]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 /* Allocation order */
72 int order;
73
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
79
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
85
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
108
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
119 };
120
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148
149 /*
150 * From 0 .. 100. Higher means more swappy.
151 */
152 int vm_swappiness = 60;
153 /*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157 unsigned long vm_total_pages;
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 return !sc->target_mem_cgroup;
166 }
167
168 /**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 return true;
197 }
198
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 return true;
202 }
203 #endif
204
205 /*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221 }
222
223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224 {
225 unsigned long nr;
226
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230
231 if (get_nr_swap_pages() > 0)
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235
236 return nr;
237 }
238
239 /**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 {
247 unsigned long lru_size;
248 int zid;
249
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
258
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
271
272 }
273
274 /*
275 * Add a shrinker callback to be called from the vm.
276 */
277 int prealloc_shrinker(struct shrinker *shrinker)
278 {
279 size_t size = sizeof(*shrinker->nr_deferred);
280
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
287 return 0;
288 }
289
290 void free_prealloced_shrinker(struct shrinker *shrinker)
291 {
292 kfree(shrinker->nr_deferred);
293 shrinker->nr_deferred = NULL;
294 }
295
296 void register_shrinker_prepared(struct shrinker *shrinker)
297 {
298 down_write(&shrinker_rwsem);
299 list_add_tail(&shrinker->list, &shrinker_list);
300 up_write(&shrinker_rwsem);
301 }
302
303 int register_shrinker(struct shrinker *shrinker)
304 {
305 int err = prealloc_shrinker(shrinker);
306
307 if (err)
308 return err;
309 register_shrinker_prepared(shrinker);
310 return 0;
311 }
312 EXPORT_SYMBOL(register_shrinker);
313
314 /*
315 * Remove one
316 */
317 void unregister_shrinker(struct shrinker *shrinker)
318 {
319 if (!shrinker->nr_deferred)
320 return;
321 down_write(&shrinker_rwsem);
322 list_del(&shrinker->list);
323 up_write(&shrinker_rwsem);
324 kfree(shrinker->nr_deferred);
325 shrinker->nr_deferred = NULL;
326 }
327 EXPORT_SYMBOL(unregister_shrinker);
328
329 #define SHRINK_BATCH 128
330
331 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
332 struct shrinker *shrinker,
333 unsigned long nr_scanned,
334 unsigned long nr_eligible)
335 {
336 unsigned long freed = 0;
337 unsigned long long delta;
338 long total_scan;
339 long freeable;
340 long nr;
341 long new_nr;
342 int nid = shrinkctl->nid;
343 long batch_size = shrinker->batch ? shrinker->batch
344 : SHRINK_BATCH;
345 long scanned = 0, next_deferred;
346
347 freeable = shrinker->count_objects(shrinker, shrinkctl);
348 if (freeable == 0)
349 return 0;
350
351 /*
352 * copy the current shrinker scan count into a local variable
353 * and zero it so that other concurrent shrinker invocations
354 * don't also do this scanning work.
355 */
356 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
357
358 total_scan = nr;
359 delta = (4 * nr_scanned) / shrinker->seeks;
360 delta *= freeable;
361 do_div(delta, nr_eligible + 1);
362 total_scan += delta;
363 if (total_scan < 0) {
364 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
365 shrinker->scan_objects, total_scan);
366 total_scan = freeable;
367 next_deferred = nr;
368 } else
369 next_deferred = total_scan;
370
371 /*
372 * We need to avoid excessive windup on filesystem shrinkers
373 * due to large numbers of GFP_NOFS allocations causing the
374 * shrinkers to return -1 all the time. This results in a large
375 * nr being built up so when a shrink that can do some work
376 * comes along it empties the entire cache due to nr >>>
377 * freeable. This is bad for sustaining a working set in
378 * memory.
379 *
380 * Hence only allow the shrinker to scan the entire cache when
381 * a large delta change is calculated directly.
382 */
383 if (delta < freeable / 4)
384 total_scan = min(total_scan, freeable / 2);
385
386 /*
387 * Avoid risking looping forever due to too large nr value:
388 * never try to free more than twice the estimate number of
389 * freeable entries.
390 */
391 if (total_scan > freeable * 2)
392 total_scan = freeable * 2;
393
394 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
395 nr_scanned, nr_eligible,
396 freeable, delta, total_scan);
397
398 /*
399 * Normally, we should not scan less than batch_size objects in one
400 * pass to avoid too frequent shrinker calls, but if the slab has less
401 * than batch_size objects in total and we are really tight on memory,
402 * we will try to reclaim all available objects, otherwise we can end
403 * up failing allocations although there are plenty of reclaimable
404 * objects spread over several slabs with usage less than the
405 * batch_size.
406 *
407 * We detect the "tight on memory" situations by looking at the total
408 * number of objects we want to scan (total_scan). If it is greater
409 * than the total number of objects on slab (freeable), we must be
410 * scanning at high prio and therefore should try to reclaim as much as
411 * possible.
412 */
413 while (total_scan >= batch_size ||
414 total_scan >= freeable) {
415 unsigned long ret;
416 unsigned long nr_to_scan = min(batch_size, total_scan);
417
418 shrinkctl->nr_to_scan = nr_to_scan;
419 shrinkctl->nr_scanned = nr_to_scan;
420 ret = shrinker->scan_objects(shrinker, shrinkctl);
421 if (ret == SHRINK_STOP)
422 break;
423 freed += ret;
424
425 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
426 total_scan -= shrinkctl->nr_scanned;
427 scanned += shrinkctl->nr_scanned;
428
429 cond_resched();
430 }
431
432 if (next_deferred >= scanned)
433 next_deferred -= scanned;
434 else
435 next_deferred = 0;
436 /*
437 * move the unused scan count back into the shrinker in a
438 * manner that handles concurrent updates. If we exhausted the
439 * scan, there is no need to do an update.
440 */
441 if (next_deferred > 0)
442 new_nr = atomic_long_add_return(next_deferred,
443 &shrinker->nr_deferred[nid]);
444 else
445 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
446
447 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
448 return freed;
449 }
450
451 /**
452 * shrink_slab - shrink slab caches
453 * @gfp_mask: allocation context
454 * @nid: node whose slab caches to target
455 * @memcg: memory cgroup whose slab caches to target
456 * @nr_scanned: pressure numerator
457 * @nr_eligible: pressure denominator
458 *
459 * Call the shrink functions to age shrinkable caches.
460 *
461 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
462 * unaware shrinkers will receive a node id of 0 instead.
463 *
464 * @memcg specifies the memory cgroup to target. If it is not NULL,
465 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
466 * objects from the memory cgroup specified. Otherwise, only unaware
467 * shrinkers are called.
468 *
469 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
470 * the available objects should be scanned. Page reclaim for example
471 * passes the number of pages scanned and the number of pages on the
472 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
473 * when it encountered mapped pages. The ratio is further biased by
474 * the ->seeks setting of the shrink function, which indicates the
475 * cost to recreate an object relative to that of an LRU page.
476 *
477 * Returns the number of reclaimed slab objects.
478 */
479 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
480 struct mem_cgroup *memcg,
481 unsigned long nr_scanned,
482 unsigned long nr_eligible)
483 {
484 struct shrinker *shrinker;
485 unsigned long freed = 0;
486
487 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
488 return 0;
489
490 if (nr_scanned == 0)
491 nr_scanned = SWAP_CLUSTER_MAX;
492
493 if (!down_read_trylock(&shrinker_rwsem)) {
494 /*
495 * If we would return 0, our callers would understand that we
496 * have nothing else to shrink and give up trying. By returning
497 * 1 we keep it going and assume we'll be able to shrink next
498 * time.
499 */
500 freed = 1;
501 goto out;
502 }
503
504 list_for_each_entry(shrinker, &shrinker_list, list) {
505 struct shrink_control sc = {
506 .gfp_mask = gfp_mask,
507 .nid = nid,
508 .memcg = memcg,
509 };
510
511 /*
512 * If kernel memory accounting is disabled, we ignore
513 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
514 * passing NULL for memcg.
515 */
516 if (memcg_kmem_enabled() &&
517 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
518 continue;
519
520 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
521 sc.nid = 0;
522
523 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
524 }
525
526 up_read(&shrinker_rwsem);
527 out:
528 cond_resched();
529 return freed;
530 }
531
532 void drop_slab_node(int nid)
533 {
534 unsigned long freed;
535
536 do {
537 struct mem_cgroup *memcg = NULL;
538
539 freed = 0;
540 do {
541 freed += shrink_slab(GFP_KERNEL, nid, memcg,
542 1000, 1000);
543 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
544 } while (freed > 10);
545 }
546
547 void drop_slab(void)
548 {
549 int nid;
550
551 for_each_online_node(nid)
552 drop_slab_node(nid);
553 }
554
555 static inline int is_page_cache_freeable(struct page *page)
556 {
557 /*
558 * A freeable page cache page is referenced only by the caller
559 * that isolated the page, the page cache radix tree and
560 * optional buffer heads at page->private.
561 */
562 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
563 HPAGE_PMD_NR : 1;
564 return page_count(page) - page_has_private(page) == 1 + radix_pins;
565 }
566
567 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
568 {
569 if (current->flags & PF_SWAPWRITE)
570 return 1;
571 if (!inode_write_congested(inode))
572 return 1;
573 if (inode_to_bdi(inode) == current->backing_dev_info)
574 return 1;
575 return 0;
576 }
577
578 /*
579 * We detected a synchronous write error writing a page out. Probably
580 * -ENOSPC. We need to propagate that into the address_space for a subsequent
581 * fsync(), msync() or close().
582 *
583 * The tricky part is that after writepage we cannot touch the mapping: nothing
584 * prevents it from being freed up. But we have a ref on the page and once
585 * that page is locked, the mapping is pinned.
586 *
587 * We're allowed to run sleeping lock_page() here because we know the caller has
588 * __GFP_FS.
589 */
590 static void handle_write_error(struct address_space *mapping,
591 struct page *page, int error)
592 {
593 lock_page(page);
594 if (page_mapping(page) == mapping)
595 mapping_set_error(mapping, error);
596 unlock_page(page);
597 }
598
599 /* possible outcome of pageout() */
600 typedef enum {
601 /* failed to write page out, page is locked */
602 PAGE_KEEP,
603 /* move page to the active list, page is locked */
604 PAGE_ACTIVATE,
605 /* page has been sent to the disk successfully, page is unlocked */
606 PAGE_SUCCESS,
607 /* page is clean and locked */
608 PAGE_CLEAN,
609 } pageout_t;
610
611 /*
612 * pageout is called by shrink_page_list() for each dirty page.
613 * Calls ->writepage().
614 */
615 static pageout_t pageout(struct page *page, struct address_space *mapping,
616 struct scan_control *sc)
617 {
618 /*
619 * If the page is dirty, only perform writeback if that write
620 * will be non-blocking. To prevent this allocation from being
621 * stalled by pagecache activity. But note that there may be
622 * stalls if we need to run get_block(). We could test
623 * PagePrivate for that.
624 *
625 * If this process is currently in __generic_file_write_iter() against
626 * this page's queue, we can perform writeback even if that
627 * will block.
628 *
629 * If the page is swapcache, write it back even if that would
630 * block, for some throttling. This happens by accident, because
631 * swap_backing_dev_info is bust: it doesn't reflect the
632 * congestion state of the swapdevs. Easy to fix, if needed.
633 */
634 if (!is_page_cache_freeable(page))
635 return PAGE_KEEP;
636 if (!mapping) {
637 /*
638 * Some data journaling orphaned pages can have
639 * page->mapping == NULL while being dirty with clean buffers.
640 */
641 if (page_has_private(page)) {
642 if (try_to_free_buffers(page)) {
643 ClearPageDirty(page);
644 pr_info("%s: orphaned page\n", __func__);
645 return PAGE_CLEAN;
646 }
647 }
648 return PAGE_KEEP;
649 }
650 if (mapping->a_ops->writepage == NULL)
651 return PAGE_ACTIVATE;
652 if (!may_write_to_inode(mapping->host, sc))
653 return PAGE_KEEP;
654
655 if (clear_page_dirty_for_io(page)) {
656 int res;
657 struct writeback_control wbc = {
658 .sync_mode = WB_SYNC_NONE,
659 .nr_to_write = SWAP_CLUSTER_MAX,
660 .range_start = 0,
661 .range_end = LLONG_MAX,
662 .for_reclaim = 1,
663 };
664
665 SetPageReclaim(page);
666 res = mapping->a_ops->writepage(page, &wbc);
667 if (res < 0)
668 handle_write_error(mapping, page, res);
669 if (res == AOP_WRITEPAGE_ACTIVATE) {
670 ClearPageReclaim(page);
671 return PAGE_ACTIVATE;
672 }
673
674 if (!PageWriteback(page)) {
675 /* synchronous write or broken a_ops? */
676 ClearPageReclaim(page);
677 }
678 trace_mm_vmscan_writepage(page);
679 inc_node_page_state(page, NR_VMSCAN_WRITE);
680 return PAGE_SUCCESS;
681 }
682
683 return PAGE_CLEAN;
684 }
685
686 /*
687 * Same as remove_mapping, but if the page is removed from the mapping, it
688 * gets returned with a refcount of 0.
689 */
690 static int __remove_mapping(struct address_space *mapping, struct page *page,
691 bool reclaimed)
692 {
693 unsigned long flags;
694 int refcount;
695
696 BUG_ON(!PageLocked(page));
697 BUG_ON(mapping != page_mapping(page));
698
699 spin_lock_irqsave(&mapping->tree_lock, flags);
700 /*
701 * The non racy check for a busy page.
702 *
703 * Must be careful with the order of the tests. When someone has
704 * a ref to the page, it may be possible that they dirty it then
705 * drop the reference. So if PageDirty is tested before page_count
706 * here, then the following race may occur:
707 *
708 * get_user_pages(&page);
709 * [user mapping goes away]
710 * write_to(page);
711 * !PageDirty(page) [good]
712 * SetPageDirty(page);
713 * put_page(page);
714 * !page_count(page) [good, discard it]
715 *
716 * [oops, our write_to data is lost]
717 *
718 * Reversing the order of the tests ensures such a situation cannot
719 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
720 * load is not satisfied before that of page->_refcount.
721 *
722 * Note that if SetPageDirty is always performed via set_page_dirty,
723 * and thus under tree_lock, then this ordering is not required.
724 */
725 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
726 refcount = 1 + HPAGE_PMD_NR;
727 else
728 refcount = 2;
729 if (!page_ref_freeze(page, refcount))
730 goto cannot_free;
731 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
732 if (unlikely(PageDirty(page))) {
733 page_ref_unfreeze(page, refcount);
734 goto cannot_free;
735 }
736
737 if (PageSwapCache(page)) {
738 swp_entry_t swap = { .val = page_private(page) };
739 mem_cgroup_swapout(page, swap);
740 __delete_from_swap_cache(page);
741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
742 put_swap_page(page, swap);
743 } else {
744 void (*freepage)(struct page *);
745 void *shadow = NULL;
746
747 freepage = mapping->a_ops->freepage;
748 /*
749 * Remember a shadow entry for reclaimed file cache in
750 * order to detect refaults, thus thrashing, later on.
