mem_cgroup = memcg,
3278 .priority = DEF_PRIORITY,
3279 .may_writepage = !laptop_mode,
3280 .may_unmap = 1,
3281 .may_swap = may_swap,
3282 };
3283
3284 set_task_reclaim_state(current, &sc.reclaim_state);
3285 /*
3286 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3287 * take care of from where we get pages. So the node where we start the
3288 * scan does not need to be the current node.
3289 */
3290 nid = mem_cgroup_select_victim_node(memcg);
3291
3292 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3293
3294 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3295
3296 psi_memstall_enter(&pflags);
3297 noreclaim_flag = memalloc_noreclaim_save();
3298
3299 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3300
3301 memalloc_noreclaim_restore(noreclaim_flag);
3302 psi_memstall_leave(&pflags);
3303
3304 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3305 set_task_reclaim_state(current, NULL);
3306
3307 return nr_reclaimed;
3308 }
3309 #endif
3310
3311 static void age_active_anon(struct pglist_data *pgdat,
3312 struct scan_control *sc)
3313 {
3314 struct mem_cgroup *memcg;
3315
3316 if (!total_swap_pages)
3317 return;
3318
3319 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3320 do {
3321 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3322
3323 if (inactive_list_is_low(lruvec, false, sc, true))
3324 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3325 sc, LRU_ACTIVE_ANON);
3326
3327 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3328 } while (memcg);
3329 }
3330
3331 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3332 {
3333 int i;
3334 struct zone *zone;
3335
3336 /*
3337 * Check for watermark boosts top-down as the higher zones
3338 * are more likely to be boosted. Both watermarks and boosts
3339 * should not be checked at the time time as reclaim would
3340 * start prematurely when there is no boosting and a lower
3341 * zone is balanced.
3342 */
3343 for (i = classzone_idx; i >= 0; i--) {
3344 zone = pgdat->node_zones + i;
3345 if (!managed_zone(zone))
3346 continue;
3347
3348 if (zone->watermark_boost)
3349 return true;
3350 }
3351
3352 return false;
3353 }
3354
3355 /*
3356 * Returns true if there is an eligible zone balanced for the request order
3357 * and classzone_idx
3358 */
3359 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3360 {
3361 int i;
3362 unsigned long mark = -1;
3363 struct zone *zone;
3364
3365 /*
3366 * Check watermarks bottom-up as lower zones are more likely to
3367 * meet watermarks.
3368 */
3369 for (i = 0; i <= classzone_idx; i++) {
3370 zone = pgdat->node_zones + i;
3371
3372 if (!managed_zone(zone))
3373 continue;
3374
3375 mark = high_wmark_pages(zone);
3376 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3377 return true;
3378 }
3379
3380 /*
3381 * If a node has no populated zone within classzone_idx, it does not
3382 * need balancing by definition. This can happen if a zone-restricted
3383 * allocation tries to wake a remote kswapd.
3384 */
3385 if (mark == -1)
3386 return true;
3387
3388 return false;
3389 }
3390
3391 /* Clear pgdat state for congested, dirty or under writeback. */
3392 static void clear_pgdat_congested(pg_data_t *pgdat)
3393 {
3394 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3395 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3396 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3397 }
3398
3399 /*
3400 * Prepare kswapd for sleeping. This verifies that there are no processes
3401 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3402 *
3403 * Returns true if kswapd is ready to sleep
3404 */
3405 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3406 {
3407 /*
3408 * The throttled processes are normally woken up in balance_pgdat() as
3409 * soon as allow_direct_reclaim() is true. But there is a potential
3410 * race between when kswapd checks the watermarks and a process gets
3411 * throttled. There is also a potential race if processes get
3412 * throttled, kswapd wakes, a large process exits thereby balancing the
3413 * zones, which causes kswapd to exit balance_pgdat() before reaching
3414 * the wake up checks. If kswapd is going to sleep, no process should
3415 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3416 * the wake up is premature, processes will wake kswapd and get
3417 * throttled again. The difference from wake ups in balance_pgdat() is
3418 * that here we are under prepare_to_wait().
