]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmscan.c
mm: consider whether to decivate based on eligible zones inactive ratio
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
111 };
112
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140
141 /*
142 * From 0 .. 100. Higher means more swappy.
143 */
144 int vm_swappiness = 60;
145 /*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149 unsigned long vm_total_pages;
150
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 return !sc->target_mem_cgroup;
158 }
159
160 /**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 return true;
182 #endif
183 return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 return true;
189 }
190
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 return true;
194 }
195 #endif
196
197 /*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 unsigned long nr;
205
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211
212 return nr;
213 }
214
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 unsigned long nr;
218
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222
223 if (get_nr_swap_pages() > 0)
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227
228 return nr;
229 }
230
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
235 }
236
237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238 {
239 if (!mem_cgroup_disabled())
240 return mem_cgroup_get_lru_size(lruvec, lru);
241
242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 }
244
245 /*
246 * Add a shrinker callback to be called from the vm.
247 */
248 int register_shrinker(struct shrinker *shrinker)
249 {
250 size_t size = sizeof(*shrinker->nr_deferred);
251
252 if (shrinker->flags & SHRINKER_NUMA_AWARE)
253 size *= nr_node_ids;
254
255 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
256 if (!shrinker->nr_deferred)
257 return -ENOMEM;
258
259 down_write(&shrinker_rwsem);
260 list_add_tail(&shrinker->list, &shrinker_list);
261 up_write(&shrinker_rwsem);
262 return 0;
263 }
264 EXPORT_SYMBOL(register_shrinker);
265
266 /*
267 * Remove one
268 */
269 void unregister_shrinker(struct shrinker *shrinker)
270 {
271 down_write(&shrinker_rwsem);
272 list_del(&shrinker->list);
273 up_write(&shrinker_rwsem);
274 kfree(shrinker->nr_deferred);
275 }
276 EXPORT_SYMBOL(unregister_shrinker);
277
278 #define SHRINK_BATCH 128
279
280 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
281 struct shrinker *shrinker,
282 unsigned long nr_scanned,
283 unsigned long nr_eligible)
284 {
285 unsigned long freed = 0;
286 unsigned long long delta;
287 long total_scan;
288 long freeable;
289 long nr;
290 long new_nr;
291 int nid = shrinkctl->nid;
292 long batch_size = shrinker->batch ? shrinker->batch
293 : SHRINK_BATCH;
294
295 freeable = shrinker->count_objects(shrinker, shrinkctl);
296 if (freeable == 0)
297 return 0;
298
299 /*
300 * copy the current shrinker scan count into a local variable
301 * and zero it so that other concurrent shrinker invocations
302 * don't also do this scanning work.
303 */
304 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
305
306 total_scan = nr;
307 delta = (4 * nr_scanned) / shrinker->seeks;
308 delta *= freeable;
309 do_div(delta, nr_eligible + 1);
310 total_scan += delta;
311 if (total_scan < 0) {
312 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
313 shrinker->scan_objects, total_scan);
314 total_scan = freeable;
315 }
316
317 /*
318 * We need to avoid excessive windup on filesystem shrinkers
319 * due to large numbers of GFP_NOFS allocations causing the
320 * shrinkers to return -1 all the time. This results in a large
321 * nr being built up so when a shrink that can do some work
322 * comes along it empties the entire cache due to nr >>>
323 * freeable. This is bad for sustaining a working set in
324 * memory.
325 *
326 * Hence only allow the shrinker to scan the entire cache when
327 * a large delta change is calculated directly.
328 */
329 if (delta < freeable / 4)
330 total_scan = min(total_scan, freeable / 2);
331
332 /*
333 * Avoid risking looping forever due to too large nr value:
334 * never try to free more than twice the estimate number of
335 * freeable entries.
336 */
337 if (total_scan > freeable * 2)
338 total_scan = freeable * 2;
339
340 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
341 nr_scanned, nr_eligible,
342 freeable, delta, total_scan);
343
344 /*
345 * Normally, we should not scan less than batch_size objects in one
346 * pass to avoid too frequent shrinker calls, but if the slab has less
347 * than batch_size objects in total and we are really tight on memory,
348 * we will try to reclaim all available objects, otherwise we can end
349 * up failing allocations although there are plenty of reclaimable
350 * objects spread over several slabs with usage less than the
351 * batch_size.
352 *
353 * We detect the "tight on memory" situations by looking at the total
354 * number of objects we want to scan (total_scan). If it is greater
355 * than the total number of objects on slab (freeable), we must be
356 * scanning at high prio and therefore should try to reclaim as much as
357 * possible.
358 */
359 while (total_scan >= batch_size ||
360 total_scan >= freeable) {
361 unsigned long ret;
362 unsigned long nr_to_scan = min(batch_size, total_scan);
363
364 shrinkctl->nr_to_scan = nr_to_scan;
365 ret = shrinker->scan_objects(shrinker, shrinkctl);
366 if (ret == SHRINK_STOP)
367 break;
368 freed += ret;
369
370 count_vm_events(SLABS_SCANNED, nr_to_scan);
371 total_scan -= nr_to_scan;
372
373 cond_resched();
374 }
375
376 /*
377 * move the unused scan count back into the shrinker in a
378 * manner that handles concurrent updates. If we exhausted the
379 * scan, there is no need to do an update.
380 */
381 if (total_scan > 0)
382 new_nr = atomic_long_add_return(total_scan,
383 &shrinker->nr_deferred[nid]);
384 else
385 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
386
387 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
388 return freed;
389 }
390
391 /**
392 * shrink_slab - shrink slab caches
393 * @gfp_mask: allocation context
394 * @nid: node whose slab caches to target
395 * @memcg: memory cgroup whose slab caches to target
396 * @nr_scanned: pressure numerator
397 * @nr_eligible: pressure denominator
398 *
399 * Call the shrink functions to age shrinkable caches.
400 *
401 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
402 * unaware shrinkers will receive a node id of 0 instead.
403 *
404 * @memcg specifies the memory cgroup to target. If it is not NULL,
405 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
406 * objects from the memory cgroup specified. Otherwise, only unaware
407 * shrinkers are called.
408 *
409 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
410 * the available objects should be scanned. Page reclaim for example
411 * passes the number of pages scanned and the number of pages on the
412 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
413 * when it encountered mapped pages. The ratio is further biased by
414 * the ->seeks setting of the shrink function, which indicates the
415 * cost to recreate an object relative to that of an LRU page.
416 *
417 * Returns the number of reclaimed slab objects.
418 */
419 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
420 struct mem_cgroup *memcg,
421 unsigned long nr_scanned,
422 unsigned long nr_eligible)
423 {
424 struct shrinker *shrinker;
425 unsigned long freed = 0;
426
427 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
428 return 0;
429
430 if (nr_scanned == 0)
431 nr_scanned = SWAP_CLUSTER_MAX;
432
433 if (!down_read_trylock(&shrinker_rwsem)) {
434 /*
435 * If we would return 0, our callers would understand that we
436 * have nothing else to shrink and give up trying. By returning
437 * 1 we keep it going and assume we'll be able to shrink next
438 * time.
439 */
440 freed = 1;
441 goto out;
442 }
443
444 list_for_each_entry(shrinker, &shrinker_list, list) {
445 struct shrink_control sc = {
446 .gfp_mask = gfp_mask,
447 .nid = nid,
448 .memcg = memcg,
449 };
450
451 /*
452 * If kernel memory accounting is disabled, we ignore
453 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
454 * passing NULL for memcg.
455 */
456 if (memcg_kmem_enabled() &&
457 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
458 continue;
459
460 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
461 sc.nid = 0;
462
463 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
464 }
465
466 up_read(&shrinker_rwsem);
467 out:
468 cond_resched();
469 return freed;
470 }
471
472 void drop_slab_node(int nid)
473 {
474 unsigned long freed;
475
476 do {
477 struct mem_cgroup *memcg = NULL;
478
479 freed = 0;
480 do {
481 freed += shrink_slab(GFP_KERNEL, nid, memcg,
482 1000, 1000);
483 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
484 } while (freed > 10);
485 }
486
487 void drop_slab(void)
488 {
489 int nid;
490
491 for_each_online_node(nid)
492 drop_slab_node(nid);
493 }
494
495 static inline int is_page_cache_freeable(struct page *page)
496 {
497 /*
498 * A freeable page cache page is referenced only by the caller
499 * that isolated the page, the page cache radix tree and
500 * optional buffer heads at page->private.
501 */
502 return page_count(page) - page_has_private(page) == 2;
503 }
504
505 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
506 {
507 if (current->flags & PF_SWAPWRITE)
508 return 1;
509 if (!inode_write_congested(inode))
510 return 1;
511 if (inode_to_bdi(inode) == current->backing_dev_info)
512 return 1;
513 return 0;
514 }
515
516 /*
517 * We detected a synchronous write error writing a page out. Probably
518 * -ENOSPC. We need to propagate that into the address_space for a subsequent
519 * fsync(), msync() or close().
520 *
521 * The tricky part is that after writepage we cannot touch the mapping: nothing
522 * prevents it from being freed up. But we have a ref on the page and once
523 * that page is locked, the mapping is pinned.
524 *
525 * We're allowed to run sleeping lock_page() here because we know the caller has
526 * __GFP_FS.
527 */
528 static void handle_write_error(struct address_space *mapping,
529 struct page *page, int error)
530 {
531 lock_page(page);
532 if (page_mapping(page) == mapping)
533 mapping_set_error(mapping, error);
534 unlock_page(page);
535 }
536
537 /* possible outcome of pageout() */
538 typedef enum {
539 /* failed to write page out, page is locked */
540 PAGE_KEEP,
541 /* move page to the active list, page is locked */
542 PAGE_ACTIVATE,
543 /* page has been sent to the disk successfully, page is unlocked */
544 PAGE_SUCCESS,
545 /* page is clean and locked */
546 PAGE_CLEAN,
547 } pageout_t;
548
549 /*
550 * pageout is called by shrink_page_list() for each dirty page.
551 * Calls ->writepage().
552 */
553 static pageout_t pageout(struct page *page, struct address_space *mapping,
554 struct scan_control *sc)
555 {
556 /*
557 * If the page is dirty, only perform writeback if that write
558 * will be non-blocking. To prevent this allocation from being
559 * stalled by pagecache activity. But note that there may be
560 * stalls if we need to run get_block(). We could test
561 * PagePrivate for that.
562 *
563 * If this process is currently in __generic_file_write_iter() against
564 * this page's queue, we can perform writeback even if that
565 * will block.
566 *
567 * If the page is swapcache, write it back even if that would
568 * block, for some throttling. This happens by accident, because
569 * swap_backing_dev_info is bust: it doesn't reflect the
570 * congestion state of the swapdevs. Easy to fix, if needed.
571 */
572 if (!is_page_cache_freeable(page))
573 return PAGE_KEEP;
574 if (!mapping) {
575 /*
576 * Some data journaling orphaned pages can have
577 * page->mapping == NULL while being dirty with clean buffers.
578 */
579 if (page_has_private(page)) {
580 if (try_to_free_buffers(page)) {
581 ClearPageDirty(page);
582 pr_info("%s: orphaned page\n", __func__);
583 return PAGE_CLEAN;
584 }
585 }
586 return PAGE_KEEP;
587 }
588 if (mapping->a_ops->writepage == NULL)
589 return PAGE_ACTIVATE;
590 if (!may_write_to_inode(mapping->host, sc))
591 return PAGE_KEEP;
592
593 if (clear_page_dirty_for_io(page)) {
594 int res;
595 struct writeback_control wbc = {
596 .sync_mode = WB_SYNC_NONE,
597 .nr_to_write = SWAP_CLUSTER_MAX,
598 .range_start = 0,
599 .range_end = LLONG_MAX,
600 .for_reclaim = 1,
601 };
602
603 SetPageReclaim(page);
604 res = mapping->a_ops->writepage(page, &wbc);
605 if (res < 0)
606 handle_write_error(mapping, page, res);
607 if (res == AOP_WRITEPAGE_ACTIVATE) {
608 ClearPageReclaim(page);
609 return PAGE_ACTIVATE;
610 }
611
612 if (!PageWriteback(page)) {
613 /* synchronous write or broken a_ops? */
614 ClearPageReclaim(page);
615 }
616 trace_mm_vmscan_writepage(page);
617 inc_node_page_state(page, NR_VMSCAN_WRITE);
618 return PAGE_SUCCESS;
619 }
620
621 return PAGE_CLEAN;
622 }
623
624 /*
625 * Same as remove_mapping, but if the page is removed from the mapping, it
626 * gets returned with a refcount of 0.
627 */
628 static int __remove_mapping(struct address_space *mapping, struct page *page,
629 bool reclaimed)
630 {
631 unsigned long flags;
632
633 BUG_ON(!PageLocked(page));
634 BUG_ON(mapping != page_mapping(page));
635
636 spin_lock_irqsave(&mapping->tree_lock, flags);
637 /*
638 * The non racy check for a busy page.
639 *
640 * Must be careful with the order of the tests. When someone has
641 * a ref to the page, it may be possible that they dirty it then
642 * drop the reference. So if PageDirty is tested before page_count
643 * here, then the following race may occur:
644 *
645 * get_user_pages(&page);
646 * [user mapping goes away]
647 * write_to(page);
648 * !PageDirty(page) [good]
649 * SetPageDirty(page);
650 * put_page(page);
651 * !page_count(page) [good, discard it]
652 *
653 * [oops, our write_to data is lost]
654 *
655 * Reversing the order of the tests ensures such a situation cannot
656 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
657 * load is not satisfied before that of page->_refcount.
658 *
659 * Note that if SetPageDirty is always performed via set_page_dirty,
660 * and thus under tree_lock, then this ordering is not required.
661 */
662 if (!page_ref_freeze(page, 2))
663 goto cannot_free;
664 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
665 if (unlikely(PageDirty(page))) {
666 page_ref_unfreeze(page, 2);
667 goto cannot_free;
668 }
669
670 if (PageSwapCache(page)) {
671 swp_entry_t swap = { .val = page_private(page) };
672 mem_cgroup_swapout(page, swap);
673 __delete_from_swap_cache(page);
674 spin_unlock_irqrestore(&mapping->tree_lock, flags);
675 swapcache_free(swap);
676 } else {
677 void (*freepage)(struct page *);
678 void *shadow = NULL;
679
680 freepage = mapping->a_ops->freepage;
681 /*
682 * Remember a shadow entry for reclaimed file cache in
683 * order to detect refaults, thus thrashing, later on.
