]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
108 };
109
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137
138 /*
139 * From 0 .. 100. Higher means more swappy.
140 */
141 int vm_swappiness = 60;
142 /*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146 unsigned long vm_total_pages;
147
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 return !sc->target_mem_cgroup;
155 }
156
157 /**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 return true;
179 #endif
180 return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 return true;
186 }
187
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 return true;
191 }
192 #endif
193
194 static unsigned long zone_reclaimable_pages(struct zone *zone)
195 {
196 unsigned long nr;
197
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
206
207 return nr;
208 }
209
210 bool zone_reclaimable(struct zone *zone)
211 {
212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213 zone_reclaimable_pages(zone) * 6;
214 }
215
216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 {
218 if (!mem_cgroup_disabled())
219 return mem_cgroup_get_lru_size(lruvec, lru);
220
221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 }
223
224 /*
225 * Add a shrinker callback to be called from the vm.
226 */
227 int register_shrinker(struct shrinker *shrinker)
228 {
229 size_t size = sizeof(*shrinker->nr_deferred);
230
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
233
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
237
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
241 return 0;
242 }
243 EXPORT_SYMBOL(register_shrinker);
244
245 /*
246 * Remove one
247 */
248 void unregister_shrinker(struct shrinker *shrinker)
249 {
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
253 kfree(shrinker->nr_deferred);
254 }
255 EXPORT_SYMBOL(unregister_shrinker);
256
257 #define SHRINK_BATCH 128
258
259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
263 {
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
267 long freeable;
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
276 return 0;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284
285 total_scan = nr;
286 delta = (4 * nr_scanned) / shrinker->seeks;
287 delta *= freeable;
288 do_div(delta, nr_eligible + 1);
289 total_scan += delta;
290 if (total_scan < 0) {
291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
292 shrinker->scan_objects, total_scan);
293 total_scan = freeable;
294 }
295
296 /*
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
302 * freeable. This is bad for sustaining a working set in
303 * memory.
304 *
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
307 */
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
310
311 /*
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
315 */
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
318
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
322
323 /*
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
331 *
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
334 * than the total number of objects on slab (freeable), we must be
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
337 */
338 while (total_scan >= batch_size ||
339 total_scan >= freeable) {
340 unsigned long ret;
341 unsigned long nr_to_scan = min(batch_size, total_scan);
342
343 shrinkctl->nr_to_scan = nr_to_scan;
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
348
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
351
352 cond_resched();
353 }
354
355 /*
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
359 */
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365
366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
367 return freed;
368 }
369
370 /**
371 * shrink_slab - shrink slab caches
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
374 * @memcg: memory cgroup whose slab caches to target
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
377 *
378 * Call the shrink functions to age shrinkable caches.
379 *
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
382 *
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385 * objects from the memory cgroup specified. Otherwise all shrinkers
386 * are called, and memcg aware shrinkers are supposed to scan the
387 * global list then.
388 *
389 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
390 * the available objects should be scanned. Page reclaim for example
391 * passes the number of pages scanned and the number of pages on the
392 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
393 * when it encountered mapped pages. The ratio is further biased by
394 * the ->seeks setting of the shrink function, which indicates the
395 * cost to recreate an object relative to that of an LRU page.
396 *
397 * Returns the number of reclaimed slab objects.
398 */
399 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
400 struct mem_cgroup *memcg,
401 unsigned long nr_scanned,
402 unsigned long nr_eligible)
403 {
404 struct shrinker *shrinker;
405 unsigned long freed = 0;
406
407 if (memcg && !memcg_kmem_online(memcg))
408 return 0;
409
410 if (nr_scanned == 0)
411 nr_scanned = SWAP_CLUSTER_MAX;
412
413 if (!down_read_trylock(&shrinker_rwsem)) {
414 /*
415 * If we would return 0, our callers would understand that we
416 * have nothing else to shrink and give up trying. By returning
417 * 1 we keep it going and assume we'll be able to shrink next
418 * time.
419 */
420 freed = 1;
421 goto out;
422 }
423
424 list_for_each_entry(shrinker, &shrinker_list, list) {
425 struct shrink_control sc = {
426 .gfp_mask = gfp_mask,
427 .nid = nid,
428 .memcg = memcg,
429 };
430
431 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
432 continue;
433
434 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
435 sc.nid = 0;
436
437 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
438 }
439
440 up_read(&shrinker_rwsem);
441 out:
442 cond_resched();
443 return freed;
444 }
445
446 void drop_slab_node(int nid)
447 {
448 unsigned long freed;
449
450 do {
451 struct mem_cgroup *memcg = NULL;
452
453 freed = 0;
454 do {
455 freed += shrink_slab(GFP_KERNEL, nid, memcg,
456 1000, 1000);
457 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
458 } while (freed > 10);
459 }
460
461 void drop_slab(void)
462 {
463 int nid;
464
465 for_each_online_node(nid)
466 drop_slab_node(nid);
467 }
468
469 static inline int is_page_cache_freeable(struct page *page)
470 {
471 /*
472 * A freeable page cache page is referenced only by the caller
473 * that isolated the page, the page cache radix tree and
474 * optional buffer heads at page->private.