3419 */
3420 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3421 wake_up_all(&pgdat->pfmemalloc_wait);
3422
3423 /* Hopeless node, leave it to direct reclaim */
3424 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3425 return true;
3426
3427 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3428 clear_pgdat_congested(pgdat);
3429 return true;
3430 }
3431
3432 return false;
3433 }
3434
3435 /*
3436 * kswapd shrinks a node of pages that are at or below the highest usable
3437 * zone that is currently unbalanced.
3438 *
3439 * Returns true if kswapd scanned at least the requested number of pages to
3440 * reclaim or if the lack of progress was due to pages under writeback.
3441 * This is used to determine if the scanning priority needs to be raised.
3442 */
3443 static bool kswapd_shrink_node(pg_data_t *pgdat,
3444 struct scan_control *sc)
3445 {
3446 struct zone *zone;
3447 int z;
3448
3449 /* Reclaim a number of pages proportional to the number of zones */
3450 sc->nr_to_reclaim = 0;
3451 for (z = 0; z <= sc->reclaim_idx; z++) {
3452 zone = pgdat->node_zones + z;
3453 if (!managed_zone(zone))
3454 continue;
3455
3456 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3457 }
3458
3459 /*
3460 * Historically care was taken to put equal pressure on all zones but
3461 * now pressure is applied based on node LRU order.
3462 */
3463 shrink_node(pgdat, sc);
3464
3465 /*
3466 * Fragmentation may mean that the system cannot be rebalanced for
3467 * high-order allocations. If twice the allocation size has been
3468 * reclaimed then recheck watermarks only at order-0 to prevent
3469 * excessive reclaim. Assume that a process requested a high-order
3470 * can direct reclaim/compact.
3471 */
3472 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3473 sc->order = 0;
3474
3475 return sc->nr_scanned >= sc->nr_to_reclaim;
3476 }
3477
3478 /*
3479 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3480 * that are eligible for use by the caller until at least one zone is
3481 * balanced.
3482 *
3483 * Returns the order kswapd finished reclaiming at.
3484 *
3485 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3486 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3487 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3488 * or lower is eligible for reclaim until at least one usable zone is
3489 * balanced.
3490 */
3491 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3492 {
3493 int i;
3494 unsigned long nr_soft_reclaimed;
3495 unsigned long nr_soft_scanned;
3496 unsigned long pflags;
3497 unsigned long nr_boost_reclaim;
3498 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3499 bool boosted;
3500 struct zone *zone;
3501 struct scan_control sc = {
3502 .gfp_mask = GFP_KERNEL,
3503 .order = order,
3504 .may_unmap = 1,
3505 };
3506
3507 set_task_reclaim_state(current, &sc.reclaim_state);
3508 psi_memstall_enter(&pflags);
3509 __fs_reclaim_acquire();
3510
3511 count_vm_event(PAGEOUTRUN);
3512
3513 /*
3514 * Account for the reclaim boost. Note that the zone boost is left in
3515 * place so that parallel allocations that are near the watermark will
3516 * stall or direct reclaim until kswapd is finished.
3517 */
3518 nr_boost_reclaim = 0;
3519 for (i = 0; i <= classzone_idx; i++) {
3520 zone = pgdat->node_zones + i;
3521 if (!managed_zone(zone))
3522 continue;
3523
3524 nr_boost_reclaim += zone->watermark_boost;
3525 zone_boosts[i] = zone->watermark_boost;
3526 }
3527 boosted = nr_boost_reclaim;
3528
3529 restart:
3530 sc.priority = DEF_PRIORITY;
3531 do {
3532 unsigned long nr_reclaimed = sc.nr_reclaimed;
3533 bool raise_priority = true;
3534 bool balanced;
3535 bool ret;
3536
3537 sc.reclaim_idx = classzone_idx;
3538
3539 /*
3540 * If the number of buffer_heads exceeds the maximum allowed
3541 * then consider reclaiming from all zones. This has a dual
3542 * purpose -- on 64-bit systems it is expected that
3543 * buffer_heads are stripped during active rotation. On 32-bit
3544 * systems, highmem pages can pin lowmem memory and shrinking
3545 * buffers can relieve lowmem pressure. Reclaim may still not
3546 * go ahead if all eligible zones for the original allocation
3547 * request are balanced to avoid excessive reclaim from kswapd.