751 *
752 * But don't store shadows in an address space that is
753 * already exiting. This is not just an optizimation,
754 * inode reclaim needs to empty out the radix tree or
755 * the nodes are lost. Don't plant shadows behind its
756 * back.
757 *
758 * We also don't store shadows for DAX mappings because the
759 * only page cache pages found in these are zero pages
760 * covering holes, and because we don't want to mix DAX
761 * exceptional entries and shadow exceptional entries in the
762 * same page_tree.
763 */
764 if (reclaimed && page_is_file_cache(page) &&
765 !mapping_exiting(mapping) && !dax_mapping(mapping))
766 shadow = workingset_eviction(mapping, page);
767 __delete_from_page_cache(page, shadow);
768 spin_unlock_irqrestore(&mapping->tree_lock, flags);
769
770 if (freepage != NULL)
771 freepage(page);
772 }
773
774 return 1;
775
776 cannot_free:
777 spin_unlock_irqrestore(&mapping->tree_lock, flags);
778 return 0;
779 }
780
781 /*
782 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
783 * someone else has a ref on the page, abort and return 0. If it was
784 * successfully detached, return 1. Assumes the caller has a single ref on
785 * this page.
786 */
787 int remove_mapping(struct address_space *mapping, struct page *page)
788 {
789 if (__remove_mapping(mapping, page, false)) {
790 /*
791 * Unfreezing the refcount with 1 rather than 2 effectively
792 * drops the pagecache ref for us without requiring another
793 * atomic operation.
794 */
795 page_ref_unfreeze(page, 1);
796 return 1;
797 }
798 return 0;
799 }
800
801 /**
802 * putback_lru_page - put previously isolated page onto appropriate LRU list
803 * @page: page to be put back to appropriate lru list
804 *
805 * Add previously isolated @page to appropriate LRU list.
806 * Page may still be unevictable for other reasons.
807 *
808 * lru_lock must not be held, interrupts must be enabled.
809 */
810 void putback_lru_page(struct page *page)
811 {
812 bool is_unevictable;
813 int was_unevictable = PageUnevictable(page);
814
815 VM_BUG_ON_PAGE(PageLRU(page), page);
816
817 redo:
818 ClearPageUnevictable(page);
819
820 if (page_evictable(page)) {
821 /*
822 * For evictable pages, we can use the cache.
823 * In event of a race, worst case is we end up with an
824 * unevictable page on [in]active list.
825 * We know how to handle that.
826 */
827 is_unevictable = false;
828 lru_cache_add(page);
829 } else {
830 /*
831 * Put unevictable pages directly on zone's unevictable
832 * list.
833 */
834 is_unevictable = true;
835 add_page_to_unevictable_list(page);
836 /*
837 * When racing with an mlock or AS_UNEVICTABLE clearing
838 * (page is unlocked) make sure that if the other thread
839 * does not observe our setting of PG_lru and fails
840 * isolation/check_move_unevictable_pages,
841 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
842 * the page back to the evictable list.
843 *
844 * The other side is TestClearPageMlocked() or shmem_lock().
845 */
846 smp_mb();
847 }
848
849 /*
850 * page's status can change while we move it among lru. If an evictable
851 * page is on unevictable list, it never be freed. To avoid that,
852 * check after we added it to the list, again.
853 */
854 if (is_unevictable && page_evictable(page)) {
855 if (!isolate_lru_page(page)) {
856 put_page(page);
857 goto redo;
858 }
859 /* This means someone else dropped this page from LRU
860 * So, it will be freed or putback to LRU again. There is
861 * nothing to do here.
862 */
863 }
864
865 if (was_unevictable && !is_unevictable)
866 count_vm_event(UNEVICTABLE_PGRESCUED);
867 else if (!was_unevictable && is_unevictable)
868 count_vm_event(UNEVICTABLE_PGCULLED);
869
870 put_page(page); /* drop ref from isolate */
871 }
872
873 enum page_references {
874 PAGEREF_RECLAIM,
875 PAGEREF_RECLAIM_CLEAN,
876 PAGEREF_KEEP,
877 PAGEREF_ACTIVATE,
878 };
879
880 static enum page_references page_check_references(struct page *page,
881 struct scan_control *sc)
882 {
883 int referenced_ptes, referenced_page;
884 unsigned long vm_flags;
885
886 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
887 &vm_flags);
888 referenced_page = TestClearPageReferenced(page);
889
890 /*
891 * Mlock lost the isolation race with us. Let try_to_unmap()
892 * move the page to the unevictable list.
893 */
894 if (vm_flags & VM_LOCKED)
895 return PAGEREF_RECLAIM;
896
897 if (referenced_ptes) {
898 if (PageSwapBacked(page))
899 return PAGEREF_ACTIVATE;
900 /*
901 * All mapped pages start out with page table
902 * references from the instantiating fault, so we need
903 * to look twice if a mapped file page is used more
904 * than once.
905 *
906 * Mark it and spare it for another trip around the
907 * inactive list. Another page table reference will
908 * lead to its activation.
909 *
910 * Note: the mark is set for activated pages as well
911 * so that recently deactivated but used pages are
912 * quickly recovered.
913 */
914 SetPageReferenced(page);
915
916 if (referenced_page || referenced_ptes > 1)
917 return PAGEREF_ACTIVATE;
918
919 /*
920 * Activate file-backed executable pages after first usage.
921 */
922 if (vm_flags & VM_EXEC)
923 return PAGEREF_ACTIVATE;
924
925 return PAGEREF_KEEP;
926 }
927
928 /* Reclaim if clean, defer dirty pages to writeback */
929 if (referenced_page && !PageSwapBacked(page))
930 return PAGEREF_RECLAIM_CLEAN;
931
932 return PAGEREF_RECLAIM;
933 }
934
935 /* Check if a page is dirty or under writeback */
936 static void page_check_dirty_writeback(struct page *page,
937 bool *dirty, bool *writeback)
938 {
939 struct address_space *mapping;
940
941 /*
942 * Anonymous pages are not handled by flushers and must be written
943 * from reclaim context. Do not stall reclaim based on them
944 */
945 if (!page_is_file_cache(page) ||
946 (PageAnon(page) && !PageSwapBacked(page))) {
947 *dirty = false;
948 *writeback = false;
949 return;
950 }
951
952 /* By default assume that the page flags are accurate */
953 *dirty = PageDirty(page);
954 *writeback = PageWriteback(page);
955
956 /* Verify dirty/writeback state if the filesystem supports it */
957 if (!page_has_private(page))
958 return;
959
960 mapping = page_mapping(page);
961 if (mapping && mapping->a_ops->is_dirty_writeback)
962 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
963 }
964
965 struct reclaim_stat {
966 unsigned nr_dirty;
967 unsigned nr_unqueued_dirty;
968 unsigned nr_congested;
969 unsigned nr_writeback;
970 unsigned nr_immediate;
971 unsigned nr_activate;
972 unsigned nr_ref_keep;
973 unsigned nr_unmap_fail;
974 };
975
976 /*
977 * shrink_page_list() returns the number of reclaimed pages
978 */
979 static unsigned long shrink_page_list(struct list_head *page_list,
980 struct pglist_data *pgdat,
981 struct scan_control *sc,
982 enum ttu_flags ttu_flags,
983 struct reclaim_stat *stat,
984 bool force_reclaim)
985 {
986 LIST_HEAD(ret_pages);
987 LIST_HEAD(free_pages);
988 int pgactivate = 0;
989 unsigned nr_unqueued_dirty = 0;
990 unsigned nr_dirty = 0;
991 unsigned nr_congested = 0;
992 unsigned nr_reclaimed = 0;
993 unsigned nr_writeback = 0;
994 unsigned nr_immediate = 0;
995 unsigned nr_ref_keep = 0;
996 unsigned nr_unmap_fail = 0;
997
998 cond_resched();
999
1000 while (!list_empty(page_list)) {
1001 struct address_space *mapping;
1002 struct page *page;
1003 int may_enter_fs;
1004 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1005 bool dirty, writeback;
1006
1007 cond_resched();
1008
1009 page = lru_to_page(page_list);
1010 list_del(&page->lru);
1011
1012 if (!trylock_page(page))
1013 goto keep;
1014
1015 VM_BUG_ON_PAGE(PageActive(page), page);
1016
1017 sc->nr_scanned++;
1018
1019 if (unlikely(!page_evictable(page)))
1020 goto activate_locked;
1021
1022 if (!sc->may_unmap && page_mapped(page))
1023 goto keep_locked;
1024
1025 /* Double the slab pressure for mapped and swapcache pages */
1026 if ((page_mapped(page) || PageSwapCache(page)) &&
1027 !(PageAnon(page) && !PageSwapBacked(page)))
1028 sc->nr_scanned++;
1029
1030 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1031 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1032
1033 /*
1034 * The number of dirty pages determines if a zone is marked
1035 * reclaim_congested which affects wait_iff_congested. kswapd
1036 * will stall and start writing pages if the tail of the LRU
1037 * is all dirty unqueued pages.
1038 */
1039 page_check_dirty_writeback(page, &dirty, &writeback);
1040 if (dirty || writeback)
1041 nr_dirty++;
1042
1043 if (dirty && !writeback)
1044 nr_unqueued_dirty++;
1045
1046 /*
1047 * Treat this page as congested if the underlying BDI is or if
1048 * pages are cycling through the LRU so quickly that the
1049 * pages marked for immediate reclaim are making it to the
1050 * end of the LRU a second time.
1051 */
1052 mapping = page_mapping(page);
1053 if (((dirty || writeback) && mapping &&
1054 inode_write_congested(mapping->host)) ||
1055 (writeback && PageReclaim(page)))
1056 nr_congested++;
1057
1058 /*
1059 * If a page at the tail of the LRU is under writeback, there
1060 * are three cases to consider.
1061 *
1062 * 1) If reclaim is encountering an excessive number of pages
1063 * under writeback and this page is both under writeback and
1064 * PageReclaim then it indicates that pages are being queued
1065 * for IO but are being recycled through the LRU before the
1066 * IO can complete. Waiting on the page itself risks an
1067 * indefinite stall if it is impossible to writeback the
1068 * page due to IO error or disconnected storage so instead
1069 * note that the LRU is being scanned too quickly and the
1070 * caller can stall after page list has been processed.
1071 *
1072 * 2) Global or new memcg reclaim encounters a page that is
1073 * not marked for immediate reclaim, or the caller does not
1074 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1075 * not to fs). In this case mark the page for immediate
1076 * reclaim and continue scanning.
1077 *
1078 * Require may_enter_fs because we would wait on fs, which
1079 * may not have submitted IO yet. And the loop driver might
1080 * enter reclaim, and deadlock if it waits on a page for
1081 * which it is needed to do the write (loop masks off
1082 * __GFP_IO|__GFP_FS for this reason); but more thought
1083 * would probably show more reasons.
1084 *
1085 * 3) Legacy memcg encounters a page that is already marked
1086 * PageReclaim. memcg does not have any dirty pages
1087 * throttling so we could easily OOM just because too many
1088 * pages are in writeback and there is nothing else to
1089 * reclaim. Wait for the writeback to complete.
1090 *
1091 * In cases 1) and 2) we activate the pages to get them out of
1092 * the way while we continue scanning for clean pages on the
1093 * inactive list and refilling from the active list. The
1094 * observation here is that waiting for disk writes is more
1095 * expensive than potentially causing reloads down the line.
1096 * Since they're marked for immediate reclaim, they won't put
1097 * memory pressure on the cache working set any longer than it
1098 * takes to write them to disk.
1099 */
1100 if (PageWriteback(page)) {
1101 /* Case 1 above */
1102 if (current_is_kswapd() &&
1103 PageReclaim(page) &&
1104 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1105 nr_immediate++;
1106 goto activate_locked;
1107
1108 /* Case 2 above */
1109 } else if (sane_reclaim(sc) ||
1110 !PageReclaim(page) || !may_enter_fs) {
1111 /*
1112 * This is slightly racy - end_page_writeback()
1113 * might have just cleared PageReclaim, then
1114 * setting PageReclaim here end up interpreted
1115 * as PageReadahead - but that does not matter
1116 * enough to care. What we do want is for this
1117 * page to have PageReclaim set next time memcg
1118 * reclaim reaches the tests above, so it will
1119 * then wait_on_page_writeback() to avoid OOM;
1120 * and it's also appropriate in global reclaim.
1121 */
1122 SetPageReclaim(page);
1123 nr_writeback++;
1124 goto activate_locked;
1125
1126 /* Case 3 above */
1127 } else {
1128 unlock_page(page);
1129 wait_on_page_writeback(page);
1130 /* then go back and try same page again */
1131 list_add_tail(&page->lru, page_list);
1132 continue;
1133 }
1134 }
1135
1136 if (!force_reclaim)
1137 references = page_check_references(page, sc);
1138
1139 switch (references) {
1140 case PAGEREF_ACTIVATE:
1141 goto activate_locked;
1142 case PAGEREF_KEEP:
1143 nr_ref_keep++;
1144 goto keep_locked;
1145 case PAGEREF_RECLAIM:
1146 case PAGEREF_RECLAIM_CLEAN:
1147 ; /* try to reclaim the page below */
1148 }
1149
1150 /*
1151 * Anonymous process memory has backing store?
1152 * Try to allocate it some swap space here.
1153 * Lazyfree page could be freed directly
1154 */
1155 if (PageAnon(page) && PageSwapBacked(page)) {
1156 if (!PageSwapCache(page)) {
1157 if (!(sc->gfp_mask & __GFP_IO))
1158 goto keep_locked;
1159 if (PageTransHuge(page)) {
1160 /* cannot split THP, skip it */
1161 if (!can_split_huge_page(page, NULL))
1162 goto activate_locked;
1163 /*
1164 * Split pages without a PMD map right
1165 * away. Chances are some or all of the
1166 * tail pages can be freed without IO.
1167 */
1168 if (!compound_mapcount(page) &&
1169 split_huge_page_to_list(page,
1170 page_list))
1171 goto activate_locked;
1172 }
1173 if (!add_to_swap(page)) {
1174 if (!PageTransHuge(page))
1175 goto activate_locked;
1176 /* Fallback to swap normal pages */
1177 if (split_huge_page_to_list(page,
1178 page_list))
1179 goto activate_locked;
1180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1181 count_vm_event(THP_SWPOUT_FALLBACK);
1182 #endif
1183 if (!add_to_swap(page))
1184 goto activate_locked;
1185 }
1186
1187 may_enter_fs = 1;
1188
1189 /* Adding to swap updated mapping */
1190 mapping = page_mapping(page);
1191 }
1192 } else if (unlikely(PageTransHuge(page))) {
1193 /* Split file THP */
1194 if (split_huge_page_to_list(page, page_list))
1195 goto keep_locked;
1196 }
1197
1198 /*
1199 * The page is mapped into the page tables of one or more
1200 * processes. Try to unmap it here.
