]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmscan.c
e27f27d4cc1949e587ee5898fe7c479d5dfc1177
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
60 * order-0 pages and then compact the zone
61 */
62 typedef unsigned __bitwise__ reclaim_mode_t;
63 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
64 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
65
66 struct scan_control {
67 /* Incremented by the number of inactive pages that were scanned */
68 unsigned long nr_scanned;
69
70 /* Number of pages freed so far during a call to shrink_zones() */
71 unsigned long nr_reclaimed;
72
73 /* How many pages shrink_list() should reclaim */
74 unsigned long nr_to_reclaim;
75
76 unsigned long hibernation_mode;
77
78 /* This context's GFP mask */
79 gfp_t gfp_mask;
80
81 int may_writepage;
82
83 /* Can mapped pages be reclaimed? */
84 int may_unmap;
85
86 /* Can pages be swapped as part of reclaim? */
87 int may_swap;
88
89 int order;
90
91 /*
92 * Intend to reclaim enough continuous memory rather than reclaim
93 * enough amount of memory. i.e, mode for high order allocation.
94 */
95 reclaim_mode_t reclaim_mode;
96
97 /*
98 * The memory cgroup that hit its limit and as a result is the
99 * primary target of this reclaim invocation.
100 */
101 struct mem_cgroup *target_mem_cgroup;
102
103 /*
104 * Nodemask of nodes allowed by the caller. If NULL, all nodes
105 * are scanned.
106 */
107 nodemask_t *nodemask;
108 };
109
110 struct mem_cgroup_zone {
111 struct mem_cgroup *mem_cgroup;
112 struct zone *zone;
113 };
114
115 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
116
117 #ifdef ARCH_HAS_PREFETCH
118 #define prefetch_prev_lru_page(_page, _base, _field) \
119 do { \
120 if ((_page)->lru.prev != _base) { \
121 struct page *prev; \
122 \
123 prev = lru_to_page(&(_page->lru)); \
124 prefetch(&prev->_field); \
125 } \
126 } while (0)
127 #else
128 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
129 #endif
130
131 #ifdef ARCH_HAS_PREFETCHW
132 #define prefetchw_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetchw(&prev->_field); \
139 } \
140 } while (0)
141 #else
142 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144
145 /*
146 * From 0 .. 100. Higher means more swappy.
147 */
148 int vm_swappiness = 60;
149 long vm_total_pages; /* The total number of pages which the VM controls */
150
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153
154 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 return !sc->target_mem_cgroup;
158 }
159
160 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
161 {
162 return !mz->mem_cgroup;
163 }
164 #else
165 static bool global_reclaim(struct scan_control *sc)
166 {
167 return true;
168 }
169
170 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
171 {
172 return true;
173 }
174 #endif
175
176 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
177 {
178 if (!scanning_global_lru(mz))
179 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
180
181 return &mz->zone->reclaim_stat;
182 }
183
184 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
185 enum lru_list lru)
186 {
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
189 zone_to_nid(mz->zone),
190 zone_idx(mz->zone),
191 BIT(lru));
192
193 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
194 }
195
196
197 /*
198 * Add a shrinker callback to be called from the vm
199 */
200 void register_shrinker(struct shrinker *shrinker)
201 {
202 atomic_long_set(&shrinker->nr_in_batch, 0);
203 down_write(&shrinker_rwsem);
204 list_add_tail(&shrinker->list, &shrinker_list);
205 up_write(&shrinker_rwsem);
206 }
207 EXPORT_SYMBOL(register_shrinker);
208
209 /*
210 * Remove one
211 */
212 void unregister_shrinker(struct shrinker *shrinker)
213 {
214 down_write(&shrinker_rwsem);
215 list_del(&shrinker->list);
216 up_write(&shrinker_rwsem);
217 }
218 EXPORT_SYMBOL(unregister_shrinker);
219
220 static inline int do_shrinker_shrink(struct shrinker *shrinker,
221 struct shrink_control *sc,
222 unsigned long nr_to_scan)
223 {
224 sc->nr_to_scan = nr_to_scan;
225 return (*shrinker->shrink)(shrinker, sc);
226 }
227
228 #define SHRINK_BATCH 128
229 /*
230 * Call the shrink functions to age shrinkable caches
231 *
232 * Here we assume it costs one seek to replace a lru page and that it also
233 * takes a seek to recreate a cache object. With this in mind we age equal
234 * percentages of the lru and ageable caches. This should balance the seeks
235 * generated by these structures.
236 *
237 * If the vm encountered mapped pages on the LRU it increase the pressure on
238 * slab to avoid swapping.
239 *
240 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
241 *
242 * `lru_pages' represents the number of on-LRU pages in all the zones which
243 * are eligible for the caller's allocation attempt. It is used for balancing
244 * slab reclaim versus page reclaim.
245 *
246 * Returns the number of slab objects which we shrunk.
247 */
248 unsigned long shrink_slab(struct shrink_control *shrink,
249 unsigned long nr_pages_scanned,
250 unsigned long lru_pages)
251 {
252 struct shrinker *shrinker;
253 unsigned long ret = 0;
254
255 if (nr_pages_scanned == 0)
256 nr_pages_scanned = SWAP_CLUSTER_MAX;
257
258 if (!down_read_trylock(&shrinker_rwsem)) {
259 /* Assume we'll be able to shrink next time */
260 ret = 1;
261 goto out;
262 }
263
264 list_for_each_entry(shrinker, &shrinker_list, list) {
265 unsigned long long delta;
266 long total_scan;
267 long max_pass;
268 int shrink_ret = 0;
269 long nr;
270 long new_nr;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
274 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
275 if (max_pass <= 0)
276 continue;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
284
285 total_scan = nr;
286 delta = (4 * nr_pages_scanned) / shrinker->seeks;
287 delta *= max_pass;
288 do_div(delta, lru_pages + 1);
289 total_scan += delta;
290 if (total_scan < 0) {
291 printk(KERN_ERR "shrink_slab: %pF negative objects to "
292 "delete nr=%ld\n",
293 shrinker->shrink, total_scan);
294 total_scan = max_pass;
295 }
296
297 /*
298 * We need to avoid excessive windup on filesystem shrinkers
299 * due to large numbers of GFP_NOFS allocations causing the
300 * shrinkers to return -1 all the time. This results in a large
301 * nr being built up so when a shrink that can do some work
302 * comes along it empties the entire cache due to nr >>>
303 * max_pass. This is bad for sustaining a working set in
304 * memory.
305 *
306 * Hence only allow the shrinker to scan the entire cache when
307 * a large delta change is calculated directly.
308 */
309 if (delta < max_pass / 4)
310 total_scan = min(total_scan, max_pass / 2);
311
312 /*
313 * Avoid risking looping forever due to too large nr value:
314 * never try to free more than twice the estimate number of
315 * freeable entries.
316 */
317 if (total_scan > max_pass * 2)
318 total_scan = max_pass * 2;
319
320 trace_mm_shrink_slab_start(shrinker, shrink, nr,
321 nr_pages_scanned, lru_pages,
322 max_pass, delta, total_scan);
323
324 while (total_scan >= batch_size) {
325 int nr_before;
326
327 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
328 shrink_ret = do_shrinker_shrink(shrinker, shrink,
329 batch_size);
330 if (shrink_ret == -1)
331 break;
332 if (shrink_ret < nr_before)
333 ret += nr_before - shrink_ret;
334 count_vm_events(SLABS_SCANNED, batch_size);
335 total_scan -= batch_size;
336
337 cond_resched();
338 }
339
340 /*
341 * move the unused scan count back into the shrinker in a
342 * manner that handles concurrent updates. If we exhausted the
343 * scan, there is no need to do an update.
344 */
345 if (total_scan > 0)
346 new_nr = atomic_long_add_return(total_scan,
347 &shrinker->nr_in_batch);
348 else
349 new_nr = atomic_long_read(&shrinker->nr_in_batch);
350
351 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
352 }
353 up_read(&shrinker_rwsem);
354 out:
355 cond_resched();
356 return ret;
357 }
358
359 static void set_reclaim_mode(int priority, struct scan_control *sc)
360 {
361 /*
362 * Restrict reclaim/compaction to costly allocations or when
363 * under memory pressure
364 */
365 if (COMPACTION_BUILD && sc->order &&
366 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
367 priority < DEF_PRIORITY - 2))
368 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
369 else
370 sc->reclaim_mode = RECLAIM_MODE_SINGLE;
371 }
372
373 static void reset_reclaim_mode(struct scan_control *sc)
374 {
375 sc->reclaim_mode = RECLAIM_MODE_SINGLE;
376 }
377
378 static inline int is_page_cache_freeable(struct page *page)
379 {
380 /*
381 * A freeable page cache page is referenced only by the caller
382 * that isolated the page, the page cache radix tree and
383 * optional buffer heads at page->private.
384 */
385 return page_count(page) - page_has_private(page) == 2;
386 }
387
388 static int may_write_to_queue(struct backing_dev_info *bdi,
389 struct scan_control *sc)
390 {
391 if (current->flags & PF_SWAPWRITE)
392 return 1;
393 if (!bdi_write_congested(bdi))
394 return 1;
395 if (bdi == current->backing_dev_info)
396 return 1;
397 return 0;
398 }
399
400 /*
401 * We detected a synchronous write error writing a page out. Probably
402 * -ENOSPC. We need to propagate that into the address_space for a subsequent
403 * fsync(), msync() or close().
404 *
405 * The tricky part is that after writepage we cannot touch the mapping: nothing
406 * prevents it from being freed up. But we have a ref on the page and once
407 * that page is locked, the mapping is pinned.
408 *
409 * We're allowed to run sleeping lock_page() here because we know the caller has
410 * __GFP_FS.
411 */
412 static void handle_write_error(struct address_space *mapping,
413 struct page *page, int error)
414 {
415 lock_page(page);
416 if (page_mapping(page) == mapping)
417 mapping_set_error(mapping, error);
418 unlock_page(page);
419 }
420
421 /* possible outcome of pageout() */
422 typedef enum {
423 /* failed to write page out, page is locked */
424 PAGE_KEEP,
425 /* move page to the active list, page is locked */
426 PAGE_ACTIVATE,
427 /* page has been sent to the disk successfully, page is unlocked */
428 PAGE_SUCCESS,
429 /* page is clean and locked */
430 PAGE_CLEAN,
431 } pageout_t;
432
433 /*
434 * pageout is called by shrink_page_list() for each dirty page.
435 * Calls ->writepage().
436 */
437 static pageout_t pageout(struct page *page, struct address_space *mapping,
438 struct scan_control *sc)
439 {
440 /*
441 * If the page is dirty, only perform writeback if that write
442 * will be non-blocking. To prevent this allocation from being
443 * stalled by pagecache activity. But note that there may be
444 * stalls if we need to run get_block(). We could test
445 * PagePrivate for that.
446 *
447 * If this process is currently in __generic_file_aio_write() against
448 * this page's queue, we can perform writeback even if that
449 * will block.
450 *
451 * If the page is swapcache, write it back even if that would
452 * block, for some throttling. This happens by accident, because
453 * swap_backing_dev_info is bust: it doesn't reflect the
454 * congestion state of the swapdevs. Easy to fix, if needed.
455 */
456 if (!is_page_cache_freeable(page))
457 return PAGE_KEEP;
458 if (!mapping) {
459 /*
460 * Some data journaling orphaned pages can have
461 * page->mapping == NULL while being dirty with clean buffers.
462 */
463 if (page_has_private(page)) {
464 if (try_to_free_buffers(page)) {
465 ClearPageDirty(page);
466 printk("%s: orphaned page\n", __func__);
467 return PAGE_CLEAN;
468 }
469 }
470 return PAGE_KEEP;
471 }
472 if (mapping->a_ops->writepage == NULL)
473 return PAGE_ACTIVATE;
474 if (!may_write_to_queue(mapping->backing_dev_info, sc))
475 return PAGE_KEEP;
476
477 if (clear_page_dirty_for_io(page)) {
478 int res;
479 struct writeback_control wbc = {
480 .sync_mode = WB_SYNC_NONE,
481 .nr_to_write = SWAP_CLUSTER_MAX,
482 .range_start = 0,
483 .range_end = LLONG_MAX,
484 .for_reclaim = 1,
485 };
486
487 SetPageReclaim(page);
488 res = mapping->a_ops->writepage(page, &wbc);
489 if (res < 0)
490 handle_write_error(mapping, page, res);
491 if (res == AOP_WRITEPAGE_ACTIVATE) {
492 ClearPageReclaim(page);
493 return PAGE_ACTIVATE;
494 }
495
496 if (!PageWriteback(page)) {
497 /* synchronous write or broken a_ops? */
498 ClearPageReclaim(page);
499 }
500 trace_mm_vmscan_writepage(page,
501 trace_reclaim_flags(page, sc->reclaim_mode));
502 inc_zone_page_state(page, NR_VMSCAN_WRITE);
503 return PAGE_SUCCESS;
504 }
505
506 return PAGE_CLEAN;
507 }
508
509 /*
510 * Same as remove_mapping, but if the page is removed from the mapping, it
511 * gets returned with a refcount of 0.