3548 */
3549 if (buffer_heads_over_limit) {
3550 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3551 zone = pgdat->node_zones + i;
3552 if (!managed_zone(zone))
3553 continue;
3554
3555 sc.reclaim_idx = i;
3556 break;
3557 }
3558 }
3559
3560 /*
3561 * If the pgdat is imbalanced then ignore boosting and preserve
3562 * the watermarks for a later time and restart. Note that the
3563 * zone watermarks will be still reset at the end of balancing
3564 * on the grounds that the normal reclaim should be enough to
3565 * re-evaluate if boosting is required when kswapd next wakes.
3566 */
3567 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3568 if (!balanced && nr_boost_reclaim) {
3569 nr_boost_reclaim = 0;
3570 goto restart;
3571 }
3572
3573 /*
3574 * If boosting is not active then only reclaim if there are no
3575 * eligible zones. Note that sc.reclaim_idx is not used as
3576 * buffer_heads_over_limit may have adjusted it.
3577 */
3578 if (!nr_boost_reclaim && balanced)
3579 goto out;
3580
3581 /* Limit the priority of boosting to avoid reclaim writeback */
3582 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3583 raise_priority = false;
3584
3585 /*
3586 * Do not writeback or swap pages for boosted reclaim. The
3587 * intent is to relieve pressure not issue sub-optimal IO
3588 * from reclaim context. If no pages are reclaimed, the
3589 * reclaim will be aborted.
3590 */
3591 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3592 sc.may_swap = !nr_boost_reclaim;
3593
3594 /*
3595 * Do some background aging of the anon list, to give
3596 * pages a chance to be referenced before reclaiming. All
3597 * pages are rotated regardless of classzone as this is
3598 * about consistent aging.
3599 */
3600 age_active_anon(pgdat, &sc);
3601
3602 /*
3603 * If we're getting trouble reclaiming, start doing writepage
3604 * even in laptop mode.
3605 */
3606 if (sc.priority < DEF_PRIORITY - 2)
3607 sc.may_writepage = 1;
3608
3609 /* Call soft limit reclaim before calling shrink_node. */
3610 sc.nr_scanned = 0;
3611 nr_soft_scanned = 0;
3612 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3613 sc.gfp_mask, &nr_soft_scanned);
3614 sc.nr_reclaimed += nr_soft_reclaimed;
3615
3616 /*
3617 * There should be no need to raise the scanning priority if
3618 * enough pages are already being scanned that that high
3619 * watermark would be met at 100% efficiency.
3620 */
3621 if (kswapd_shrink_node(pgdat, &sc))
3622 raise_priority = false;
3623
3624 /*
3625 * If the low watermark is met there is no need for processes
3626 * to be throttled on pfmemalloc_wait as they should not be
3627 * able to safely make forward progress. Wake them
3628 */
3629 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3630 allow_direct_reclaim(pgdat))
3631 wake_up_all(&pgdat->pfmemalloc_wait);
3632
3633 /* Check if kswapd should be suspending */
3634 __fs_reclaim_release();
3635 ret = try_to_freeze();
3636 __fs_reclaim_acquire();
3637 if (ret || kthread_should_stop())
3638 break;
3639
3640 /*
3641 * Raise priority if scanning rate is too low or there was no
3642 * progress in reclaiming pages
3643 */
3644 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3645 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3646
3647 /*
3648 * If reclaim made no progress for a boost, stop reclaim as
3649 * IO cannot be queued and it could be an infinite loop in
3650 * extreme circumstances.