1201 */
1202 if (page_mapped(page)) {
1203 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1204
1205 if (unlikely(PageTransHuge(page)))
1206 flags |= TTU_SPLIT_HUGE_PMD;
1207 if (!try_to_unmap(page, flags)) {
1208 nr_unmap_fail++;
1209 goto activate_locked;
1210 }
1211 }
1212
1213 if (PageDirty(page)) {
1214 /*
1215 * Only kswapd can writeback filesystem pages
1216 * to avoid risk of stack overflow. But avoid
1217 * injecting inefficient single-page IO into
1218 * flusher writeback as much as possible: only
1219 * write pages when we've encountered many
1220 * dirty pages, and when we've already scanned
1221 * the rest of the LRU for clean pages and see
1222 * the same dirty pages again (PageReclaim).
1223 */
1224 if (page_is_file_cache(page) &&
1225 (!current_is_kswapd() || !PageReclaim(page) ||
1226 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1227 /*
1228 * Immediately reclaim when written back.
1229 * Similar in principal to deactivate_page()
1230 * except we already have the page isolated
1231 * and know it's dirty
1232 */
1233 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1234 SetPageReclaim(page);
1235
1236 goto activate_locked;
1237 }
1238
1239 if (references == PAGEREF_RECLAIM_CLEAN)
1240 goto keep_locked;
1241 if (!may_enter_fs)
1242 goto keep_locked;
1243 if (!sc->may_writepage)
1244 goto keep_locked;
1245
1246 /*
1247 * Page is dirty. Flush the TLB if a writable entry
1248 * potentially exists to avoid CPU writes after IO
1249 * starts and then write it out here.
1250 */
1251 try_to_unmap_flush_dirty();
1252 switch (pageout(page, mapping, sc)) {
1253 case PAGE_KEEP:
1254 goto keep_locked;
1255 case PAGE_ACTIVATE:
1256 goto activate_locked;
1257 case PAGE_SUCCESS:
1258 if (PageWriteback(page))
1259 goto keep;
1260 if (PageDirty(page))
1261 goto keep;
1262
1263 /*
1264 * A synchronous write - probably a ramdisk. Go
1265 * ahead and try to reclaim the page.
1266 */
1267 if (!trylock_page(page))
1268 goto keep;
1269 if (PageDirty(page) || PageWriteback(page))
1270 goto keep_locked;
1271 mapping = page_mapping(page);
1272 case PAGE_CLEAN:
1273 ; /* try to free the page below */
1274 }
1275 }
1276
1277 /*
1278 * If the page has buffers, try to free the buffer mappings
1279 * associated with this page. If we succeed we try to free
1280 * the page as well.
1281 *
1282 * We do this even if the page is PageDirty().
1283 * try_to_release_page() does not perform I/O, but it is
1284 * possible for a page to have PageDirty set, but it is actually
1285 * clean (all its buffers are clean). This happens if the
1286 * buffers were written out directly, with submit_bh(). ext3
1287 * will do this, as well as the blockdev mapping.
1288 * try_to_release_page() will discover that cleanness and will
1289 * drop the buffers and mark the page clean - it can be freed.
1290 *
1291 * Rarely, pages can have buffers and no ->mapping. These are
1292 * the pages which were not successfully invalidated in
1293 * truncate_complete_page(). We try to drop those buffers here
1294 * and if that worked, and the page is no longer mapped into
1295 * process address space (page_count == 1) it can be freed.
1296 * Otherwise, leave the page on the LRU so it is swappable.
1297 */
1298 if (page_has_private(page)) {
1299 if (!try_to_release_page(page, sc->gfp_mask))
1300 goto activate_locked;
1301 if (!mapping && page_count(page) == 1) {
1302 unlock_page(page);
1303 if (put_page_testzero(page))
1304 goto free_it;
1305 else {
1306 /*
1307 * rare race with speculative reference.
1308 * the speculative reference will free
1309 * this page shortly, so we may
1310 * increment nr_reclaimed here (and
1311 * leave it off the LRU).
1312 */
1313 nr_reclaimed++;
1314 continue;
1315 }
1316 }
1317 }
1318
1319 if (PageAnon(page) && !PageSwapBacked(page)) {
1320 /* follow __remove_mapping for reference */
1321 if (!page_ref_freeze(page, 1))
1322 goto keep_locked;
1323 if (PageDirty(page)) {
1324 page_ref_unfreeze(page, 1);
1325 goto keep_locked;
1326 }
1327
1328 count_vm_event(PGLAZYFREED);
1329 count_memcg_page_event(page, PGLAZYFREED);
1330 } else if (!mapping || !__remove_mapping(mapping, page, true))
1331 goto keep_locked;
1332 /*
1333 * At this point, we have no other references and there is
1334 * no way to pick any more up (removed from LRU, removed
1335 * from pagecache). Can use non-atomic bitops now (and
1336 * we obviously don't have to worry about waking up a process
1337 * waiting on the page lock, because there are no references.
1338 */
1339 __ClearPageLocked(page);
1340 free_it:
1341 nr_reclaimed++;
1342
1343 /*
1344 * Is there need to periodically free_page_list? It would
1345 * appear not as the counts should be low
1346 */
1347 if (unlikely(PageTransHuge(page))) {
1348 mem_cgroup_uncharge(page);
1349 (*get_compound_page_dtor(page))(page);
1350 } else
1351 list_add(&page->lru, &free_pages);
1352 continue;
1353
1354 activate_locked:
1355 /* Not a candidate for swapping, so reclaim swap space. */
1356 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1357 PageMlocked(page)))
1358 try_to_free_swap(page);
1359 VM_BUG_ON_PAGE(PageActive(page), page);
1360 if (!PageMlocked(page)) {
1361 SetPageActive(page);
1362 pgactivate++;
1363 count_memcg_page_event(page, PGACTIVATE);
1364 }
1365 keep_locked:
1366 unlock_page(page);
1367 keep:
1368 list_add(&page->lru, &ret_pages);
1369 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1370 }
1371
1372 mem_cgroup_uncharge_list(&free_pages);
1373 try_to_unmap_flush();
1374 free_unref_page_list(&free_pages);
1375
1376 list_splice(&ret_pages, page_list);
1377 count_vm_events(PGACTIVATE, pgactivate);
1378
1379 if (stat) {
1380 stat->nr_dirty = nr_dirty;
1381 stat->nr_congested = nr_congested;
1382 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1383 stat->nr_writeback = nr_writeback;
1384 stat->nr_immediate = nr_immediate;
1385 stat->nr_activate = pgactivate;
1386 stat->nr_ref_keep = nr_ref_keep;
1387 stat->nr_unmap_fail = nr_unmap_fail;
1388 }
1389 return nr_reclaimed;
1390 }
1391
1392 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1393 struct list_head *page_list)
1394 {
1395 struct scan_control sc = {
1396 .gfp_mask = GFP_KERNEL,
1397 .priority = DEF_PRIORITY,
1398 .may_unmap = 1,
1399 };
1400 unsigned long ret;
1401 struct page *page, *next;
1402 LIST_HEAD(clean_pages);
1403
1404 list_for_each_entry_safe(page, next, page_list, lru) {
1405 if (page_is_file_cache(page) && !PageDirty(page) &&
1406 !__PageMovable(page)) {
1407 ClearPageActive(page);
1408 list_move(&page->lru, &clean_pages);
1409 }
1410 }
1411
1412 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1413 TTU_IGNORE_ACCESS, NULL, true);
1414 list_splice(&clean_pages, page_list);
1415 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1416 return ret;
1417 }
1418
1419 /*
1420 * Attempt to remove the specified page from its LRU. Only take this page
1421 * if it is of the appropriate PageActive status. Pages which are being
1422 * freed elsewhere are also ignored.
1423 *
1424 * page: page to consider
1425 * mode: one of the LRU isolation modes defined above
1426 *
1427 * returns 0 on success, -ve errno on failure.
1428 */
1429 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1430 {
1431 int ret = -EINVAL;
1432
1433 /* Only take pages on the LRU. */
1434 if (!PageLRU(page))
1435 return ret;
1436
1437 /* Compaction should not handle unevictable pages but CMA can do so */
1438 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1439 return ret;
1440
1441 ret = -EBUSY;
1442
1443 /*
1444 * To minimise LRU disruption, the caller can indicate that it only
1445 * wants to isolate pages it will be able to operate on without
1446 * blocking - clean pages for the most part.
1447 *
1448 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1449 * that it is possible to migrate without blocking
1450 */
1451 if (mode & ISOLATE_ASYNC_MIGRATE) {
1452 /* All the caller can do on PageWriteback is block */
1453 if (PageWriteback(page))
1454 return ret;
1455
1456 if (PageDirty(page)) {
1457 struct address_space *mapping;
1458 bool migrate_dirty;
1459
1460 /*
1461 * Only pages without mappings or that have a
1462 * ->migratepage callback are possible to migrate
1463 * without blocking. However, we can be racing with
1464 * truncation so it's necessary to lock the page
1465 * to stabilise the mapping as truncation holds
1466 * the page lock until after the page is removed
1467 * from the page cache.
1468 */
1469 if (!trylock_page(page))
1470 return ret;
1471
1472 mapping = page_mapping(page);
1473 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1474 unlock_page(page);
1475 if (!migrate_dirty)
1476 return ret;
1477 }
1478 }
1479
1480 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1481 return ret;
1482
1483 if (likely(get_page_unless_zero(page))) {
1484 /*
1485 * Be careful not to clear PageLRU until after we're
1486 * sure the page is not being freed elsewhere -- the
1487 * page release code relies on it.
1488 */
1489 ClearPageLRU(page);
1490 ret = 0;
1491 }
1492
1493 return ret;
1494 }
1495
1496
1497 /*
1498 * Update LRU sizes after isolating pages. The LRU size updates must
1499 * be complete before mem_cgroup_update_lru_size due to a santity check.
1500 */
1501 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1502 enum lru_list lru, unsigned long *nr_zone_taken)
1503 {
1504 int zid;
1505
1506 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1507 if (!nr_zone_taken[zid])
1508 continue;
1509
1510 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1511 #ifdef CONFIG_MEMCG
1512 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1513 #endif
1514 }
1515
1516 }
1517
1518 /*
1519 * zone_lru_lock is heavily contended. Some of the functions that
1520 * shrink the lists perform better by taking out a batch of pages
1521 * and working on them outside the LRU lock.
1522 *
1523 * For pagecache intensive workloads, this function is the hottest
1524 * spot in the kernel (apart from copy_*_user functions).
1525 *
1526 * Appropriate locks must be held before calling this function.
1527 *
1528 * @nr_to_scan: The number of eligible pages to look through on the list.
1529 * @lruvec: The LRU vector to pull pages from.
1530 * @dst: The temp list to put pages on to.
1531 * @nr_scanned: The number of pages that were scanned.
1532 * @sc: The scan_control struct for this reclaim session
1533 * @mode: One of the LRU isolation modes
1534 * @lru: LRU list id for isolating
1535 *
1536 * returns how many pages were moved onto *@dst.
1537 */
1538 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1539 struct lruvec *lruvec, struct list_head *dst,
1540 unsigned long *nr_scanned, struct scan_control *sc,
1541 isolate_mode_t mode, enum lru_list lru)
1542 {
1543 struct list_head *src = &lruvec->lists[lru];
1544 unsigned long nr_taken = 0;
1545 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1546 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1547 unsigned long skipped = 0;
1548 unsigned long scan, total_scan, nr_pages;
1549 LIST_HEAD(pages_skipped);
1550
1551 scan = 0;
1552 for (total_scan = 0;
1553 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1554 total_scan++) {
1555 struct page *page;
1556
1557 page = lru_to_page(src);
1558 prefetchw_prev_lru_page(page, src, flags);
1559
1560 VM_BUG_ON_PAGE(!PageLRU(page), page);
1561
1562 if (page_zonenum(page) > sc->reclaim_idx) {
1563 list_move(&page->lru, &pages_skipped);
1564 nr_skipped[page_zonenum(page)]++;
1565 continue;
1566 }
1567
1568 /*
1569 * Do not count skipped pages because that makes the function
1570 * return with no isolated pages if the LRU mostly contains
1571 * ineligible pages. This causes the VM to not reclaim any
1572 * pages, triggering a premature OOM.
1573 */
1574 scan++;
1575 switch (__isolate_lru_page(page, mode)) {
1576 case 0:
1577 nr_pages = hpage_nr_pages(page);
1578 nr_taken += nr_pages;
1579 nr_zone_taken[page_zonenum(page)] += nr_pages;
1580 list_move(&page->lru, dst);
1581 break;
1582
1583 case -EBUSY:
1584 /* else it is being freed elsewhere */
1585 list_move(&page->lru, src);
1586 continue;
1587
1588 default:
1589 BUG();
1590 }
1591 }
1592
1593 /*
1594 * Splice any skipped pages to the start of the LRU list. Note that
1595 * this disrupts the LRU order when reclaiming for lower zones but
1596 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1597 * scanning would soon rescan the same pages to skip and put the
1598 * system at risk of premature OOM.
1599 */
1600 if (!list_empty(&pages_skipped)) {
1601 int zid;
1602
1603 list_splice(&pages_skipped, src);
1604 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1605 if (!nr_skipped[zid])
1606 continue;
1607
1608 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1609 skipped += nr_skipped[zid];
1610 }
1611 }
1612 *nr_scanned = total_scan;
1613 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1614 total_scan, skipped, nr_taken, mode, lru);
1615 update_lru_sizes(lruvec, lru, nr_zone_taken);
1616 return nr_taken;
1617 }
1618
1619 /**
1620 * isolate_lru_page - tries to isolate a page from its LRU list
1621 * @page: page to isolate from its LRU list
1622 *
1623 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1624 * vmstat statistic corresponding to whatever LRU list the page was on.
1625 *
1626 * Returns 0 if the page was removed from an LRU list.
1627 * Returns -EBUSY if the page was not on an LRU list.
1628 *
1629 * The returned page will have PageLRU() cleared. If it was found on
1630 * the active list, it will have PageActive set. If it was found on
1631 * the unevictable list, it will have the PageUnevictable bit set. That flag
1632 * may need to be cleared by the caller before letting the page go.
1633 *
1634 * The vmstat statistic corresponding to the list on which the page was
1635 * found will be decremented.