684 *
685 * But don't store shadows in an address space that is
686 * already exiting. This is not just an optizimation,
687 * inode reclaim needs to empty out the radix tree or
688 * the nodes are lost. Don't plant shadows behind its
689 * back.
690 *
691 * We also don't store shadows for DAX mappings because the
692 * only page cache pages found in these are zero pages
693 * covering holes, and because we don't want to mix DAX
694 * exceptional entries and shadow exceptional entries in the
695 * same page_tree.
696 */
697 if (reclaimed && page_is_file_cache(page) &&
698 !mapping_exiting(mapping) && !dax_mapping(mapping))
699 shadow = workingset_eviction(mapping, page);
700 __delete_from_page_cache(page, shadow);
701 spin_unlock_irqrestore(&mapping->tree_lock, flags);
702
703 if (freepage != NULL)
704 freepage(page);
705 }
706
707 return 1;
708
709 cannot_free:
710 spin_unlock_irqrestore(&mapping->tree_lock, flags);
711 return 0;
712 }
713
714 /*
715 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
716 * someone else has a ref on the page, abort and return 0. If it was
717 * successfully detached, return 1. Assumes the caller has a single ref on
718 * this page.
719 */
720 int remove_mapping(struct address_space *mapping, struct page *page)
721 {
722 if (__remove_mapping(mapping, page, false)) {
723 /*
724 * Unfreezing the refcount with 1 rather than 2 effectively
725 * drops the pagecache ref for us without requiring another
726 * atomic operation.
727 */
728 page_ref_unfreeze(page, 1);
729 return 1;
730 }
731 return 0;
732 }
733
734 /**
735 * putback_lru_page - put previously isolated page onto appropriate LRU list
736 * @page: page to be put back to appropriate lru list
737 *
738 * Add previously isolated @page to appropriate LRU list.
739 * Page may still be unevictable for other reasons.
740 *
741 * lru_lock must not be held, interrupts must be enabled.
742 */
743 void putback_lru_page(struct page *page)
744 {
745 bool is_unevictable;
746 int was_unevictable = PageUnevictable(page);
747
748 VM_BUG_ON_PAGE(PageLRU(page), page);
749
750 redo:
751 ClearPageUnevictable(page);
752
753 if (page_evictable(page)) {
754 /*
755 * For evictable pages, we can use the cache.
756 * In event of a race, worst case is we end up with an
757 * unevictable page on [in]active list.
758 * We know how to handle that.
759 */
760 is_unevictable = false;
761 lru_cache_add(page);
762 } else {
763 /*
764 * Put unevictable pages directly on zone's unevictable
765 * list.
766 */
767 is_unevictable = true;
768 add_page_to_unevictable_list(page);
769 /*
770 * When racing with an mlock or AS_UNEVICTABLE clearing
771 * (page is unlocked) make sure that if the other thread
772 * does not observe our setting of PG_lru and fails
773 * isolation/check_move_unevictable_pages,
774 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
775 * the page back to the evictable list.
776 *
777 * The other side is TestClearPageMlocked() or shmem_lock().
778 */
779 smp_mb();
780 }
781
782 /*
783 * page's status can change while we move it among lru. If an evictable
784 * page is on unevictable list, it never be freed. To avoid that,
785 * check after we added it to the list, again.
786 */
787 if (is_unevictable && page_evictable(page)) {
788 if (!isolate_lru_page(page)) {
789 put_page(page);
790 goto redo;
791 }
792 /* This means someone else dropped this page from LRU
793 * So, it will be freed or putback to LRU again. There is
794 * nothing to do here.
795 */
796 }
797
798 if (was_unevictable && !is_unevictable)
799 count_vm_event(UNEVICTABLE_PGRESCUED);
800 else if (!was_unevictable && is_unevictable)
801 count_vm_event(UNEVICTABLE_PGCULLED);
802
803 put_page(page); /* drop ref from isolate */
804 }
805
806 enum page_references {
807 PAGEREF_RECLAIM,
808 PAGEREF_RECLAIM_CLEAN,
809 PAGEREF_KEEP,
810 PAGEREF_ACTIVATE,
811 };
812
813 static enum page_references page_check_references(struct page *page,
814 struct scan_control *sc)
815 {
816 int referenced_ptes, referenced_page;
817 unsigned long vm_flags;
818
819 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
820 &vm_flags);
821 referenced_page = TestClearPageReferenced(page);
822
823 /*
824 * Mlock lost the isolation race with us. Let try_to_unmap()
825 * move the page to the unevictable list.
826 */
827 if (vm_flags & VM_LOCKED)
828 return PAGEREF_RECLAIM;
829
830 if (referenced_ptes) {
831 if (PageSwapBacked(page))
832 return PAGEREF_ACTIVATE;
833 /*
834 * All mapped pages start out with page table
835 * references from the instantiating fault, so we need
836 * to look twice if a mapped file page is used more
837 * than once.
838 *
839 * Mark it and spare it for another trip around the
840 * inactive list. Another page table reference will
841 * lead to its activation.
842 *
843 * Note: the mark is set for activated pages as well
844 * so that recently deactivated but used pages are
845 * quickly recovered.
846 */
847 SetPageReferenced(page);
848
849 if (referenced_page || referenced_ptes > 1)
850 return PAGEREF_ACTIVATE;
851
852 /*
853 * Activate file-backed executable pages after first usage.
854 */
855 if (vm_flags & VM_EXEC)
856 return PAGEREF_ACTIVATE;
857
858 return PAGEREF_KEEP;
859 }
860
861 /* Reclaim if clean, defer dirty pages to writeback */
862 if (referenced_page && !PageSwapBacked(page))
863 return PAGEREF_RECLAIM_CLEAN;
864
865 return PAGEREF_RECLAIM;
866 }
867
868 /* Check if a page is dirty or under writeback */
869 static void page_check_dirty_writeback(struct page *page,
870 bool *dirty, bool *writeback)
871 {
872 struct address_space *mapping;
873
874 /*
875 * Anonymous pages are not handled by flushers and must be written
876 * from reclaim context. Do not stall reclaim based on them
877 */
878 if (!page_is_file_cache(page)) {
879 *dirty = false;
880 *writeback = false;
881 return;
882 }
883
884 /* By default assume that the page flags are accurate */
885 *dirty = PageDirty(page);
886 *writeback = PageWriteback(page);
887
888 /* Verify dirty/writeback state if the filesystem supports it */
889 if (!page_has_private(page))
890 return;
891
892 mapping = page_mapping(page);
893 if (mapping && mapping->a_ops->is_dirty_writeback)
894 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
895 }
896
897 /*
898 * shrink_page_list() returns the number of reclaimed pages
899 */
900 static unsigned long shrink_page_list(struct list_head *page_list,
901 struct pglist_data *pgdat,
902 struct scan_control *sc,
903 enum ttu_flags ttu_flags,
904 unsigned long *ret_nr_dirty,
905 unsigned long *ret_nr_unqueued_dirty,
906 unsigned long *ret_nr_congested,
907 unsigned long *ret_nr_writeback,
908 unsigned long *ret_nr_immediate,
909 bool force_reclaim)
910 {
911 LIST_HEAD(ret_pages);
912 LIST_HEAD(free_pages);
913 int pgactivate = 0;
914 unsigned long nr_unqueued_dirty = 0;
915 unsigned long nr_dirty = 0;
916 unsigned long nr_congested = 0;
917 unsigned long nr_reclaimed = 0;
918 unsigned long nr_writeback = 0;
919 unsigned long nr_immediate = 0;
920
921 cond_resched();
922
923 while (!list_empty(page_list)) {
924 struct address_space *mapping;
925 struct page *page;
926 int may_enter_fs;
927 enum page_references references = PAGEREF_RECLAIM_CLEAN;
928 bool dirty, writeback;
929 bool lazyfree = false;
930 int ret = SWAP_SUCCESS;
931
932 cond_resched();
933
934 page = lru_to_page(page_list);
935 list_del(&page->lru);
936
937 if (!trylock_page(page))
938 goto keep;
939
940 VM_BUG_ON_PAGE(PageActive(page), page);
941
942 sc->nr_scanned++;
943
944 if (unlikely(!page_evictable(page)))
945 goto cull_mlocked;
946
947 if (!sc->may_unmap && page_mapped(page))
948 goto keep_locked;
949
950 /* Double the slab pressure for mapped and swapcache pages */
951 if (page_mapped(page) || PageSwapCache(page))
952 sc->nr_scanned++;
953
954 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
955 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
956
957 /*
958 * The number of dirty pages determines if a zone is marked
959 * reclaim_congested which affects wait_iff_congested. kswapd
960 * will stall and start writing pages if the tail of the LRU
961 * is all dirty unqueued pages.
962 */
963 page_check_dirty_writeback(page, &dirty, &writeback);
964 if (dirty || writeback)
965 nr_dirty++;
966
967 if (dirty && !writeback)
968 nr_unqueued_dirty++;
969
970 /*
971 * Treat this page as congested if the underlying BDI is or if
972 * pages are cycling through the LRU so quickly that the
973 * pages marked for immediate reclaim are making it to the
974 * end of the LRU a second time.
975 */
976 mapping = page_mapping(page);
977 if (((dirty || writeback) && mapping &&
978 inode_write_congested(mapping->host)) ||
979 (writeback && PageReclaim(page)))
980 nr_congested++;
981
982 /*
983 * If a page at the tail of the LRU is under writeback, there
984 * are three cases to consider.
985 *
986 * 1) If reclaim is encountering an excessive number of pages
987 * under writeback and this page is both under writeback and
988 * PageReclaim then it indicates that pages are being queued
989 * for IO but are being recycled through the LRU before the
990 * IO can complete. Waiting on the page itself risks an
991 * indefinite stall if it is impossible to writeback the
992 * page due to IO error or disconnected storage so instead
993 * note that the LRU is being scanned too quickly and the
994 * caller can stall after page list has been processed.
995 *
996 * 2) Global or new memcg reclaim encounters a page that is
997 * not marked for immediate reclaim, or the caller does not
998 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
999 * not to fs). In this case mark the page for immediate
1000 * reclaim and continue scanning.
1001 *
1002 * Require may_enter_fs because we would wait on fs, which
1003 * may not have submitted IO yet. And the loop driver might
1004 * enter reclaim, and deadlock if it waits on a page for
1005 * which it is needed to do the write (loop masks off
1006 * __GFP_IO|__GFP_FS for this reason); but more thought
1007 * would probably show more reasons.
1008 *
1009 * 3) Legacy memcg encounters a page that is already marked
1010 * PageReclaim. memcg does not have any dirty pages
1011 * throttling so we could easily OOM just because too many
1012 * pages are in writeback and there is nothing else to
1013 * reclaim. Wait for the writeback to complete.
1014 */
1015 if (PageWriteback(page)) {
1016 /* Case 1 above */
1017 if (current_is_kswapd() &&
1018 PageReclaim(page) &&
1019 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1020 nr_immediate++;
1021 goto keep_locked;
1022
1023 /* Case 2 above */
1024 } else if (sane_reclaim(sc) ||
1025 !PageReclaim(page) || !may_enter_fs) {
1026 /*
1027 * This is slightly racy - end_page_writeback()
1028 * might have just cleared PageReclaim, then
1029 * setting PageReclaim here end up interpreted
1030 * as PageReadahead - but that does not matter
1031 * enough to care. What we do want is for this
1032 * page to have PageReclaim set next time memcg
1033 * reclaim reaches the tests above, so it will
1034 * then wait_on_page_writeback() to avoid OOM;
1035 * and it's also appropriate in global reclaim.
1036 */
1037 SetPageReclaim(page);
1038 nr_writeback++;
1039 goto keep_locked;
1040
1041 /* Case 3 above */
1042 } else {
1043 unlock_page(page);
1044 wait_on_page_writeback(page);
1045 /* then go back and try same page again */
1046 list_add_tail(&page->lru, page_list);
1047 continue;
1048 }
1049 }
1050
1051 if (!force_reclaim)
1052 references = page_check_references(page, sc);
1053
1054 switch (references) {
1055 case PAGEREF_ACTIVATE:
1056 goto activate_locked;
1057 case PAGEREF_KEEP:
1058 goto keep_locked;
1059 case PAGEREF_RECLAIM:
1060 case PAGEREF_RECLAIM_CLEAN:
1061 ; /* try to reclaim the page below */
1062 }
1063
1064 /*
1065 * Anonymous process memory has backing store?
1066 * Try to allocate it some swap space here.
1067 */
1068 if (PageAnon(page) && !PageSwapCache(page)) {
1069 if (!(sc->gfp_mask & __GFP_IO))
1070 goto keep_locked;
1071 if (!add_to_swap(page, page_list))
1072 goto activate_locked;
1073 lazyfree = true;
1074 may_enter_fs = 1;
1075
1076 /* Adding to swap updated mapping */
1077 mapping = page_mapping(page);
1078 } else if (unlikely(PageTransHuge(page))) {
1079 /* Split file THP */
1080 if (split_huge_page_to_list(page, page_list))
1081 goto keep_locked;
1082 }
1083
1084 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1085
1086 /*
1087 * The page is mapped into the page tables of one or more
1088 * processes. Try to unmap it here.
1089 */
1090 if (page_mapped(page) && mapping) {
1091 switch (ret = try_to_unmap(page, lazyfree ?
1092 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1093 (ttu_flags | TTU_BATCH_FLUSH))) {
1094 case SWAP_FAIL:
1095 goto activate_locked;
1096 case SWAP_AGAIN:
1097 goto keep_locked;
1098 case SWAP_MLOCK:
1099 goto cull_mlocked;
1100 case SWAP_LZFREE:
1101 goto lazyfree;
1102 case SWAP_SUCCESS:
1103 ; /* try to free the page below */
1104 }
1105 }
1106
1107 if (PageDirty(page)) {
1108 /*
1109 * Only kswapd can writeback filesystem pages to
1110 * avoid risk of stack overflow but only writeback
1111 * if many dirty pages have been encountered.