3651 */
3652 if (nr_boost_reclaim && !nr_reclaimed)
3653 break;
3654
3655 if (raise_priority || !nr_reclaimed)
3656 sc.priority--;
3657 } while (sc.priority >= 1);
3658
3659 if (!sc.nr_reclaimed)
3660 pgdat->kswapd_failures++;
3661
3662 out:
3663 /* If reclaim was boosted, account for the reclaim done in this pass */
3664 if (boosted) {
3665 unsigned long flags;
3666
3667 for (i = 0; i <= classzone_idx; i++) {
3668 if (!zone_boosts[i])
3669 continue;
3670
3671 /* Increments are under the zone lock */
3672 zone = pgdat->node_zones + i;
3673 spin_lock_irqsave(&zone->lock, flags);
3674 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3675 spin_unlock_irqrestore(&zone->lock, flags);
3676 }
3677
3678 /*
3679 * As there is now likely space, wakeup kcompact to defragment
3680 * pageblocks.
3681 */
3682 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3683 }
3684
3685 snapshot_refaults(NULL, pgdat);
3686 __fs_reclaim_release();
3687 psi_memstall_leave(&pflags);
3688 set_task_reclaim_state(current, NULL);
3689
3690 /*
3691 * Return the order kswapd stopped reclaiming at as
3692 * prepare_kswapd_sleep() takes it into account. If another caller
3693 * entered the allocator slow path while kswapd was awake, order will
3694 * remain at the higher level.
3695 */
3696 return sc.order;
3697 }
3698
3699 /*
3700 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3701 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3702 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3703 * after previous reclaim attempt (node is still unbalanced). In that case
3704 * return the zone index of the previous kswapd reclaim cycle.
3705 */
3706 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3707 enum zone_type prev_classzone_idx)
3708 {
3709 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3710 return prev_classzone_idx;
3711 return pgdat->kswapd_classzone_idx;
3712 }
3713
3714 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3715 unsigned int classzone_idx)
3716 {
3717 long remaining = 0;
3718 DEFINE_WAIT(wait);
3719
3720 if (freezing(current) || kthread_should_stop())
3721 return;
3722
3723 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3724
3725 /*
3726 * Try to sleep for a short interval. Note that kcompactd will only be
3727 * woken if it is possible to sleep for a short interval. This is
3728 * deliberate on the assumption that if reclaim cannot keep an
3729 * eligible zone balanced that it's also unlikely that compaction will
3730 * succeed.
3731 */
3732 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3733 /*
3734 * Compaction records what page blocks it recently failed to
3735 * isolate pages from and skips them in the future scanning.
3736 * When kswapd is going to sleep, it is reasonable to assume
3737 * that pages and compaction may succeed so reset the cache.
3738 */
3739 reset_isolation_suitable(pgdat);
3740
3741 /*
3742 * We have freed the memory, now we should compact it to make
3743 * allocation of the requested order possible.
3744 */
3745 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3746
3747 remaining = schedule_timeout(HZ/10);
3748
3749 /*
3750 * If woken prematurely then reset kswapd_classzone_idx and
3751 * order. The values will either be from a wakeup request or
3752 * the previous request that slept prematurely.
3753 */
3754 if (remaining) {
3755 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3756 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3757 }
3758
3759 finish_wait(&pgdat->kswapd_wait, &wait);
3760 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3761 }
3762
3763 /*
3764 * After a short sleep, check if it was a premature sleep. If not, then
3765 * go fully to sleep until explicitly woken up.
3766 */
3767 if (!remaining &&
3768 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3769 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3770
3771 /*
3772 * vmstat counters are not perfectly accurate and the estimated
3773 * value for counters such as NR_FREE_PAGES can deviate from the
3774 * true value by nr_online_cpus * threshold. To avoid the zone
3775 * watermarks being breached while under pressure, we reduce the
3776 * per-cpu vmstat threshold while kswapd is awake and restore
3777 * them before going back to sleep.