512 */
513 static int __remove_mapping(struct address_space *mapping, struct page *page)
514 {
515 BUG_ON(!PageLocked(page));
516 BUG_ON(mapping != page_mapping(page));
517
518 spin_lock_irq(&mapping->tree_lock);
519 /*
520 * The non racy check for a busy page.
521 *
522 * Must be careful with the order of the tests. When someone has
523 * a ref to the page, it may be possible that they dirty it then
524 * drop the reference. So if PageDirty is tested before page_count
525 * here, then the following race may occur:
526 *
527 * get_user_pages(&page);
528 * [user mapping goes away]
529 * write_to(page);
530 * !PageDirty(page) [good]
531 * SetPageDirty(page);
532 * put_page(page);
533 * !page_count(page) [good, discard it]
534 *
535 * [oops, our write_to data is lost]
536 *
537 * Reversing the order of the tests ensures such a situation cannot
538 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
539 * load is not satisfied before that of page->_count.
540 *
541 * Note that if SetPageDirty is always performed via set_page_dirty,
542 * and thus under tree_lock, then this ordering is not required.
543 */
544 if (!page_freeze_refs(page, 2))
545 goto cannot_free;
546 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
547 if (unlikely(PageDirty(page))) {
548 page_unfreeze_refs(page, 2);
549 goto cannot_free;
550 }
551
552 if (PageSwapCache(page)) {
553 swp_entry_t swap = { .val = page_private(page) };
554 __delete_from_swap_cache(page);
555 spin_unlock_irq(&mapping->tree_lock);
556 swapcache_free(swap, page);
557 } else {
558 void (*freepage)(struct page *);
559
560 freepage = mapping->a_ops->freepage;
561
562 __delete_from_page_cache(page);
563 spin_unlock_irq(&mapping->tree_lock);
564 mem_cgroup_uncharge_cache_page(page);
565
566 if (freepage != NULL)
567 freepage(page);
568 }
569
570 return 1;
571
572 cannot_free:
573 spin_unlock_irq(&mapping->tree_lock);
574 return 0;
575 }
576
577 /*
578 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
579 * someone else has a ref on the page, abort and return 0. If it was
580 * successfully detached, return 1. Assumes the caller has a single ref on
581 * this page.
582 */
583 int remove_mapping(struct address_space *mapping, struct page *page)
584 {
585 if (__remove_mapping(mapping, page)) {
586 /*
587 * Unfreezing the refcount with 1 rather than 2 effectively
588 * drops the pagecache ref for us without requiring another
589 * atomic operation.
590 */
591 page_unfreeze_refs(page, 1);
592 return 1;
593 }
594 return 0;
595 }
596
597 /**
598 * putback_lru_page - put previously isolated page onto appropriate LRU list
599 * @page: page to be put back to appropriate lru list
600 *
601 * Add previously isolated @page to appropriate LRU list.
602 * Page may still be unevictable for other reasons.
603 *
604 * lru_lock must not be held, interrupts must be enabled.
605 */
606 void putback_lru_page(struct page *page)
607 {
608 int lru;
609 int active = !!TestClearPageActive(page);
610 int was_unevictable = PageUnevictable(page);
611
612 VM_BUG_ON(PageLRU(page));
613
614 redo:
615 ClearPageUnevictable(page);
616
617 if (page_evictable(page, NULL)) {
618 /*
619 * For evictable pages, we can use the cache.
620 * In event of a race, worst case is we end up with an
621 * unevictable page on [in]active list.
622 * We know how to handle that.
623 */
624 lru = active + page_lru_base_type(page);
625 lru_cache_add_lru(page, lru);
626 } else {
627 /*
628 * Put unevictable pages directly on zone's unevictable
629 * list.
630 */
631 lru = LRU_UNEVICTABLE;
632 add_page_to_unevictable_list(page);
633 /*
634 * When racing with an mlock or AS_UNEVICTABLE clearing
635 * (page is unlocked) make sure that if the other thread
636 * does not observe our setting of PG_lru and fails
637 * isolation/check_move_unevictable_pages,
638 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
639 * the page back to the evictable list.
640 *
641 * The other side is TestClearPageMlocked() or shmem_lock().
642 */
643 smp_mb();
644 }
645
646 /*
647 * page's status can change while we move it among lru. If an evictable
648 * page is on unevictable list, it never be freed. To avoid that,
649 * check after we added it to the list, again.
650 */
651 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
652 if (!isolate_lru_page(page)) {
653 put_page(page);
654 goto redo;
655 }
656 /* This means someone else dropped this page from LRU
657 * So, it will be freed or putback to LRU again. There is
658 * nothing to do here.
659 */
660 }
661
662 if (was_unevictable && lru != LRU_UNEVICTABLE)
663 count_vm_event(UNEVICTABLE_PGRESCUED);
664 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
665 count_vm_event(UNEVICTABLE_PGCULLED);
666
667 put_page(page); /* drop ref from isolate */
668 }
669
670 enum page_references {
671 PAGEREF_RECLAIM,
672 PAGEREF_RECLAIM_CLEAN,
673 PAGEREF_KEEP,
674 PAGEREF_ACTIVATE,
675 };
676
677 static enum page_references page_check_references(struct page *page,
678 struct mem_cgroup_zone *mz,
679 struct scan_control *sc)
680 {
681 int referenced_ptes, referenced_page;
682 unsigned long vm_flags;
683
684 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
685 referenced_page = TestClearPageReferenced(page);
686
687 /*
688 * Mlock lost the isolation race with us. Let try_to_unmap()
689 * move the page to the unevictable list.
690 */
691 if (vm_flags & VM_LOCKED)
692 return PAGEREF_RECLAIM;
693
694 if (referenced_ptes) {
695 if (PageAnon(page))
696 return PAGEREF_ACTIVATE;
697 /*
698 * All mapped pages start out with page table
699 * references from the instantiating fault, so we need
700 * to look twice if a mapped file page is used more
701 * than once.
702 *
703 * Mark it and spare it for another trip around the
704 * inactive list. Another page table reference will
705 * lead to its activation.
706 *
707 * Note: the mark is set for activated pages as well
708 * so that recently deactivated but used pages are
709 * quickly recovered.
710 */
711 SetPageReferenced(page);
712
713 if (referenced_page || referenced_ptes > 1)
714 return PAGEREF_ACTIVATE;
715
716 /*
717 * Activate file-backed executable pages after first usage.
718 */
719 if (vm_flags & VM_EXEC)
720 return PAGEREF_ACTIVATE;
721
722 return PAGEREF_KEEP;
723 }
724
725 /* Reclaim if clean, defer dirty pages to writeback */
726 if (referenced_page && !PageSwapBacked(page))
727 return PAGEREF_RECLAIM_CLEAN;
728
729 return PAGEREF_RECLAIM;
730 }
731
732 /*
733 * shrink_page_list() returns the number of reclaimed pages
734 */
735 static unsigned long shrink_page_list(struct list_head *page_list,
736 struct mem_cgroup_zone *mz,
737 struct scan_control *sc,
738 int priority,
739 unsigned long *ret_nr_dirty,
740 unsigned long *ret_nr_writeback)
741 {
742 LIST_HEAD(ret_pages);
743 LIST_HEAD(free_pages);
744 int pgactivate = 0;
745 unsigned long nr_dirty = 0;
746 unsigned long nr_congested = 0;
747 unsigned long nr_reclaimed = 0;
748 unsigned long nr_writeback = 0;
749
750 cond_resched();
751
752 while (!list_empty(page_list)) {
753 enum page_references references;
754 struct address_space *mapping;
755 struct page *page;
756 int may_enter_fs;
757
758 cond_resched();
759
760 page = lru_to_page(page_list);
761 list_del(&page->lru);
762
763 if (!trylock_page(page))
764 goto keep;
765
766 VM_BUG_ON(PageActive(page));
767 VM_BUG_ON(page_zone(page) != mz->zone);
768
769 sc->nr_scanned++;
770
771 if (unlikely(!page_evictable(page, NULL)))
772 goto cull_mlocked;
773
774 if (!sc->may_unmap && page_mapped(page))
775 goto keep_locked;
776
777 /* Double the slab pressure for mapped and swapcache pages */
778 if (page_mapped(page) || PageSwapCache(page))
779 sc->nr_scanned++;
780
781 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
782 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
783
784 if (PageWriteback(page)) {
785 nr_writeback++;
786 unlock_page(page);
787 goto keep;
788 }
789
790 references = page_check_references(page, mz, sc);
791 switch (references) {
792 case PAGEREF_ACTIVATE:
793 goto activate_locked;
794 case PAGEREF_KEEP:
795 goto keep_locked;
796 case PAGEREF_RECLAIM:
797 case PAGEREF_RECLAIM_CLEAN:
798 ; /* try to reclaim the page below */
799 }
800
801 /*
802 * Anonymous process memory has backing store?
803 * Try to allocate it some swap space here.
804 */
805 if (PageAnon(page) && !PageSwapCache(page)) {
806 if (!(sc->gfp_mask & __GFP_IO))
807 goto keep_locked;
808 if (!add_to_swap(page))
809 goto activate_locked;
810 may_enter_fs = 1;
811 }
812
813 mapping = page_mapping(page);
814
815 /*
816 * The page is mapped into the page tables of one or more
817 * processes. Try to unmap it here.
818 */
819 if (page_mapped(page) && mapping) {
820 switch (try_to_unmap(page, TTU_UNMAP)) {
821 case SWAP_FAIL:
822 goto activate_locked;
823 case SWAP_AGAIN:
824 goto keep_locked;
825 case SWAP_MLOCK:
826 goto cull_mlocked;
827 case SWAP_SUCCESS:
828 ; /* try to free the page below */
829 }
830 }
831
832 if (PageDirty(page)) {
833 nr_dirty++;
834
835 /*
836 * Only kswapd can writeback filesystem pages to
837 * avoid risk of stack overflow but do not writeback
838 * unless under significant pressure.
839 */
840 if (page_is_file_cache(page) &&
841 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
842 /*
843 * Immediately reclaim when written back.
844 * Similar in principal to deactivate_page()
845 * except we already have the page isolated
846 * and know it's dirty
847 */
848 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
849 SetPageReclaim(page);
850
851 goto keep_locked;
852 }
853
854 if (references == PAGEREF_RECLAIM_CLEAN)
855 goto keep_locked;
856 if (!may_enter_fs)
857 goto keep_locked;
858 if (!sc->may_writepage)
859 goto keep_locked;
860
861 /* Page is dirty, try to write it out here */
862 switch (pageout(page, mapping, sc)) {
863 case PAGE_KEEP:
864 nr_congested++;
865 goto keep_locked;
866 case PAGE_ACTIVATE:
867 goto activate_locked;
868 case PAGE_SUCCESS:
869 if (PageWriteback(page))
870 goto keep;
871 if (PageDirty(page))
872 goto keep;
873
874 /*
875 * A synchronous write - probably a ramdisk. Go
876 * ahead and try to reclaim the page.
877 */
878 if (!trylock_page(page))
879 goto keep;
880 if (PageDirty(page) || PageWriteback(page))
881 goto keep_locked;
882 mapping = page_mapping(page);
883 case PAGE_CLEAN:
884 ; /* try to free the page below */
885 }
886 }
887
888 /*
889 * If the page has buffers, try to free the buffer mappings
890 * associated with this page. If we succeed we try to free
891 * the page as well.
892 *
893 * We do this even if the page is PageDirty().
894 * try_to_release_page() does not perform I/O, but it is
895 * possible for a page to have PageDirty set, but it is actually
896 * clean (all its buffers are clean). This happens if the
897 * buffers were written out directly, with submit_bh(). ext3
898 * will do this, as well as the blockdev mapping.
899 * try_to_release_page() will discover that cleanness and will
900 * drop the buffers and mark the page clean - it can be freed.
901 *
902 * Rarely, pages can have buffers and no ->mapping. These are
903 * the pages which were not successfully invalidated in
904 * truncate_complete_page(). We try to drop those buffers here
905 * and if that worked, and the page is no longer mapped into
906 * process address space (page_count == 1) it can be freed.
907 * Otherwise, leave the page on the LRU so it is swappable.
908 */
909 if (page_has_private(page)) {
910 if (!try_to_release_page(page, sc->gfp_mask))
911 goto activate_locked;
912 if (!mapping && page_count(page) == 1) {
913 unlock_page(page);
914 if (put_page_testzero(page))
915 goto free_it;
916 else {
917 /*
918 * rare race with speculative reference.
919 * the speculative reference will free
920 * this page shortly, so we may
921 * increment nr_reclaimed here (and
922 * leave it off the LRU).
923 */
924 nr_reclaimed++;
925 continue;
926 }
927 }
928 }
929
930 if (!mapping || !__remove_mapping(mapping, page))
931 goto keep_locked;
932
933 /*
934 * At this point, we have no other references and there is
935 * no way to pick any more up (removed from LRU, removed
936 * from pagecache). Can use non-atomic bitops now (and
937 * we obviously don't have to worry about waking up a process
938 * waiting on the page lock, because there are no references.