1636 *
1637 * Restrictions:
1638 * (1) Must be called with an elevated refcount on the page. This is a
1639 * fundamentnal difference from isolate_lru_pages (which is called
1640 * without a stable reference).
1641 * (2) the lru_lock must not be held.
1642 * (3) interrupts must be enabled.
1643 */
1644 int isolate_lru_page(struct page *page)
1645 {
1646 int ret = -EBUSY;
1647
1648 VM_BUG_ON_PAGE(!page_count(page), page);
1649 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1650
1651 if (PageLRU(page)) {
1652 struct zone *zone = page_zone(page);
1653 struct lruvec *lruvec;
1654
1655 spin_lock_irq(zone_lru_lock(zone));
1656 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1657 if (PageLRU(page)) {
1658 int lru = page_lru(page);
1659 get_page(page);
1660 ClearPageLRU(page);
1661 del_page_from_lru_list(page, lruvec, lru);
1662 ret = 0;
1663 }
1664 spin_unlock_irq(zone_lru_lock(zone));
1665 }
1666 return ret;
1667 }
1668
1669 /*
1670 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1671 * then get resheduled. When there are massive number of tasks doing page
1672 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1673 * the LRU list will go small and be scanned faster than necessary, leading to
1674 * unnecessary swapping, thrashing and OOM.
1675 */
1676 static int too_many_isolated(struct pglist_data *pgdat, int file,
1677 struct scan_control *sc)
1678 {
1679 unsigned long inactive, isolated;
1680
1681 if (current_is_kswapd())
1682 return 0;
1683
1684 if (!sane_reclaim(sc))
1685 return 0;
1686
1687 if (file) {
1688 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1689 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1690 } else {
1691 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1692 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1693 }
1694
1695 /*
1696 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1697 * won't get blocked by normal direct-reclaimers, forming a circular
1698 * deadlock.
1699 */
1700 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1701 inactive >>= 3;
1702
1703 return isolated > inactive;
1704 }
1705
1706 static noinline_for_stack void
1707 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1708 {
1709 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1710 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1711 LIST_HEAD(pages_to_free);
1712
1713 /*
1714 * Put back any unfreeable pages.
1715 */
1716 while (!list_empty(page_list)) {
1717 struct page *page = lru_to_page(page_list);
1718 int lru;
1719
1720 VM_BUG_ON_PAGE(PageLRU(page), page);
1721 list_del(&page->lru);
1722 if (unlikely(!page_evictable(page))) {
1723 spin_unlock_irq(&pgdat->lru_lock);
1724 putback_lru_page(page);
1725 spin_lock_irq(&pgdat->lru_lock);
1726 continue;
1727 }
1728
1729 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1730
1731 SetPageLRU(page);
1732 lru = page_lru(page);
1733 add_page_to_lru_list(page, lruvec, lru);
1734
1735 if (is_active_lru(lru)) {
1736 int file = is_file_lru(lru);
1737 int numpages = hpage_nr_pages(page);
1738 reclaim_stat->recent_rotated[file] += numpages;
1739 }
1740 if (put_page_testzero(page)) {
1741 __ClearPageLRU(page);
1742 __ClearPageActive(page);
1743 del_page_from_lru_list(page, lruvec, lru);
1744
1745 if (unlikely(PageCompound(page))) {
1746 spin_unlock_irq(&pgdat->lru_lock);
1747 mem_cgroup_uncharge(page);
1748 (*get_compound_page_dtor(page))(page);
1749 spin_lock_irq(&pgdat->lru_lock);
1750 } else
1751 list_add(&page->lru, &pages_to_free);
1752 }
1753 }
1754
1755 /*
1756 * To save our caller's stack, now use input list for pages to free.
1757 */
1758 list_splice(&pages_to_free, page_list);
1759 }
1760
1761 /*
1762 * If a kernel thread (such as nfsd for loop-back mounts) services
1763 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1764 * In that case we should only throttle if the backing device it is
1765 * writing to is congested. In other cases it is safe to throttle.
1766 */
1767 static int current_may_throttle(void)
1768 {
1769 return !(current->flags & PF_LESS_THROTTLE) ||
1770 current->backing_dev_info == NULL ||
1771 bdi_write_congested(current->backing_dev_info);
1772 }
1773
1774 /*
1775 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1776 * of reclaimed pages
1777 */
1778 static noinline_for_stack unsigned long
1779 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1780 struct scan_control *sc, enum lru_list lru)
1781 {
1782 LIST_HEAD(page_list);
1783 unsigned long nr_scanned;
1784 unsigned long nr_reclaimed = 0;
1785 unsigned long nr_taken;
1786 struct reclaim_stat stat = {};
1787 isolate_mode_t isolate_mode = 0;
1788 int file = is_file_lru(lru);
1789 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1790 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1791 bool stalled = false;
1792
1793 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1794 if (stalled)
1795 return 0;
1796
1797 /* wait a bit for the reclaimer. */
1798 msleep(100);
1799 stalled = true;
1800
1801 /* We are about to die and free our memory. Return now. */
1802 if (fatal_signal_pending(current))
1803 return SWAP_CLUSTER_MAX;
1804 }
1805
1806 lru_add_drain();
1807
1808 if (!sc->may_unmap)
1809 isolate_mode |= ISOLATE_UNMAPPED;
1810
1811 spin_lock_irq(&pgdat->lru_lock);
1812
1813 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1814 &nr_scanned, sc, isolate_mode, lru);
1815
1816 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1817 reclaim_stat->recent_scanned[file] += nr_taken;
1818
1819 if (current_is_kswapd()) {
1820 if (global_reclaim(sc))
1821 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1822 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1823 nr_scanned);
1824 } else {
1825 if (global_reclaim(sc))
1826 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1827 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1828 nr_scanned);
1829 }
1830 spin_unlock_irq(&pgdat->lru_lock);
1831
1832 if (nr_taken == 0)
1833 return 0;
1834
1835 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1836 &stat, false);
1837
1838 spin_lock_irq(&pgdat->lru_lock);
1839
1840 if (current_is_kswapd()) {
1841 if (global_reclaim(sc))
1842 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1843 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1844 nr_reclaimed);
1845 } else {
1846 if (global_reclaim(sc))
1847 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1848 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1849 nr_reclaimed);
1850 }
1851
1852 putback_inactive_pages(lruvec, &page_list);
1853
1854 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1855
1856 spin_unlock_irq(&pgdat->lru_lock);
1857
1858 mem_cgroup_uncharge_list(&page_list);
1859 free_unref_page_list(&page_list);
1860
1861 /*
1862 * If reclaim is isolating dirty pages under writeback, it implies
1863 * that the long-lived page allocation rate is exceeding the page
1864 * laundering rate. Either the global limits are not being effective
1865 * at throttling processes due to the page distribution throughout
1866 * zones or there is heavy usage of a slow backing device. The
1867 * only option is to throttle from reclaim context which is not ideal
1868 * as there is no guarantee the dirtying process is throttled in the
1869 * same way balance_dirty_pages() manages.
1870 *
1871 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1872 * of pages under pages flagged for immediate reclaim and stall if any
1873 * are encountered in the nr_immediate check below.
1874 */
1875 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1876 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1877
1878 /*
1879 * If dirty pages are scanned that are not queued for IO, it
1880 * implies that flushers are not doing their job. This can
1881 * happen when memory pressure pushes dirty pages to the end of
1882 * the LRU before the dirty limits are breached and the dirty
1883 * data has expired. It can also happen when the proportion of
1884 * dirty pages grows not through writes but through memory
1885 * pressure reclaiming all the clean cache. And in some cases,
1886 * the flushers simply cannot keep up with the allocation
1887 * rate. Nudge the flusher threads in case they are asleep.
1888 */
1889 if (stat.nr_unqueued_dirty == nr_taken)
1890 wakeup_flusher_threads(WB_REASON_VMSCAN);
1891
1892 /*
1893 * Legacy memcg will stall in page writeback so avoid forcibly
1894 * stalling here.
1895 */
1896 if (sane_reclaim(sc)) {
1897 /*
1898 * Tag a zone as congested if all the dirty pages scanned were
1899 * backed by a congested BDI and wait_iff_congested will stall.
1900 */
1901 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1902 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1903
1904 /* Allow kswapd to start writing pages during reclaim. */
1905 if (stat.nr_unqueued_dirty == nr_taken)
1906 set_bit(PGDAT_DIRTY, &pgdat->flags);
1907
1908 /*
1909 * If kswapd scans pages marked marked for immediate
1910 * reclaim and under writeback (nr_immediate), it implies
1911 * that pages are cycling through the LRU faster than
1912 * they are written so also forcibly stall.
1913 */
1914 if (stat.nr_immediate && current_may_throttle())
1915 congestion_wait(BLK_RW_ASYNC, HZ/10);
1916 }
1917
1918 /*
1919 * Stall direct reclaim for IO completions if underlying BDIs or zone
1920 * is congested. Allow kswapd to continue until it starts encountering
1921 * unqueued dirty pages or cycling through the LRU too quickly.
1922 */
1923 if (!sc->hibernation_mode && !current_is_kswapd() &&
1924 current_may_throttle())
1925 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1926
1927 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1928 nr_scanned, nr_reclaimed,
1929 stat.nr_dirty, stat.nr_writeback,
1930 stat.nr_congested, stat.nr_immediate,
1931 stat.nr_activate, stat.nr_ref_keep,
1932 stat.nr_unmap_fail,
1933 sc->priority, file);
1934 return nr_reclaimed;
1935 }
1936
1937 /*
1938 * This moves pages from the active list to the inactive list.
1939 *
1940 * We move them the other way if the page is referenced by one or more
1941 * processes, from rmap.
1942 *
1943 * If the pages are mostly unmapped, the processing is fast and it is
1944 * appropriate to hold zone_lru_lock across the whole operation. But if
1945 * the pages are mapped, the processing is slow (page_referenced()) so we
1946 * should drop zone_lru_lock around each page. It's impossible to balance
1947 * this, so instead we remove the pages from the LRU while processing them.
1948 * It is safe to rely on PG_active against the non-LRU pages in here because
1949 * nobody will play with that bit on a non-LRU page.
1950 *
1951 * The downside is that we have to touch page->_refcount against each page.
1952 * But we had to alter page->flags anyway.
1953 *
1954 * Returns the number of pages moved to the given lru.
1955 */
1956
1957 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1958 struct list_head *list,
1959 struct list_head *pages_to_free,
1960 enum lru_list lru)
1961 {
1962 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1963 struct page *page;
1964 int nr_pages;
1965 int nr_moved = 0;
1966
1967 while (!list_empty(list)) {
1968 page = lru_to_page(list);
1969 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1970
1971 VM_BUG_ON_PAGE(PageLRU(page), page);
1972 SetPageLRU(page);
1973
1974 nr_pages = hpage_nr_pages(page);
1975 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1976 list_move(&page->lru, &lruvec->lists[lru]);
1977
1978 if (put_page_testzero(page)) {
1979 __ClearPageLRU(page);
1980 __ClearPageActive(page);
1981 del_page_from_lru_list(page, lruvec, lru);
1982
1983 if (unlikely(PageCompound(page))) {
1984 spin_unlock_irq(&pgdat->lru_lock);
1985 mem_cgroup_uncharge(page);
1986 (*get_compound_page_dtor(page))(page);
1987 spin_lock_irq(&pgdat->lru_lock);
1988 } else
1989 list_add(&page->lru, pages_to_free);
1990 } else {
1991 nr_moved += nr_pages;
1992 }
1993 }
1994
1995 if (!is_active_lru(lru)) {
1996 __count_vm_events(PGDEACTIVATE, nr_moved);
1997 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1998 nr_moved);
1999 }
2000
2001 return nr_moved;
2002 }
2003
2004 static void shrink_active_list(unsigned long nr_to_scan,
2005 struct lruvec *lruvec,
2006 struct scan_control *sc,
2007 enum lru_list lru)
2008 {
2009 unsigned long nr_taken;
2010 unsigned long nr_scanned;
2011 unsigned long vm_flags;
2012 LIST_HEAD(l_hold); /* The pages which were snipped off */
2013 LIST_HEAD(l_active);
2014 LIST_HEAD(l_inactive);
2015 struct page *page;
2016 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2017 unsigned nr_deactivate, nr_activate;
2018 unsigned nr_rotated = 0;
2019 isolate_mode_t isolate_mode = 0;
2020 int file = is_file_lru(lru);
2021 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022
2023 lru_add_drain();
2024
2025 if (!sc->may_unmap)
2026 isolate_mode |= ISOLATE_UNMAPPED;
2027
2028 spin_lock_irq(&pgdat->lru_lock);
2029
2030 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2031 &nr_scanned, sc, isolate_mode, lru);
2032
2033 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2034 reclaim_stat->recent_scanned[file] += nr_taken;
2035
2036 __count_vm_events(PGREFILL, nr_scanned);
2037 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2038
2039 spin_unlock_irq(&pgdat->lru_lock);
2040
2041 while (!list_empty(&l_hold)) {
2042 cond_resched();
2043 page = lru_to_page(&l_hold);
2044 list_del(&page->lru);
2045
2046 if (unlikely(!page_evictable(page))) {
2047 putback_lru_page(page);
2048 continue;
2049 }
2050
2051 if (unlikely(buffer_heads_over_limit)) {
2052 if (page_has_private(page) && trylock_page(page)) {
2053 if (page_has_private(page))
2054 try_to_release_page(page, 0);
2055 unlock_page(page);
2056 }
2057 }
2058
2059 if (page_referenced(page, 0, sc->target_mem_cgroup,
2060 &vm_flags)) {
2061 nr_rotated += hpage_nr_pages(page);
2062 /*
2063 * Identify referenced, file-backed active pages and
2064 * give them one more trip around the active list. So
2065 * that executable code get better chances to stay in
2066 * memory under moderate memory pressure. Anon pages
2067 * are not likely to be evicted by use-once streaming
2068 * IO, plus JVM can create lots of anon VM_EXEC pages,
2069 * so we ignore them here.
2070 */
2071 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2072 list_add(&page->lru, &l_active);
2073 continue;
2074 }
2075 }
2076
2077 ClearPageActive(page); /* we are de-activating */
2078 list_add(&page->lru, &l_inactive);
2079 }
2080
2081 /*
2082 * Move pages back to the lru list.
2083 */
2084 spin_lock_irq(&pgdat->lru_lock);
2085 /*
2086 * Count referenced pages from currently used mappings as rotated,
2087 * even though only some of them are actually re-activated. This
2088 * helps balance scan pressure between file and anonymous pages in
2089 * get_scan_count.
2090 */
2091 reclaim_stat->recent_rotated[file] += nr_rotated;
2092
2093 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2094 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2095 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2096 spin_unlock_irq(&pgdat->lru_lock);
2097
2098 mem_cgroup_uncharge_list(&l_hold);
2099 free_unref_page_list(&l_hold);
2100 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2101 nr_deactivate, nr_rotated, sc->priority, file);
2102 }
2103
2104 /*
2105 * The inactive anon list should be small enough that the VM never has
2106 * to do too much work.