1112 */
1113 if (page_is_file_cache(page) &&
1114 (!current_is_kswapd() ||
1115 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1116 /*
1117 * Immediately reclaim when written back.
1118 * Similar in principal to deactivate_page()
1119 * except we already have the page isolated
1120 * and know it's dirty
1121 */
1122 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1123 SetPageReclaim(page);
1124
1125 goto keep_locked;
1126 }
1127
1128 if (references == PAGEREF_RECLAIM_CLEAN)
1129 goto keep_locked;
1130 if (!may_enter_fs)
1131 goto keep_locked;
1132 if (!sc->may_writepage)
1133 goto keep_locked;
1134
1135 /*
1136 * Page is dirty. Flush the TLB if a writable entry
1137 * potentially exists to avoid CPU writes after IO
1138 * starts and then write it out here.
1139 */
1140 try_to_unmap_flush_dirty();
1141 switch (pageout(page, mapping, sc)) {
1142 case PAGE_KEEP:
1143 goto keep_locked;
1144 case PAGE_ACTIVATE:
1145 goto activate_locked;
1146 case PAGE_SUCCESS:
1147 if (PageWriteback(page))
1148 goto keep;
1149 if (PageDirty(page))
1150 goto keep;
1151
1152 /*
1153 * A synchronous write - probably a ramdisk. Go
1154 * ahead and try to reclaim the page.
1155 */
1156 if (!trylock_page(page))
1157 goto keep;
1158 if (PageDirty(page) || PageWriteback(page))
1159 goto keep_locked;
1160 mapping = page_mapping(page);
1161 case PAGE_CLEAN:
1162 ; /* try to free the page below */
1163 }
1164 }
1165
1166 /*
1167 * If the page has buffers, try to free the buffer mappings
1168 * associated with this page. If we succeed we try to free
1169 * the page as well.
1170 *
1171 * We do this even if the page is PageDirty().
1172 * try_to_release_page() does not perform I/O, but it is
1173 * possible for a page to have PageDirty set, but it is actually
1174 * clean (all its buffers are clean). This happens if the
1175 * buffers were written out directly, with submit_bh(). ext3
1176 * will do this, as well as the blockdev mapping.
1177 * try_to_release_page() will discover that cleanness and will
1178 * drop the buffers and mark the page clean - it can be freed.
1179 *
1180 * Rarely, pages can have buffers and no ->mapping. These are
1181 * the pages which were not successfully invalidated in
1182 * truncate_complete_page(). We try to drop those buffers here
1183 * and if that worked, and the page is no longer mapped into
1184 * process address space (page_count == 1) it can be freed.
1185 * Otherwise, leave the page on the LRU so it is swappable.
1186 */
1187 if (page_has_private(page)) {
1188 if (!try_to_release_page(page, sc->gfp_mask))
1189 goto activate_locked;
1190 if (!mapping && page_count(page) == 1) {
1191 unlock_page(page);
1192 if (put_page_testzero(page))
1193 goto free_it;
1194 else {
1195 /*
1196 * rare race with speculative reference.
1197 * the speculative reference will free
1198 * this page shortly, so we may
1199 * increment nr_reclaimed here (and
1200 * leave it off the LRU).
1201 */
1202 nr_reclaimed++;
1203 continue;
1204 }
1205 }
1206 }
1207
1208 lazyfree:
1209 if (!mapping || !__remove_mapping(mapping, page, true))
1210 goto keep_locked;
1211
1212 /*
1213 * At this point, we have no other references and there is
1214 * no way to pick any more up (removed from LRU, removed
1215 * from pagecache). Can use non-atomic bitops now (and
1216 * we obviously don't have to worry about waking up a process
1217 * waiting on the page lock, because there are no references.
1218 */
1219 __ClearPageLocked(page);
1220 free_it:
1221 if (ret == SWAP_LZFREE)
1222 count_vm_event(PGLAZYFREED);
1223
1224 nr_reclaimed++;
1225
1226 /*
1227 * Is there need to periodically free_page_list? It would
1228 * appear not as the counts should be low
1229 */
1230 list_add(&page->lru, &free_pages);
1231 continue;
1232
1233 cull_mlocked:
1234 if (PageSwapCache(page))
1235 try_to_free_swap(page);
1236 unlock_page(page);
1237 list_add(&page->lru, &ret_pages);
1238 continue;
1239
1240 activate_locked:
1241 /* Not a candidate for swapping, so reclaim swap space. */
1242 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1243 try_to_free_swap(page);
1244 VM_BUG_ON_PAGE(PageActive(page), page);
1245 SetPageActive(page);
1246 pgactivate++;
1247 keep_locked:
1248 unlock_page(page);
1249 keep:
1250 list_add(&page->lru, &ret_pages);
1251 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1252 }
1253
1254 mem_cgroup_uncharge_list(&free_pages);
1255 try_to_unmap_flush();
1256 free_hot_cold_page_list(&free_pages, true);
1257
1258 list_splice(&ret_pages, page_list);
1259 count_vm_events(PGACTIVATE, pgactivate);
1260
1261 *ret_nr_dirty += nr_dirty;
1262 *ret_nr_congested += nr_congested;
1263 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1264 *ret_nr_writeback += nr_writeback;
1265 *ret_nr_immediate += nr_immediate;
1266 return nr_reclaimed;
1267 }
1268
1269 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1270 struct list_head *page_list)
1271 {
1272 struct scan_control sc = {
1273 .gfp_mask = GFP_KERNEL,
1274 .priority = DEF_PRIORITY,
1275 .may_unmap = 1,
1276 };
1277 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1278 struct page *page, *next;
1279 LIST_HEAD(clean_pages);
1280
1281 list_for_each_entry_safe(page, next, page_list, lru) {
1282 if (page_is_file_cache(page) && !PageDirty(page) &&
1283 !__PageMovable(page)) {
1284 ClearPageActive(page);
1285 list_move(&page->lru, &clean_pages);
1286 }
1287 }
1288
1289 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1290 TTU_UNMAP|TTU_IGNORE_ACCESS,
1291 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1292 list_splice(&clean_pages, page_list);
1293 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1294 return ret;
1295 }
1296
1297 /*
1298 * Attempt to remove the specified page from its LRU. Only take this page
1299 * if it is of the appropriate PageActive status. Pages which are being
1300 * freed elsewhere are also ignored.
1301 *
1302 * page: page to consider
1303 * mode: one of the LRU isolation modes defined above
1304 *
1305 * returns 0 on success, -ve errno on failure.
1306 */
1307 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1308 {
1309 int ret = -EINVAL;
1310
1311 /* Only take pages on the LRU. */
1312 if (!PageLRU(page))
1313 return ret;
1314
1315 /* Compaction should not handle unevictable pages but CMA can do so */
1316 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1317 return ret;
1318
1319 ret = -EBUSY;
1320
1321 /*
1322 * To minimise LRU disruption, the caller can indicate that it only
1323 * wants to isolate pages it will be able to operate on without
1324 * blocking - clean pages for the most part.
1325 *
1326 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1327 * is used by reclaim when it is cannot write to backing storage
1328 *
1329 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1330 * that it is possible to migrate without blocking
1331 */
1332 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1333 /* All the caller can do on PageWriteback is block */
1334 if (PageWriteback(page))
1335 return ret;
1336
1337 if (PageDirty(page)) {
1338 struct address_space *mapping;
1339
1340 /* ISOLATE_CLEAN means only clean pages */
1341 if (mode & ISOLATE_CLEAN)
1342 return ret;
1343
1344 /*
1345 * Only pages without mappings or that have a
1346 * ->migratepage callback are possible to migrate
1347 * without blocking
1348 */
1349 mapping = page_mapping(page);
1350 if (mapping && !mapping->a_ops->migratepage)
1351 return ret;
1352 }
1353 }
1354
1355 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1356 return ret;
1357
1358 if (likely(get_page_unless_zero(page))) {
1359 /*
1360 * Be careful not to clear PageLRU until after we're
1361 * sure the page is not being freed elsewhere -- the
1362 * page release code relies on it.
1363 */
1364 ClearPageLRU(page);
1365 ret = 0;
1366 }
1367
1368 return ret;
1369 }
1370
1371
1372 /*
1373 * Update LRU sizes after isolating pages. The LRU size updates must
1374 * be complete before mem_cgroup_update_lru_size due to a santity check.
1375 */
1376 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1377 enum lru_list lru, unsigned long *nr_zone_taken,
1378 unsigned long nr_taken)
1379 {
1380 int zid;
1381
1382 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1383 if (!nr_zone_taken[zid])
1384 continue;
1385
1386 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1387 }
1388
1389 #ifdef CONFIG_MEMCG
1390 mem_cgroup_update_lru_size(lruvec, lru, -nr_taken);
1391 #endif
1392 }
1393
1394 /*
1395 * zone_lru_lock is heavily contended. Some of the functions that
1396 * shrink the lists perform better by taking out a batch of pages
1397 * and working on them outside the LRU lock.
1398 *
1399 * For pagecache intensive workloads, this function is the hottest
1400 * spot in the kernel (apart from copy_*_user functions).
1401 *
1402 * Appropriate locks must be held before calling this function.
1403 *
1404 * @nr_to_scan: The number of pages to look through on the list.
1405 * @lruvec: The LRU vector to pull pages from.
1406 * @dst: The temp list to put pages on to.
1407 * @nr_scanned: The number of pages that were scanned.
1408 * @sc: The scan_control struct for this reclaim session
1409 * @mode: One of the LRU isolation modes
1410 * @lru: LRU list id for isolating
1411 *
1412 * returns how many pages were moved onto *@dst.
1413 */
1414 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1415 struct lruvec *lruvec, struct list_head *dst,
1416 unsigned long *nr_scanned, struct scan_control *sc,
1417 isolate_mode_t mode, enum lru_list lru)
1418 {
1419 struct list_head *src = &lruvec->lists[lru];
1420 unsigned long nr_taken = 0;
1421 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1422 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1423 unsigned long scan, nr_pages;
1424 LIST_HEAD(pages_skipped);
1425
1426 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1427 !list_empty(src); scan++) {
1428 struct page *page;
1429
1430 page = lru_to_page(src);
1431 prefetchw_prev_lru_page(page, src, flags);
1432
1433 VM_BUG_ON_PAGE(!PageLRU(page), page);
1434
1435 if (page_zonenum(page) > sc->reclaim_idx) {
1436 list_move(&page->lru, &pages_skipped);
1437 nr_skipped[page_zonenum(page)]++;
1438 continue;
1439 }
1440
1441 switch (__isolate_lru_page(page, mode)) {
1442 case 0:
1443 nr_pages = hpage_nr_pages(page);
1444 nr_taken += nr_pages;
1445 nr_zone_taken[page_zonenum(page)] += nr_pages;
1446 list_move(&page->lru, dst);
1447 break;
1448
1449 case -EBUSY:
1450 /* else it is being freed elsewhere */
1451 list_move(&page->lru, src);
1452 continue;
1453
1454 default:
1455 BUG();
1456 }
1457 }
1458
1459 /*
1460 * Splice any skipped pages to the start of the LRU list. Note that
1461 * this disrupts the LRU order when reclaiming for lower zones but
1462 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1463 * scanning would soon rescan the same pages to skip and put the
1464 * system at risk of premature OOM.
1465 */
1466 if (!list_empty(&pages_skipped)) {
1467 int zid;
1468
1469 list_splice(&pages_skipped, src);
1470 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1471 if (!nr_skipped[zid])
1472 continue;
1473
1474 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1475 }
1476 }
1477 *nr_scanned = scan;
1478 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1479 nr_taken, mode, is_file_lru(lru));
1480 update_lru_sizes(lruvec, lru, nr_zone_taken, nr_taken);
1481 return nr_taken;
1482 }
1483
1484 /**
1485 * isolate_lru_page - tries to isolate a page from its LRU list
1486 * @page: page to isolate from its LRU list
1487 *
1488 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1489 * vmstat statistic corresponding to whatever LRU list the page was on.
1490 *
1491 * Returns 0 if the page was removed from an LRU list.
1492 * Returns -EBUSY if the page was not on an LRU list.
1493 *
1494 * The returned page will have PageLRU() cleared. If it was found on
1495 * the active list, it will have PageActive set. If it was found on
1496 * the unevictable list, it will have the PageUnevictable bit set. That flag
1497 * may need to be cleared by the caller before letting the page go.
1498 *
1499 * The vmstat statistic corresponding to the list on which the page was
1500 * found will be decremented.
1501 *
1502 * Restrictions:
1503 * (1) Must be called with an elevated refcount on the page. This is a
1504 * fundamentnal difference from isolate_lru_pages (which is called
1505 * without a stable reference).
1506 * (2) the lru_lock must not be held.
1507 * (3) interrupts must be enabled.
1508 */
1509 int isolate_lru_page(struct page *page)
1510 {
1511 int ret = -EBUSY;
1512
1513 VM_BUG_ON_PAGE(!page_count(page), page);
1514 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1515
1516 if (PageLRU(page)) {
1517 struct zone *zone = page_zone(page);
1518 struct lruvec *lruvec;
1519
1520 spin_lock_irq(zone_lru_lock(zone));
1521 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1522 if (PageLRU(page)) {
1523 int lru = page_lru(page);
1524 get_page(page);
1525 ClearPageLRU(page);
1526 del_page_from_lru_list(page, lruvec, lru);
1527 ret = 0;
1528 }
1529 spin_unlock_irq(zone_lru_lock(zone));
1530 }
1531 return ret;
1532 }
1533
1534 /*
1535 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1536 * then get resheduled. When there are massive number of tasks doing page
1537 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1538 * the LRU list will go small and be scanned faster than necessary, leading to
1539 * unnecessary swapping, thrashing and OOM.
1540 */
1541 static int too_many_isolated(struct pglist_data *pgdat, int file,
1542 struct scan_control *sc)
1543 {
1544 unsigned long inactive, isolated;
1545
1546 if (current_is_kswapd())
1547 return 0;
1548
1549 if (!sane_reclaim(sc))
1550 return 0;
1551
1552 if (file) {
1553 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1554 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1555 } else {
1556 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1557 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1558 }
1559
1560 /*
1561 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1562 * won't get blocked by normal direct-reclaimers, forming a circular
1563 * deadlock.