3778 */
3779 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3780
3781 if (!kthread_should_stop())
3782 schedule();
3783
3784 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3785 } else {
3786 if (remaining)
3787 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3788 else
3789 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3790 }
3791 finish_wait(&pgdat->kswapd_wait, &wait);
3792 }
3793
3794 /*
3795 * The background pageout daemon, started as a kernel thread
3796 * from the init process.
3797 *
3798 * This basically trickles out pages so that we have _some_
3799 * free memory available even if there is no other activity
3800 * that frees anything up. This is needed for things like routing
3801 * etc, where we otherwise might have all activity going on in
3802 * asynchronous contexts that cannot page things out.
3803 *
3804 * If there are applications that are active memory-allocators
3805 * (most normal use), this basically shouldn't matter.
3806 */
3807 static int kswapd(void *p)
3808 {
3809 unsigned int alloc_order, reclaim_order;
3810 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3811 pg_data_t *pgdat = (pg_data_t*)p;
3812 struct task_struct *tsk = current;
3813 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3814
3815 if (!cpumask_empty(cpumask))
3816 set_cpus_allowed_ptr(tsk, cpumask);
3817
3818 /*
3819 * Tell the memory management that we're a "memory allocator",
3820 * and that if we need more memory we should get access to it
3821 * regardless (see "__alloc_pages()"). "kswapd" should
3822 * never get caught in the normal page freeing logic.
3823 *
3824 * (Kswapd normally doesn't need memory anyway, but sometimes
3825 * you need a small amount of memory in order to be able to
3826 * page out something else, and this flag essentially protects
3827 * us from recursively trying to free more memory as we're
3828 * trying to free the first piece of memory in the first place).
3829 */
3830 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3831 set_freezable();
3832
3833 pgdat->kswapd_order = 0;
3834 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3835 for ( ; ; ) {
3836 bool ret;
3837
3838 alloc_order = reclaim_order = pgdat->kswapd_order;
3839 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3840
3841 kswapd_try_sleep:
3842 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3843 classzone_idx);
3844
3845 /* Read the new order and classzone_idx */
3846 alloc_order = reclaim_order = pgdat->kswapd_order;
3847 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3848 pgdat->kswapd_order = 0;
3849 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3850
3851 ret = try_to_freeze();
3852 if (kthread_should_stop())
3853 break;
3854
3855 /*
3856 * We can speed up thawing tasks if we don't call balance_pgdat
3857 * after returning from the refrigerator
3858 */
3859 if (ret)
3860 continue;
3861
3862 /*
3863 * Reclaim begins at the requested order but if a high-order
3864 * reclaim fails then kswapd falls back to reclaiming for
3865 * order-0. If that happens, kswapd will consider sleeping
3866 * for the order it finished reclaiming at (reclaim_order)
3867 * but kcompactd is woken to compact for the original
3868 * request (alloc_order).
3869 */
3870 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3871 alloc_order);
3872 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3873 if (reclaim_order < alloc_order)
3874 goto kswapd_try_sleep;
3875 }
3876
3877 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3878
3879 return 0;
3880 }
3881
3882 /*
3883 * A zone is low on free memory or too fragmented for high-order memory. If
3884 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3885 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3886 * has failed or is not needed, still wake up kcompactd if only compaction is
3887 * needed.
3888 */
3889 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3890 enum zone_type classzone_idx)
3891 {
3892 pg_data_t *pgdat;
3893
3894 if (!managed_zone(zone))
3895 return;
3896
3897 if (!cpuset_zone_allowed(zone, gfp_flags))
3898 return;
3899 pgdat = zone->zone_pgdat;
3900
3901 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3902 pgdat->kswapd_classzone_idx = classzone_idx;
3903 else
3904 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3905 classzone_idx);
3906 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3907 if (!waitqueue_active(&pgdat->kswapd_wait))
3908 return;
3909
3910 /* Hopeless node, leave it to direct reclaim if possible */
3911 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3912 (pgdat_balanced(pgdat, order, classzone_idx) &&
3913 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3914 /*
3915 * There may be plenty of free memory available, but it's too
3916 * fragmented for high-order allocations. Wake up kcompactd
3917 * and rely on compaction_suitable() to determine if it's
3918 * needed. If it fails, it will defer subsequent attempts to
3919 * ratelimit its work.