2107 *
2108 * The inactive file list should be small enough to leave most memory
2109 * to the established workingset on the scan-resistant active list,
2110 * but large enough to avoid thrashing the aggregate readahead window.
2111 *
2112 * Both inactive lists should also be large enough that each inactive
2113 * page has a chance to be referenced again before it is reclaimed.
2114 *
2115 * If that fails and refaulting is observed, the inactive list grows.
2116 *
2117 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2118 * on this LRU, maintained by the pageout code. An inactive_ratio
2119 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2120 *
2121 * total target max
2122 * memory ratio inactive
2123 * -------------------------------------
2124 * 10MB 1 5MB
2125 * 100MB 1 50MB
2126 * 1GB 3 250MB
2127 * 10GB 10 0.9GB
2128 * 100GB 31 3GB
2129 * 1TB 101 10GB
2130 * 10TB 320 32GB
2131 */
2132 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2133 struct mem_cgroup *memcg,
2134 struct scan_control *sc, bool actual_reclaim)
2135 {
2136 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2137 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2138 enum lru_list inactive_lru = file * LRU_FILE;
2139 unsigned long inactive, active;
2140 unsigned long inactive_ratio;
2141 unsigned long refaults;
2142 unsigned long gb;
2143
2144 /*
2145 * If we don't have swap space, anonymous page deactivation
2146 * is pointless.
2147 */
2148 if (!file && !total_swap_pages)
2149 return false;
2150
2151 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2152 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2153
2154 if (memcg)
2155 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2156 else
2157 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2158
2159 /*
2160 * When refaults are being observed, it means a new workingset
2161 * is being established. Disable active list protection to get
2162 * rid of the stale workingset quickly.
2163 */
2164 if (file && actual_reclaim && lruvec->refaults != refaults) {
2165 inactive_ratio = 0;
2166 } else {
2167 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2168 if (gb)
2169 inactive_ratio = int_sqrt(10 * gb);
2170 else
2171 inactive_ratio = 1;
2172 }
2173
2174 if (actual_reclaim)
2175 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2176 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2177 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2178 inactive_ratio, file);
2179
2180 return inactive * inactive_ratio < active;
2181 }
2182
2183 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2184 struct lruvec *lruvec, struct mem_cgroup *memcg,
2185 struct scan_control *sc)
2186 {
2187 if (is_active_lru(lru)) {
2188 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2189 memcg, sc, true))
2190 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2191 return 0;
2192 }
2193
2194 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2195 }
2196
2197 enum scan_balance {
2198 SCAN_EQUAL,
2199 SCAN_FRACT,
2200 SCAN_ANON,
2201 SCAN_FILE,
2202 };
2203
2204 /*
2205 * Determine how aggressively the anon and file LRU lists should be
2206 * scanned. The relative value of each set of LRU lists is determined
2207 * by looking at the fraction of the pages scanned we did rotate back
2208 * onto the active list instead of evict.
2209 *
2210 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2211 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2212 */
2213 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2214 struct scan_control *sc, unsigned long *nr,
2215 unsigned long *lru_pages)
2216 {
2217 int swappiness = mem_cgroup_swappiness(memcg);
2218 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2219 u64 fraction[2];
2220 u64 denominator = 0; /* gcc */
2221 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2222 unsigned long anon_prio, file_prio;
2223 enum scan_balance scan_balance;
2224 unsigned long anon, file;
2225 unsigned long ap, fp;
2226 enum lru_list lru;
2227
2228 /* If we have no swap space, do not bother scanning anon pages. */
2229 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2230 scan_balance = SCAN_FILE;
2231 goto out;
2232 }
2233
2234 /*
2235 * Global reclaim will swap to prevent OOM even with no
2236 * swappiness, but memcg users want to use this knob to
2237 * disable swapping for individual groups completely when
2238 * using the memory controller's swap limit feature would be
2239 * too expensive.
2240 */
2241 if (!global_reclaim(sc) && !swappiness) {
2242 scan_balance = SCAN_FILE;
2243 goto out;
2244 }
2245
2246 /*
2247 * Do not apply any pressure balancing cleverness when the
2248 * system is close to OOM, scan both anon and file equally
2249 * (unless the swappiness setting disagrees with swapping).
2250 */
2251 if (!sc->priority && swappiness) {
2252 scan_balance = SCAN_EQUAL;
2253 goto out;
2254 }
2255
2256 /*
2257 * Prevent the reclaimer from falling into the cache trap: as
2258 * cache pages start out inactive, every cache fault will tip
2259 * the scan balance towards the file LRU. And as the file LRU
2260 * shrinks, so does the window for rotation from references.
2261 * This means we have a runaway feedback loop where a tiny
2262 * thrashing file LRU becomes infinitely more attractive than
2263 * anon pages. Try to detect this based on file LRU size.
2264 */
2265 if (global_reclaim(sc)) {
2266 unsigned long pgdatfile;
2267 unsigned long pgdatfree;
2268 int z;
2269 unsigned long total_high_wmark = 0;
2270
2271 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2272 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2273 node_page_state(pgdat, NR_INACTIVE_FILE);
2274
2275 for (z = 0; z < MAX_NR_ZONES; z++) {
2276 struct zone *zone = &pgdat->node_zones[z];
2277 if (!managed_zone(zone))
2278 continue;
2279
2280 total_high_wmark += high_wmark_pages(zone);
2281 }
2282
2283 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2284 /*
2285 * Force SCAN_ANON if there are enough inactive
2286 * anonymous pages on the LRU in eligible zones.
2287 * Otherwise, the small LRU gets thrashed.
2288 */
2289 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2290 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2291 >> sc->priority) {
2292 scan_balance = SCAN_ANON;
2293 goto out;
2294 }
2295 }
2296 }
2297
2298 /*
2299 * If there is enough inactive page cache, i.e. if the size of the
2300 * inactive list is greater than that of the active list *and* the
2301 * inactive list actually has some pages to scan on this priority, we
2302 * do not reclaim anything from the anonymous working set right now.
2303 * Without the second condition we could end up never scanning an
2304 * lruvec even if it has plenty of old anonymous pages unless the
2305 * system is under heavy pressure.
2306 */
2307 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2308 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2309 scan_balance = SCAN_FILE;
2310 goto out;
2311 }
2312
2313 scan_balance = SCAN_FRACT;
2314
2315 /*
2316 * With swappiness at 100, anonymous and file have the same priority.
2317 * This scanning priority is essentially the inverse of IO cost.
2318 */
2319 anon_prio = swappiness;
2320 file_prio = 200 - anon_prio;
2321
2322 /*
2323 * OK, so we have swap space and a fair amount of page cache
2324 * pages. We use the recently rotated / recently scanned
2325 * ratios to determine how valuable each cache is.
2326 *
2327 * Because workloads change over time (and to avoid overflow)
2328 * we keep these statistics as a floating average, which ends
2329 * up weighing recent references more than old ones.
2330 *
2331 * anon in [0], file in [1]
2332 */
2333
2334 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2335 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2336 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2337 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2338
2339 spin_lock_irq(&pgdat->lru_lock);
2340 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2341 reclaim_stat->recent_scanned[0] /= 2;
2342 reclaim_stat->recent_rotated[0] /= 2;
2343 }
2344
2345 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2346 reclaim_stat->recent_scanned[1] /= 2;
2347 reclaim_stat->recent_rotated[1] /= 2;
2348 }
2349
2350 /*
2351 * The amount of pressure on anon vs file pages is inversely
2352 * proportional to the fraction of recently scanned pages on
2353 * each list that were recently referenced and in active use.
2354 */
2355 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2356 ap /= reclaim_stat->recent_rotated[0] + 1;
2357
2358 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2359 fp /= reclaim_stat->recent_rotated[1] + 1;
2360 spin_unlock_irq(&pgdat->lru_lock);
2361
2362 fraction[0] = ap;
2363 fraction[1] = fp;
2364 denominator = ap + fp + 1;
2365 out:
2366 *lru_pages = 0;
2367 for_each_evictable_lru(lru) {
2368 int file = is_file_lru(lru);
2369 unsigned long size;
2370 unsigned long scan;
2371
2372 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2373 scan = size >> sc->priority;
2374 /*
2375 * If the cgroup's already been deleted, make sure to
2376 * scrape out the remaining cache.
2377 */
2378 if (!scan && !mem_cgroup_online(memcg))
2379 scan = min(size, SWAP_CLUSTER_MAX);
2380
2381 switch (scan_balance) {
2382 case SCAN_EQUAL:
2383 /* Scan lists relative to size */
2384 break;
2385 case SCAN_FRACT:
2386 /*
2387 * Scan types proportional to swappiness and
2388 * their relative recent reclaim efficiency.
2389 */
2390 scan = div64_u64(scan * fraction[file],
2391 denominator);
2392 break;
2393 case SCAN_FILE:
2394 case SCAN_ANON:
2395 /* Scan one type exclusively */
2396 if ((scan_balance == SCAN_FILE) != file) {
2397 size = 0;
2398 scan = 0;
2399 }
2400 break;
2401 default:
2402 /* Look ma, no brain */
2403 BUG();
2404 }
2405
2406 *lru_pages += size;
2407 nr[lru] = scan;
2408 }
2409 }
2410
2411 /*
2412 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2413 */
2414 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2415 struct scan_control *sc, unsigned long *lru_pages)
2416 {
2417 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2418 unsigned long nr[NR_LRU_LISTS];
2419 unsigned long targets[NR_LRU_LISTS];
2420 unsigned long nr_to_scan;
2421 enum lru_list lru;
2422 unsigned long nr_reclaimed = 0;
2423 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2424 struct blk_plug plug;
2425 bool scan_adjusted;
2426
2427 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2428
2429 /* Record the original scan target for proportional adjustments later */
2430 memcpy(targets, nr, sizeof(nr));
2431
2432 /*
2433 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2434 * event that can occur when there is little memory pressure e.g.
2435 * multiple streaming readers/writers. Hence, we do not abort scanning
2436 * when the requested number of pages are reclaimed when scanning at
2437 * DEF_PRIORITY on the assumption that the fact we are direct
2438 * reclaiming implies that kswapd is not keeping up and it is best to
2439 * do a batch of work at once. For memcg reclaim one check is made to
2440 * abort proportional reclaim if either the file or anon lru has already
2441 * dropped to zero at the first pass.
2442 */
2443 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2444 sc->priority == DEF_PRIORITY);
2445
2446 blk_start_plug(&plug);
2447 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2448 nr[LRU_INACTIVE_FILE]) {
2449 unsigned long nr_anon, nr_file, percentage;
2450 unsigned long nr_scanned;
2451
2452 for_each_evictable_lru(lru) {
2453 if (nr[lru]) {
2454 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2455 nr[lru] -= nr_to_scan;
2456
2457 nr_reclaimed += shrink_list(lru, nr_to_scan,
2458 lruvec, memcg, sc);
2459 }
2460 }
2461
2462 cond_resched();
2463
2464 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2465 continue;
2466
2467 /*
2468 * For kswapd and memcg, reclaim at least the number of pages
2469 * requested. Ensure that the anon and file LRUs are scanned
2470 * proportionally what was requested by get_scan_count(). We
2471 * stop reclaiming one LRU and reduce the amount scanning
2472 * proportional to the original scan target.
2473 */
2474 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2475 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2476
2477 /*
2478 * It's just vindictive to attack the larger once the smaller
2479 * has gone to zero. And given the way we stop scanning the
2480 * smaller below, this makes sure that we only make one nudge
2481 * towards proportionality once we've got nr_to_reclaim.
2482 */
2483 if (!nr_file || !nr_anon)
2484 break;
2485
2486 if (nr_file > nr_anon) {
2487 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2488 targets[LRU_ACTIVE_ANON] + 1;
2489 lru = LRU_BASE;
2490 percentage = nr_anon * 100 / scan_target;
2491 } else {
2492 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2493 targets[LRU_ACTIVE_FILE] + 1;
2494 lru = LRU_FILE;
2495 percentage = nr_file * 100 / scan_target;
2496 }
2497
2498 /* Stop scanning the smaller of the LRU */
2499 nr[lru] = 0;
2500 nr[lru + LRU_ACTIVE] = 0;
2501
2502 /*
2503 * Recalculate the other LRU scan count based on its original
2504 * scan target and the percentage scanning already complete
2505 */
2506 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2507 nr_scanned = targets[lru] - nr[lru];
2508 nr[lru] = targets[lru] * (100 - percentage) / 100;
2509 nr[lru] -= min(nr[lru], nr_scanned);
2510
2511 lru += LRU_ACTIVE;
2512 nr_scanned = targets[lru] - nr[lru];
2513 nr[lru] = targets[lru] * (100 - percentage) / 100;
2514 nr[lru] -= min(nr[lru], nr_scanned);
2515
2516 scan_adjusted = true;
2517 }
2518 blk_finish_plug(&plug);
2519 sc->nr_reclaimed += nr_reclaimed;
2520
2521 /*
2522 * Even if we did not try to evict anon pages at all, we want to
2523 * rebalance the anon lru active/inactive ratio.
2524 */
2525 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2526 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2527 sc, LRU_ACTIVE_ANON);
2528 }
2529
2530 /* Use reclaim/compaction for costly allocs or under memory pressure */
2531 static bool in_reclaim_compaction(struct scan_control *sc)
2532 {
2533 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2534 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2535 sc->priority < DEF_PRIORITY - 2))
2536 return true;
2537
2538 return false;
2539 }
2540
2541 /*
2542 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2543 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2544 * true if more pages should be reclaimed such that when the page allocator
2545 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2546 * It will give up earlier than that if there is difficulty reclaiming pages.