1564 */
1565 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1566 inactive >>= 3;
1567
1568 return isolated > inactive;
1569 }
1570
1571 static noinline_for_stack void
1572 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1573 {
1574 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1575 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1576 LIST_HEAD(pages_to_free);
1577
1578 /*
1579 * Put back any unfreeable pages.
1580 */
1581 while (!list_empty(page_list)) {
1582 struct page *page = lru_to_page(page_list);
1583 int lru;
1584
1585 VM_BUG_ON_PAGE(PageLRU(page), page);
1586 list_del(&page->lru);
1587 if (unlikely(!page_evictable(page))) {
1588 spin_unlock_irq(&pgdat->lru_lock);
1589 putback_lru_page(page);
1590 spin_lock_irq(&pgdat->lru_lock);
1591 continue;
1592 }
1593
1594 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1595
1596 SetPageLRU(page);
1597 lru = page_lru(page);
1598 add_page_to_lru_list(page, lruvec, lru);
1599
1600 if (is_active_lru(lru)) {
1601 int file = is_file_lru(lru);
1602 int numpages = hpage_nr_pages(page);
1603 reclaim_stat->recent_rotated[file] += numpages;
1604 }
1605 if (put_page_testzero(page)) {
1606 __ClearPageLRU(page);
1607 __ClearPageActive(page);
1608 del_page_from_lru_list(page, lruvec, lru);
1609
1610 if (unlikely(PageCompound(page))) {
1611 spin_unlock_irq(&pgdat->lru_lock);
1612 mem_cgroup_uncharge(page);
1613 (*get_compound_page_dtor(page))(page);
1614 spin_lock_irq(&pgdat->lru_lock);
1615 } else
1616 list_add(&page->lru, &pages_to_free);
1617 }
1618 }
1619
1620 /*
1621 * To save our caller's stack, now use input list for pages to free.
1622 */
1623 list_splice(&pages_to_free, page_list);
1624 }
1625
1626 /*
1627 * If a kernel thread (such as nfsd for loop-back mounts) services
1628 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1629 * In that case we should only throttle if the backing device it is
1630 * writing to is congested. In other cases it is safe to throttle.
1631 */
1632 static int current_may_throttle(void)
1633 {
1634 return !(current->flags & PF_LESS_THROTTLE) ||
1635 current->backing_dev_info == NULL ||
1636 bdi_write_congested(current->backing_dev_info);
1637 }
1638
1639 /*
1640 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1641 * of reclaimed pages
1642 */
1643 static noinline_for_stack unsigned long
1644 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1645 struct scan_control *sc, enum lru_list lru)
1646 {
1647 LIST_HEAD(page_list);
1648 unsigned long nr_scanned;
1649 unsigned long nr_reclaimed = 0;
1650 unsigned long nr_taken;
1651 unsigned long nr_dirty = 0;
1652 unsigned long nr_congested = 0;
1653 unsigned long nr_unqueued_dirty = 0;
1654 unsigned long nr_writeback = 0;
1655 unsigned long nr_immediate = 0;
1656 isolate_mode_t isolate_mode = 0;
1657 int file = is_file_lru(lru);
1658 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1659 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660
1661 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1662 congestion_wait(BLK_RW_ASYNC, HZ/10);
1663
1664 /* We are about to die and free our memory. Return now. */
1665 if (fatal_signal_pending(current))
1666 return SWAP_CLUSTER_MAX;
1667 }
1668
1669 lru_add_drain();
1670
1671 if (!sc->may_unmap)
1672 isolate_mode |= ISOLATE_UNMAPPED;
1673 if (!sc->may_writepage)
1674 isolate_mode |= ISOLATE_CLEAN;
1675
1676 spin_lock_irq(&pgdat->lru_lock);
1677
1678 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1679 &nr_scanned, sc, isolate_mode, lru);
1680
1681 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1682 reclaim_stat->recent_scanned[file] += nr_taken;
1683
1684 if (global_reclaim(sc)) {
1685 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1686 if (current_is_kswapd())
1687 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1688 else
1689 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1690 }
1691 spin_unlock_irq(&pgdat->lru_lock);
1692
1693 if (nr_taken == 0)
1694 return 0;
1695
1696 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1697 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1698 &nr_writeback, &nr_immediate,
1699 false);
1700
1701 spin_lock_irq(&pgdat->lru_lock);
1702
1703 if (global_reclaim(sc)) {
1704 if (current_is_kswapd())
1705 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1706 else
1707 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1708 }
1709
1710 putback_inactive_pages(lruvec, &page_list);
1711
1712 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1713
1714 spin_unlock_irq(&pgdat->lru_lock);
1715
1716 mem_cgroup_uncharge_list(&page_list);
1717 free_hot_cold_page_list(&page_list, true);
1718
1719 /*
1720 * If reclaim is isolating dirty pages under writeback, it implies
1721 * that the long-lived page allocation rate is exceeding the page
1722 * laundering rate. Either the global limits are not being effective
1723 * at throttling processes due to the page distribution throughout
1724 * zones or there is heavy usage of a slow backing device. The
1725 * only option is to throttle from reclaim context which is not ideal
1726 * as there is no guarantee the dirtying process is throttled in the
1727 * same way balance_dirty_pages() manages.
1728 *
1729 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1730 * of pages under pages flagged for immediate reclaim and stall if any
1731 * are encountered in the nr_immediate check below.
1732 */
1733 if (nr_writeback && nr_writeback == nr_taken)
1734 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1735
1736 /*
1737 * Legacy memcg will stall in page writeback so avoid forcibly
1738 * stalling here.
1739 */
1740 if (sane_reclaim(sc)) {
1741 /*
1742 * Tag a zone as congested if all the dirty pages scanned were
1743 * backed by a congested BDI and wait_iff_congested will stall.
1744 */
1745 if (nr_dirty && nr_dirty == nr_congested)
1746 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1747
1748 /*
1749 * If dirty pages are scanned that are not queued for IO, it
1750 * implies that flushers are not keeping up. In this case, flag
1751 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1752 * reclaim context.
1753 */
1754 if (nr_unqueued_dirty == nr_taken)
1755 set_bit(PGDAT_DIRTY, &pgdat->flags);
1756
1757 /*
1758 * If kswapd scans pages marked marked for immediate
1759 * reclaim and under writeback (nr_immediate), it implies
1760 * that pages are cycling through the LRU faster than
1761 * they are written so also forcibly stall.
1762 */
1763 if (nr_immediate && current_may_throttle())
1764 congestion_wait(BLK_RW_ASYNC, HZ/10);
1765 }
1766
1767 /*
1768 * Stall direct reclaim for IO completions if underlying BDIs or zone
1769 * is congested. Allow kswapd to continue until it starts encountering
1770 * unqueued dirty pages or cycling through the LRU too quickly.
1771 */
1772 if (!sc->hibernation_mode && !current_is_kswapd() &&
1773 current_may_throttle())
1774 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1775
1776 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1777 nr_scanned, nr_reclaimed,
1778 sc->priority, file);
1779 return nr_reclaimed;
1780 }
1781
1782 /*
1783 * This moves pages from the active list to the inactive list.
1784 *
1785 * We move them the other way if the page is referenced by one or more
1786 * processes, from rmap.
1787 *
1788 * If the pages are mostly unmapped, the processing is fast and it is
1789 * appropriate to hold zone_lru_lock across the whole operation. But if
1790 * the pages are mapped, the processing is slow (page_referenced()) so we
1791 * should drop zone_lru_lock around each page. It's impossible to balance
1792 * this, so instead we remove the pages from the LRU while processing them.
1793 * It is safe to rely on PG_active against the non-LRU pages in here because
1794 * nobody will play with that bit on a non-LRU page.
1795 *
1796 * The downside is that we have to touch page->_refcount against each page.
1797 * But we had to alter page->flags anyway.
1798 */
1799
1800 static void move_active_pages_to_lru(struct lruvec *lruvec,
1801 struct list_head *list,
1802 struct list_head *pages_to_free,
1803 enum lru_list lru)
1804 {
1805 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1806 unsigned long pgmoved = 0;
1807 struct page *page;
1808 int nr_pages;
1809
1810 while (!list_empty(list)) {
1811 page = lru_to_page(list);
1812 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1813
1814 VM_BUG_ON_PAGE(PageLRU(page), page);
1815 SetPageLRU(page);
1816
1817 nr_pages = hpage_nr_pages(page);
1818 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1819 list_move(&page->lru, &lruvec->lists[lru]);
1820 pgmoved += nr_pages;
1821
1822 if (put_page_testzero(page)) {
1823 __ClearPageLRU(page);
1824 __ClearPageActive(page);
1825 del_page_from_lru_list(page, lruvec, lru);
1826
1827 if (unlikely(PageCompound(page))) {
1828 spin_unlock_irq(&pgdat->lru_lock);
1829 mem_cgroup_uncharge(page);
1830 (*get_compound_page_dtor(page))(page);
1831 spin_lock_irq(&pgdat->lru_lock);
1832 } else
1833 list_add(&page->lru, pages_to_free);
1834 }
1835 }
1836
1837 if (!is_active_lru(lru))
1838 __count_vm_events(PGDEACTIVATE, pgmoved);
1839 }
1840
1841 static void shrink_active_list(unsigned long nr_to_scan,
1842 struct lruvec *lruvec,
1843 struct scan_control *sc,
1844 enum lru_list lru)
1845 {
1846 unsigned long nr_taken;
1847 unsigned long nr_scanned;
1848 unsigned long vm_flags;
1849 LIST_HEAD(l_hold); /* The pages which were snipped off */
1850 LIST_HEAD(l_active);
1851 LIST_HEAD(l_inactive);
1852 struct page *page;
1853 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1854 unsigned long nr_rotated = 0;
1855 isolate_mode_t isolate_mode = 0;
1856 int file = is_file_lru(lru);
1857 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1858
1859 lru_add_drain();
1860
1861 if (!sc->may_unmap)
1862 isolate_mode |= ISOLATE_UNMAPPED;
1863 if (!sc->may_writepage)
1864 isolate_mode |= ISOLATE_CLEAN;
1865
1866 spin_lock_irq(&pgdat->lru_lock);
1867
1868 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1869 &nr_scanned, sc, isolate_mode, lru);
1870
1871 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1872 reclaim_stat->recent_scanned[file] += nr_taken;
1873
1874 if (global_reclaim(sc))
1875 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1876 __count_vm_events(PGREFILL, nr_scanned);
1877
1878 spin_unlock_irq(&pgdat->lru_lock);
1879
1880 while (!list_empty(&l_hold)) {
1881 cond_resched();
1882 page = lru_to_page(&l_hold);
1883 list_del(&page->lru);
1884
1885 if (unlikely(!page_evictable(page))) {
1886 putback_lru_page(page);
1887 continue;
1888 }
1889
1890 if (unlikely(buffer_heads_over_limit)) {
1891 if (page_has_private(page) && trylock_page(page)) {
1892 if (page_has_private(page))
1893 try_to_release_page(page, 0);
1894 unlock_page(page);
1895 }
1896 }
1897
1898 if (page_referenced(page, 0, sc->target_mem_cgroup,
1899 &vm_flags)) {
1900 nr_rotated += hpage_nr_pages(page);
1901 /*
1902 * Identify referenced, file-backed active pages and
1903 * give them one more trip around the active list. So
1904 * that executable code get better chances to stay in
1905 * memory under moderate memory pressure. Anon pages
1906 * are not likely to be evicted by use-once streaming
1907 * IO, plus JVM can create lots of anon VM_EXEC pages,
1908 * so we ignore them here.
1909 */
1910 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1911 list_add(&page->lru, &l_active);
1912 continue;
1913 }
1914 }
1915
1916 ClearPageActive(page); /* we are de-activating */
1917 list_add(&page->lru, &l_inactive);
1918 }
1919
1920 /*
1921 * Move pages back to the lru list.
1922 */
1923 spin_lock_irq(&pgdat->lru_lock);
1924 /*
1925 * Count referenced pages from currently used mappings as rotated,
1926 * even though only some of them are actually re-activated. This
1927 * helps balance scan pressure between file and anonymous pages in
1928 * get_scan_count.
1929 */
1930 reclaim_stat->recent_rotated[file] += nr_rotated;
1931
1932 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1933 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1935 spin_unlock_irq(&pgdat->lru_lock);
1936
1937 mem_cgroup_uncharge_list(&l_hold);
1938 free_hot_cold_page_list(&l_hold, true);
1939 }
1940
1941 /*
1942 * The inactive anon list should be small enough that the VM never has
1943 * to do too much work.
1944 *
1945 * The inactive file list should be small enough to leave most memory
1946 * to the established workingset on the scan-resistant active list,
1947 * but large enough to avoid thrashing the aggregate readahead window.
1948 *
1949 * Both inactive lists should also be large enough that each inactive
1950 * page has a chance to be referenced again before it is reclaimed.
1951 *
1952 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1953 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1954 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1955 *
1956 * total target max
1957 * memory ratio inactive
1958 * -------------------------------------
1959 * 10MB 1 5MB
1960 * 100MB 1 50MB
1961 * 1GB 3 250MB
1962 * 10GB 10 0.9GB
1963 * 100GB 31 3GB
1964 * 1TB 101 10GB
1965 * 10TB 320 32GB
1966 */
1967 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
1968 struct scan_control *sc)
1969 {
1970 unsigned long inactive_ratio;
1971 unsigned long inactive;
1972 unsigned long active;
1973 unsigned long gb;
1974 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1975 int zid;
1976
1977 /*
1978 * If we don't have swap space, anonymous page deactivation
1979 * is pointless.
1980 */
1981 if (!file && !total_swap_pages)
1982 return false;
1983
1984 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1985 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1986
1987 /*
1988 * For zone-constrained allocations, it is necessary to check if
1989 * deactivations are required for lowmem to be reclaimed. This
1990 * calculates the inactive/active pages available in eligible zones.