3920 */
3921 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3922 wakeup_kcompactd(pgdat, order, classzone_idx);
3923 return;
3924 }
3925
3926 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3927 gfp_flags);
3928 wake_up_interruptible(&pgdat->kswapd_wait);
3929 }
3930
3931 #ifdef CONFIG_HIBERNATION
3932 /*
3933 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3934 * freed pages.
3935 *
3936 * Rather than trying to age LRUs the aim is to preserve the overall
3937 * LRU order by reclaiming preferentially
3938 * inactive > active > active referenced > active mapped
3939 */
3940 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3941 {
3942 struct scan_control sc = {
3943 .nr_to_reclaim = nr_to_reclaim,
3944 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3945 .reclaim_idx = MAX_NR_ZONES - 1,
3946 .priority = DEF_PRIORITY,
3947 .may_writepage = 1,
3948 .may_unmap = 1,
3949 .may_swap = 1,
3950 .hibernation_mode = 1,
3951 };
3952 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3953 unsigned long nr_reclaimed;
3954 unsigned int noreclaim_flag;
3955
3956 fs_reclaim_acquire(sc.gfp_mask);
3957 noreclaim_flag = memalloc_noreclaim_save();
3958 set_task_reclaim_state(current, &sc.reclaim_state);
3959
3960 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3961
3962 set_task_reclaim_state(current, NULL);
3963 memalloc_noreclaim_restore(noreclaim_flag);
3964 fs_reclaim_release(sc.gfp_mask);
3965
3966 return nr_reclaimed;
3967 }
3968 #endif /* CONFIG_HIBERNATION */
3969
3970 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3971 not required for correctness. So if the last cpu in a node goes
3972 away, we get changed to run anywhere: as the first one comes back,
3973 restore their cpu bindings. */
3974 static int kswapd_cpu_online(unsigned int cpu)
3975 {
3976 int nid;
3977
3978 for_each_node_state(nid, N_MEMORY) {
3979 pg_data_t *pgdat = NODE_DATA(nid);
3980 const struct cpumask *mask;
3981
3982 mask = cpumask_of_node(pgdat->node_id);
3983
3984 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3985 /* One of our CPUs online: restore mask */
3986 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3987 }
3988 return 0;
3989 }
3990
3991 /*
3992 * This kswapd start function will be called by init and node-hot-add.
3993 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3994 */
3995 int kswapd_run(int nid)
3996 {
3997 pg_data_t *pgdat = NODE_DATA(nid);
3998 int ret = 0;
3999
4000 if (pgdat->kswapd)
4001 return 0;
4002
4003 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4004 if (IS_ERR(pgdat->kswapd)) {
4005 /* failure at boot is fatal */
4006 BUG_ON(system_state < SYSTEM_RUNNING);
4007 pr_err("Failed to start kswapd on node %d\n", nid);
4008 ret = PTR_ERR(pgdat->kswapd);
4009 pgdat->kswapd = NULL;
4010 }
4011 return ret;
4012 }
4013
4014 /*
4015 * Called by memory hotplug when all memory in a node is offlined. Caller must
4016 * hold mem_hotplug_begin/end().