939 */
940 __clear_page_locked(page);
941 free_it:
942 nr_reclaimed++;
943
944 /*
945 * Is there need to periodically free_page_list? It would
946 * appear not as the counts should be low
947 */
948 list_add(&page->lru, &free_pages);
949 continue;
950
951 cull_mlocked:
952 if (PageSwapCache(page))
953 try_to_free_swap(page);
954 unlock_page(page);
955 putback_lru_page(page);
956 reset_reclaim_mode(sc);
957 continue;
958
959 activate_locked:
960 /* Not a candidate for swapping, so reclaim swap space. */
961 if (PageSwapCache(page) && vm_swap_full())
962 try_to_free_swap(page);
963 VM_BUG_ON(PageActive(page));
964 SetPageActive(page);
965 pgactivate++;
966 keep_locked:
967 unlock_page(page);
968 keep:
969 list_add(&page->lru, &ret_pages);
970 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
971 }
972
973 /*
974 * Tag a zone as congested if all the dirty pages encountered were
975 * backed by a congested BDI. In this case, reclaimers should just
976 * back off and wait for congestion to clear because further reclaim
977 * will encounter the same problem
978 */
979 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
980 zone_set_flag(mz->zone, ZONE_CONGESTED);
981
982 free_hot_cold_page_list(&free_pages, 1);
983
984 list_splice(&ret_pages, page_list);
985 count_vm_events(PGACTIVATE, pgactivate);
986 *ret_nr_dirty += nr_dirty;
987 *ret_nr_writeback += nr_writeback;
988 return nr_reclaimed;
989 }
990
991 /*
992 * Attempt to remove the specified page from its LRU. Only take this page
993 * if it is of the appropriate PageActive status. Pages which are being
994 * freed elsewhere are also ignored.
995 *
996 * page: page to consider
997 * mode: one of the LRU isolation modes defined above
998 *
999 * returns 0 on success, -ve errno on failure.
1000 */
1001 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1002 {
1003 bool all_lru_mode;
1004 int ret = -EINVAL;
1005
1006 /* Only take pages on the LRU. */
1007 if (!PageLRU(page))
1008 return ret;
1009
1010 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1011 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1012
1013 /*
1014 * When checking the active state, we need to be sure we are
1015 * dealing with comparible boolean values. Take the logical not
1016 * of each.
1017 */
1018 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1019 return ret;
1020
1021 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1022 return ret;
1023
1024 /* Do not give back unevictable pages for compaction */
1025 if (PageUnevictable(page))
1026 return ret;
1027
1028 ret = -EBUSY;
1029
1030 /*
1031 * To minimise LRU disruption, the caller can indicate that it only
1032 * wants to isolate pages it will be able to operate on without
1033 * blocking - clean pages for the most part.
1034 *
1035 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1036 * is used by reclaim when it is cannot write to backing storage
1037 *
1038 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1039 * that it is possible to migrate without blocking
1040 */
1041 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1042 /* All the caller can do on PageWriteback is block */
1043 if (PageWriteback(page))
1044 return ret;
1045
1046 if (PageDirty(page)) {
1047 struct address_space *mapping;
1048
1049 /* ISOLATE_CLEAN means only clean pages */
1050 if (mode & ISOLATE_CLEAN)
1051 return ret;
1052
1053 /*
1054 * Only pages without mappings or that have a
1055 * ->migratepage callback are possible to migrate
1056 * without blocking
1057 */
1058 mapping = page_mapping(page);
1059 if (mapping && !mapping->a_ops->migratepage)
1060 return ret;
1061 }
1062 }
1063
1064 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1065 return ret;
1066
1067 if (likely(get_page_unless_zero(page))) {
1068 /*
1069 * Be careful not to clear PageLRU until after we're
1070 * sure the page is not being freed elsewhere -- the
1071 * page release code relies on it.
1072 */
1073 ClearPageLRU(page);
1074 ret = 0;
1075 }
1076
1077 return ret;
1078 }
1079
1080 /*
1081 * zone->lru_lock is heavily contended. Some of the functions that
1082 * shrink the lists perform better by taking out a batch of pages
1083 * and working on them outside the LRU lock.
1084 *
1085 * For pagecache intensive workloads, this function is the hottest
1086 * spot in the kernel (apart from copy_*_user functions).
1087 *
1088 * Appropriate locks must be held before calling this function.
1089 *
1090 * @nr_to_scan: The number of pages to look through on the list.
1091 * @mz: The mem_cgroup_zone to pull pages from.
1092 * @dst: The temp list to put pages on to.
1093 * @nr_scanned: The number of pages that were scanned.
1094 * @sc: The scan_control struct for this reclaim session
1095 * @mode: One of the LRU isolation modes
1096 * @active: True [1] if isolating active pages
1097 * @file: True [1] if isolating file [!anon] pages
1098 *
1099 * returns how many pages were moved onto *@dst.
1100 */
1101 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1102 struct mem_cgroup_zone *mz, struct list_head *dst,
1103 unsigned long *nr_scanned, struct scan_control *sc,
1104 isolate_mode_t mode, int active, int file)
1105 {
1106 struct lruvec *lruvec;
1107 struct list_head *src;
1108 unsigned long nr_taken = 0;
1109 unsigned long scan;
1110 int lru = LRU_BASE;
1111
1112 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1113 if (active)
1114 lru += LRU_ACTIVE;
1115 if (file)
1116 lru += LRU_FILE;
1117 src = &lruvec->lists[lru];
1118
1119 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1120 struct page *page;
1121
1122 page = lru_to_page(src);
1123 prefetchw_prev_lru_page(page, src, flags);
1124
1125 VM_BUG_ON(!PageLRU(page));
1126
1127 switch (__isolate_lru_page(page, mode, file)) {
1128 case 0:
1129 mem_cgroup_lru_del(page);
1130 list_move(&page->lru, dst);
1131 nr_taken += hpage_nr_pages(page);
1132 break;
1133
1134 case -EBUSY:
1135 /* else it is being freed elsewhere */
1136 list_move(&page->lru, src);
1137 continue;
1138
1139 default:
1140 BUG();
1141 }
1142 }
1143
1144 *nr_scanned = scan;
1145
1146 trace_mm_vmscan_lru_isolate(sc->order,
1147 nr_to_scan, scan,
1148 nr_taken,
1149 mode, file);
1150 return nr_taken;
1151 }
1152
1153 /**
1154 * isolate_lru_page - tries to isolate a page from its LRU list
1155 * @page: page to isolate from its LRU list
1156 *
1157 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1158 * vmstat statistic corresponding to whatever LRU list the page was on.
1159 *
1160 * Returns 0 if the page was removed from an LRU list.
1161 * Returns -EBUSY if the page was not on an LRU list.
1162 *
1163 * The returned page will have PageLRU() cleared. If it was found on
1164 * the active list, it will have PageActive set. If it was found on
1165 * the unevictable list, it will have the PageUnevictable bit set. That flag
1166 * may need to be cleared by the caller before letting the page go.
1167 *
1168 * The vmstat statistic corresponding to the list on which the page was
1169 * found will be decremented.
1170 *
1171 * Restrictions:
1172 * (1) Must be called with an elevated refcount on the page. This is a
1173 * fundamentnal difference from isolate_lru_pages (which is called
1174 * without a stable reference).
1175 * (2) the lru_lock must not be held.
1176 * (3) interrupts must be enabled.
1177 */
1178 int isolate_lru_page(struct page *page)
1179 {
1180 int ret = -EBUSY;
1181
1182 VM_BUG_ON(!page_count(page));
1183
1184 if (PageLRU(page)) {
1185 struct zone *zone = page_zone(page);
1186
1187 spin_lock_irq(&zone->lru_lock);
1188 if (PageLRU(page)) {
1189 int lru = page_lru(page);
1190 ret = 0;
1191 get_page(page);
1192 ClearPageLRU(page);
1193
1194 del_page_from_lru_list(zone, page, lru);
1195 }
1196 spin_unlock_irq(&zone->lru_lock);
1197 }
1198 return ret;
1199 }
1200
1201 /*
1202 * Are there way too many processes in the direct reclaim path already?
1203 */
1204 static int too_many_isolated(struct zone *zone, int file,
1205 struct scan_control *sc)
1206 {
1207 unsigned long inactive, isolated;
1208
1209 if (current_is_kswapd())
1210 return 0;
1211
1212 if (!global_reclaim(sc))
1213 return 0;
1214
1215 if (file) {
1216 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1217 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1218 } else {
1219 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1220 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1221 }
1222
1223 return isolated > inactive;
1224 }
1225
1226 static noinline_for_stack void
1227 putback_inactive_pages(struct mem_cgroup_zone *mz,
1228 struct list_head *page_list)
1229 {
1230 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1231 struct zone *zone = mz->zone;
1232 LIST_HEAD(pages_to_free);
1233
1234 /*
1235 * Put back any unfreeable pages.
1236 */
1237 while (!list_empty(page_list)) {
1238 struct page *page = lru_to_page(page_list);
1239 int lru;
1240
1241 VM_BUG_ON(PageLRU(page));
1242 list_del(&page->lru);
1243 if (unlikely(!page_evictable(page, NULL))) {
1244 spin_unlock_irq(&zone->lru_lock);
1245 putback_lru_page(page);
1246 spin_lock_irq(&zone->lru_lock);
1247 continue;
1248 }
1249 SetPageLRU(page);
1250 lru = page_lru(page);
1251 add_page_to_lru_list(zone, page, lru);
1252 if (is_active_lru(lru)) {
1253 int file = is_file_lru(lru);
1254 int numpages = hpage_nr_pages(page);
1255 reclaim_stat->recent_rotated[file] += numpages;
1256 }
1257 if (put_page_testzero(page)) {
1258 __ClearPageLRU(page);
1259 __ClearPageActive(page);
1260 del_page_from_lru_list(zone, page, lru);
1261
1262 if (unlikely(PageCompound(page))) {
1263 spin_unlock_irq(&zone->lru_lock);
1264 (*get_compound_page_dtor(page))(page);
1265 spin_lock_irq(&zone->lru_lock);
1266 } else
1267 list_add(&page->lru, &pages_to_free);
1268 }
1269 }
1270
1271 /*
1272 * To save our caller's stack, now use input list for pages to free.
1273 */
1274 list_splice(&pages_to_free, page_list);
1275 }
1276
1277 static noinline_for_stack void
1278 update_isolated_counts(struct mem_cgroup_zone *mz,
1279 struct list_head *page_list,
1280 unsigned long *nr_anon,
1281 unsigned long *nr_file)
1282 {
1283 struct zone *zone = mz->zone;
1284 unsigned int count[NR_LRU_LISTS] = { 0, };
1285 unsigned long nr_active = 0;
1286 struct page *page;
1287 int lru;
1288
1289 /*
1290 * Count pages and clear active flags
1291 */
1292 list_for_each_entry(page, page_list, lru) {
1293 int numpages = hpage_nr_pages(page);
1294 lru = page_lru_base_type(page);
1295 if (PageActive(page)) {
1296 lru += LRU_ACTIVE;
1297 ClearPageActive(page);
1298 nr_active += numpages;
1299 }
1300 count[lru] += numpages;
1301 }
1302
1303 preempt_disable();
1304 __count_vm_events(PGDEACTIVATE, nr_active);
1305
1306 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1307 -count[LRU_ACTIVE_FILE]);
1308 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1309 -count[LRU_INACTIVE_FILE]);
1310 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1311 -count[LRU_ACTIVE_ANON]);
1312 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1313 -count[LRU_INACTIVE_ANON]);
1314
1315 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1316 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1317
1318 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1319 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1320 preempt_enable();
1321 }
1322
1323 /*
1324 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1325 * of reclaimed pages
1326 */
1327 static noinline_for_stack unsigned long
1328 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1329 struct scan_control *sc, int priority, int file)
1330 {
1331 LIST_HEAD(page_list);
1332 unsigned long nr_scanned;
1333 unsigned long nr_reclaimed = 0;
1334 unsigned long nr_taken;
1335 unsigned long nr_anon;
1336 unsigned long nr_file;
1337 unsigned long nr_dirty = 0;
1338 unsigned long nr_writeback = 0;
1339 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1340 struct zone *zone = mz->zone;
1341 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1342
1343 while (unlikely(too_many_isolated(zone, file, sc))) {
1344 congestion_wait(BLK_RW_ASYNC, HZ/10);
1345
1346 /* We are about to die and free our memory. Return now. */
1347 if (fatal_signal_pending(current))
1348 return SWAP_CLUSTER_MAX;
1349 }
1350
1351 set_reclaim_mode(priority, sc);
1352
1353 lru_add_drain();
1354
1355 if (!sc->may_unmap)
1356 isolate_mode |= ISOLATE_UNMAPPED;
1357 if (!sc->may_writepage)
1358 isolate_mode |= ISOLATE_CLEAN;
1359
1360 spin_lock_irq(&zone->lru_lock);
1361
1362 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1363 sc, isolate_mode, 0, file);
1364 if (global_reclaim(sc)) {
1365 zone->pages_scanned += nr_scanned;
1366 if (current_is_kswapd())
1367 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1368 nr_scanned);
1369 else
1370 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1371 nr_scanned);
1372 }
1373 spin_unlock_irq(&zone->lru_lock);
1374
1375 if (nr_taken == 0)
1376 return 0;
1377
1378 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1379
1380 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1381 &nr_dirty, &nr_writeback);
1382
1383 spin_lock_irq(&zone->lru_lock);
1384
1385 reclaim_stat->recent_scanned[0] += nr_anon;
1386 reclaim_stat->recent_scanned[1] += nr_file;
1387
1388 if (global_reclaim(sc)) {
1389 if (current_is_kswapd())
1390 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1391 nr_reclaimed);
1392 else
1393 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1394 nr_reclaimed);
1395 }
1396
1397 putback_inactive_pages(mz, &page_list);
1398
1399 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1400 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1401
1402 spin_unlock_irq(&zone->lru_lock);
1403
1404 free_hot_cold_page_list(&page_list, 1);
1405
1406 /*
1407 * If reclaim is isolating dirty pages under writeback, it implies
1408 * that the long-lived page allocation rate is exceeding the page
1409 * laundering rate. Either the global limits are not being effective
1410 * at throttling processes due to the page distribution throughout
1411 * zones or there is heavy usage of a slow backing device. The
1412 * only option is to throttle from reclaim context which is not ideal
1413 * as there is no guarantee the dirtying process is throttled in the
1414 * same way balance_dirty_pages() manages.