1991 */
1992 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
1993 struct zone *zone = &pgdat->node_zones[zid];
1994 unsigned long inactive_zone, active_zone;
1995
1996 if (!populated_zone(zone))
1997 continue;
1998
1999 inactive_zone = zone_page_state(zone,
2000 NR_ZONE_LRU_BASE + (file * LRU_FILE));
2001 active_zone = zone_page_state(zone,
2002 NR_ZONE_LRU_BASE + (file * LRU_FILE) + LRU_ACTIVE);
2003
2004 inactive -= min(inactive, inactive_zone);
2005 active -= min(active, active_zone);
2006 }
2007
2008 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2009 if (gb)
2010 inactive_ratio = int_sqrt(10 * gb);
2011 else
2012 inactive_ratio = 1;
2013
2014 return inactive * inactive_ratio < active;
2015 }
2016
2017 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2018 struct lruvec *lruvec, struct scan_control *sc)
2019 {
2020 if (is_active_lru(lru)) {
2021 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2022 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2023 return 0;
2024 }
2025
2026 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2027 }
2028
2029 enum scan_balance {
2030 SCAN_EQUAL,
2031 SCAN_FRACT,
2032 SCAN_ANON,
2033 SCAN_FILE,
2034 };
2035
2036 /*
2037 * Determine how aggressively the anon and file LRU lists should be
2038 * scanned. The relative value of each set of LRU lists is determined
2039 * by looking at the fraction of the pages scanned we did rotate back
2040 * onto the active list instead of evict.
2041 *
2042 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2043 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2044 */
2045 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2046 struct scan_control *sc, unsigned long *nr,
2047 unsigned long *lru_pages)
2048 {
2049 int swappiness = mem_cgroup_swappiness(memcg);
2050 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2051 u64 fraction[2];
2052 u64 denominator = 0; /* gcc */
2053 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2054 unsigned long anon_prio, file_prio;
2055 enum scan_balance scan_balance;
2056 unsigned long anon, file;
2057 bool force_scan = false;
2058 unsigned long ap, fp;
2059 enum lru_list lru;
2060 bool some_scanned;
2061 int pass;
2062
2063 /*
2064 * If the zone or memcg is small, nr[l] can be 0. This
2065 * results in no scanning on this priority and a potential
2066 * priority drop. Global direct reclaim can go to the next
2067 * zone and tends to have no problems. Global kswapd is for
2068 * zone balancing and it needs to scan a minimum amount. When
2069 * reclaiming for a memcg, a priority drop can cause high
2070 * latencies, so it's better to scan a minimum amount there as
2071 * well.
2072 */
2073 if (current_is_kswapd()) {
2074 if (!pgdat_reclaimable(pgdat))
2075 force_scan = true;
2076 if (!mem_cgroup_online(memcg))
2077 force_scan = true;
2078 }
2079 if (!global_reclaim(sc))
2080 force_scan = true;
2081
2082 /* If we have no swap space, do not bother scanning anon pages. */
2083 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2084 scan_balance = SCAN_FILE;
2085 goto out;
2086 }
2087
2088 /*
2089 * Global reclaim will swap to prevent OOM even with no
2090 * swappiness, but memcg users want to use this knob to
2091 * disable swapping for individual groups completely when
2092 * using the memory controller's swap limit feature would be
2093 * too expensive.
2094 */
2095 if (!global_reclaim(sc) && !swappiness) {
2096 scan_balance = SCAN_FILE;
2097 goto out;
2098 }
2099
2100 /*
2101 * Do not apply any pressure balancing cleverness when the
2102 * system is close to OOM, scan both anon and file equally
2103 * (unless the swappiness setting disagrees with swapping).
2104 */
2105 if (!sc->priority && swappiness) {
2106 scan_balance = SCAN_EQUAL;
2107 goto out;
2108 }
2109
2110 /*
2111 * Prevent the reclaimer from falling into the cache trap: as
2112 * cache pages start out inactive, every cache fault will tip
2113 * the scan balance towards the file LRU. And as the file LRU
2114 * shrinks, so does the window for rotation from references.
2115 * This means we have a runaway feedback loop where a tiny
2116 * thrashing file LRU becomes infinitely more attractive than
2117 * anon pages. Try to detect this based on file LRU size.
2118 */
2119 if (global_reclaim(sc)) {
2120 unsigned long pgdatfile;
2121 unsigned long pgdatfree;
2122 int z;
2123 unsigned long total_high_wmark = 0;
2124
2125 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2126 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2127 node_page_state(pgdat, NR_INACTIVE_FILE);
2128
2129 for (z = 0; z < MAX_NR_ZONES; z++) {
2130 struct zone *zone = &pgdat->node_zones[z];
2131 if (!populated_zone(zone))
2132 continue;
2133
2134 total_high_wmark += high_wmark_pages(zone);
2135 }
2136
2137 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2138 scan_balance = SCAN_ANON;
2139 goto out;
2140 }
2141 }
2142
2143 /*
2144 * If there is enough inactive page cache, i.e. if the size of the
2145 * inactive list is greater than that of the active list *and* the
2146 * inactive list actually has some pages to scan on this priority, we
2147 * do not reclaim anything from the anonymous working set right now.
2148 * Without the second condition we could end up never scanning an
2149 * lruvec even if it has plenty of old anonymous pages unless the
2150 * system is under heavy pressure.
2151 */
2152 if (!inactive_list_is_low(lruvec, true, sc) &&
2153 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2154 scan_balance = SCAN_FILE;
2155 goto out;
2156 }
2157
2158 scan_balance = SCAN_FRACT;
2159
2160 /*
2161 * With swappiness at 100, anonymous and file have the same priority.
2162 * This scanning priority is essentially the inverse of IO cost.
2163 */
2164 anon_prio = swappiness;
2165 file_prio = 200 - anon_prio;
2166
2167 /*
2168 * OK, so we have swap space and a fair amount of page cache
2169 * pages. We use the recently rotated / recently scanned
2170 * ratios to determine how valuable each cache is.
2171 *
2172 * Because workloads change over time (and to avoid overflow)
2173 * we keep these statistics as a floating average, which ends
2174 * up weighing recent references more than old ones.
2175 *
2176 * anon in [0], file in [1]
2177 */
2178
2179 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2180 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2181 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2182 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2183
2184 spin_lock_irq(&pgdat->lru_lock);
2185 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2186 reclaim_stat->recent_scanned[0] /= 2;
2187 reclaim_stat->recent_rotated[0] /= 2;
2188 }
2189
2190 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2191 reclaim_stat->recent_scanned[1] /= 2;
2192 reclaim_stat->recent_rotated[1] /= 2;
2193 }
2194
2195 /*
2196 * The amount of pressure on anon vs file pages is inversely
2197 * proportional to the fraction of recently scanned pages on
2198 * each list that were recently referenced and in active use.
2199 */
2200 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2201 ap /= reclaim_stat->recent_rotated[0] + 1;
2202
2203 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2204 fp /= reclaim_stat->recent_rotated[1] + 1;
2205 spin_unlock_irq(&pgdat->lru_lock);
2206
2207 fraction[0] = ap;
2208 fraction[1] = fp;
2209 denominator = ap + fp + 1;
2210 out:
2211 some_scanned = false;
2212 /* Only use force_scan on second pass. */
2213 for (pass = 0; !some_scanned && pass < 2; pass++) {
2214 *lru_pages = 0;
2215 for_each_evictable_lru(lru) {
2216 int file = is_file_lru(lru);
2217 unsigned long size;
2218 unsigned long scan;
2219
2220 size = lruvec_lru_size(lruvec, lru);
2221 scan = size >> sc->priority;
2222
2223 if (!scan && pass && force_scan)
2224 scan = min(size, SWAP_CLUSTER_MAX);
2225
2226 switch (scan_balance) {
2227 case SCAN_EQUAL:
2228 /* Scan lists relative to size */
2229 break;
2230 case SCAN_FRACT:
2231 /*
2232 * Scan types proportional to swappiness and
2233 * their relative recent reclaim efficiency.
2234 */
2235 scan = div64_u64(scan * fraction[file],
2236 denominator);
2237 break;
2238 case SCAN_FILE:
2239 case SCAN_ANON:
2240 /* Scan one type exclusively */
2241 if ((scan_balance == SCAN_FILE) != file) {
2242 size = 0;
2243 scan = 0;
2244 }
2245 break;
2246 default:
2247 /* Look ma, no brain */
2248 BUG();
2249 }
2250
2251 *lru_pages += size;
2252 nr[lru] = scan;
2253
2254 /*
2255 * Skip the second pass and don't force_scan,
2256 * if we found something to scan.
2257 */
2258 some_scanned |= !!scan;
2259 }
2260 }
2261 }
2262
2263 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2264 static void init_tlb_ubc(void)
2265 {
2266 /*
2267 * This deliberately does not clear the cpumask as it's expensive
2268 * and unnecessary. If there happens to be data in there then the
2269 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2270 * then will be cleared.
2271 */
2272 current->tlb_ubc.flush_required = false;
2273 }
2274 #else
2275 static inline void init_tlb_ubc(void)
2276 {
2277 }
2278 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2279
2280 /*
2281 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2282 */
2283 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2284 struct scan_control *sc, unsigned long *lru_pages)
2285 {
2286 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2287 unsigned long nr[NR_LRU_LISTS];
2288 unsigned long targets[NR_LRU_LISTS];
2289 unsigned long nr_to_scan;
2290 enum lru_list lru;
2291 unsigned long nr_reclaimed = 0;
2292 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2293 struct blk_plug plug;
2294 bool scan_adjusted;
2295
2296 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2297
2298 /* Record the original scan target for proportional adjustments later */
2299 memcpy(targets, nr, sizeof(nr));
2300
2301 /*
2302 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2303 * event that can occur when there is little memory pressure e.g.
2304 * multiple streaming readers/writers. Hence, we do not abort scanning
2305 * when the requested number of pages are reclaimed when scanning at
2306 * DEF_PRIORITY on the assumption that the fact we are direct
2307 * reclaiming implies that kswapd is not keeping up and it is best to
2308 * do a batch of work at once. For memcg reclaim one check is made to
2309 * abort proportional reclaim if either the file or anon lru has already
2310 * dropped to zero at the first pass.
2311 */
2312 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2313 sc->priority == DEF_PRIORITY);
2314
2315 init_tlb_ubc();
2316
2317 blk_start_plug(&plug);
2318 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2319 nr[LRU_INACTIVE_FILE]) {
2320 unsigned long nr_anon, nr_file, percentage;
2321 unsigned long nr_scanned;
2322
2323 for_each_evictable_lru(lru) {
2324 if (nr[lru]) {
2325 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2326 nr[lru] -= nr_to_scan;
2327
2328 nr_reclaimed += shrink_list(lru, nr_to_scan,
2329 lruvec, sc);
2330 }
2331 }
2332
2333 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2334 continue;
2335
2336 /*
2337 * For kswapd and memcg, reclaim at least the number of pages
2338 * requested. Ensure that the anon and file LRUs are scanned
2339 * proportionally what was requested by get_scan_count(). We
2340 * stop reclaiming one LRU and reduce the amount scanning
2341 * proportional to the original scan target.
2342 */
2343 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2344 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2345
2346 /*
2347 * It's just vindictive to attack the larger once the smaller
2348 * has gone to zero. And given the way we stop scanning the
2349 * smaller below, this makes sure that we only make one nudge
2350 * towards proportionality once we've got nr_to_reclaim.
2351 */
2352 if (!nr_file || !nr_anon)
2353 break;
2354
2355 if (nr_file > nr_anon) {
2356 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2357 targets[LRU_ACTIVE_ANON] + 1;
2358 lru = LRU_BASE;
2359 percentage = nr_anon * 100 / scan_target;
2360 } else {
2361 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2362 targets[LRU_ACTIVE_FILE] + 1;
2363 lru = LRU_FILE;
2364 percentage = nr_file * 100 / scan_target;
2365 }
2366
2367 /* Stop scanning the smaller of the LRU */
2368 nr[lru] = 0;
2369 nr[lru + LRU_ACTIVE] = 0;
2370
2371 /*
2372 * Recalculate the other LRU scan count based on its original
2373 * scan target and the percentage scanning already complete
2374 */
2375 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2376 nr_scanned = targets[lru] - nr[lru];
2377 nr[lru] = targets[lru] * (100 - percentage) / 100;
2378 nr[lru] -= min(nr[lru], nr_scanned);
2379
2380 lru += LRU_ACTIVE;
2381 nr_scanned = targets[lru] - nr[lru];
2382 nr[lru] = targets[lru] * (100 - percentage) / 100;
2383 nr[lru] -= min(nr[lru], nr_scanned);
2384
2385 scan_adjusted = true;
2386 }
2387 blk_finish_plug(&plug);
2388 sc->nr_reclaimed += nr_reclaimed;
2389
2390 /*
2391 * Even if we did not try to evict anon pages at all, we want to
2392 * rebalance the anon lru active/inactive ratio.
2393 */
2394 if (inactive_list_is_low(lruvec, false, sc))
2395 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2396 sc, LRU_ACTIVE_ANON);
2397
2398 throttle_vm_writeout(sc->gfp_mask);
2399 }
2400
2401 /* Use reclaim/compaction for costly allocs or under memory pressure */
2402 static bool in_reclaim_compaction(struct scan_control *sc)
2403 {
2404 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2405 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2406 sc->priority < DEF_PRIORITY - 2))
2407 return true;
2408
2409 return false;
2410 }
2411
2412 /*
2413 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2414 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2415 * true if more pages should be reclaimed such that when the page allocator
2416 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2417 * It will give up earlier than that if there is difficulty reclaiming pages.