4017 */
4018 void kswapd_stop(int nid)
4019 {
4020 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4021
4022 if (kswapd) {
4023 kthread_stop(kswapd);
4024 NODE_DATA(nid)->kswapd = NULL;
4025 }
4026 }
4027
4028 static int __init kswapd_init(void)
4029 {
4030 int nid, ret;
4031
4032 swap_setup();
4033 for_each_node_state(nid, N_MEMORY)
4034 kswapd_run(nid);
4035 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4036 "mm/vmscan:online", kswapd_cpu_online,
4037 NULL);
4038 WARN_ON(ret < 0);
4039 return 0;
4040 }
4041
4042 module_init(kswapd_init)
4043
4044 #ifdef CONFIG_NUMA
4045 /*
4046 * Node reclaim mode
4047 *
4048 * If non-zero call node_reclaim when the number of free pages falls below
4049 * the watermarks.
4050 */
4051 int node_reclaim_mode __read_mostly;
4052
4053 #define RECLAIM_OFF 0
4054 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4055 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4056 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4057
4058 /*
4059 * Priority for NODE_RECLAIM. This determines the fraction of pages
4060 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4061 * a zone.
4062 */
4063 #define NODE_RECLAIM_PRIORITY 4
4064
4065 /*
4066 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4067 * occur.
4068 */
4069 int sysctl_min_unmapped_ratio = 1;
4070
4071 /*
4072 * If the number of slab pages in a zone grows beyond this percentage then
4073 * slab reclaim needs to occur.
4074 */
4075 int sysctl_min_slab_ratio = 5;
4076
4077 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4078 {
4079 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4080 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4081 node_page_state(pgdat, NR_ACTIVE_FILE);
4082
4083 /*
4084 * It's possible for there to be more file mapped pages than
4085 * accounted for by the pages on the file LRU lists because
4086 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4087 */
4088 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4089 }
4090
4091 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4092 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4093 {
4094 unsigned long nr_pagecache_reclaimable;
4095 unsigned long delta = 0;
4096
4097 /*
4098 * If RECLAIM_UNMAP is set, then all file pages are considered
4099 * potentially reclaimable. Otherwise, we have to worry about
4100 * pages like swapcache and node_unmapped_file_pages() provides
4101 * a better estimate
4102 */
4103 if (node_reclaim_mode & RECLAIM_UNMAP)
4104 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4105 else
4106 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4107
4108 /* If we can't clean pages, remove dirty pages from consideration */
4109 if (!(node_reclaim_mode & RECLAIM_WRITE))
4110 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4111
4112 /* Watch for any possible underflows due to delta */
4113 if (unlikely(delta > nr_pagecache_reclaimable))
4114 delta = nr_pagecache_reclaimable;
4115
4116 return nr_pagecache_reclaimable - delta;
4117 }
4118
4119 /*
4120 * Try to free up some pages from this node through reclaim.
4121 */
4122 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4123 {
4124 /* Minimum pages needed in order to stay on node */
4125 const unsigned long nr_pages = 1 << order;
4126 struct task_struct *p = current;
4127 unsigned int noreclaim_flag;
4128 struct scan_control sc = {
4129 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4130 .gfp_mask = current_gfp_context(gfp_mask),
4131 .order = order,
4132 .priority = NODE_RECLAIM_PRIORITY,
4133 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4134 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4135 .may_swap = 1,
4136 .reclaim_idx = gfp_zone(gfp_mask),
4137 };
4138
4139 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4140 sc.gfp_mask);
4141
4142 cond_resched();
4143 fs_reclaim_acquire(sc.gfp_mask);
4144 /*
4145 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4146 * and we also need to be able to write out pages for RECLAIM_WRITE
4147 * and RECLAIM_UNMAP.
4148 */
4149 noreclaim_flag = memalloc_noreclaim_save();
4150 p->flags |= PF_SWAPWRITE;
4151 set_task_reclaim_state(p, &sc.reclaim_state);
4152
4153 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4154 /*
4155 * Free memory by calling shrink node with increasing
4156 * priorities until we have enough memory freed.