1415 *
1416 * This scales the number of dirty pages that must be under writeback
1417 * before throttling depending on priority. It is a simple backoff
1418 * function that has the most effect in the range DEF_PRIORITY to
1419 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1420 * in trouble and reclaim is considered to be in trouble.
1421 *
1422 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1423 * DEF_PRIORITY-1 50% must be PageWriteback
1424 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1425 * ...
1426 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1427 * isolated page is PageWriteback
1428 */
1429 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1430 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1431
1432 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1433 zone_idx(zone),
1434 nr_scanned, nr_reclaimed,
1435 priority,
1436 trace_shrink_flags(file, sc->reclaim_mode));
1437 return nr_reclaimed;
1438 }
1439
1440 /*
1441 * This moves pages from the active list to the inactive list.
1442 *
1443 * We move them the other way if the page is referenced by one or more
1444 * processes, from rmap.
1445 *
1446 * If the pages are mostly unmapped, the processing is fast and it is
1447 * appropriate to hold zone->lru_lock across the whole operation. But if
1448 * the pages are mapped, the processing is slow (page_referenced()) so we
1449 * should drop zone->lru_lock around each page. It's impossible to balance
1450 * this, so instead we remove the pages from the LRU while processing them.
1451 * It is safe to rely on PG_active against the non-LRU pages in here because
1452 * nobody will play with that bit on a non-LRU page.
1453 *
1454 * The downside is that we have to touch page->_count against each page.
1455 * But we had to alter page->flags anyway.
1456 */
1457
1458 static void move_active_pages_to_lru(struct zone *zone,
1459 struct list_head *list,
1460 struct list_head *pages_to_free,
1461 enum lru_list lru)
1462 {
1463 unsigned long pgmoved = 0;
1464 struct page *page;
1465
1466 while (!list_empty(list)) {
1467 struct lruvec *lruvec;
1468
1469 page = lru_to_page(list);
1470
1471 VM_BUG_ON(PageLRU(page));
1472 SetPageLRU(page);
1473
1474 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1475 list_move(&page->lru, &lruvec->lists[lru]);
1476 pgmoved += hpage_nr_pages(page);
1477
1478 if (put_page_testzero(page)) {
1479 __ClearPageLRU(page);
1480 __ClearPageActive(page);
1481 del_page_from_lru_list(zone, page, lru);
1482
1483 if (unlikely(PageCompound(page))) {
1484 spin_unlock_irq(&zone->lru_lock);
1485 (*get_compound_page_dtor(page))(page);
1486 spin_lock_irq(&zone->lru_lock);
1487 } else
1488 list_add(&page->lru, pages_to_free);
1489 }
1490 }
1491 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1492 if (!is_active_lru(lru))
1493 __count_vm_events(PGDEACTIVATE, pgmoved);
1494 }
1495
1496 static void shrink_active_list(unsigned long nr_to_scan,
1497 struct mem_cgroup_zone *mz,
1498 struct scan_control *sc,
1499 int priority, int file)
1500 {
1501 unsigned long nr_taken;
1502 unsigned long nr_scanned;
1503 unsigned long vm_flags;
1504 LIST_HEAD(l_hold); /* The pages which were snipped off */
1505 LIST_HEAD(l_active);
1506 LIST_HEAD(l_inactive);
1507 struct page *page;
1508 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1509 unsigned long nr_rotated = 0;
1510 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1511 struct zone *zone = mz->zone;
1512
1513 lru_add_drain();
1514
1515 reset_reclaim_mode(sc);
1516
1517 if (!sc->may_unmap)
1518 isolate_mode |= ISOLATE_UNMAPPED;
1519 if (!sc->may_writepage)
1520 isolate_mode |= ISOLATE_CLEAN;
1521
1522 spin_lock_irq(&zone->lru_lock);
1523
1524 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1525 isolate_mode, 1, file);
1526 if (global_reclaim(sc))
1527 zone->pages_scanned += nr_scanned;
1528
1529 reclaim_stat->recent_scanned[file] += nr_taken;
1530
1531 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1532 if (file)
1533 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1534 else
1535 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1536 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1537 spin_unlock_irq(&zone->lru_lock);
1538
1539 while (!list_empty(&l_hold)) {
1540 cond_resched();
1541 page = lru_to_page(&l_hold);
1542 list_del(&page->lru);
1543
1544 if (unlikely(!page_evictable(page, NULL))) {
1545 putback_lru_page(page);
1546 continue;
1547 }
1548
1549 if (unlikely(buffer_heads_over_limit)) {
1550 if (page_has_private(page) && trylock_page(page)) {
1551 if (page_has_private(page))
1552 try_to_release_page(page, 0);
1553 unlock_page(page);
1554 }
1555 }
1556
1557 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1558 nr_rotated += hpage_nr_pages(page);
1559 /*
1560 * Identify referenced, file-backed active pages and
1561 * give them one more trip around the active list. So
1562 * that executable code get better chances to stay in
1563 * memory under moderate memory pressure. Anon pages
1564 * are not likely to be evicted by use-once streaming
1565 * IO, plus JVM can create lots of anon VM_EXEC pages,
1566 * so we ignore them here.
1567 */
1568 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1569 list_add(&page->lru, &l_active);
1570 continue;
1571 }
1572 }
1573
1574 ClearPageActive(page); /* we are de-activating */
1575 list_add(&page->lru, &l_inactive);
1576 }
1577
1578 /*
1579 * Move pages back to the lru list.
1580 */
1581 spin_lock_irq(&zone->lru_lock);
1582 /*
1583 * Count referenced pages from currently used mappings as rotated,
1584 * even though only some of them are actually re-activated. This
1585 * helps balance scan pressure between file and anonymous pages in
1586 * get_scan_ratio.
1587 */
1588 reclaim_stat->recent_rotated[file] += nr_rotated;
1589
1590 move_active_pages_to_lru(zone, &l_active, &l_hold,
1591 LRU_ACTIVE + file * LRU_FILE);
1592 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1593 LRU_BASE + file * LRU_FILE);
1594 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1595 spin_unlock_irq(&zone->lru_lock);
1596
1597 free_hot_cold_page_list(&l_hold, 1);
1598 }
1599
1600 #ifdef CONFIG_SWAP
1601 static int inactive_anon_is_low_global(struct zone *zone)
1602 {
1603 unsigned long active, inactive;
1604
1605 active = zone_page_state(zone, NR_ACTIVE_ANON);
1606 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1607
1608 if (inactive * zone->inactive_ratio < active)
1609 return 1;
1610
1611 return 0;
1612 }
1613
1614 /**
1615 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1616 * @zone: zone to check
1617 * @sc: scan control of this context
1618 *
1619 * Returns true if the zone does not have enough inactive anon pages,
1620 * meaning some active anon pages need to be deactivated.
1621 */
1622 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1623 {
1624 /*
1625 * If we don't have swap space, anonymous page deactivation
1626 * is pointless.
1627 */
1628 if (!total_swap_pages)
1629 return 0;
1630
1631 if (!scanning_global_lru(mz))
1632 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1633 mz->zone);
1634
1635 return inactive_anon_is_low_global(mz->zone);
1636 }
1637 #else
1638 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1639 {
1640 return 0;
1641 }
1642 #endif
1643
1644 static int inactive_file_is_low_global(struct zone *zone)
1645 {
1646 unsigned long active, inactive;
1647
1648 active = zone_page_state(zone, NR_ACTIVE_FILE);
1649 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1650
1651 return (active > inactive);
1652 }
1653
1654 /**
1655 * inactive_file_is_low - check if file pages need to be deactivated
1656 * @mz: memory cgroup and zone to check
1657 *
1658 * When the system is doing streaming IO, memory pressure here
1659 * ensures that active file pages get deactivated, until more
1660 * than half of the file pages are on the inactive list.
1661 *
1662 * Once we get to that situation, protect the system's working
1663 * set from being evicted by disabling active file page aging.
1664 *
1665 * This uses a different ratio than the anonymous pages, because
1666 * the page cache uses a use-once replacement algorithm.
1667 */
1668 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1669 {
1670 if (!scanning_global_lru(mz))
1671 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1672 mz->zone);
1673
1674 return inactive_file_is_low_global(mz->zone);
1675 }
1676
1677 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1678 {
1679 if (file)
1680 return inactive_file_is_low(mz);
1681 else
1682 return inactive_anon_is_low(mz);
1683 }
1684
1685 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1686 struct mem_cgroup_zone *mz,
1687 struct scan_control *sc, int priority)
1688 {
1689 int file = is_file_lru(lru);
1690
1691 if (is_active_lru(lru)) {
1692 if (inactive_list_is_low(mz, file))
1693 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1694 return 0;
1695 }
1696
1697 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1698 }
1699
1700 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1701 struct scan_control *sc)
1702 {
1703 if (global_reclaim(sc))
1704 return vm_swappiness;
1705 return mem_cgroup_swappiness(mz->mem_cgroup);
1706 }
1707
1708 /*
1709 * Determine how aggressively the anon and file LRU lists should be
1710 * scanned. The relative value of each set of LRU lists is determined
1711 * by looking at the fraction of the pages scanned we did rotate back
1712 * onto the active list instead of evict.
1713 *
1714 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1715 */
1716 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1717 unsigned long *nr, int priority)
1718 {
1719 unsigned long anon, file, free;
1720 unsigned long anon_prio, file_prio;
1721 unsigned long ap, fp;
1722 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1723 u64 fraction[2], denominator;
1724 enum lru_list lru;
1725 int noswap = 0;
1726 bool force_scan = false;
1727
1728 /*
1729 * If the zone or memcg is small, nr[l] can be 0. This
1730 * results in no scanning on this priority and a potential
1731 * priority drop. Global direct reclaim can go to the next
1732 * zone and tends to have no problems. Global kswapd is for
1733 * zone balancing and it needs to scan a minimum amount. When
1734 * reclaiming for a memcg, a priority drop can cause high
1735 * latencies, so it's better to scan a minimum amount there as
1736 * well.
1737 */
1738 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1739 force_scan = true;
1740 if (!global_reclaim(sc))
1741 force_scan = true;
1742
1743 /* If we have no swap space, do not bother scanning anon pages. */
1744 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1745 noswap = 1;
1746 fraction[0] = 0;
1747 fraction[1] = 1;
1748 denominator = 1;
1749 goto out;
1750 }
1751
1752 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1753 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1754 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1755 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1756
1757 if (global_reclaim(sc)) {
1758 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1759 /* If we have very few page cache pages,
1760 force-scan anon pages. */
1761 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1762 fraction[0] = 1;
1763 fraction[1] = 0;
1764 denominator = 1;
1765 goto out;
1766 }
1767 }
1768
1769 /*
1770 * With swappiness at 100, anonymous and file have the same priority.
1771 * This scanning priority is essentially the inverse of IO cost.
1772 */
1773 anon_prio = vmscan_swappiness(mz, sc);
1774 file_prio = 200 - vmscan_swappiness(mz, sc);
1775
1776 /*
1777 * OK, so we have swap space and a fair amount of page cache
1778 * pages. We use the recently rotated / recently scanned
1779 * ratios to determine how valuable each cache is.
1780 *
1781 * Because workloads change over time (and to avoid overflow)
1782 * we keep these statistics as a floating average, which ends
1783 * up weighing recent references more than old ones.