2418 */
2419 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2420 unsigned long nr_reclaimed,
2421 unsigned long nr_scanned,
2422 struct scan_control *sc)
2423 {
2424 unsigned long pages_for_compaction;
2425 unsigned long inactive_lru_pages;
2426 int z;
2427
2428 /* If not in reclaim/compaction mode, stop */
2429 if (!in_reclaim_compaction(sc))
2430 return false;
2431
2432 /* Consider stopping depending on scan and reclaim activity */
2433 if (sc->gfp_mask & __GFP_REPEAT) {
2434 /*
2435 * For __GFP_REPEAT allocations, stop reclaiming if the
2436 * full LRU list has been scanned and we are still failing
2437 * to reclaim pages. This full LRU scan is potentially
2438 * expensive but a __GFP_REPEAT caller really wants to succeed
2439 */
2440 if (!nr_reclaimed && !nr_scanned)
2441 return false;
2442 } else {
2443 /*
2444 * For non-__GFP_REPEAT allocations which can presumably
2445 * fail without consequence, stop if we failed to reclaim
2446 * any pages from the last SWAP_CLUSTER_MAX number of
2447 * pages that were scanned. This will return to the
2448 * caller faster at the risk reclaim/compaction and
2449 * the resulting allocation attempt fails
2450 */
2451 if (!nr_reclaimed)
2452 return false;
2453 }
2454
2455 /*
2456 * If we have not reclaimed enough pages for compaction and the
2457 * inactive lists are large enough, continue reclaiming
2458 */
2459 pages_for_compaction = (2UL << sc->order);
2460 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2461 if (get_nr_swap_pages() > 0)
2462 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2463 if (sc->nr_reclaimed < pages_for_compaction &&
2464 inactive_lru_pages > pages_for_compaction)
2465 return true;
2466
2467 /* If compaction would go ahead or the allocation would succeed, stop */
2468 for (z = 0; z <= sc->reclaim_idx; z++) {
2469 struct zone *zone = &pgdat->node_zones[z];
2470 if (!populated_zone(zone))
2471 continue;
2472
2473 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2474 case COMPACT_PARTIAL:
2475 case COMPACT_CONTINUE:
2476 return false;
2477 default:
2478 /* check next zone */
2479 ;
2480 }
2481 }
2482 return true;
2483 }
2484
2485 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2486 {
2487 struct reclaim_state *reclaim_state = current->reclaim_state;
2488 unsigned long nr_reclaimed, nr_scanned;
2489 bool reclaimable = false;
2490
2491 do {
2492 struct mem_cgroup *root = sc->target_mem_cgroup;
2493 struct mem_cgroup_reclaim_cookie reclaim = {
2494 .pgdat = pgdat,
2495 .priority = sc->priority,
2496 };
2497 unsigned long node_lru_pages = 0;
2498 struct mem_cgroup *memcg;
2499
2500 nr_reclaimed = sc->nr_reclaimed;
2501 nr_scanned = sc->nr_scanned;
2502
2503 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2504 do {
2505 unsigned long lru_pages;
2506 unsigned long reclaimed;
2507 unsigned long scanned;
2508
2509 if (mem_cgroup_low(root, memcg)) {
2510 if (!sc->may_thrash)
2511 continue;
2512 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2513 }
2514
2515 reclaimed = sc->nr_reclaimed;
2516 scanned = sc->nr_scanned;
2517
2518 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2519 node_lru_pages += lru_pages;
2520
2521 if (!global_reclaim(sc))
2522 shrink_slab(sc->gfp_mask, pgdat->node_id,
2523 memcg, sc->nr_scanned - scanned,
2524 lru_pages);
2525
2526 /* Record the group's reclaim efficiency */
2527 vmpressure(sc->gfp_mask, memcg, false,
2528 sc->nr_scanned - scanned,
2529 sc->nr_reclaimed - reclaimed);
2530
2531 /*
2532 * Direct reclaim and kswapd have to scan all memory
2533 * cgroups to fulfill the overall scan target for the
2534 * node.
2535 *
2536 * Limit reclaim, on the other hand, only cares about
2537 * nr_to_reclaim pages to be reclaimed and it will
2538 * retry with decreasing priority if one round over the
2539 * whole hierarchy is not sufficient.
2540 */
2541 if (!global_reclaim(sc) &&
2542 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2543 mem_cgroup_iter_break(root, memcg);
2544 break;
2545 }
2546 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2547
2548 /*
2549 * Shrink the slab caches in the same proportion that
2550 * the eligible LRU pages were scanned.
2551 */
2552 if (global_reclaim(sc))
2553 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2554 sc->nr_scanned - nr_scanned,
2555 node_lru_pages);
2556
2557 if (reclaim_state) {
2558 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2559 reclaim_state->reclaimed_slab = 0;
2560 }
2561
2562 /* Record the subtree's reclaim efficiency */
2563 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2564 sc->nr_scanned - nr_scanned,
2565 sc->nr_reclaimed - nr_reclaimed);
2566
2567 if (sc->nr_reclaimed - nr_reclaimed)
2568 reclaimable = true;
2569
2570 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2571 sc->nr_scanned - nr_scanned, sc));
2572
2573 return reclaimable;
2574 }
2575
2576 /*
2577 * Returns true if compaction should go ahead for a high-order request, or
2578 * the high-order allocation would succeed without compaction.
2579 */
2580 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2581 {
2582 unsigned long watermark;
2583 bool watermark_ok;
2584
2585 /*
2586 * Compaction takes time to run and there are potentially other
2587 * callers using the pages just freed. Continue reclaiming until
2588 * there is a buffer of free pages available to give compaction
2589 * a reasonable chance of completing and allocating the page
2590 */
2591 watermark = high_wmark_pages(zone) + (2UL << sc->order);
2592 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2593
2594 /*
2595 * If compaction is deferred, reclaim up to a point where
2596 * compaction will have a chance of success when re-enabled
2597 */
2598 if (compaction_deferred(zone, sc->order))
2599 return watermark_ok;
2600
2601 /*
2602 * If compaction is not ready to start and allocation is not likely
2603 * to succeed without it, then keep reclaiming.
2604 */
2605 if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
2606 return false;
2607
2608 return watermark_ok;
2609 }
2610
2611 /*
2612 * This is the direct reclaim path, for page-allocating processes. We only
2613 * try to reclaim pages from zones which will satisfy the caller's allocation
2614 * request.
2615 *
2616 * If a zone is deemed to be full of pinned pages then just give it a light
2617 * scan then give up on it.
2618 */
2619 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2620 {
2621 struct zoneref *z;
2622 struct zone *zone;
2623 unsigned long nr_soft_reclaimed;
2624 unsigned long nr_soft_scanned;
2625 gfp_t orig_mask;
2626 pg_data_t *last_pgdat = NULL;
2627
2628 /*
2629 * If the number of buffer_heads in the machine exceeds the maximum
2630 * allowed level, force direct reclaim to scan the highmem zone as
2631 * highmem pages could be pinning lowmem pages storing buffer_heads
2632 */
2633 orig_mask = sc->gfp_mask;
2634 if (buffer_heads_over_limit) {
2635 sc->gfp_mask |= __GFP_HIGHMEM;
2636 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2637 }
2638
2639 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2640 sc->reclaim_idx, sc->nodemask) {
2641 /*
2642 * Take care memory controller reclaiming has small influence
2643 * to global LRU.
2644 */
2645 if (global_reclaim(sc)) {
2646 if (!cpuset_zone_allowed(zone,
2647 GFP_KERNEL | __GFP_HARDWALL))
2648 continue;
2649
2650 if (sc->priority != DEF_PRIORITY &&
2651 !pgdat_reclaimable(zone->zone_pgdat))
2652 continue; /* Let kswapd poll it */
2653
2654 /*
2655 * If we already have plenty of memory free for
2656 * compaction in this zone, don't free any more.
2657 * Even though compaction is invoked for any
2658 * non-zero order, only frequent costly order
2659 * reclamation is disruptive enough to become a
2660 * noticeable problem, like transparent huge
2661 * page allocations.
2662 */
2663 if (IS_ENABLED(CONFIG_COMPACTION) &&
2664 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2665 compaction_ready(zone, sc)) {
2666 sc->compaction_ready = true;
2667 continue;
2668 }
2669
2670 /*
2671 * Shrink each node in the zonelist once. If the
2672 * zonelist is ordered by zone (not the default) then a
2673 * node may be shrunk multiple times but in that case
2674 * the user prefers lower zones being preserved.
2675 */
2676 if (zone->zone_pgdat == last_pgdat)
2677 continue;
2678
2679 /*
2680 * This steals pages from memory cgroups over softlimit
2681 * and returns the number of reclaimed pages and
2682 * scanned pages. This works for global memory pressure
2683 * and balancing, not for a memcg's limit.
2684 */
2685 nr_soft_scanned = 0;
2686 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2687 sc->order, sc->gfp_mask,
2688 &nr_soft_scanned);
2689 sc->nr_reclaimed += nr_soft_reclaimed;
2690 sc->nr_scanned += nr_soft_scanned;
2691 /* need some check for avoid more shrink_zone() */
2692 }
2693
2694 /* See comment about same check for global reclaim above */
2695 if (zone->zone_pgdat == last_pgdat)
2696 continue;
2697 last_pgdat = zone->zone_pgdat;
2698 shrink_node(zone->zone_pgdat, sc);
2699 }
2700
2701 /*
2702 * Restore to original mask to avoid the impact on the caller if we
2703 * promoted it to __GFP_HIGHMEM.
2704 */
2705 sc->gfp_mask = orig_mask;
2706 }
2707
2708 /*
2709 * This is the main entry point to direct page reclaim.
2710 *
2711 * If a full scan of the inactive list fails to free enough memory then we
2712 * are "out of memory" and something needs to be killed.
2713 *
2714 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2715 * high - the zone may be full of dirty or under-writeback pages, which this
2716 * caller can't do much about. We kick the writeback threads and take explicit
2717 * naps in the hope that some of these pages can be written. But if the
2718 * allocating task holds filesystem locks which prevent writeout this might not
2719 * work, and the allocation attempt will fail.
2720 *
2721 * returns: 0, if no pages reclaimed
2722 * else, the number of pages reclaimed
2723 */
2724 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2725 struct scan_control *sc)
2726 {
2727 int initial_priority = sc->priority;
2728 unsigned long total_scanned = 0;
2729 unsigned long writeback_threshold;
2730 retry:
2731 delayacct_freepages_start();
2732
2733 if (global_reclaim(sc))
2734 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2735
2736 do {
2737 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2738 sc->priority);
2739 sc->nr_scanned = 0;
2740 shrink_zones(zonelist, sc);
2741
2742 total_scanned += sc->nr_scanned;
2743 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2744 break;
2745
2746 if (sc->compaction_ready)
2747 break;
2748
2749 /*
2750 * If we're getting trouble reclaiming, start doing
2751 * writepage even in laptop mode.
2752 */
2753 if (sc->priority < DEF_PRIORITY - 2)
2754 sc->may_writepage = 1;
2755
2756 /*
2757 * Try to write back as many pages as we just scanned. This
2758 * tends to cause slow streaming writers to write data to the
2759 * disk smoothly, at the dirtying rate, which is nice. But
2760 * that's undesirable in laptop mode, where we *want* lumpy
2761 * writeout. So in laptop mode, write out the whole world.
2762 */
2763 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2764 if (total_scanned > writeback_threshold) {
2765 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2766 WB_REASON_TRY_TO_FREE_PAGES);
2767 sc->may_writepage = 1;
2768 }
2769 } while (--sc->priority >= 0);
2770
2771 delayacct_freepages_end();
2772
2773 if (sc->nr_reclaimed)
2774 return sc->nr_reclaimed;
2775
2776 /* Aborted reclaim to try compaction? don't OOM, then */
2777 if (sc->compaction_ready)
2778 return 1;
2779
2780 /* Untapped cgroup reserves? Don't OOM, retry. */
2781 if (!sc->may_thrash) {
2782 sc->priority = initial_priority;
2783 sc->may_thrash = 1;
2784 goto retry;
2785 }
2786
2787 return 0;
2788 }
2789
2790 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2791 {
2792 struct zone *zone;
2793 unsigned long pfmemalloc_reserve = 0;
2794 unsigned long free_pages = 0;
2795 int i;
2796 bool wmark_ok;
2797
2798 for (i = 0; i <= ZONE_NORMAL; i++) {
2799 zone = &pgdat->node_zones[i];
2800 if (!populated_zone(zone) ||
2801 pgdat_reclaimable_pages(pgdat) == 0)
2802 continue;
2803
2804 pfmemalloc_reserve += min_wmark_pages(zone);
2805 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2806 }
2807
2808 /* If there are no reserves (unexpected config) then do not throttle */
2809 if (!pfmemalloc_reserve)
2810 return true;
2811
2812 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2813
2814 /* kswapd must be awake if processes are being throttled */
2815 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2816 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2817 (enum zone_type)ZONE_NORMAL);
2818 wake_up_interruptible(&pgdat->kswapd_wait);
2819 }
2820
2821 return wmark_ok;
2822 }
2823
2824 /*
2825 * Throttle direct reclaimers if backing storage is backed by the network
2826 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2827 * depleted. kswapd will continue to make progress and wake the processes
2828 * when the low watermark is reached.
2829 *
2830 * Returns true if a fatal signal was delivered during throttling. If this
2831 * happens, the page allocator should not consider triggering the OOM killer.
2832 */
2833 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2834 nodemask_t *nodemask)
2835 {
2836 struct zoneref *z;
2837 struct zone *zone;
2838 pg_data_t *pgdat = NULL;
2839
2840 /*
2841 * Kernel threads should not be throttled as they may be indirectly
2842 * responsible for cleaning pages necessary for reclaim to make forward
2843 * progress. kjournald for example may enter direct reclaim while
2844 * committing a transaction where throttling it could forcing other
2845 * processes to block on log_wait_commit().
2846 */
2847 if (current->flags & PF_KTHREAD)
2848 goto out;
2849
2850 /*
2851 * If a fatal signal is pending, this process should not throttle.
2852 * It should return quickly so it can exit and free its memory
2853 */
2854 if (fatal_signal_pending(current))
2855 goto out;
2856
2857 /*
2858 * Check if the pfmemalloc reserves are ok by finding the first node
2859 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2860 * GFP_KERNEL will be required for allocating network buffers when
2861 * swapping over the network so ZONE_HIGHMEM is unusable.
2862 *
2863 * Throttling is based on the first usable node and throttled processes
2864 * wait on a queue until kswapd makes progress and wakes them. There
2865 * is an affinity then between processes waking up and where reclaim
2866 * progress has been made assuming the process wakes on the same node.
2867 * More importantly, processes running on remote nodes will not compete
2868 * for remote pfmemalloc reserves and processes on different nodes
2869 * should make reasonable progress.
2870 */
2871 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2872 gfp_zone(gfp_mask), nodemask) {
2873 if (zone_idx(zone) > ZONE_NORMAL)
2874 continue;
2875
2876 /* Throttle based on the first usable node */
2877 pgdat = zone->zone_pgdat;
2878 if (pfmemalloc_watermark_ok(pgdat))
2879 goto out;
2880 break;
2881 }
2882
2883 /* If no zone was usable by the allocation flags then do not throttle */
2884 if (!pgdat)
2885 goto out;
2886
2887 /* Account for the throttling */
2888 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2889
2890 /*
2891 * If the caller cannot enter the filesystem, it's possible that it
2892 * is due to the caller holding an FS lock or performing a journal
2893 * transaction in the case of a filesystem like ext[3|4]. In this case,
2894 * it is not safe to block on pfmemalloc_wait as kswapd could be
2895 * blocked waiting on the same lock. Instead, throttle for up to a
2896 * second before continuing.