2547 */
2548 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2549 unsigned long nr_reclaimed,
2550 unsigned long nr_scanned,
2551 struct scan_control *sc)
2552 {
2553 unsigned long pages_for_compaction;
2554 unsigned long inactive_lru_pages;
2555 int z;
2556
2557 /* If not in reclaim/compaction mode, stop */
2558 if (!in_reclaim_compaction(sc))
2559 return false;
2560
2561 /* Consider stopping depending on scan and reclaim activity */
2562 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2563 /*
2564 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2565 * full LRU list has been scanned and we are still failing
2566 * to reclaim pages. This full LRU scan is potentially
2567 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2568 */
2569 if (!nr_reclaimed && !nr_scanned)
2570 return false;
2571 } else {
2572 /*
2573 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2574 * fail without consequence, stop if we failed to reclaim
2575 * any pages from the last SWAP_CLUSTER_MAX number of
2576 * pages that were scanned. This will return to the
2577 * caller faster at the risk reclaim/compaction and
2578 * the resulting allocation attempt fails
2579 */
2580 if (!nr_reclaimed)
2581 return false;
2582 }
2583
2584 /*
2585 * If we have not reclaimed enough pages for compaction and the
2586 * inactive lists are large enough, continue reclaiming
2587 */
2588 pages_for_compaction = compact_gap(sc->order);
2589 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2590 if (get_nr_swap_pages() > 0)
2591 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2592 if (sc->nr_reclaimed < pages_for_compaction &&
2593 inactive_lru_pages > pages_for_compaction)
2594 return true;
2595
2596 /* If compaction would go ahead or the allocation would succeed, stop */
2597 for (z = 0; z <= sc->reclaim_idx; z++) {
2598 struct zone *zone = &pgdat->node_zones[z];
2599 if (!managed_zone(zone))
2600 continue;
2601
2602 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2603 case COMPACT_SUCCESS:
2604 case COMPACT_CONTINUE:
2605 return false;
2606 default:
2607 /* check next zone */
2608 ;
2609 }
2610 }
2611 return true;
2612 }
2613
2614 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2615 {
2616 struct reclaim_state *reclaim_state = current->reclaim_state;
2617 unsigned long nr_reclaimed, nr_scanned;
2618 bool reclaimable = false;
2619
2620 do {
2621 struct mem_cgroup *root = sc->target_mem_cgroup;
2622 struct mem_cgroup_reclaim_cookie reclaim = {
2623 .pgdat = pgdat,
2624 .priority = sc->priority,
2625 };
2626 unsigned long node_lru_pages = 0;
2627 struct mem_cgroup *memcg;
2628
2629 nr_reclaimed = sc->nr_reclaimed;
2630 nr_scanned = sc->nr_scanned;
2631
2632 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2633 do {
2634 unsigned long lru_pages;
2635 unsigned long reclaimed;
2636 unsigned long scanned;
2637
2638 if (mem_cgroup_low(root, memcg)) {
2639 if (!sc->memcg_low_reclaim) {
2640 sc->memcg_low_skipped = 1;
2641 continue;
2642 }
2643 mem_cgroup_event(memcg, MEMCG_LOW);
2644 }
2645
2646 reclaimed = sc->nr_reclaimed;
2647 scanned = sc->nr_scanned;
2648
2649 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2650 node_lru_pages += lru_pages;
2651
2652 if (memcg)
2653 shrink_slab(sc->gfp_mask, pgdat->node_id,
2654 memcg, sc->nr_scanned - scanned,
2655 lru_pages);
2656
2657 /* Record the group's reclaim efficiency */
2658 vmpressure(sc->gfp_mask, memcg, false,
2659 sc->nr_scanned - scanned,
2660 sc->nr_reclaimed - reclaimed);
2661
2662 /*
2663 * Direct reclaim and kswapd have to scan all memory
2664 * cgroups to fulfill the overall scan target for the
2665 * node.
2666 *
2667 * Limit reclaim, on the other hand, only cares about
2668 * nr_to_reclaim pages to be reclaimed and it will
2669 * retry with decreasing priority if one round over the
2670 * whole hierarchy is not sufficient.
2671 */
2672 if (!global_reclaim(sc) &&
2673 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2674 mem_cgroup_iter_break(root, memcg);
2675 break;
2676 }
2677 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2678
2679 /*
2680 * Shrink the slab caches in the same proportion that
2681 * the eligible LRU pages were scanned.
2682 */
2683 if (global_reclaim(sc))
2684 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2685 sc->nr_scanned - nr_scanned,
2686 node_lru_pages);
2687
2688 if (reclaim_state) {
2689 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2690 reclaim_state->reclaimed_slab = 0;
2691 }
2692
2693 /* Record the subtree's reclaim efficiency */
2694 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2695 sc->nr_scanned - nr_scanned,
2696 sc->nr_reclaimed - nr_reclaimed);
2697
2698 if (sc->nr_reclaimed - nr_reclaimed)
2699 reclaimable = true;
2700
2701 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2702 sc->nr_scanned - nr_scanned, sc));
2703
2704 /*
2705 * Kswapd gives up on balancing particular nodes after too
2706 * many failures to reclaim anything from them and goes to
2707 * sleep. On reclaim progress, reset the failure counter. A
2708 * successful direct reclaim run will revive a dormant kswapd.
2709 */
2710 if (reclaimable)
2711 pgdat->kswapd_failures = 0;
2712
2713 return reclaimable;
2714 }
2715
2716 /*
2717 * Returns true if compaction should go ahead for a costly-order request, or
2718 * the allocation would already succeed without compaction. Return false if we
2719 * should reclaim first.
2720 */
2721 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2722 {
2723 unsigned long watermark;
2724 enum compact_result suitable;
2725
2726 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2727 if (suitable == COMPACT_SUCCESS)
2728 /* Allocation should succeed already. Don't reclaim. */
2729 return true;
2730 if (suitable == COMPACT_SKIPPED)
2731 /* Compaction cannot yet proceed. Do reclaim. */
2732 return false;
2733
2734 /*
2735 * Compaction is already possible, but it takes time to run and there
2736 * are potentially other callers using the pages just freed. So proceed
2737 * with reclaim to make a buffer of free pages available to give
2738 * compaction a reasonable chance of completing and allocating the page.
2739 * Note that we won't actually reclaim the whole buffer in one attempt
2740 * as the target watermark in should_continue_reclaim() is lower. But if
2741 * we are already above the high+gap watermark, don't reclaim at all.
2742 */
2743 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2744
2745 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2746 }
2747
2748 /*
2749 * This is the direct reclaim path, for page-allocating processes. We only
2750 * try to reclaim pages from zones which will satisfy the caller's allocation
2751 * request.
2752 *
2753 * If a zone is deemed to be full of pinned pages then just give it a light
2754 * scan then give up on it.
2755 */
2756 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2757 {
2758 struct zoneref *z;
2759 struct zone *zone;
2760 unsigned long nr_soft_reclaimed;
2761 unsigned long nr_soft_scanned;
2762 gfp_t orig_mask;
2763 pg_data_t *last_pgdat = NULL;
2764
2765 /*
2766 * If the number of buffer_heads in the machine exceeds the maximum
2767 * allowed level, force direct reclaim to scan the highmem zone as
2768 * highmem pages could be pinning lowmem pages storing buffer_heads
2769 */
2770 orig_mask = sc->gfp_mask;
2771 if (buffer_heads_over_limit) {
2772 sc->gfp_mask |= __GFP_HIGHMEM;
2773 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2774 }
2775
2776 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2777 sc->reclaim_idx, sc->nodemask) {
2778 /*
2779 * Take care memory controller reclaiming has small influence
2780 * to global LRU.
2781 */
2782 if (global_reclaim(sc)) {
2783 if (!cpuset_zone_allowed(zone,
2784 GFP_KERNEL | __GFP_HARDWALL))
2785 continue;
2786
2787 /*
2788 * If we already have plenty of memory free for
2789 * compaction in this zone, don't free any more.
2790 * Even though compaction is invoked for any
2791 * non-zero order, only frequent costly order
2792 * reclamation is disruptive enough to become a
2793 * noticeable problem, like transparent huge
2794 * page allocations.
2795 */
2796 if (IS_ENABLED(CONFIG_COMPACTION) &&
2797 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2798 compaction_ready(zone, sc)) {
2799 sc->compaction_ready = true;
2800 continue;
2801 }
2802
2803 /*
2804 * Shrink each node in the zonelist once. If the
2805 * zonelist is ordered by zone (not the default) then a
2806 * node may be shrunk multiple times but in that case
2807 * the user prefers lower zones being preserved.
2808 */
2809 if (zone->zone_pgdat == last_pgdat)
2810 continue;
2811
2812 /*
2813 * This steals pages from memory cgroups over softlimit
2814 * and returns the number of reclaimed pages and
2815 * scanned pages. This works for global memory pressure
2816 * and balancing, not for a memcg's limit.
2817 */
2818 nr_soft_scanned = 0;
2819 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2820 sc->order, sc->gfp_mask,
2821 &nr_soft_scanned);
2822 sc->nr_reclaimed += nr_soft_reclaimed;
2823 sc->nr_scanned += nr_soft_scanned;
2824 /* need some check for avoid more shrink_zone() */
2825 }
2826
2827 /* See comment about same check for global reclaim above */
2828 if (zone->zone_pgdat == last_pgdat)
2829 continue;
2830 last_pgdat = zone->zone_pgdat;
2831 shrink_node(zone->zone_pgdat, sc);
2832 }
2833
2834 /*
2835 * Restore to original mask to avoid the impact on the caller if we
2836 * promoted it to __GFP_HIGHMEM.
2837 */
2838 sc->gfp_mask = orig_mask;
2839 }
2840
2841 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2842 {
2843 struct mem_cgroup *memcg;
2844
2845 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2846 do {
2847 unsigned long refaults;
2848 struct lruvec *lruvec;
2849
2850 if (memcg)
2851 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2852 else
2853 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2854
2855 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2856 lruvec->refaults = refaults;
2857 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2858 }
2859
2860 /*
2861 * This is the main entry point to direct page reclaim.
2862 *
2863 * If a full scan of the inactive list fails to free enough memory then we
2864 * are "out of memory" and something needs to be killed.
2865 *
2866 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2867 * high - the zone may be full of dirty or under-writeback pages, which this
2868 * caller can't do much about. We kick the writeback threads and take explicit
2869 * naps in the hope that some of these pages can be written. But if the
2870 * allocating task holds filesystem locks which prevent writeout this might not
2871 * work, and the allocation attempt will fail.
2872 *
2873 * returns: 0, if no pages reclaimed
2874 * else, the number of pages reclaimed
2875 */
2876 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2877 struct scan_control *sc)
2878 {
2879 int initial_priority = sc->priority;
2880 pg_data_t *last_pgdat;
2881 struct zoneref *z;
2882 struct zone *zone;
2883 retry:
2884 delayacct_freepages_start();
2885
2886 if (global_reclaim(sc))
2887 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2888
2889 do {
2890 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2891 sc->priority);
2892 sc->nr_scanned = 0;
2893 shrink_zones(zonelist, sc);
2894
2895 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2896 break;
2897
2898 if (sc->compaction_ready)
2899 break;
2900
2901 /*
2902 * If we're getting trouble reclaiming, start doing
2903 * writepage even in laptop mode.
2904 */
2905 if (sc->priority < DEF_PRIORITY - 2)
2906 sc->may_writepage = 1;
2907 } while (--sc->priority >= 0);
2908
2909 last_pgdat = NULL;
2910 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2911 sc->nodemask) {
2912 if (zone->zone_pgdat == last_pgdat)
2913 continue;
2914 last_pgdat = zone->zone_pgdat;
2915 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2916 }
2917
2918 delayacct_freepages_end();
2919
2920 if (sc->nr_reclaimed)
2921 return sc->nr_reclaimed;
2922
2923 /* Aborted reclaim to try compaction? don't OOM, then */
2924 if (sc->compaction_ready)
2925 return 1;
2926
2927 /* Untapped cgroup reserves? Don't OOM, retry. */
2928 if (sc->memcg_low_skipped) {
2929 sc->priority = initial_priority;
2930 sc->memcg_low_reclaim = 1;
2931 sc->memcg_low_skipped = 0;
2932 goto retry;
2933 }
2934
2935 return 0;
2936 }
2937
2938 static bool allow_direct_reclaim(pg_data_t *pgdat)
2939 {
2940 struct zone *zone;
2941 unsigned long pfmemalloc_reserve = 0;
2942 unsigned long free_pages = 0;
2943 int i;
2944 bool wmark_ok;
2945
2946 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2947 return true;
2948
2949 for (i = 0; i <= ZONE_NORMAL; i++) {
2950 zone = &pgdat->node_zones[i];
2951 if (!managed_zone(zone))
2952 continue;
2953
2954 if (!zone_reclaimable_pages(zone))
2955 continue;
2956
2957 pfmemalloc_reserve += min_wmark_pages(zone);
2958 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2959 }
2960
2961 /* If there are no reserves (unexpected config) then do not throttle */
2962 if (!pfmemalloc_reserve)
2963 return true;
2964
2965 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2966
2967 /* kswapd must be awake if processes are being throttled */
2968 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2969 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2970 (enum zone_type)ZONE_NORMAL);
2971 wake_up_interruptible(&pgdat->kswapd_wait);
2972 }
2973
2974 return wmark_ok;
2975 }
2976
2977 /*
2978 * Throttle direct reclaimers if backing storage is backed by the network
2979 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2980 * depleted. kswapd will continue to make progress and wake the processes
2981 * when the low watermark is reached.
2982 *
2983 * Returns true if a fatal signal was delivered during throttling. If this
2984 * happens, the page allocator should not consider triggering the OOM killer.
2985 */
2986 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2987 nodemask_t *nodemask)
2988 {
2989 struct zoneref *z;
2990 struct zone *zone;
2991 pg_data_t *pgdat = NULL;
2992
2993 /*
2994 * Kernel threads should not be throttled as they may be indirectly
2995 * responsible for cleaning pages necessary for reclaim to make forward
2996 * progress. kjournald for example may enter direct reclaim while
2997 * committing a transaction where throttling it could forcing other
2998 * processes to block on log_wait_commit().
2999 */
3000 if (current->flags & PF_KTHREAD)
3001 goto out;
3002
3003 /*
3004 * If a fatal signal is pending, this process should not throttle.
3005 * It should return quickly so it can exit and free its memory
3006 */
3007 if (fatal_signal_pending(current))
3008 goto out;
3009
3010 /*
3011 * Check if the pfmemalloc reserves are ok by finding the first node
3012 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3013 * GFP_KERNEL will be required for allocating network buffers when
3014 * swapping over the network so ZONE_HIGHMEM is unusable.
3015 *
3016 * Throttling is based on the first usable node and throttled processes
3017 * wait on a queue until kswapd makes progress and wakes them. There
3018 * is an affinity then between processes waking up and where reclaim
3019 * progress has been made assuming the process wakes on the same node.
3020 * More importantly, processes running on remote nodes will not compete
3021 * for remote pfmemalloc reserves and processes on different nodes
3022 * should make reasonable progress.
3023 */
3024 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3025 gfp_zone(gfp_mask), nodemask) {
3026 if (zone_idx(zone) > ZONE_NORMAL)
3027 continue;
3028
3029 /* Throttle based on the first usable node */
3030 pgdat = zone->zone_pgdat;
3031 if (allow_direct_reclaim(pgdat))
3032 goto out;
3033 break;
3034 }
3035
3036 /* If no zone was usable by the allocation flags then do not throttle */
3037 if (!pgdat)
3038 goto out;
3039
3040 /* Account for the throttling */
3041 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3042
3043 /*
3044 * If the caller cannot enter the filesystem, it's possible that it
3045 * is due to the caller holding an FS lock or performing a journal
3046 * transaction in the case of a filesystem like ext[3|4]. In this case,
3047 * it is not safe to block on pfmemalloc_wait as kswapd could be
3048 * blocked waiting on the same lock. Instead, throttle for up to a
3049 * second before continuing.