1784 *
1785 * anon in [0], file in [1]
1786 */
1787 spin_lock_irq(&mz->zone->lru_lock);
1788 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1789 reclaim_stat->recent_scanned[0] /= 2;
1790 reclaim_stat->recent_rotated[0] /= 2;
1791 }
1792
1793 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1794 reclaim_stat->recent_scanned[1] /= 2;
1795 reclaim_stat->recent_rotated[1] /= 2;
1796 }
1797
1798 /*
1799 * The amount of pressure on anon vs file pages is inversely
1800 * proportional to the fraction of recently scanned pages on
1801 * each list that were recently referenced and in active use.
1802 */
1803 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1804 ap /= reclaim_stat->recent_rotated[0] + 1;
1805
1806 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1807 fp /= reclaim_stat->recent_rotated[1] + 1;
1808 spin_unlock_irq(&mz->zone->lru_lock);
1809
1810 fraction[0] = ap;
1811 fraction[1] = fp;
1812 denominator = ap + fp + 1;
1813 out:
1814 for_each_evictable_lru(lru) {
1815 int file = is_file_lru(lru);
1816 unsigned long scan;
1817
1818 scan = zone_nr_lru_pages(mz, lru);
1819 if (priority || noswap) {
1820 scan >>= priority;
1821 if (!scan && force_scan)
1822 scan = SWAP_CLUSTER_MAX;
1823 scan = div64_u64(scan * fraction[file], denominator);
1824 }
1825 nr[lru] = scan;
1826 }
1827 }
1828
1829 /*
1830 * Reclaim/compaction depends on a number of pages being freed. To avoid
1831 * disruption to the system, a small number of order-0 pages continue to be
1832 * rotated and reclaimed in the normal fashion. However, by the time we get
1833 * back to the allocator and call try_to_compact_zone(), we ensure that
1834 * there are enough free pages for it to be likely successful
1835 */
1836 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1837 unsigned long nr_reclaimed,
1838 unsigned long nr_scanned,
1839 struct scan_control *sc)
1840 {
1841 unsigned long pages_for_compaction;
1842 unsigned long inactive_lru_pages;
1843
1844 /* If not in reclaim/compaction mode, stop */
1845 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1846 return false;
1847
1848 /* Consider stopping depending on scan and reclaim activity */
1849 if (sc->gfp_mask & __GFP_REPEAT) {
1850 /*
1851 * For __GFP_REPEAT allocations, stop reclaiming if the
1852 * full LRU list has been scanned and we are still failing
1853 * to reclaim pages. This full LRU scan is potentially
1854 * expensive but a __GFP_REPEAT caller really wants to succeed
1855 */
1856 if (!nr_reclaimed && !nr_scanned)
1857 return false;
1858 } else {
1859 /*
1860 * For non-__GFP_REPEAT allocations which can presumably
1861 * fail without consequence, stop if we failed to reclaim
1862 * any pages from the last SWAP_CLUSTER_MAX number of
1863 * pages that were scanned. This will return to the
1864 * caller faster at the risk reclaim/compaction and
1865 * the resulting allocation attempt fails
1866 */
1867 if (!nr_reclaimed)
1868 return false;
1869 }
1870
1871 /*
1872 * If we have not reclaimed enough pages for compaction and the
1873 * inactive lists are large enough, continue reclaiming
1874 */
1875 pages_for_compaction = (2UL << sc->order);
1876 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1877 if (nr_swap_pages > 0)
1878 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1879 if (sc->nr_reclaimed < pages_for_compaction &&
1880 inactive_lru_pages > pages_for_compaction)
1881 return true;
1882
1883 /* If compaction would go ahead or the allocation would succeed, stop */
1884 switch (compaction_suitable(mz->zone, sc->order)) {
1885 case COMPACT_PARTIAL:
1886 case COMPACT_CONTINUE:
1887 return false;
1888 default:
1889 return true;
1890 }
1891 }
1892
1893 /*
1894 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1895 */
1896 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1897 struct scan_control *sc)
1898 {
1899 unsigned long nr[NR_LRU_LISTS];
1900 unsigned long nr_to_scan;
1901 enum lru_list lru;
1902 unsigned long nr_reclaimed, nr_scanned;
1903 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1904 struct blk_plug plug;
1905
1906 restart:
1907 nr_reclaimed = 0;
1908 nr_scanned = sc->nr_scanned;
1909 get_scan_count(mz, sc, nr, priority);
1910
1911 blk_start_plug(&plug);
1912 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1913 nr[LRU_INACTIVE_FILE]) {
1914 for_each_evictable_lru(lru) {
1915 if (nr[lru]) {
1916 nr_to_scan = min_t(unsigned long,
1917 nr[lru], SWAP_CLUSTER_MAX);
1918 nr[lru] -= nr_to_scan;
1919
1920 nr_reclaimed += shrink_list(lru, nr_to_scan,
1921 mz, sc, priority);
1922 }
1923 }
1924 /*
1925 * On large memory systems, scan >> priority can become
1926 * really large. This is fine for the starting priority;
1927 * we want to put equal scanning pressure on each zone.
1928 * However, if the VM has a harder time of freeing pages,
1929 * with multiple processes reclaiming pages, the total
1930 * freeing target can get unreasonably large.
1931 */
1932 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1933 break;
1934 }
1935 blk_finish_plug(&plug);
1936 sc->nr_reclaimed += nr_reclaimed;
1937
1938 /*
1939 * Even if we did not try to evict anon pages at all, we want to
1940 * rebalance the anon lru active/inactive ratio.
1941 */
1942 if (inactive_anon_is_low(mz))
1943 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1944
1945 /* reclaim/compaction might need reclaim to continue */
1946 if (should_continue_reclaim(mz, nr_reclaimed,
1947 sc->nr_scanned - nr_scanned, sc))
1948 goto restart;
1949
1950 throttle_vm_writeout(sc->gfp_mask);
1951 }
1952
1953 static void shrink_zone(int priority, struct zone *zone,
1954 struct scan_control *sc)
1955 {
1956 struct mem_cgroup *root = sc->target_mem_cgroup;
1957 struct mem_cgroup_reclaim_cookie reclaim = {
1958 .zone = zone,
1959 .priority = priority,
1960 };
1961 struct mem_cgroup *memcg;
1962
1963 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1964 do {
1965 struct mem_cgroup_zone mz = {
1966 .mem_cgroup = memcg,
1967 .zone = zone,
1968 };
1969
1970 shrink_mem_cgroup_zone(priority, &mz, sc);
1971 /*
1972 * Limit reclaim has historically picked one memcg and
1973 * scanned it with decreasing priority levels until
1974 * nr_to_reclaim had been reclaimed. This priority
1975 * cycle is thus over after a single memcg.
1976 *
1977 * Direct reclaim and kswapd, on the other hand, have
1978 * to scan all memory cgroups to fulfill the overall
1979 * scan target for the zone.
1980 */
1981 if (!global_reclaim(sc)) {
1982 mem_cgroup_iter_break(root, memcg);
1983 break;
1984 }
1985 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1986 } while (memcg);
1987 }
1988
1989 /* Returns true if compaction should go ahead for a high-order request */
1990 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1991 {
1992 unsigned long balance_gap, watermark;
1993 bool watermark_ok;
1994
1995 /* Do not consider compaction for orders reclaim is meant to satisfy */
1996 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1997 return false;
1998
1999 /*
2000 * Compaction takes time to run and there are potentially other
2001 * callers using the pages just freed. Continue reclaiming until
2002 * there is a buffer of free pages available to give compaction
2003 * a reasonable chance of completing and allocating the page
2004 */
2005 balance_gap = min(low_wmark_pages(zone),
2006 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2007 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2008 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2009 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2010
2011 /*
2012 * If compaction is deferred, reclaim up to a point where
2013 * compaction will have a chance of success when re-enabled
2014 */
2015 if (compaction_deferred(zone, sc->order))
2016 return watermark_ok;
2017
2018 /* If compaction is not ready to start, keep reclaiming */
2019 if (!compaction_suitable(zone, sc->order))
2020 return false;
2021
2022 return watermark_ok;
2023 }
2024
2025 /*
2026 * This is the direct reclaim path, for page-allocating processes. We only
2027 * try to reclaim pages from zones which will satisfy the caller's allocation
2028 * request.
2029 *
2030 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2031 * Because:
2032 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2033 * allocation or
2034 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2035 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2036 * zone defense algorithm.
2037 *
2038 * If a zone is deemed to be full of pinned pages then just give it a light
2039 * scan then give up on it.
2040 *
2041 * This function returns true if a zone is being reclaimed for a costly
2042 * high-order allocation and compaction is ready to begin. This indicates to
2043 * the caller that it should consider retrying the allocation instead of
2044 * further reclaim.
2045 */
2046 static bool shrink_zones(int priority, struct zonelist *zonelist,
2047 struct scan_control *sc)
2048 {
2049 struct zoneref *z;
2050 struct zone *zone;
2051 unsigned long nr_soft_reclaimed;
2052 unsigned long nr_soft_scanned;
2053 bool aborted_reclaim = false;
2054
2055 /*
2056 * If the number of buffer_heads in the machine exceeds the maximum
2057 * allowed level, force direct reclaim to scan the highmem zone as
2058 * highmem pages could be pinning lowmem pages storing buffer_heads
2059 */
2060 if (buffer_heads_over_limit)
2061 sc->gfp_mask |= __GFP_HIGHMEM;
2062
2063 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2064 gfp_zone(sc->gfp_mask), sc->nodemask) {
2065 if (!populated_zone(zone))
2066 continue;
2067 /*
2068 * Take care memory controller reclaiming has small influence
2069 * to global LRU.
2070 */
2071 if (global_reclaim(sc)) {
2072 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2073 continue;
2074 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2075 continue; /* Let kswapd poll it */
2076 if (COMPACTION_BUILD) {
2077 /*
2078 * If we already have plenty of memory free for
2079 * compaction in this zone, don't free any more.
2080 * Even though compaction is invoked for any
2081 * non-zero order, only frequent costly order
2082 * reclamation is disruptive enough to become a
2083 * noticeable problem, like transparent huge
2084 * page allocations.
2085 */
2086 if (compaction_ready(zone, sc)) {
2087 aborted_reclaim = true;
2088 continue;
2089 }
2090 }
2091 /*
2092 * This steals pages from memory cgroups over softlimit
2093 * and returns the number of reclaimed pages and
2094 * scanned pages. This works for global memory pressure
2095 * and balancing, not for a memcg's limit.
2096 */
2097 nr_soft_scanned = 0;
2098 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2099 sc->order, sc->gfp_mask,
2100 &nr_soft_scanned);
2101 sc->nr_reclaimed += nr_soft_reclaimed;
2102 sc->nr_scanned += nr_soft_scanned;
2103 /* need some check for avoid more shrink_zone() */
2104 }
2105
2106 shrink_zone(priority, zone, sc);
2107 }
2108
2109 return aborted_reclaim;
2110 }
2111
2112 static bool zone_reclaimable(struct zone *zone)
2113 {
2114 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2115 }
2116
2117 /* All zones in zonelist are unreclaimable? */
2118 static bool all_unreclaimable(struct zonelist *zonelist,
2119 struct scan_control *sc)
2120 {
2121 struct zoneref *z;
2122 struct zone *zone;
2123
2124 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2125 gfp_zone(sc->gfp_mask), sc->nodemask) {
2126 if (!populated_zone(zone))
2127 continue;
2128 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2129 continue;
2130 if (!zone->all_unreclaimable)
2131 return false;
2132 }
2133
2134 return true;
2135 }
2136
2137 /*
2138 * This is the main entry point to direct page reclaim.
2139 *
2140 * If a full scan of the inactive list fails to free enough memory then we
2141 * are "out of memory" and something needs to be killed.
2142 *
2143 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2144 * high - the zone may be full of dirty or under-writeback pages, which this
2145 * caller can't do much about. We kick the writeback threads and take explicit
2146 * naps in the hope that some of these pages can be written. But if the
2147 * allocating task holds filesystem locks which prevent writeout this might not
2148 * work, and the allocation attempt will fail.
2149 *
2150 * returns: 0, if no pages reclaimed
2151 * else, the number of pages reclaimed
2152 */
2153 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2154 struct scan_control *sc,
2155 struct shrink_control *shrink)
2156 {
2157 int priority;
2158 unsigned long total_scanned = 0;
2159 struct reclaim_state *reclaim_state = current->reclaim_state;
2160 struct zoneref *z;
2161 struct zone *zone;
2162 unsigned long writeback_threshold;
2163 bool aborted_reclaim;
2164
2165 delayacct_freepages_start();
2166
2167 if (global_reclaim(sc))
2168 count_vm_event(ALLOCSTALL);
2169
2170 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2171 sc->nr_scanned = 0;
2172 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2173
2174 /*
2175 * Don't shrink slabs when reclaiming memory from
2176 * over limit cgroups
2177 */
2178 if (global_reclaim(sc)) {
2179 unsigned long lru_pages = 0;
2180 for_each_zone_zonelist(zone, z, zonelist,
2181 gfp_zone(sc->gfp_mask)) {
2182 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2183 continue;
2184
2185 lru_pages += zone_reclaimable_pages(zone);
2186 }
2187
2188 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2189 if (reclaim_state) {
2190 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2191 reclaim_state->reclaimed_slab = 0;
2192 }
2193 }
2194 total_scanned += sc->nr_scanned;
2195 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2196 goto out;
2197
2198 /*
2199 * Try to write back as many pages as we just scanned. This
2200 * tends to cause slow streaming writers to write data to the
2201 * disk smoothly, at the dirtying rate, which is nice. But
2202 * that's undesirable in laptop mode, where we *want* lumpy
2203 * writeout. So in laptop mode, write out the whole world.