2897 */
2898 if (!(gfp_mask & __GFP_FS)) {
2899 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2900 pfmemalloc_watermark_ok(pgdat), HZ);
2901
2902 goto check_pending;
2903 }
2904
2905 /* Throttle until kswapd wakes the process */
2906 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2907 pfmemalloc_watermark_ok(pgdat));
2908
2909 check_pending:
2910 if (fatal_signal_pending(current))
2911 return true;
2912
2913 out:
2914 return false;
2915 }
2916
2917 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2918 gfp_t gfp_mask, nodemask_t *nodemask)
2919 {
2920 unsigned long nr_reclaimed;
2921 struct scan_control sc = {
2922 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2923 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2924 .reclaim_idx = gfp_zone(gfp_mask),
2925 .order = order,
2926 .nodemask = nodemask,
2927 .priority = DEF_PRIORITY,
2928 .may_writepage = !laptop_mode,
2929 .may_unmap = 1,
2930 .may_swap = 1,
2931 };
2932
2933 /*
2934 * Do not enter reclaim if fatal signal was delivered while throttled.
2935 * 1 is returned so that the page allocator does not OOM kill at this
2936 * point.
2937 */
2938 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2939 return 1;
2940
2941 trace_mm_vmscan_direct_reclaim_begin(order,
2942 sc.may_writepage,
2943 gfp_mask,
2944 sc.reclaim_idx);
2945
2946 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2947
2948 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2949
2950 return nr_reclaimed;
2951 }
2952
2953 #ifdef CONFIG_MEMCG
2954
2955 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2956 gfp_t gfp_mask, bool noswap,
2957 pg_data_t *pgdat,
2958 unsigned long *nr_scanned)
2959 {
2960 struct scan_control sc = {
2961 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2962 .target_mem_cgroup = memcg,
2963 .may_writepage = !laptop_mode,
2964 .may_unmap = 1,
2965 .reclaim_idx = MAX_NR_ZONES - 1,
2966 .may_swap = !noswap,
2967 };
2968 unsigned long lru_pages;
2969
2970 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2971 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2972
2973 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2974 sc.may_writepage,
2975 sc.gfp_mask,
2976 sc.reclaim_idx);
2977
2978 /*
2979 * NOTE: Although we can get the priority field, using it
2980 * here is not a good idea, since it limits the pages we can scan.
2981 * if we don't reclaim here, the shrink_node from balance_pgdat
2982 * will pick up pages from other mem cgroup's as well. We hack
2983 * the priority and make it zero.
2984 */
2985 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2986
2987 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2988
2989 *nr_scanned = sc.nr_scanned;
2990 return sc.nr_reclaimed;
2991 }
2992
2993 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2994 unsigned long nr_pages,
2995 gfp_t gfp_mask,
2996 bool may_swap)
2997 {
2998 struct zonelist *zonelist;
2999 unsigned long nr_reclaimed;
3000 int nid;
3001 struct scan_control sc = {
3002 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3003 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3004 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3005 .reclaim_idx = MAX_NR_ZONES - 1,
3006 .target_mem_cgroup = memcg,
3007 .priority = DEF_PRIORITY,
3008 .may_writepage = !laptop_mode,
3009 .may_unmap = 1,
3010 .may_swap = may_swap,
3011 };
3012
3013 /*
3014 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3015 * take care of from where we get pages. So the node where we start the
3016 * scan does not need to be the current node.
3017 */
3018 nid = mem_cgroup_select_victim_node(memcg);
3019
3020 zonelist = NODE_DATA(nid)->node_zonelists;
3021
3022 trace_mm_vmscan_memcg_reclaim_begin(0,
3023 sc.may_writepage,
3024 sc.gfp_mask,
3025 sc.reclaim_idx);
3026
3027 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3028
3029 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3030
3031 return nr_reclaimed;
3032 }
3033 #endif
3034
3035 static void age_active_anon(struct pglist_data *pgdat,
3036 struct scan_control *sc)
3037 {
3038 struct mem_cgroup *memcg;
3039
3040 if (!total_swap_pages)
3041 return;
3042
3043 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3044 do {
3045 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3046
3047 if (inactive_list_is_low(lruvec, false, sc))
3048 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3049 sc, LRU_ACTIVE_ANON);
3050
3051 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3052 } while (memcg);
3053 }
3054
3055 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3056 {
3057 unsigned long mark = high_wmark_pages(zone);
3058
3059 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3060 return false;
3061
3062 /*
3063 * If any eligible zone is balanced then the node is not considered
3064 * to be congested or dirty
3065 */
3066 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3067 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3068
3069 return true;
3070 }
3071
3072 /*
3073 * Prepare kswapd for sleeping. This verifies that there are no processes
3074 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3075 *
3076 * Returns true if kswapd is ready to sleep
3077 */
3078 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3079 {
3080 int i;
3081
3082 /*
3083 * The throttled processes are normally woken up in balance_pgdat() as
3084 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3085 * race between when kswapd checks the watermarks and a process gets
3086 * throttled. There is also a potential race if processes get
3087 * throttled, kswapd wakes, a large process exits thereby balancing the
3088 * zones, which causes kswapd to exit balance_pgdat() before reaching
3089 * the wake up checks. If kswapd is going to sleep, no process should
3090 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3091 * the wake up is premature, processes will wake kswapd and get
3092 * throttled again. The difference from wake ups in balance_pgdat() is
3093 * that here we are under prepare_to_wait().
3094 */
3095 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3096 wake_up_all(&pgdat->pfmemalloc_wait);
3097
3098 for (i = 0; i <= classzone_idx; i++) {
3099 struct zone *zone = pgdat->node_zones + i;
3100
3101 if (!populated_zone(zone))
3102 continue;
3103
3104 if (!zone_balanced(zone, order, classzone_idx))
3105 return false;
3106 }
3107
3108 return true;
3109 }
3110
3111 /*
3112 * kswapd shrinks a node of pages that are at or below the highest usable
3113 * zone that is currently unbalanced.
3114 *
3115 * Returns true if kswapd scanned at least the requested number of pages to
3116 * reclaim or if the lack of progress was due to pages under writeback.
3117 * This is used to determine if the scanning priority needs to be raised.
3118 */
3119 static bool kswapd_shrink_node(pg_data_t *pgdat,
3120 struct scan_control *sc)
3121 {
3122 struct zone *zone;
3123 int z;
3124
3125 /* Reclaim a number of pages proportional to the number of zones */
3126 sc->nr_to_reclaim = 0;
3127 for (z = 0; z <= sc->reclaim_idx; z++) {
3128 zone = pgdat->node_zones + z;
3129 if (!populated_zone(zone))
3130 continue;
3131
3132 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3133 }
3134
3135 /*
3136 * Historically care was taken to put equal pressure on all zones but
3137 * now pressure is applied based on node LRU order.
3138 */
3139 shrink_node(pgdat, sc);
3140
3141 /*
3142 * Fragmentation may mean that the system cannot be rebalanced for
3143 * high-order allocations. If twice the allocation size has been
3144 * reclaimed then recheck watermarks only at order-0 to prevent
3145 * excessive reclaim. Assume that a process requested a high-order
3146 * can direct reclaim/compact.
3147 */
3148 if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3149 sc->order = 0;
3150
3151 return sc->nr_scanned >= sc->nr_to_reclaim;
3152 }
3153
3154 /*
3155 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3156 * that are eligible for use by the caller until at least one zone is
3157 * balanced.
3158 *
3159 * Returns the order kswapd finished reclaiming at.
3160 *
3161 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3162 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3163 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3164 * or lower is eligible for reclaim until at least one usable zone is
3165 * balanced.
3166 */
3167 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3168 {
3169 int i;
3170 unsigned long nr_soft_reclaimed;
3171 unsigned long nr_soft_scanned;
3172 struct zone *zone;
3173 struct scan_control sc = {
3174 .gfp_mask = GFP_KERNEL,
3175 .order = order,
3176 .priority = DEF_PRIORITY,
3177 .may_writepage = !laptop_mode,
3178 .may_unmap = 1,
3179 .may_swap = 1,
3180 };
3181 count_vm_event(PAGEOUTRUN);
3182
3183 do {
3184 bool raise_priority = true;
3185
3186 sc.nr_reclaimed = 0;
3187 sc.reclaim_idx = classzone_idx;
3188
3189 /*
3190 * If the number of buffer_heads exceeds the maximum allowed
3191 * then consider reclaiming from all zones. This has a dual
3192 * purpose -- on 64-bit systems it is expected that
3193 * buffer_heads are stripped during active rotation. On 32-bit
3194 * systems, highmem pages can pin lowmem memory and shrinking
3195 * buffers can relieve lowmem pressure. Reclaim may still not
3196 * go ahead if all eligible zones for the original allocation
3197 * request are balanced to avoid excessive reclaim from kswapd.
3198 */
3199 if (buffer_heads_over_limit) {
3200 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3201 zone = pgdat->node_zones + i;
3202 if (!populated_zone(zone))
3203 continue;
3204
3205 sc.reclaim_idx = i;
3206 break;
3207 }
3208 }
3209
3210 /*
3211 * Only reclaim if there are no eligible zones. Check from
3212 * high to low zone as allocations prefer higher zones.
3213 * Scanning from low to high zone would allow congestion to be
3214 * cleared during a very small window when a small low
3215 * zone was balanced even under extreme pressure when the
3216 * overall node may be congested. Note that sc.reclaim_idx
3217 * is not used as buffer_heads_over_limit may have adjusted
3218 * it.
3219 */
3220 for (i = classzone_idx; i >= 0; i--) {
3221 zone = pgdat->node_zones + i;
3222 if (!populated_zone(zone))
3223 continue;
3224
3225 if (zone_balanced(zone, sc.order, classzone_idx))
3226 goto out;
3227 }
3228
3229 /*
3230 * Do some background aging of the anon list, to give
3231 * pages a chance to be referenced before reclaiming. All
3232 * pages are rotated regardless of classzone as this is
3233 * about consistent aging.
3234 */
3235 age_active_anon(pgdat, &sc);
3236
3237 /*
3238 * If we're getting trouble reclaiming, start doing writepage
3239 * even in laptop mode.
3240 */
3241 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3242 sc.may_writepage = 1;
3243
3244 /* Call soft limit reclaim before calling shrink_node. */
3245 sc.nr_scanned = 0;
3246 nr_soft_scanned = 0;
3247 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3248 sc.gfp_mask, &nr_soft_scanned);
3249 sc.nr_reclaimed += nr_soft_reclaimed;
3250
3251 /*
3252 * There should be no need to raise the scanning priority if
3253 * enough pages are already being scanned that that high
3254 * watermark would be met at 100% efficiency.
3255 */
3256 if (kswapd_shrink_node(pgdat, &sc))
3257 raise_priority = false;
3258
3259 /*
3260 * If the low watermark is met there is no need for processes
3261 * to be throttled on pfmemalloc_wait as they should not be
3262 * able to safely make forward progress. Wake them
3263 */
3264 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3265 pfmemalloc_watermark_ok(pgdat))
3266 wake_up_all(&pgdat->pfmemalloc_wait);
3267
3268 /* Check if kswapd should be suspending */
3269 if (try_to_freeze() || kthread_should_stop())
3270 break;
3271
3272 /*
3273 * Raise priority if scanning rate is too low or there was no
3274 * progress in reclaiming pages
3275 */
3276 if (raise_priority || !sc.nr_reclaimed)
3277 sc.priority--;
3278 } while (sc.priority >= 1);
3279
3280 out:
3281 /*
3282 * Return the order kswapd stopped reclaiming at as
3283 * prepare_kswapd_sleep() takes it into account. If another caller
3284 * entered the allocator slow path while kswapd was awake, order will
3285 * remain at the higher level.
3286 */
3287 return sc.order;
3288 }
3289
3290 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3291 unsigned int classzone_idx)
3292 {
3293 long remaining = 0;
3294 DEFINE_WAIT(wait);
3295
3296 if (freezing(current) || kthread_should_stop())
3297 return;
3298
3299 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3300
3301 /* Try to sleep for a short interval */
3302 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3303 /*
3304 * Compaction records what page blocks it recently failed to
3305 * isolate pages from and skips them in the future scanning.
3306 * When kswapd is going to sleep, it is reasonable to assume
3307 * that pages and compaction may succeed so reset the cache.
3308 */
3309 reset_isolation_suitable(pgdat);
3310
3311 /*
3312 * We have freed the memory, now we should compact it to make
3313 * allocation of the requested order possible.
3314 */
3315 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3316
3317 remaining = schedule_timeout(HZ/10);
3318
3319 /*
3320 * If woken prematurely then reset kswapd_classzone_idx and
3321 * order. The values will either be from a wakeup request or
3322 * the previous request that slept prematurely.
3323 */
3324 if (remaining) {
3325 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3326 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3327 }
3328
3329 finish_wait(&pgdat->kswapd_wait, &wait);
3330 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3331 }
3332
3333 /*
3334 * After a short sleep, check if it was a premature sleep. If not, then
3335 * go fully to sleep until explicitly woken up.
3336 */
3337 if (!remaining &&
3338 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3339 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3340
3341 /*
3342 * vmstat counters are not perfectly accurate and the estimated
3343 * value for counters such as NR_FREE_PAGES can deviate from the
3344 * true value by nr_online_cpus * threshold. To avoid the zone
3345 * watermarks being breached while under pressure, we reduce the
3346 * per-cpu vmstat threshold while kswapd is awake and restore
3347 * them before going back to sleep.
3348 */
3349 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3350
3351 if (!kthread_should_stop())
3352 schedule();
3353
3354 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3355 } else {
3356 if (remaining)
3357 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3358 else
3359 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3360 }
3361 finish_wait(&pgdat->kswapd_wait, &wait);
3362 }
3363
3364 /*
3365 * The background pageout daemon, started as a kernel thread
3366 * from the init process.