4157 */
4158 do {
4159 shrink_node(pgdat, &sc);
4160 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4161 }
4162
4163 set_task_reclaim_state(p, NULL);
4164 current->flags &= ~PF_SWAPWRITE;
4165 memalloc_noreclaim_restore(noreclaim_flag);
4166 fs_reclaim_release(sc.gfp_mask);
4167
4168 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4169
4170 return sc.nr_reclaimed >= nr_pages;
4171 }
4172
4173 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4174 {
4175 int ret;
4176
4177 /*
4178 * Node reclaim reclaims unmapped file backed pages and
4179 * slab pages if we are over the defined limits.
4180 *
4181 * A small portion of unmapped file backed pages is needed for
4182 * file I/O otherwise pages read by file I/O will be immediately
4183 * thrown out if the node is overallocated. So we do not reclaim
4184 * if less than a specified percentage of the node is used by
4185 * unmapped file backed pages.
4186 */
4187 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4188 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4189 return NODE_RECLAIM_FULL;
4190
4191 /*
4192 * Do not scan if the allocation should not be delayed.
4193 */
4194 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4195 return NODE_RECLAIM_NOSCAN;
4196
4197 /*
4198 * Only run node reclaim on the local node or on nodes that do not
4199 * have associated processors. This will favor the local processor
4200 * over remote processors and spread off node memory allocations
4201 * as wide as possible.
4202 */
4203 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4204 return NODE_RECLAIM_NOSCAN;
4205
4206 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4207 return NODE_RECLAIM_NOSCAN;
4208
4209 ret = __node_reclaim(pgdat, gfp_mask, order);
4210 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4211
4212 if (!ret)
4213 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4214
4215 return ret;
4216 }
4217 #endif
4218
4219 /*
4220 * page_evictable - test whether a page is evictable
4221 * @page: the page to test
4222 *
4223 * Test whether page is evictable--i.e., should be placed on active/inactive
4224 * lists vs unevictable list.
4225 *
4226 * Reasons page might not be evictable:
4227 * (1) page's mapping marked unevictable
4228 * (2) page is part of an mlocked VMA
4229 *
4230 */
4231 int page_evictable(struct page *page)
4232 {
4233 int ret;
4234
4235 /* Prevent address_space of inode and swap cache from being freed */
4236 rcu_read_lock();
4237 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4238 rcu_read_unlock();
4239 return ret;
4240 }
4241
4242 /**
4243 * check_move_unevictable_pages - check pages for evictability and move to
4244 * appropriate zone lru list
4245 * @pvec: pagevec with lru pages to check
4246 *
4247 * Checks pages for evictability, if an evictable page is in the unevictable
4248 * lru list, moves it to the appropriate evictable lru list. This function
4249 * should be only used for lru pages.
4250 */
4251 void check_move_unevictable_pages(struct pagevec *pvec)
4252 {
4253 struct lruvec *lruvec;
4254 struct pglist_data *pgdat = NULL;
4255 int pgscanned = 0;
4256 int pgrescued = 0;
4257 int i;
4258
4259 for (i = 0; i < pvec->nr; i++) {
4260 struct page *page = pvec->pages[i];
4261 struct pglist_data *pagepgdat = page_pgdat(page);
4262
4263 pgscanned++;
4264 if (pagepgdat != pgdat) {
4265 if (pgdat)
4266 spin_unlock_irq(&pgdat->lru_lock);
4267 pgdat = pagepgdat;
4268 spin_lock_irq(&pgdat->lru_lock);
4269 }
4270 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4271
4272 if (!PageLRU(page) || !PageUnevictable(page))
4273 continue;
4274
4275 if (page_evictable(page)) {
4276 enum lru_list lru = page_lru_base_type(page);
4277
4278 VM_BUG_ON_PAGE(PageActive(page), page);
4279 ClearPageUnevictable(page);
4280 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4281 add_page_to_lru_list(page, lruvec, lru);
4282 pgrescued++;
4283 }
4284 }
4285
4286 if (pgdat) {
4287 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4288 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4289 spin_unlock_irq(&pgdat->lru_lock);
4290 }
4291 }
4292 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);