2204 */
2205 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2206 if (total_scanned > writeback_threshold) {
2207 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2208 WB_REASON_TRY_TO_FREE_PAGES);
2209 sc->may_writepage = 1;
2210 }
2211
2212 /* Take a nap, wait for some writeback to complete */
2213 if (!sc->hibernation_mode && sc->nr_scanned &&
2214 priority < DEF_PRIORITY - 2) {
2215 struct zone *preferred_zone;
2216
2217 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2218 &cpuset_current_mems_allowed,
2219 &preferred_zone);
2220 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2221 }
2222 }
2223
2224 out:
2225 delayacct_freepages_end();
2226
2227 if (sc->nr_reclaimed)
2228 return sc->nr_reclaimed;
2229
2230 /*
2231 * As hibernation is going on, kswapd is freezed so that it can't mark
2232 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2233 * check.
2234 */
2235 if (oom_killer_disabled)
2236 return 0;
2237
2238 /* Aborted reclaim to try compaction? don't OOM, then */
2239 if (aborted_reclaim)
2240 return 1;
2241
2242 /* top priority shrink_zones still had more to do? don't OOM, then */
2243 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2244 return 1;
2245
2246 return 0;
2247 }
2248
2249 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2250 gfp_t gfp_mask, nodemask_t *nodemask)
2251 {
2252 unsigned long nr_reclaimed;
2253 struct scan_control sc = {
2254 .gfp_mask = gfp_mask,
2255 .may_writepage = !laptop_mode,
2256 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2257 .may_unmap = 1,
2258 .may_swap = 1,
2259 .order = order,
2260 .target_mem_cgroup = NULL,
2261 .nodemask = nodemask,
2262 };
2263 struct shrink_control shrink = {
2264 .gfp_mask = sc.gfp_mask,
2265 };
2266
2267 trace_mm_vmscan_direct_reclaim_begin(order,
2268 sc.may_writepage,
2269 gfp_mask);
2270
2271 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2272
2273 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2274
2275 return nr_reclaimed;
2276 }
2277
2278 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2279
2280 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2281 gfp_t gfp_mask, bool noswap,
2282 struct zone *zone,
2283 unsigned long *nr_scanned)
2284 {
2285 struct scan_control sc = {
2286 .nr_scanned = 0,
2287 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2288 .may_writepage = !laptop_mode,
2289 .may_unmap = 1,
2290 .may_swap = !noswap,
2291 .order = 0,
2292 .target_mem_cgroup = memcg,
2293 };
2294 struct mem_cgroup_zone mz = {
2295 .mem_cgroup = memcg,
2296 .zone = zone,
2297 };
2298
2299 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2300 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2301
2302 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2303 sc.may_writepage,
2304 sc.gfp_mask);
2305
2306 /*
2307 * NOTE: Although we can get the priority field, using it
2308 * here is not a good idea, since it limits the pages we can scan.
2309 * if we don't reclaim here, the shrink_zone from balance_pgdat
2310 * will pick up pages from other mem cgroup's as well. We hack
2311 * the priority and make it zero.
2312 */
2313 shrink_mem_cgroup_zone(0, &mz, &sc);
2314
2315 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2316
2317 *nr_scanned = sc.nr_scanned;
2318 return sc.nr_reclaimed;
2319 }
2320
2321 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2322 gfp_t gfp_mask,
2323 bool noswap)
2324 {
2325 struct zonelist *zonelist;
2326 unsigned long nr_reclaimed;
2327 int nid;
2328 struct scan_control sc = {
2329 .may_writepage = !laptop_mode,
2330 .may_unmap = 1,
2331 .may_swap = !noswap,
2332 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2333 .order = 0,
2334 .target_mem_cgroup = memcg,
2335 .nodemask = NULL, /* we don't care the placement */
2336 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2337 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2338 };
2339 struct shrink_control shrink = {
2340 .gfp_mask = sc.gfp_mask,
2341 };
2342
2343 /*
2344 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2345 * take care of from where we get pages. So the node where we start the
2346 * scan does not need to be the current node.
2347 */
2348 nid = mem_cgroup_select_victim_node(memcg);
2349
2350 zonelist = NODE_DATA(nid)->node_zonelists;
2351
2352 trace_mm_vmscan_memcg_reclaim_begin(0,
2353 sc.may_writepage,
2354 sc.gfp_mask);
2355
2356 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2357
2358 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2359
2360 return nr_reclaimed;
2361 }
2362 #endif
2363
2364 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2365 int priority)
2366 {
2367 struct mem_cgroup *memcg;
2368
2369 if (!total_swap_pages)
2370 return;
2371
2372 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2373 do {
2374 struct mem_cgroup_zone mz = {
2375 .mem_cgroup = memcg,
2376 .zone = zone,
2377 };
2378
2379 if (inactive_anon_is_low(&mz))
2380 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2381 sc, priority, 0);
2382
2383 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2384 } while (memcg);
2385 }
2386
2387 /*
2388 * pgdat_balanced is used when checking if a node is balanced for high-order
2389 * allocations. Only zones that meet watermarks and are in a zone allowed
2390 * by the callers classzone_idx are added to balanced_pages. The total of
2391 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2392 * for the node to be considered balanced. Forcing all zones to be balanced
2393 * for high orders can cause excessive reclaim when there are imbalanced zones.
2394 * The choice of 25% is due to
2395 * o a 16M DMA zone that is balanced will not balance a zone on any
2396 * reasonable sized machine
2397 * o On all other machines, the top zone must be at least a reasonable
2398 * percentage of the middle zones. For example, on 32-bit x86, highmem
2399 * would need to be at least 256M for it to be balance a whole node.
2400 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2401 * to balance a node on its own. These seemed like reasonable ratios.
2402 */
2403 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2404 int classzone_idx)
2405 {
2406 unsigned long present_pages = 0;
2407 int i;
2408
2409 for (i = 0; i <= classzone_idx; i++)
2410 present_pages += pgdat->node_zones[i].present_pages;
2411
2412 /* A special case here: if zone has no page, we think it's balanced */
2413 return balanced_pages >= (present_pages >> 2);
2414 }
2415
2416 /* is kswapd sleeping prematurely? */
2417 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2418 int classzone_idx)
2419 {
2420 int i;
2421 unsigned long balanced = 0;
2422 bool all_zones_ok = true;
2423
2424 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2425 if (remaining)
2426 return true;
2427
2428 /* Check the watermark levels */
2429 for (i = 0; i <= classzone_idx; i++) {
2430 struct zone *zone = pgdat->node_zones + i;
2431
2432 if (!populated_zone(zone))
2433 continue;
2434
2435 /*
2436 * balance_pgdat() skips over all_unreclaimable after
2437 * DEF_PRIORITY. Effectively, it considers them balanced so
2438 * they must be considered balanced here as well if kswapd
2439 * is to sleep
2440 */
2441 if (zone->all_unreclaimable) {
2442 balanced += zone->present_pages;
2443 continue;
2444 }
2445
2446 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2447 i, 0))
2448 all_zones_ok = false;
2449 else
2450 balanced += zone->present_pages;
2451 }
2452
2453 /*
2454 * For high-order requests, the balanced zones must contain at least
2455 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2456 * must be balanced
2457 */
2458 if (order)
2459 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2460 else
2461 return !all_zones_ok;
2462 }
2463
2464 /*
2465 * For kswapd, balance_pgdat() will work across all this node's zones until
2466 * they are all at high_wmark_pages(zone).
2467 *
2468 * Returns the final order kswapd was reclaiming at
2469 *
2470 * There is special handling here for zones which are full of pinned pages.
2471 * This can happen if the pages are all mlocked, or if they are all used by
2472 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2473 * What we do is to detect the case where all pages in the zone have been
2474 * scanned twice and there has been zero successful reclaim. Mark the zone as
2475 * dead and from now on, only perform a short scan. Basically we're polling
2476 * the zone for when the problem goes away.
2477 *
2478 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2479 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2480 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2481 * lower zones regardless of the number of free pages in the lower zones. This
2482 * interoperates with the page allocator fallback scheme to ensure that aging
2483 * of pages is balanced across the zones.
2484 */
2485 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2486 int *classzone_idx)
2487 {
2488 int all_zones_ok;
2489 unsigned long balanced;
2490 int priority;
2491 int i;
2492 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2493 unsigned long total_scanned;
2494 struct reclaim_state *reclaim_state = current->reclaim_state;
2495 unsigned long nr_soft_reclaimed;
2496 unsigned long nr_soft_scanned;
2497 struct scan_control sc = {
2498 .gfp_mask = GFP_KERNEL,
2499 .may_unmap = 1,
2500 .may_swap = 1,
2501 /*
2502 * kswapd doesn't want to be bailed out while reclaim. because
2503 * we want to put equal scanning pressure on each zone.
2504 */
2505 .nr_to_reclaim = ULONG_MAX,
2506 .order = order,
2507 .target_mem_cgroup = NULL,
2508 };
2509 struct shrink_control shrink = {
2510 .gfp_mask = sc.gfp_mask,
2511 };
2512 loop_again:
2513 total_scanned = 0;
2514 sc.nr_reclaimed = 0;
2515 sc.may_writepage = !laptop_mode;
2516 count_vm_event(PAGEOUTRUN);
2517
2518 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2519 unsigned long lru_pages = 0;
2520 int has_under_min_watermark_zone = 0;
2521
2522 all_zones_ok = 1;
2523 balanced = 0;
2524
2525 /*
2526 * Scan in the highmem->dma direction for the highest
2527 * zone which needs scanning
2528 */
2529 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2530 struct zone *zone = pgdat->node_zones + i;
2531
2532 if (!populated_zone(zone))
2533 continue;
2534
2535 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2536 continue;
2537
2538 /*
2539 * Do some background aging of the anon list, to give
2540 * pages a chance to be referenced before reclaiming.
2541 */
2542 age_active_anon(zone, &sc, priority);
2543
2544 /*
2545 * If the number of buffer_heads in the machine
2546 * exceeds the maximum allowed level and this node
2547 * has a highmem zone, force kswapd to reclaim from
2548 * it to relieve lowmem pressure.
2549 */
2550 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2551 end_zone = i;
2552 break;
2553 }
2554
2555 if (!zone_watermark_ok_safe(zone, order,
2556 high_wmark_pages(zone), 0, 0)) {
2557 end_zone = i;
2558 break;
2559 } else {
2560 /* If balanced, clear the congested flag */
2561 zone_clear_flag(zone, ZONE_CONGESTED);
2562 }
2563 }
2564 if (i < 0)
2565 goto out;
2566
2567 for (i = 0; i <= end_zone; i++) {
2568 struct zone *zone = pgdat->node_zones + i;
2569
2570 lru_pages += zone_reclaimable_pages(zone);
2571 }
2572
2573 /*
2574 * Now scan the zone in the dma->highmem direction, stopping
2575 * at the last zone which needs scanning.
2576 *
2577 * We do this because the page allocator works in the opposite
2578 * direction. This prevents the page allocator from allocating
2579 * pages behind kswapd's direction of progress, which would
2580 * cause too much scanning of the lower zones.
2581 */
2582 for (i = 0; i <= end_zone; i++) {
2583 struct zone *zone = pgdat->node_zones + i;
2584 int nr_slab, testorder;
2585 unsigned long balance_gap;
2586
2587 if (!populated_zone(zone))
2588 continue;
2589
2590 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2591 continue;
2592
2593 sc.nr_scanned = 0;
2594
2595 nr_soft_scanned = 0;
2596 /*
2597 * Call soft limit reclaim before calling shrink_zone.
2598 */
2599 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2600 order, sc.gfp_mask,
2601 &nr_soft_scanned);
2602 sc.nr_reclaimed += nr_soft_reclaimed;
2603 total_scanned += nr_soft_scanned;
2604
2605 /*
2606 * We put equal pressure on every zone, unless
2607 * one zone has way too many pages free
2608 * already. The "too many pages" is defined
2609 * as the high wmark plus a "gap" where the
2610 * gap is either the low watermark or 1%
2611 * of the zone, whichever is smaller.
2612 */
2613 balance_gap = min(low_wmark_pages(zone),
2614 (zone->present_pages +
2615 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2616 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2617 /*
2618 * Kswapd reclaims only single pages with compaction
2619 * enabled. Trying too hard to reclaim until contiguous
2620 * free pages have become available can hurt performance
2621 * by evicting too much useful data from memory.