3050 */
3051 if (!(gfp_mask & __GFP_FS)) {
3052 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3053 allow_direct_reclaim(pgdat), HZ);
3054
3055 goto check_pending;
3056 }
3057
3058 /* Throttle until kswapd wakes the process */
3059 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3060 allow_direct_reclaim(pgdat));
3061
3062 check_pending:
3063 if (fatal_signal_pending(current))
3064 return true;
3065
3066 out:
3067 return false;
3068 }
3069
3070 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3071 gfp_t gfp_mask, nodemask_t *nodemask)
3072 {
3073 unsigned long nr_reclaimed;
3074 struct scan_control sc = {
3075 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3076 .gfp_mask = current_gfp_context(gfp_mask),
3077 .reclaim_idx = gfp_zone(gfp_mask),
3078 .order = order,
3079 .nodemask = nodemask,
3080 .priority = DEF_PRIORITY,
3081 .may_writepage = !laptop_mode,
3082 .may_unmap = 1,
3083 .may_swap = 1,
3084 };
3085
3086 /*
3087 * Do not enter reclaim if fatal signal was delivered while throttled.
3088 * 1 is returned so that the page allocator does not OOM kill at this
3089 * point.
3090 */
3091 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3092 return 1;
3093
3094 trace_mm_vmscan_direct_reclaim_begin(order,
3095 sc.may_writepage,
3096 sc.gfp_mask,
3097 sc.reclaim_idx);
3098
3099 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3100
3101 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3102
3103 return nr_reclaimed;
3104 }
3105
3106 #ifdef CONFIG_MEMCG
3107
3108 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3109 gfp_t gfp_mask, bool noswap,
3110 pg_data_t *pgdat,
3111 unsigned long *nr_scanned)
3112 {
3113 struct scan_control sc = {
3114 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3115 .target_mem_cgroup = memcg,
3116 .may_writepage = !laptop_mode,
3117 .may_unmap = 1,
3118 .reclaim_idx = MAX_NR_ZONES - 1,
3119 .may_swap = !noswap,
3120 };
3121 unsigned long lru_pages;
3122
3123 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3124 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3125
3126 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3127 sc.may_writepage,
3128 sc.gfp_mask,
3129 sc.reclaim_idx);
3130
3131 /*
3132 * NOTE: Although we can get the priority field, using it
3133 * here is not a good idea, since it limits the pages we can scan.
3134 * if we don't reclaim here, the shrink_node from balance_pgdat
3135 * will pick up pages from other mem cgroup's as well. We hack
3136 * the priority and make it zero.
3137 */
3138 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3139
3140 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3141
3142 *nr_scanned = sc.nr_scanned;
3143 return sc.nr_reclaimed;
3144 }
3145
3146 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3147 unsigned long nr_pages,
3148 gfp_t gfp_mask,
3149 bool may_swap)
3150 {
3151 struct zonelist *zonelist;
3152 unsigned long nr_reclaimed;
3153 int nid;
3154 unsigned int noreclaim_flag;
3155 struct scan_control sc = {
3156 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3157 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3158 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3159 .reclaim_idx = MAX_NR_ZONES - 1,
3160 .target_mem_cgroup = memcg,
3161 .priority = DEF_PRIORITY,
3162 .may_writepage = !laptop_mode,
3163 .may_unmap = 1,
3164 .may_swap = may_swap,
3165 };
3166
3167 /*
3168 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3169 * take care of from where we get pages. So the node where we start the
3170 * scan does not need to be the current node.
3171 */
3172 nid = mem_cgroup_select_victim_node(memcg);
3173
3174 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3175
3176 trace_mm_vmscan_memcg_reclaim_begin(0,
3177 sc.may_writepage,
3178 sc.gfp_mask,
3179 sc.reclaim_idx);
3180
3181 noreclaim_flag = memalloc_noreclaim_save();
3182 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3183 memalloc_noreclaim_restore(noreclaim_flag);
3184
3185 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3186
3187 return nr_reclaimed;
3188 }
3189 #endif
3190
3191 static void age_active_anon(struct pglist_data *pgdat,
3192 struct scan_control *sc)
3193 {
3194 struct mem_cgroup *memcg;
3195
3196 if (!total_swap_pages)
3197 return;
3198
3199 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3200 do {
3201 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3202
3203 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3204 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3205 sc, LRU_ACTIVE_ANON);
3206
3207 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3208 } while (memcg);
3209 }
3210
3211 /*
3212 * Returns true if there is an eligible zone balanced for the request order
3213 * and classzone_idx
3214 */
3215 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3216 {
3217 int i;
3218 unsigned long mark = -1;
3219 struct zone *zone;
3220
3221 for (i = 0; i <= classzone_idx; i++) {
3222 zone = pgdat->node_zones + i;
3223
3224 if (!managed_zone(zone))
3225 continue;
3226
3227 mark = high_wmark_pages(zone);
3228 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3229 return true;
3230 }
3231
3232 /*
3233 * If a node has no populated zone within classzone_idx, it does not
3234 * need balancing by definition. This can happen if a zone-restricted
3235 * allocation tries to wake a remote kswapd.
3236 */
3237 if (mark == -1)
3238 return true;
3239
3240 return false;
3241 }
3242
3243 /* Clear pgdat state for congested, dirty or under writeback. */
3244 static void clear_pgdat_congested(pg_data_t *pgdat)
3245 {
3246 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3247 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3248 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3249 }
3250
3251 /*
3252 * Prepare kswapd for sleeping. This verifies that there are no processes
3253 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3254 *
3255 * Returns true if kswapd is ready to sleep
3256 */
3257 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3258 {
3259 /*
3260 * The throttled processes are normally woken up in balance_pgdat() as
3261 * soon as allow_direct_reclaim() is true. But there is a potential
3262 * race between when kswapd checks the watermarks and a process gets
3263 * throttled. There is also a potential race if processes get
3264 * throttled, kswapd wakes, a large process exits thereby balancing the
3265 * zones, which causes kswapd to exit balance_pgdat() before reaching
3266 * the wake up checks. If kswapd is going to sleep, no process should
3267 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3268 * the wake up is premature, processes will wake kswapd and get
3269 * throttled again. The difference from wake ups in balance_pgdat() is
3270 * that here we are under prepare_to_wait().
3271 */
3272 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3273 wake_up_all(&pgdat->pfmemalloc_wait);
3274
3275 /* Hopeless node, leave it to direct reclaim */
3276 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3277 return true;
3278
3279 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3280 clear_pgdat_congested(pgdat);
3281 return true;
3282 }
3283
3284 return false;
3285 }
3286
3287 /*
3288 * kswapd shrinks a node of pages that are at or below the highest usable
3289 * zone that is currently unbalanced.
3290 *
3291 * Returns true if kswapd scanned at least the requested number of pages to
3292 * reclaim or if the lack of progress was due to pages under writeback.
3293 * This is used to determine if the scanning priority needs to be raised.
3294 */
3295 static bool kswapd_shrink_node(pg_data_t *pgdat,
3296 struct scan_control *sc)
3297 {
3298 struct zone *zone;
3299 int z;
3300
3301 /* Reclaim a number of pages proportional to the number of zones */
3302 sc->nr_to_reclaim = 0;
3303 for (z = 0; z <= sc->reclaim_idx; z++) {
3304 zone = pgdat->node_zones + z;
3305 if (!managed_zone(zone))
3306 continue;
3307
3308 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3309 }
3310
3311 /*
3312 * Historically care was taken to put equal pressure on all zones but
3313 * now pressure is applied based on node LRU order.
3314 */
3315 shrink_node(pgdat, sc);
3316
3317 /*
3318 * Fragmentation may mean that the system cannot be rebalanced for
3319 * high-order allocations. If twice the allocation size has been
3320 * reclaimed then recheck watermarks only at order-0 to prevent
3321 * excessive reclaim. Assume that a process requested a high-order
3322 * can direct reclaim/compact.
3323 */
3324 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3325 sc->order = 0;
3326
3327 return sc->nr_scanned >= sc->nr_to_reclaim;
3328 }
3329
3330 /*
3331 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3332 * that are eligible for use by the caller until at least one zone is
3333 * balanced.
3334 *
3335 * Returns the order kswapd finished reclaiming at.
3336 *
3337 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3338 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3339 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3340 * or lower is eligible for reclaim until at least one usable zone is
3341 * balanced.
3342 */
3343 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3344 {
3345 int i;
3346 unsigned long nr_soft_reclaimed;
3347 unsigned long nr_soft_scanned;
3348 struct zone *zone;
3349 struct scan_control sc = {
3350 .gfp_mask = GFP_KERNEL,
3351 .order = order,
3352 .priority = DEF_PRIORITY,
3353 .may_writepage = !laptop_mode,
3354 .may_unmap = 1,
3355 .may_swap = 1,
3356 };
3357 count_vm_event(PAGEOUTRUN);
3358
3359 do {
3360 unsigned long nr_reclaimed = sc.nr_reclaimed;
3361 bool raise_priority = true;
3362
3363 sc.reclaim_idx = classzone_idx;
3364
3365 /*
3366 * If the number of buffer_heads exceeds the maximum allowed
3367 * then consider reclaiming from all zones. This has a dual
3368 * purpose -- on 64-bit systems it is expected that
3369 * buffer_heads are stripped during active rotation. On 32-bit
3370 * systems, highmem pages can pin lowmem memory and shrinking
3371 * buffers can relieve lowmem pressure. Reclaim may still not
3372 * go ahead if all eligible zones for the original allocation
3373 * request are balanced to avoid excessive reclaim from kswapd.
3374 */
3375 if (buffer_heads_over_limit) {
3376 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3377 zone = pgdat->node_zones + i;
3378 if (!managed_zone(zone))
3379 continue;
3380
3381 sc.reclaim_idx = i;
3382 break;
3383 }
3384 }
3385
3386 /*
3387 * Only reclaim if there are no eligible zones. Note that
3388 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3389 * have adjusted it.
3390 */
3391 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3392 goto out;
3393
3394 /*
3395 * Do some background aging of the anon list, to give
3396 * pages a chance to be referenced before reclaiming. All
3397 * pages are rotated regardless of classzone as this is
3398 * about consistent aging.
3399 */
3400 age_active_anon(pgdat, &sc);
3401
3402 /*
3403 * If we're getting trouble reclaiming, start doing writepage
3404 * even in laptop mode.
3405 */
3406 if (sc.priority < DEF_PRIORITY - 2)
3407 sc.may_writepage = 1;
3408
3409 /* Call soft limit reclaim before calling shrink_node. */
3410 sc.nr_scanned = 0;
3411 nr_soft_scanned = 0;
3412 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3413 sc.gfp_mask, &nr_soft_scanned);
3414 sc.nr_reclaimed += nr_soft_reclaimed;
3415
3416 /*
3417 * There should be no need to raise the scanning priority if
3418 * enough pages are already being scanned that that high
3419 * watermark would be met at 100% efficiency.
3420 */
3421 if (kswapd_shrink_node(pgdat, &sc))
3422 raise_priority = false;
3423
3424 /*
3425 * If the low watermark is met there is no need for processes
3426 * to be throttled on pfmemalloc_wait as they should not be
3427 * able to safely make forward progress. Wake them
3428 */
3429 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3430 allow_direct_reclaim(pgdat))
3431 wake_up_all(&pgdat->pfmemalloc_wait);
3432
3433 /* Check if kswapd should be suspending */
3434 if (try_to_freeze() || kthread_should_stop())
3435 break;
3436
3437 /*
3438 * Raise priority if scanning rate is too low or there was no
3439 * progress in reclaiming pages
3440 */
3441 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3442 if (raise_priority || !nr_reclaimed)
3443 sc.priority--;
3444 } while (sc.priority >= 1);
3445
3446 if (!sc.nr_reclaimed)
3447 pgdat->kswapd_failures++;
3448
3449 out:
3450 snapshot_refaults(NULL, pgdat);
3451 /*
3452 * Return the order kswapd stopped reclaiming at as
3453 * prepare_kswapd_sleep() takes it into account. If another caller
3454 * entered the allocator slow path while kswapd was awake, order will
3455 * remain at the higher level.
3456 */
3457 return sc.order;
3458 }
3459
3460 /*
3461 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3462 * allocation request woke kswapd for. When kswapd has not woken recently,
3463 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3464 * given classzone and returns it or the highest classzone index kswapd
3465 * was recently woke for.
3466 */
3467 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3468 enum zone_type classzone_idx)
3469 {
3470 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3471 return classzone_idx;
3472
3473 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3474 }
3475
3476 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3477 unsigned int classzone_idx)
3478 {
3479 long remaining = 0;
3480 DEFINE_WAIT(wait);
3481
3482 if (freezing(current) || kthread_should_stop())
3483 return;
3484
3485 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3486
3487 /*
3488 * Try to sleep for a short interval. Note that kcompactd will only be
3489 * woken if it is possible to sleep for a short interval. This is
3490 * deliberate on the assumption that if reclaim cannot keep an
3491 * eligible zone balanced that it's also unlikely that compaction will
3492 * succeed.
3493 */
3494 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3495 /*
3496 * Compaction records what page blocks it recently failed to
3497 * isolate pages from and skips them in the future scanning.
3498 * When kswapd is going to sleep, it is reasonable to assume
3499 * that pages and compaction may succeed so reset the cache.
3500 */
3501 reset_isolation_suitable(pgdat);
3502
3503 /*
3504 * We have freed the memory, now we should compact it to make
3505 * allocation of the requested order possible.
3506 */
3507 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3508
3509 remaining = schedule_timeout(HZ/10);
3510
3511 /*
3512 * If woken prematurely then reset kswapd_classzone_idx and
3513 * order. The values will either be from a wakeup request or
3514 * the previous request that slept prematurely.
3515 */
3516 if (remaining) {
3517 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3518 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3519 }
3520
3521 finish_wait(&pgdat->kswapd_wait, &wait);
3522 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3523 }
3524
3525 /*
3526 * After a short sleep, check if it was a premature sleep. If not, then
3527 * go fully to sleep until explicitly woken up.
3528 */
3529 if (!remaining &&
3530 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3531 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3532
3533 /*
3534 * vmstat counters are not perfectly accurate and the estimated
3535 * value for counters such as NR_FREE_PAGES can deviate from the
3536 * true value by nr_online_cpus * threshold. To avoid the zone
3537 * watermarks being breached while under pressure, we reduce the
3538 * per-cpu vmstat threshold while kswapd is awake and restore
3539 * them before going back to sleep.