3367 *
3368 * This basically trickles out pages so that we have _some_
3369 * free memory available even if there is no other activity
3370 * that frees anything up. This is needed for things like routing
3371 * etc, where we otherwise might have all activity going on in
3372 * asynchronous contexts that cannot page things out.
3373 *
3374 * If there are applications that are active memory-allocators
3375 * (most normal use), this basically shouldn't matter.
3376 */
3377 static int kswapd(void *p)
3378 {
3379 unsigned int alloc_order, reclaim_order, classzone_idx;
3380 pg_data_t *pgdat = (pg_data_t*)p;
3381 struct task_struct *tsk = current;
3382
3383 struct reclaim_state reclaim_state = {
3384 .reclaimed_slab = 0,
3385 };
3386 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3387
3388 lockdep_set_current_reclaim_state(GFP_KERNEL);
3389
3390 if (!cpumask_empty(cpumask))
3391 set_cpus_allowed_ptr(tsk, cpumask);
3392 current->reclaim_state = &reclaim_state;
3393
3394 /*
3395 * Tell the memory management that we're a "memory allocator",
3396 * and that if we need more memory we should get access to it
3397 * regardless (see "__alloc_pages()"). "kswapd" should
3398 * never get caught in the normal page freeing logic.
3399 *
3400 * (Kswapd normally doesn't need memory anyway, but sometimes
3401 * you need a small amount of memory in order to be able to
3402 * page out something else, and this flag essentially protects
3403 * us from recursively trying to free more memory as we're
3404 * trying to free the first piece of memory in the first place).
3405 */
3406 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3407 set_freezable();
3408
3409 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3410 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3411 for ( ; ; ) {
3412 bool ret;
3413
3414 kswapd_try_sleep:
3415 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3416 classzone_idx);
3417
3418 /* Read the new order and classzone_idx */
3419 alloc_order = reclaim_order = pgdat->kswapd_order;
3420 classzone_idx = pgdat->kswapd_classzone_idx;
3421 pgdat->kswapd_order = 0;
3422 pgdat->kswapd_classzone_idx = 0;
3423
3424 ret = try_to_freeze();
3425 if (kthread_should_stop())
3426 break;
3427
3428 /*
3429 * We can speed up thawing tasks if we don't call balance_pgdat
3430 * after returning from the refrigerator
3431 */
3432 if (ret)
3433 continue;
3434
3435 /*
3436 * Reclaim begins at the requested order but if a high-order
3437 * reclaim fails then kswapd falls back to reclaiming for
3438 * order-0. If that happens, kswapd will consider sleeping
3439 * for the order it finished reclaiming at (reclaim_order)
3440 * but kcompactd is woken to compact for the original
3441 * request (alloc_order).
3442 */
3443 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3444 alloc_order);
3445 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3446 if (reclaim_order < alloc_order)
3447 goto kswapd_try_sleep;
3448
3449 alloc_order = reclaim_order = pgdat->kswapd_order;
3450 classzone_idx = pgdat->kswapd_classzone_idx;
3451 }
3452
3453 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3454 current->reclaim_state = NULL;
3455 lockdep_clear_current_reclaim_state();
3456
3457 return 0;
3458 }
3459
3460 /*
3461 * A zone is low on free memory, so wake its kswapd task to service it.
3462 */
3463 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3464 {
3465 pg_data_t *pgdat;
3466 int z;
3467
3468 if (!populated_zone(zone))
3469 return;
3470
3471 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3472 return;
3473 pgdat = zone->zone_pgdat;
3474 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3475 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3476 if (!waitqueue_active(&pgdat->kswapd_wait))
3477 return;
3478
3479 /* Only wake kswapd if all zones are unbalanced */
3480 for (z = 0; z <= classzone_idx; z++) {
3481 zone = pgdat->node_zones + z;
3482 if (!populated_zone(zone))
3483 continue;
3484
3485 if (zone_balanced(zone, order, classzone_idx))
3486 return;
3487 }
3488
3489 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3490 wake_up_interruptible(&pgdat->kswapd_wait);
3491 }
3492
3493 #ifdef CONFIG_HIBERNATION
3494 /*
3495 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3496 * freed pages.
3497 *
3498 * Rather than trying to age LRUs the aim is to preserve the overall
3499 * LRU order by reclaiming preferentially
3500 * inactive > active > active referenced > active mapped
3501 */
3502 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3503 {
3504 struct reclaim_state reclaim_state;
3505 struct scan_control sc = {
3506 .nr_to_reclaim = nr_to_reclaim,
3507 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3508 .reclaim_idx = MAX_NR_ZONES - 1,
3509 .priority = DEF_PRIORITY,
3510 .may_writepage = 1,
3511 .may_unmap = 1,
3512 .may_swap = 1,
3513 .hibernation_mode = 1,
3514 };
3515 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3516 struct task_struct *p = current;
3517 unsigned long nr_reclaimed;
3518
3519 p->flags |= PF_MEMALLOC;
3520 lockdep_set_current_reclaim_state(sc.gfp_mask);
3521 reclaim_state.reclaimed_slab = 0;
3522 p->reclaim_state = &reclaim_state;
3523
3524 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3525
3526 p->reclaim_state = NULL;
3527 lockdep_clear_current_reclaim_state();
3528 p->flags &= ~PF_MEMALLOC;
3529
3530 return nr_reclaimed;
3531 }
3532 #endif /* CONFIG_HIBERNATION */
3533
3534 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3535 not required for correctness. So if the last cpu in a node goes
3536 away, we get changed to run anywhere: as the first one comes back,
3537 restore their cpu bindings. */
3538 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3539 void *hcpu)
3540 {
3541 int nid;
3542
3543 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3544 for_each_node_state(nid, N_MEMORY) {
3545 pg_data_t *pgdat = NODE_DATA(nid);
3546 const struct cpumask *mask;
3547
3548 mask = cpumask_of_node(pgdat->node_id);
3549
3550 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3551 /* One of our CPUs online: restore mask */
3552 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3553 }
3554 }
3555 return NOTIFY_OK;
3556 }
3557
3558 /*
3559 * This kswapd start function will be called by init and node-hot-add.
3560 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3561 */
3562 int kswapd_run(int nid)
3563 {
3564 pg_data_t *pgdat = NODE_DATA(nid);
3565 int ret = 0;
3566
3567 if (pgdat->kswapd)
3568 return 0;
3569
3570 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3571 if (IS_ERR(pgdat->kswapd)) {
3572 /* failure at boot is fatal */
3573 BUG_ON(system_state == SYSTEM_BOOTING);
3574 pr_err("Failed to start kswapd on node %d\n", nid);
3575 ret = PTR_ERR(pgdat->kswapd);
3576 pgdat->kswapd = NULL;
3577 }
3578 return ret;
3579 }
3580
3581 /*
3582 * Called by memory hotplug when all memory in a node is offlined. Caller must
3583 * hold mem_hotplug_begin/end().
3584 */
3585 void kswapd_stop(int nid)
3586 {
3587 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3588
3589 if (kswapd) {
3590 kthread_stop(kswapd);
3591 NODE_DATA(nid)->kswapd = NULL;
3592 }
3593 }
3594
3595 static int __init kswapd_init(void)
3596 {
3597 int nid;
3598
3599 swap_setup();
3600 for_each_node_state(nid, N_MEMORY)
3601 kswapd_run(nid);
3602 hotcpu_notifier(cpu_callback, 0);
3603 return 0;
3604 }
3605
3606 module_init(kswapd_init)
3607
3608 #ifdef CONFIG_NUMA
3609 /*
3610 * Node reclaim mode
3611 *
3612 * If non-zero call node_reclaim when the number of free pages falls below
3613 * the watermarks.
3614 */
3615 int node_reclaim_mode __read_mostly;
3616
3617 #define RECLAIM_OFF 0
3618 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3619 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3620 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3621
3622 /*
3623 * Priority for NODE_RECLAIM. This determines the fraction of pages
3624 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3625 * a zone.
3626 */
3627 #define NODE_RECLAIM_PRIORITY 4
3628
3629 /*
3630 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3631 * occur.
3632 */
3633 int sysctl_min_unmapped_ratio = 1;
3634
3635 /*
3636 * If the number of slab pages in a zone grows beyond this percentage then
3637 * slab reclaim needs to occur.
3638 */
3639 int sysctl_min_slab_ratio = 5;
3640
3641 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3642 {
3643 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3644 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3645 node_page_state(pgdat, NR_ACTIVE_FILE);
3646
3647 /*
3648 * It's possible for there to be more file mapped pages than
3649 * accounted for by the pages on the file LRU lists because
3650 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3651 */
3652 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3653 }
3654
3655 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3656 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3657 {
3658 unsigned long nr_pagecache_reclaimable;
3659 unsigned long delta = 0;
3660
3661 /*
3662 * If RECLAIM_UNMAP is set, then all file pages are considered
3663 * potentially reclaimable. Otherwise, we have to worry about
3664 * pages like swapcache and node_unmapped_file_pages() provides
3665 * a better estimate
3666 */
3667 if (node_reclaim_mode & RECLAIM_UNMAP)
3668 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3669 else
3670 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3671
3672 /* If we can't clean pages, remove dirty pages from consideration */
3673 if (!(node_reclaim_mode & RECLAIM_WRITE))
3674 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3675
3676 /* Watch for any possible underflows due to delta */
3677 if (unlikely(delta > nr_pagecache_reclaimable))
3678 delta = nr_pagecache_reclaimable;
3679
3680 return nr_pagecache_reclaimable - delta;
3681 }
3682
3683 /*
3684 * Try to free up some pages from this node through reclaim.
3685 */
3686 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3687 {
3688 /* Minimum pages needed in order to stay on node */
3689 const unsigned long nr_pages = 1 << order;
3690 struct task_struct *p = current;
3691 struct reclaim_state reclaim_state;
3692 int classzone_idx = gfp_zone(gfp_mask);
3693 struct scan_control sc = {
3694 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3695 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3696 .order = order,
3697 .priority = NODE_RECLAIM_PRIORITY,
3698 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3699 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3700 .may_swap = 1,
3701 .reclaim_idx = classzone_idx,
3702 };
3703
3704 cond_resched();
3705 /*
3706 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3707 * and we also need to be able to write out pages for RECLAIM_WRITE
3708 * and RECLAIM_UNMAP.
3709 */
3710 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3711 lockdep_set_current_reclaim_state(gfp_mask);
3712 reclaim_state.reclaimed_slab = 0;
3713 p->reclaim_state = &reclaim_state;
3714
3715 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3716 /*
3717 * Free memory by calling shrink zone with increasing
3718 * priorities until we have enough memory freed.
3719 */
3720 do {
3721 shrink_node(pgdat, &sc);
3722 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3723 }
3724
3725 p->reclaim_state = NULL;
3726 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3727 lockdep_clear_current_reclaim_state();
3728 return sc.nr_reclaimed >= nr_pages;
3729 }
3730
3731 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3732 {
3733 int ret;
3734
3735 /*
3736 * Node reclaim reclaims unmapped file backed pages and
3737 * slab pages if we are over the defined limits.
3738 *
3739 * A small portion of unmapped file backed pages is needed for
3740 * file I/O otherwise pages read by file I/O will be immediately
3741 * thrown out if the node is overallocated. So we do not reclaim
3742 * if less than a specified percentage of the node is used by
3743 * unmapped file backed pages.
3744 */
3745 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3746 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3747 return NODE_RECLAIM_FULL;
3748
3749 if (!pgdat_reclaimable(pgdat))
3750 return NODE_RECLAIM_FULL;
3751
3752 /*
3753 * Do not scan if the allocation should not be delayed.
3754 */
3755 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3756 return NODE_RECLAIM_NOSCAN;
3757
3758 /*
3759 * Only run node reclaim on the local node or on nodes that do not
3760 * have associated processors. This will favor the local processor
3761 * over remote processors and spread off node memory allocations
3762 * as wide as possible.
3763 */
3764 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3765 return NODE_RECLAIM_NOSCAN;
3766
3767 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3768 return NODE_RECLAIM_NOSCAN;
3769
3770 ret = __node_reclaim(pgdat, gfp_mask, order);
3771 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3772
3773 if (!ret)
3774 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3775
3776 return ret;
3777 }
3778 #endif
3779
3780 /*
3781 * page_evictable - test whether a page is evictable
3782 * @page: the page to test
3783 *
3784 * Test whether page is evictable--i.e., should be placed on active/inactive
3785 * lists vs unevictable list.
3786 *
3787 * Reasons page might not be evictable:
3788 * (1) page's mapping marked unevictable
3789 * (2) page is part of an mlocked VMA
3790 *
3791 */
3792 int page_evictable(struct page *page)
3793 {
3794 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3795 }
3796
3797 #ifdef CONFIG_SHMEM
3798 /**
3799 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3800 * @pages: array of pages to check
3801 * @nr_pages: number of pages to check
3802 *
3803 * Checks pages for evictability and moves them to the appropriate lru list.
3804 *
3805 * This function is only used for SysV IPC SHM_UNLOCK.
3806 */
3807 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3808 {
3809 struct lruvec *lruvec;
3810 struct pglist_data *pgdat = NULL;
3811 int pgscanned = 0;
3812 int pgrescued = 0;
3813 int i;
3814
3815 for (i = 0; i < nr_pages; i++) {
3816 struct page *page = pages[i];
3817 struct pglist_data *pagepgdat = page_pgdat(page);
3818
3819 pgscanned++;
3820 if (pagepgdat != pgdat) {
3821 if (pgdat)
3822 spin_unlock_irq(&pgdat->lru_lock);
3823 pgdat = pagepgdat;
3824 spin_lock_irq(&pgdat->lru_lock);
3825 }
3826 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3827
3828 if (!PageLRU(page) || !PageUnevictable(page))
3829 continue;
3830
3831 if (page_evictable(page)) {
3832 enum lru_list lru = page_lru_base_type(page);
3833
3834 VM_BUG_ON_PAGE(PageActive(page), page);
3835 ClearPageUnevictable(page);
3836 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3837 add_page_to_lru_list(page, lruvec, lru);
3838 pgrescued++;
3839 }
3840 }
3841
3842 if (pgdat) {
3843 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3844 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3845 spin_unlock_irq(&pgdat->lru_lock);
3846 }
3847 }
3848 #endif /* CONFIG_SHMEM */