2622 * Do not reclaim more than needed for compaction.
2623 */
2624 testorder = order;
2625 if (COMPACTION_BUILD && order &&
2626 compaction_suitable(zone, order) !=
2627 COMPACT_SKIPPED)
2628 testorder = 0;
2629
2630 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2631 !zone_watermark_ok_safe(zone, testorder,
2632 high_wmark_pages(zone) + balance_gap,
2633 end_zone, 0)) {
2634 shrink_zone(priority, zone, &sc);
2635
2636 reclaim_state->reclaimed_slab = 0;
2637 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2638 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2639 total_scanned += sc.nr_scanned;
2640
2641 if (nr_slab == 0 && !zone_reclaimable(zone))
2642 zone->all_unreclaimable = 1;
2643 }
2644
2645 /*
2646 * If we've done a decent amount of scanning and
2647 * the reclaim ratio is low, start doing writepage
2648 * even in laptop mode
2649 */
2650 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2651 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2652 sc.may_writepage = 1;
2653
2654 if (zone->all_unreclaimable) {
2655 if (end_zone && end_zone == i)
2656 end_zone--;
2657 continue;
2658 }
2659
2660 if (!zone_watermark_ok_safe(zone, testorder,
2661 high_wmark_pages(zone), end_zone, 0)) {
2662 all_zones_ok = 0;
2663 /*
2664 * We are still under min water mark. This
2665 * means that we have a GFP_ATOMIC allocation
2666 * failure risk. Hurry up!
2667 */
2668 if (!zone_watermark_ok_safe(zone, order,
2669 min_wmark_pages(zone), end_zone, 0))
2670 has_under_min_watermark_zone = 1;
2671 } else {
2672 /*
2673 * If a zone reaches its high watermark,
2674 * consider it to be no longer congested. It's
2675 * possible there are dirty pages backed by
2676 * congested BDIs but as pressure is relieved,
2677 * spectulatively avoid congestion waits
2678 */
2679 zone_clear_flag(zone, ZONE_CONGESTED);
2680 if (i <= *classzone_idx)
2681 balanced += zone->present_pages;
2682 }
2683
2684 }
2685 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2686 break; /* kswapd: all done */
2687 /*
2688 * OK, kswapd is getting into trouble. Take a nap, then take
2689 * another pass across the zones.
2690 */
2691 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2692 if (has_under_min_watermark_zone)
2693 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2694 else
2695 congestion_wait(BLK_RW_ASYNC, HZ/10);
2696 }
2697
2698 /*
2699 * We do this so kswapd doesn't build up large priorities for
2700 * example when it is freeing in parallel with allocators. It
2701 * matches the direct reclaim path behaviour in terms of impact
2702 * on zone->*_priority.
2703 */
2704 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2705 break;
2706 }
2707 out:
2708
2709 /*
2710 * order-0: All zones must meet high watermark for a balanced node
2711 * high-order: Balanced zones must make up at least 25% of the node
2712 * for the node to be balanced
2713 */
2714 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2715 cond_resched();
2716
2717 try_to_freeze();
2718
2719 /*
2720 * Fragmentation may mean that the system cannot be
2721 * rebalanced for high-order allocations in all zones.
2722 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2723 * it means the zones have been fully scanned and are still
2724 * not balanced. For high-order allocations, there is
2725 * little point trying all over again as kswapd may
2726 * infinite loop.
2727 *
2728 * Instead, recheck all watermarks at order-0 as they
2729 * are the most important. If watermarks are ok, kswapd will go
2730 * back to sleep. High-order users can still perform direct
2731 * reclaim if they wish.
2732 */
2733 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2734 order = sc.order = 0;
2735
2736 goto loop_again;
2737 }
2738
2739 /*
2740 * If kswapd was reclaiming at a higher order, it has the option of
2741 * sleeping without all zones being balanced. Before it does, it must
2742 * ensure that the watermarks for order-0 on *all* zones are met and
2743 * that the congestion flags are cleared. The congestion flag must
2744 * be cleared as kswapd is the only mechanism that clears the flag
2745 * and it is potentially going to sleep here.
2746 */
2747 if (order) {
2748 int zones_need_compaction = 1;
2749
2750 for (i = 0; i <= end_zone; i++) {
2751 struct zone *zone = pgdat->node_zones + i;
2752
2753 if (!populated_zone(zone))
2754 continue;
2755
2756 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2757 continue;
2758
2759 /* Would compaction fail due to lack of free memory? */
2760 if (COMPACTION_BUILD &&
2761 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2762 goto loop_again;
2763
2764 /* Confirm the zone is balanced for order-0 */
2765 if (!zone_watermark_ok(zone, 0,
2766 high_wmark_pages(zone), 0, 0)) {
2767 order = sc.order = 0;
2768 goto loop_again;
2769 }
2770
2771 /* Check if the memory needs to be defragmented. */
2772 if (zone_watermark_ok(zone, order,
2773 low_wmark_pages(zone), *classzone_idx, 0))
2774 zones_need_compaction = 0;
2775
2776 /* If balanced, clear the congested flag */
2777 zone_clear_flag(zone, ZONE_CONGESTED);
2778 }
2779
2780 if (zones_need_compaction)
2781 compact_pgdat(pgdat, order);
2782 }
2783
2784 /*
2785 * Return the order we were reclaiming at so sleeping_prematurely()
2786 * makes a decision on the order we were last reclaiming at. However,
2787 * if another caller entered the allocator slow path while kswapd
2788 * was awake, order will remain at the higher level
2789 */
2790 *classzone_idx = end_zone;
2791 return order;
2792 }
2793
2794 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2795 {
2796 long remaining = 0;
2797 DEFINE_WAIT(wait);
2798
2799 if (freezing(current) || kthread_should_stop())
2800 return;
2801
2802 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2803
2804 /* Try to sleep for a short interval */
2805 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2806 remaining = schedule_timeout(HZ/10);
2807 finish_wait(&pgdat->kswapd_wait, &wait);
2808 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2809 }
2810
2811 /*
2812 * After a short sleep, check if it was a premature sleep. If not, then
2813 * go fully to sleep until explicitly woken up.
2814 */
2815 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2816 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2817
2818 /*
2819 * vmstat counters are not perfectly accurate and the estimated
2820 * value for counters such as NR_FREE_PAGES can deviate from the
2821 * true value by nr_online_cpus * threshold. To avoid the zone
2822 * watermarks being breached while under pressure, we reduce the
2823 * per-cpu vmstat threshold while kswapd is awake and restore
2824 * them before going back to sleep.
2825 */
2826 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2827 schedule();
2828 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2829 } else {
2830 if (remaining)
2831 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2832 else
2833 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2834 }
2835 finish_wait(&pgdat->kswapd_wait, &wait);
2836 }
2837
2838 /*
2839 * The background pageout daemon, started as a kernel thread
2840 * from the init process.
2841 *
2842 * This basically trickles out pages so that we have _some_
2843 * free memory available even if there is no other activity
2844 * that frees anything up. This is needed for things like routing
2845 * etc, where we otherwise might have all activity going on in
2846 * asynchronous contexts that cannot page things out.
2847 *
2848 * If there are applications that are active memory-allocators
2849 * (most normal use), this basically shouldn't matter.
2850 */
2851 static int kswapd(void *p)
2852 {
2853 unsigned long order, new_order;
2854 unsigned balanced_order;
2855 int classzone_idx, new_classzone_idx;
2856 int balanced_classzone_idx;
2857 pg_data_t *pgdat = (pg_data_t*)p;
2858 struct task_struct *tsk = current;
2859
2860 struct reclaim_state reclaim_state = {
2861 .reclaimed_slab = 0,
2862 };
2863 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2864
2865 lockdep_set_current_reclaim_state(GFP_KERNEL);
2866
2867 if (!cpumask_empty(cpumask))
2868 set_cpus_allowed_ptr(tsk, cpumask);
2869 current->reclaim_state = &reclaim_state;
2870
2871 /*
2872 * Tell the memory management that we're a "memory allocator",
2873 * and that if we need more memory we should get access to it
2874 * regardless (see "__alloc_pages()"). "kswapd" should
2875 * never get caught in the normal page freeing logic.
2876 *
2877 * (Kswapd normally doesn't need memory anyway, but sometimes
2878 * you need a small amount of memory in order to be able to
2879 * page out something else, and this flag essentially protects
2880 * us from recursively trying to free more memory as we're
2881 * trying to free the first piece of memory in the first place).
2882 */
2883 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2884 set_freezable();
2885
2886 order = new_order = 0;
2887 balanced_order = 0;
2888 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2889 balanced_classzone_idx = classzone_idx;
2890 for ( ; ; ) {
2891 int ret;
2892
2893 /*
2894 * If the last balance_pgdat was unsuccessful it's unlikely a
2895 * new request of a similar or harder type will succeed soon
2896 * so consider going to sleep on the basis we reclaimed at
2897 */
2898 if (balanced_classzone_idx >= new_classzone_idx &&
2899 balanced_order == new_order) {
2900 new_order = pgdat->kswapd_max_order;
2901 new_classzone_idx = pgdat->classzone_idx;
2902 pgdat->kswapd_max_order = 0;
2903 pgdat->classzone_idx = pgdat->nr_zones - 1;
2904 }
2905
2906 if (order < new_order || classzone_idx > new_classzone_idx) {
2907 /*
2908 * Don't sleep if someone wants a larger 'order'
2909 * allocation or has tigher zone constraints
2910 */
2911 order = new_order;
2912 classzone_idx = new_classzone_idx;
2913 } else {
2914 kswapd_try_to_sleep(pgdat, balanced_order,
2915 balanced_classzone_idx);
2916 order = pgdat->kswapd_max_order;
2917 classzone_idx = pgdat->classzone_idx;
2918 new_order = order;
2919 new_classzone_idx = classzone_idx;
2920 pgdat->kswapd_max_order = 0;
2921 pgdat->classzone_idx = pgdat->nr_zones - 1;
2922 }
2923
2924 ret = try_to_freeze();
2925 if (kthread_should_stop())
2926 break;
2927
2928 /*
2929 * We can speed up thawing tasks if we don't call balance_pgdat
2930 * after returning from the refrigerator
2931 */
2932 if (!ret) {
2933 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2934 balanced_classzone_idx = classzone_idx;
2935 balanced_order = balance_pgdat(pgdat, order,
2936 &balanced_classzone_idx);
2937 }
2938 }
2939 return 0;
2940 }
2941
2942 /*
2943 * A zone is low on free memory, so wake its kswapd task to service it.
2944 */
2945 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2946 {
2947 pg_data_t *pgdat;
2948
2949 if (!populated_zone(zone))
2950 return;
2951
2952 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2953 return;
2954 pgdat = zone->zone_pgdat;
2955 if (pgdat->kswapd_max_order < order) {
2956 pgdat->kswapd_max_order = order;
2957 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2958 }
2959 if (!waitqueue_active(&pgdat->kswapd_wait))
2960 return;
2961 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2962 return;
2963
2964 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2965 wake_up_interruptible(&pgdat->kswapd_wait);
2966 }
2967
2968 /*
2969 * The reclaimable count would be mostly accurate.
2970 * The less reclaimable pages may be
2971 * - mlocked pages, which will be moved to unevictable list when encountered
2972 * - mapped pages, which may require several travels to be reclaimed
2973 * - dirty pages, which is not "instantly" reclaimable
2974 */
2975 unsigned long global_reclaimable_pages(void)
2976 {
2977 int nr;
2978
2979 nr = global_page_state(NR_ACTIVE_FILE) +
2980 global_page_state(NR_INACTIVE_FILE);
2981
2982 if (nr_swap_pages > 0)
2983 nr += global_page_state(NR_ACTIVE_ANON) +
2984 global_page_state(NR_INACTIVE_ANON);
2985
2986 return nr;
2987 }
2988
2989 unsigned long zone_reclaimable_pages(struct zone *zone)
2990 {
2991 int nr;
2992
2993 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2994 zone_page_state(zone, NR_INACTIVE_FILE);
2995
2996 if (nr_swap_pages > 0)
2997 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2998 zone_page_state(zone, NR_INACTIVE_ANON);
2999
3000 return nr;
3001 }
3002
3003 #ifdef CONFIG_HIBERNATION
3004 /*
3005 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3006 * freed pages.