3540 */
3541 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3542
3543 if (!kthread_should_stop())
3544 schedule();
3545
3546 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3547 } else {
3548 if (remaining)
3549 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3550 else
3551 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3552 }
3553 finish_wait(&pgdat->kswapd_wait, &wait);
3554 }
3555
3556 /*
3557 * The background pageout daemon, started as a kernel thread
3558 * from the init process.
3559 *
3560 * This basically trickles out pages so that we have _some_
3561 * free memory available even if there is no other activity
3562 * that frees anything up. This is needed for things like routing
3563 * etc, where we otherwise might have all activity going on in
3564 * asynchronous contexts that cannot page things out.
3565 *
3566 * If there are applications that are active memory-allocators
3567 * (most normal use), this basically shouldn't matter.
3568 */
3569 static int kswapd(void *p)
3570 {
3571 unsigned int alloc_order, reclaim_order;
3572 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3573 pg_data_t *pgdat = (pg_data_t*)p;
3574 struct task_struct *tsk = current;
3575
3576 struct reclaim_state reclaim_state = {
3577 .reclaimed_slab = 0,
3578 };
3579 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3580
3581 if (!cpumask_empty(cpumask))
3582 set_cpus_allowed_ptr(tsk, cpumask);
3583 current->reclaim_state = &reclaim_state;
3584
3585 /*
3586 * Tell the memory management that we're a "memory allocator",
3587 * and that if we need more memory we should get access to it
3588 * regardless (see "__alloc_pages()"). "kswapd" should
3589 * never get caught in the normal page freeing logic.
3590 *
3591 * (Kswapd normally doesn't need memory anyway, but sometimes
3592 * you need a small amount of memory in order to be able to
3593 * page out something else, and this flag essentially protects
3594 * us from recursively trying to free more memory as we're
3595 * trying to free the first piece of memory in the first place).
3596 */
3597 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3598 set_freezable();
3599
3600 pgdat->kswapd_order = 0;
3601 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3602 for ( ; ; ) {
3603 bool ret;
3604
3605 alloc_order = reclaim_order = pgdat->kswapd_order;
3606 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3607
3608 kswapd_try_sleep:
3609 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3610 classzone_idx);
3611
3612 /* Read the new order and classzone_idx */
3613 alloc_order = reclaim_order = pgdat->kswapd_order;
3614 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3615 pgdat->kswapd_order = 0;
3616 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3617
3618 ret = try_to_freeze();
3619 if (kthread_should_stop())
3620 break;
3621
3622 /*
3623 * We can speed up thawing tasks if we don't call balance_pgdat
3624 * after returning from the refrigerator
3625 */
3626 if (ret)
3627 continue;
3628
3629 /*
3630 * Reclaim begins at the requested order but if a high-order
3631 * reclaim fails then kswapd falls back to reclaiming for
3632 * order-0. If that happens, kswapd will consider sleeping
3633 * for the order it finished reclaiming at (reclaim_order)
3634 * but kcompactd is woken to compact for the original
3635 * request (alloc_order).
3636 */
3637 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3638 alloc_order);
3639 fs_reclaim_acquire(GFP_KERNEL);
3640 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3641 fs_reclaim_release(GFP_KERNEL);
3642 if (reclaim_order < alloc_order)
3643 goto kswapd_try_sleep;
3644 }
3645
3646 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3647 current->reclaim_state = NULL;
3648
3649 return 0;
3650 }
3651
3652 /*
3653 * A zone is low on free memory, so wake its kswapd task to service it.
3654 */
3655 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3656 {
3657 pg_data_t *pgdat;
3658
3659 if (!managed_zone(zone))
3660 return;
3661
3662 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3663 return;
3664 pgdat = zone->zone_pgdat;
3665 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3666 classzone_idx);
3667 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3668 if (!waitqueue_active(&pgdat->kswapd_wait))
3669 return;
3670
3671 /* Hopeless node, leave it to direct reclaim */
3672 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3673 return;
3674
3675 if (pgdat_balanced(pgdat, order, classzone_idx))
3676 return;
3677
3678 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3679 wake_up_interruptible(&pgdat->kswapd_wait);
3680 }
3681
3682 #ifdef CONFIG_HIBERNATION
3683 /*
3684 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3685 * freed pages.
3686 *
3687 * Rather than trying to age LRUs the aim is to preserve the overall
3688 * LRU order by reclaiming preferentially
3689 * inactive > active > active referenced > active mapped
3690 */
3691 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3692 {
3693 struct reclaim_state reclaim_state;
3694 struct scan_control sc = {
3695 .nr_to_reclaim = nr_to_reclaim,
3696 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3697 .reclaim_idx = MAX_NR_ZONES - 1,
3698 .priority = DEF_PRIORITY,
3699 .may_writepage = 1,
3700 .may_unmap = 1,
3701 .may_swap = 1,
3702 .hibernation_mode = 1,
3703 };
3704 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3705 struct task_struct *p = current;
3706 unsigned long nr_reclaimed;
3707 unsigned int noreclaim_flag;
3708
3709 noreclaim_flag = memalloc_noreclaim_save();
3710 fs_reclaim_acquire(sc.gfp_mask);
3711 reclaim_state.reclaimed_slab = 0;
3712 p->reclaim_state = &reclaim_state;
3713
3714 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3715
3716 p->reclaim_state = NULL;
3717 fs_reclaim_release(sc.gfp_mask);
3718 memalloc_noreclaim_restore(noreclaim_flag);
3719
3720 return nr_reclaimed;
3721 }
3722 #endif /* CONFIG_HIBERNATION */
3723
3724 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3725 not required for correctness. So if the last cpu in a node goes
3726 away, we get changed to run anywhere: as the first one comes back,
3727 restore their cpu bindings. */
3728 static int kswapd_cpu_online(unsigned int cpu)
3729 {
3730 int nid;
3731
3732 for_each_node_state(nid, N_MEMORY) {
3733 pg_data_t *pgdat = NODE_DATA(nid);
3734 const struct cpumask *mask;
3735
3736 mask = cpumask_of_node(pgdat->node_id);
3737
3738 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3739 /* One of our CPUs online: restore mask */
3740 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3741 }
3742 return 0;
3743 }
3744
3745 /*
3746 * This kswapd start function will be called by init and node-hot-add.
3747 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3748 */
3749 int kswapd_run(int nid)
3750 {
3751 pg_data_t *pgdat = NODE_DATA(nid);
3752 int ret = 0;
3753
3754 if (pgdat->kswapd)
3755 return 0;
3756
3757 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3758 if (IS_ERR(pgdat->kswapd)) {
3759 /* failure at boot is fatal */
3760 BUG_ON(system_state < SYSTEM_RUNNING);
3761 pr_err("Failed to start kswapd on node %d\n", nid);
3762 ret = PTR_ERR(pgdat->kswapd);
3763 pgdat->kswapd = NULL;
3764 }
3765 return ret;
3766 }
3767
3768 /*
3769 * Called by memory hotplug when all memory in a node is offlined. Caller must
3770 * hold mem_hotplug_begin/end().
3771 */
3772 void kswapd_stop(int nid)
3773 {
3774 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3775
3776 if (kswapd) {
3777 kthread_stop(kswapd);
3778 NODE_DATA(nid)->kswapd = NULL;
3779 }
3780 }
3781
3782 static int __init kswapd_init(void)
3783 {
3784 int nid, ret;
3785
3786 swap_setup();
3787 for_each_node_state(nid, N_MEMORY)
3788 kswapd_run(nid);
3789 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3790 "mm/vmscan:online", kswapd_cpu_online,
3791 NULL);
3792 WARN_ON(ret < 0);
3793 return 0;
3794 }
3795
3796 module_init(kswapd_init)
3797
3798 #ifdef CONFIG_NUMA
3799 /*
3800 * Node reclaim mode
3801 *
3802 * If non-zero call node_reclaim when the number of free pages falls below
3803 * the watermarks.
3804 */
3805 int node_reclaim_mode __read_mostly;
3806
3807 #define RECLAIM_OFF 0
3808 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3809 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3810 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3811
3812 /*
3813 * Priority for NODE_RECLAIM. This determines the fraction of pages
3814 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3815 * a zone.
3816 */
3817 #define NODE_RECLAIM_PRIORITY 4
3818
3819 /*
3820 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3821 * occur.
3822 */
3823 int sysctl_min_unmapped_ratio = 1;
3824
3825 /*
3826 * If the number of slab pages in a zone grows beyond this percentage then
3827 * slab reclaim needs to occur.
3828 */
3829 int sysctl_min_slab_ratio = 5;
3830
3831 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3832 {
3833 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3834 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3835 node_page_state(pgdat, NR_ACTIVE_FILE);
3836
3837 /*
3838 * It's possible for there to be more file mapped pages than
3839 * accounted for by the pages on the file LRU lists because
3840 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3841 */
3842 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3843 }
3844
3845 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3846 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3847 {
3848 unsigned long nr_pagecache_reclaimable;
3849 unsigned long delta = 0;
3850
3851 /*
3852 * If RECLAIM_UNMAP is set, then all file pages are considered
3853 * potentially reclaimable. Otherwise, we have to worry about
3854 * pages like swapcache and node_unmapped_file_pages() provides
3855 * a better estimate
3856 */
3857 if (node_reclaim_mode & RECLAIM_UNMAP)
3858 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3859 else
3860 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3861
3862 /* If we can't clean pages, remove dirty pages from consideration */
3863 if (!(node_reclaim_mode & RECLAIM_WRITE))
3864 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3865
3866 /* Watch for any possible underflows due to delta */
3867 if (unlikely(delta > nr_pagecache_reclaimable))
3868 delta = nr_pagecache_reclaimable;
3869
3870 return nr_pagecache_reclaimable - delta;
3871 }
3872
3873 /*
3874 * Try to free up some pages from this node through reclaim.
3875 */
3876 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3877 {
3878 /* Minimum pages needed in order to stay on node */
3879 const unsigned long nr_pages = 1 << order;
3880 struct task_struct *p = current;
3881 struct reclaim_state reclaim_state;
3882 unsigned int noreclaim_flag;
3883 struct scan_control sc = {
3884 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3885 .gfp_mask = current_gfp_context(gfp_mask),
3886 .order = order,
3887 .priority = NODE_RECLAIM_PRIORITY,
3888 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3889 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3890 .may_swap = 1,
3891 .reclaim_idx = gfp_zone(gfp_mask),
3892 };
3893
3894 cond_resched();
3895 /*
3896 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3897 * and we also need to be able to write out pages for RECLAIM_WRITE
3898 * and RECLAIM_UNMAP.
3899 */
3900 noreclaim_flag = memalloc_noreclaim_save();
3901 p->flags |= PF_SWAPWRITE;
3902 fs_reclaim_acquire(sc.gfp_mask);
3903 reclaim_state.reclaimed_slab = 0;
3904 p->reclaim_state = &reclaim_state;
3905
3906 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3907 /*
3908 * Free memory by calling shrink zone with increasing
3909 * priorities until we have enough memory freed.
3910 */
3911 do {
3912 shrink_node(pgdat, &sc);
3913 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3914 }
3915
3916 p->reclaim_state = NULL;
3917 fs_reclaim_release(gfp_mask);
3918 current->flags &= ~PF_SWAPWRITE;
3919 memalloc_noreclaim_restore(noreclaim_flag);
3920 return sc.nr_reclaimed >= nr_pages;
3921 }
3922
3923 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3924 {
3925 int ret;
3926
3927 /*
3928 * Node reclaim reclaims unmapped file backed pages and
3929 * slab pages if we are over the defined limits.
3930 *
3931 * A small portion of unmapped file backed pages is needed for
3932 * file I/O otherwise pages read by file I/O will be immediately
3933 * thrown out if the node is overallocated. So we do not reclaim
3934 * if less than a specified percentage of the node is used by
3935 * unmapped file backed pages.
3936 */
3937 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3938 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3939 return NODE_RECLAIM_FULL;
3940
3941 /*
3942 * Do not scan if the allocation should not be delayed.
3943 */
3944 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3945 return NODE_RECLAIM_NOSCAN;
3946
3947 /*
3948 * Only run node reclaim on the local node or on nodes that do not
3949 * have associated processors. This will favor the local processor
3950 * over remote processors and spread off node memory allocations
3951 * as wide as possible.
3952 */
3953 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3954 return NODE_RECLAIM_NOSCAN;
3955
3956 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3957 return NODE_RECLAIM_NOSCAN;
3958
3959 ret = __node_reclaim(pgdat, gfp_mask, order);
3960 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3961
3962 if (!ret)
3963 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3964
3965 return ret;
3966 }
3967 #endif
3968
3969 /*
3970 * page_evictable - test whether a page is evictable
3971 * @page: the page to test
3972 *
3973 * Test whether page is evictable--i.e., should be placed on active/inactive
3974 * lists vs unevictable list.
3975 *
3976 * Reasons page might not be evictable:
3977 * (1) page's mapping marked unevictable
3978 * (2) page is part of an mlocked VMA
3979 *
3980 */
3981 int page_evictable(struct page *page)
3982 {
3983 int ret;
3984
3985 /* Prevent address_space of inode and swap cache from being freed */
3986 rcu_read_lock();
3987 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3988 rcu_read_unlock();
3989 return ret;
3990 }
3991
3992 #ifdef CONFIG_SHMEM
3993 /**
3994 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3995 * @pages: array of pages to check
3996 * @nr_pages: number of pages to check
3997 *
3998 * Checks pages for evictability and moves them to the appropriate lru list.
3999 *
4000 * This function is only used for SysV IPC SHM_UNLOCK.
4001 */
4002 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4003 {
4004 struct lruvec *lruvec;
4005 struct pglist_data *pgdat = NULL;
4006 int pgscanned = 0;
4007 int pgrescued = 0;
4008 int i;
4009
4010 for (i = 0; i < nr_pages; i++) {
4011 struct page *page = pages[i];
4012 struct pglist_data *pagepgdat = page_pgdat(page);
4013
4014 pgscanned++;
4015 if (pagepgdat != pgdat) {
4016 if (pgdat)
4017 spin_unlock_irq(&pgdat->lru_lock);
4018 pgdat = pagepgdat;
4019 spin_lock_irq(&pgdat->lru_lock);
4020 }
4021 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4022
4023 if (!PageLRU(page) || !PageUnevictable(page))
4024 continue;
4025
4026 if (page_evictable(page)) {
4027 enum lru_list lru = page_lru_base_type(page);
4028
4029 VM_BUG_ON_PAGE(PageActive(page), page);
4030 ClearPageUnevictable(page);
4031 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4032 add_page_to_lru_list(page, lruvec, lru);
4033 pgrescued++;
4034 }
4035 }
4036
4037 if (pgdat) {
4038 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4039 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4040 spin_unlock_irq(&pgdat->lru_lock);
4041 }
4042 }
4043 #endif /* CONFIG_SHMEM */