3007 *
3008 * Rather than trying to age LRUs the aim is to preserve the overall
3009 * LRU order by reclaiming preferentially
3010 * inactive > active > active referenced > active mapped
3011 */
3012 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3013 {
3014 struct reclaim_state reclaim_state;
3015 struct scan_control sc = {
3016 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3017 .may_swap = 1,
3018 .may_unmap = 1,
3019 .may_writepage = 1,
3020 .nr_to_reclaim = nr_to_reclaim,
3021 .hibernation_mode = 1,
3022 .order = 0,
3023 };
3024 struct shrink_control shrink = {
3025 .gfp_mask = sc.gfp_mask,
3026 };
3027 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3028 struct task_struct *p = current;
3029 unsigned long nr_reclaimed;
3030
3031 p->flags |= PF_MEMALLOC;
3032 lockdep_set_current_reclaim_state(sc.gfp_mask);
3033 reclaim_state.reclaimed_slab = 0;
3034 p->reclaim_state = &reclaim_state;
3035
3036 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3037
3038 p->reclaim_state = NULL;
3039 lockdep_clear_current_reclaim_state();
3040 p->flags &= ~PF_MEMALLOC;
3041
3042 return nr_reclaimed;
3043 }
3044 #endif /* CONFIG_HIBERNATION */
3045
3046 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3047 not required for correctness. So if the last cpu in a node goes
3048 away, we get changed to run anywhere: as the first one comes back,
3049 restore their cpu bindings. */
3050 static int __devinit cpu_callback(struct notifier_block *nfb,
3051 unsigned long action, void *hcpu)
3052 {
3053 int nid;
3054
3055 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3056 for_each_node_state(nid, N_HIGH_MEMORY) {
3057 pg_data_t *pgdat = NODE_DATA(nid);
3058 const struct cpumask *mask;
3059
3060 mask = cpumask_of_node(pgdat->node_id);
3061
3062 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3063 /* One of our CPUs online: restore mask */
3064 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3065 }
3066 }
3067 return NOTIFY_OK;
3068 }
3069
3070 /*
3071 * This kswapd start function will be called by init and node-hot-add.
3072 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3073 */
3074 int kswapd_run(int nid)
3075 {
3076 pg_data_t *pgdat = NODE_DATA(nid);
3077 int ret = 0;
3078
3079 if (pgdat->kswapd)
3080 return 0;
3081
3082 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3083 if (IS_ERR(pgdat->kswapd)) {
3084 /* failure at boot is fatal */
3085 BUG_ON(system_state == SYSTEM_BOOTING);
3086 printk("Failed to start kswapd on node %d\n",nid);
3087 ret = -1;
3088 }
3089 return ret;
3090 }
3091
3092 /*
3093 * Called by memory hotplug when all memory in a node is offlined.
3094 */
3095 void kswapd_stop(int nid)
3096 {
3097 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3098
3099 if (kswapd)
3100 kthread_stop(kswapd);
3101 }
3102
3103 static int __init kswapd_init(void)
3104 {
3105 int nid;
3106
3107 swap_setup();
3108 for_each_node_state(nid, N_HIGH_MEMORY)
3109 kswapd_run(nid);
3110 hotcpu_notifier(cpu_callback, 0);
3111 return 0;
3112 }
3113
3114 module_init(kswapd_init)
3115
3116 #ifdef CONFIG_NUMA
3117 /*
3118 * Zone reclaim mode
3119 *
3120 * If non-zero call zone_reclaim when the number of free pages falls below
3121 * the watermarks.
3122 */
3123 int zone_reclaim_mode __read_mostly;
3124
3125 #define RECLAIM_OFF 0
3126 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3127 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3128 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3129
3130 /*
3131 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3132 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3133 * a zone.
3134 */
3135 #define ZONE_RECLAIM_PRIORITY 4
3136
3137 /*
3138 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3139 * occur.
3140 */
3141 int sysctl_min_unmapped_ratio = 1;
3142
3143 /*
3144 * If the number of slab pages in a zone grows beyond this percentage then
3145 * slab reclaim needs to occur.
3146 */
3147 int sysctl_min_slab_ratio = 5;
3148
3149 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3150 {
3151 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3152 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3153 zone_page_state(zone, NR_ACTIVE_FILE);
3154
3155 /*
3156 * It's possible for there to be more file mapped pages than
3157 * accounted for by the pages on the file LRU lists because
3158 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3159 */
3160 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3161 }
3162
3163 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3164 static long zone_pagecache_reclaimable(struct zone *zone)
3165 {
3166 long nr_pagecache_reclaimable;
3167 long delta = 0;
3168
3169 /*
3170 * If RECLAIM_SWAP is set, then all file pages are considered
3171 * potentially reclaimable. Otherwise, we have to worry about
3172 * pages like swapcache and zone_unmapped_file_pages() provides
3173 * a better estimate
3174 */
3175 if (zone_reclaim_mode & RECLAIM_SWAP)
3176 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3177 else
3178 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3179
3180 /* If we can't clean pages, remove dirty pages from consideration */
3181 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3182 delta += zone_page_state(zone, NR_FILE_DIRTY);
3183
3184 /* Watch for any possible underflows due to delta */
3185 if (unlikely(delta > nr_pagecache_reclaimable))
3186 delta = nr_pagecache_reclaimable;
3187
3188 return nr_pagecache_reclaimable - delta;
3189 }
3190
3191 /*
3192 * Try to free up some pages from this zone through reclaim.
3193 */
3194 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3195 {
3196 /* Minimum pages needed in order to stay on node */
3197 const unsigned long nr_pages = 1 << order;
3198 struct task_struct *p = current;
3199 struct reclaim_state reclaim_state;
3200 int priority;
3201 struct scan_control sc = {
3202 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3203 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3204 .may_swap = 1,
3205 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3206 SWAP_CLUSTER_MAX),
3207 .gfp_mask = gfp_mask,
3208 .order = order,
3209 };
3210 struct shrink_control shrink = {
3211 .gfp_mask = sc.gfp_mask,
3212 };
3213 unsigned long nr_slab_pages0, nr_slab_pages1;
3214
3215 cond_resched();
3216 /*
3217 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3218 * and we also need to be able to write out pages for RECLAIM_WRITE
3219 * and RECLAIM_SWAP.
3220 */
3221 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3222 lockdep_set_current_reclaim_state(gfp_mask);
3223 reclaim_state.reclaimed_slab = 0;
3224 p->reclaim_state = &reclaim_state;
3225
3226 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3227 /*
3228 * Free memory by calling shrink zone with increasing
3229 * priorities until we have enough memory freed.
3230 */
3231 priority = ZONE_RECLAIM_PRIORITY;
3232 do {
3233 shrink_zone(priority, zone, &sc);
3234 priority--;
3235 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3236 }
3237
3238 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3239 if (nr_slab_pages0 > zone->min_slab_pages) {
3240 /*
3241 * shrink_slab() does not currently allow us to determine how
3242 * many pages were freed in this zone. So we take the current
3243 * number of slab pages and shake the slab until it is reduced
3244 * by the same nr_pages that we used for reclaiming unmapped
3245 * pages.
3246 *
3247 * Note that shrink_slab will free memory on all zones and may
3248 * take a long time.
3249 */
3250 for (;;) {
3251 unsigned long lru_pages = zone_reclaimable_pages(zone);
3252
3253 /* No reclaimable slab or very low memory pressure */
3254 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3255 break;
3256
3257 /* Freed enough memory */
3258 nr_slab_pages1 = zone_page_state(zone,
3259 NR_SLAB_RECLAIMABLE);
3260 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3261 break;
3262 }
3263
3264 /*
3265 * Update nr_reclaimed by the number of slab pages we
3266 * reclaimed from this zone.
3267 */
3268 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3269 if (nr_slab_pages1 < nr_slab_pages0)
3270 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3271 }
3272
3273 p->reclaim_state = NULL;
3274 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3275 lockdep_clear_current_reclaim_state();
3276 return sc.nr_reclaimed >= nr_pages;
3277 }
3278
3279 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3280 {
3281 int node_id;
3282 int ret;
3283
3284 /*
3285 * Zone reclaim reclaims unmapped file backed pages and
3286 * slab pages if we are over the defined limits.
3287 *
3288 * A small portion of unmapped file backed pages is needed for
3289 * file I/O otherwise pages read by file I/O will be immediately
3290 * thrown out if the zone is overallocated. So we do not reclaim
3291 * if less than a specified percentage of the zone is used by
3292 * unmapped file backed pages.
3293 */
3294 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3295 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3296 return ZONE_RECLAIM_FULL;
3297
3298 if (zone->all_unreclaimable)
3299 return ZONE_RECLAIM_FULL;
3300
3301 /*
3302 * Do not scan if the allocation should not be delayed.
3303 */
3304 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3305 return ZONE_RECLAIM_NOSCAN;
3306
3307 /*
3308 * Only run zone reclaim on the local zone or on zones that do not
3309 * have associated processors. This will favor the local processor
3310 * over remote processors and spread off node memory allocations
3311 * as wide as possible.
3312 */
3313 node_id = zone_to_nid(zone);
3314 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3315 return ZONE_RECLAIM_NOSCAN;
3316
3317 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3318 return ZONE_RECLAIM_NOSCAN;
3319
3320 ret = __zone_reclaim(zone, gfp_mask, order);
3321 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3322
3323 if (!ret)
3324 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3325
3326 return ret;
3327 }
3328 #endif
3329
3330 /*
3331 * page_evictable - test whether a page is evictable
3332 * @page: the page to test
3333 * @vma: the VMA in which the page is or will be mapped, may be NULL
3334 *
3335 * Test whether page is evictable--i.e., should be placed on active/inactive
3336 * lists vs unevictable list. The vma argument is !NULL when called from the
3337 * fault path to determine how to instantate a new page.
3338 *
3339 * Reasons page might not be evictable:
3340 * (1) page's mapping marked unevictable
3341 * (2) page is part of an mlocked VMA
3342 *
3343 */
3344 int page_evictable(struct page *page, struct vm_area_struct *vma)
3345 {
3346
3347 if (mapping_unevictable(page_mapping(page)))
3348 return 0;
3349
3350 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3351 return 0;
3352
3353 return 1;
3354 }
3355
3356 #ifdef CONFIG_SHMEM
3357 /**
3358 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3359 * @pages: array of pages to check
3360 * @nr_pages: number of pages to check
3361 *
3362 * Checks pages for evictability and moves them to the appropriate lru list.
3363 *
3364 * This function is only used for SysV IPC SHM_UNLOCK.
3365 */
3366 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3367 {
3368 struct lruvec *lruvec;
3369 struct zone *zone = NULL;
3370 int pgscanned = 0;
3371 int pgrescued = 0;
3372 int i;
3373
3374 for (i = 0; i < nr_pages; i++) {
3375 struct page *page = pages[i];
3376 struct zone *pagezone;
3377
3378 pgscanned++;
3379 pagezone = page_zone(page);
3380 if (pagezone != zone) {
3381 if (zone)
3382 spin_unlock_irq(&zone->lru_lock);
3383 zone = pagezone;
3384 spin_lock_irq(&zone->lru_lock);
3385 }
3386
3387 if (!PageLRU(page) || !PageUnevictable(page))
3388 continue;
3389
3390 if (page_evictable(page, NULL)) {
3391 enum lru_list lru = page_lru_base_type(page);
3392
3393 VM_BUG_ON(PageActive(page));
3394 ClearPageUnevictable(page);
3395 __dec_zone_state(zone, NR_UNEVICTABLE);
3396 lruvec = mem_cgroup_lru_move_lists(zone, page,
3397 LRU_UNEVICTABLE, lru);
3398 list_move(&page->lru, &lruvec->lists[lru]);
3399 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3400 pgrescued++;
3401 }
3402 }
3403
3404 if (zone) {
3405 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3406 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3407 spin_unlock_irq(&zone->lru_lock);
3408 }
3409 }
3410 #endif /* CONFIG_SHMEM */
3411
3412 static void warn_scan_unevictable_pages(void)
3413 {
3414 printk_once(KERN_WARNING
3415 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3416 "disabled for lack of a legitimate use case. If you have "
3417 "one, please send an email to linux-mm@kvack.org.\n",
3418 current->comm);
3419 }
3420
3421 /*
3422 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3423 * all nodes' unevictable lists for evictable pages
3424 */
3425 unsigned long scan_unevictable_pages;
3426
3427 int scan_unevictable_handler(struct ctl_table *table, int write,
3428 void __user *buffer,
3429 size_t *length, loff_t *ppos)
3430 {
3431 warn_scan_unevictable_pages();
3432 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3433 scan_unevictable_pages = 0;
3434 return 0;
3435 }
3436
3437 #ifdef CONFIG_NUMA
3438 /*
3439 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3440 * a specified node's per zone unevictable lists for evictable pages.
3441 */
3442
3443 static ssize_t read_scan_unevictable_node(struct device *dev,
3444 struct device_attribute *attr,
3445 char *buf)
3446 {
3447 warn_scan_unevictable_pages();
3448 return sprintf(buf, "0\n"); /* always zero; should fit... */
3449 }
3450
3451 static ssize_t write_scan_unevictable_node(struct device *dev,
3452 struct device_attribute *attr,
3453 const char *buf, size_t count)
3454 {
3455 warn_scan_unevictable_pages();
3456 return 1;
3457 }
3458
3459
3460 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3461 read_scan_unevictable_node,
3462 write_scan_unevictable_node);
3463
3464 int scan_unevictable_register_node(struct node *node)
3465 {
3466 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3467 }
3468
3469 void scan_unevictable_unregister_node(struct node *node)
3470 {
3471 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3472 }
3473 #endif