475 */
476 return page_count(page) - page_has_private(page) == 2;
477 }
478
479 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
480 {
481 if (current->flags & PF_SWAPWRITE)
482 return 1;
483 if (!inode_write_congested(inode))
484 return 1;
485 if (inode_to_bdi(inode) == current->backing_dev_info)
486 return 1;
487 return 0;
488 }
489
490 /*
491 * We detected a synchronous write error writing a page out. Probably
492 * -ENOSPC. We need to propagate that into the address_space for a subsequent
493 * fsync(), msync() or close().
494 *
495 * The tricky part is that after writepage we cannot touch the mapping: nothing
496 * prevents it from being freed up. But we have a ref on the page and once
497 * that page is locked, the mapping is pinned.
498 *
499 * We're allowed to run sleeping lock_page() here because we know the caller has
500 * __GFP_FS.
501 */
502 static void handle_write_error(struct address_space *mapping,
503 struct page *page, int error)
504 {
505 lock_page(page);
506 if (page_mapping(page) == mapping)
507 mapping_set_error(mapping, error);
508 unlock_page(page);
509 }
510
511 /* possible outcome of pageout() */
512 typedef enum {
513 /* failed to write page out, page is locked */
514 PAGE_KEEP,
515 /* move page to the active list, page is locked */
516 PAGE_ACTIVATE,
517 /* page has been sent to the disk successfully, page is unlocked */
518 PAGE_SUCCESS,
519 /* page is clean and locked */
520 PAGE_CLEAN,
521 } pageout_t;
522
523 /*
524 * pageout is called by shrink_page_list() for each dirty page.
525 * Calls ->writepage().
526 */
527 static pageout_t pageout(struct page *page, struct address_space *mapping,
528 struct scan_control *sc)
529 {
530 /*
531 * If the page is dirty, only perform writeback if that write
532 * will be non-blocking. To prevent this allocation from being
533 * stalled by pagecache activity. But note that there may be
534 * stalls if we need to run get_block(). We could test
535 * PagePrivate for that.
536 *
537 * If this process is currently in __generic_file_write_iter() against
538 * this page's queue, we can perform writeback even if that
539 * will block.
540 *
541 * If the page is swapcache, write it back even if that would
542 * block, for some throttling. This happens by accident, because
543 * swap_backing_dev_info is bust: it doesn't reflect the
544 * congestion state of the swapdevs. Easy to fix, if needed.
545 */
546 if (!is_page_cache_freeable(page))
547 return PAGE_KEEP;
548 if (!mapping) {
549 /*
550 * Some data journaling orphaned pages can have
551 * page->mapping == NULL while being dirty with clean buffers.
552 */
553 if (page_has_private(page)) {
554 if (try_to_free_buffers(page)) {
555 ClearPageDirty(page);
556 pr_info("%s: orphaned page\n", __func__);
557 return PAGE_CLEAN;
558 }
559 }
560 return PAGE_KEEP;
561 }
562 if (mapping->a_ops->writepage == NULL)
563 return PAGE_ACTIVATE;
564 if (!may_write_to_inode(mapping->host, sc))
565 return PAGE_KEEP;
566
567 if (clear_page_dirty_for_io(page)) {
568 int res;
569 struct writeback_control wbc = {
570 .sync_mode = WB_SYNC_NONE,
571 .nr_to_write = SWAP_CLUSTER_MAX,
572 .range_start = 0,
573 .range_end = LLONG_MAX,
574 .for_reclaim = 1,
575 };
576
577 SetPageReclaim(page);
578 res = mapping->a_ops->writepage(page, &wbc);
579 if (res < 0)
580 handle_write_error(mapping, page, res);
581 if (res == AOP_WRITEPAGE_ACTIVATE) {
582 ClearPageReclaim(page);
583 return PAGE_ACTIVATE;
584 }
585
586 if (!PageWriteback(page)) {
587 /* synchronous write or broken a_ops? */
588 ClearPageReclaim(page);
589 }
590 trace_mm_vmscan_writepage(page);
591 inc_zone_page_state(page, NR_VMSCAN_WRITE);
592 return PAGE_SUCCESS;
593 }
594
595 return PAGE_CLEAN;
596 }
597
598 /*
599 * Same as remove_mapping, but if the page is removed from the mapping, it
600 * gets returned with a refcount of 0.
601 */
602 static int __remove_mapping(struct address_space *mapping, struct page *page,
603 bool reclaimed)
604 {
605 unsigned long flags;
606
607 BUG_ON(!PageLocked(page));
608 BUG_ON(mapping != page_mapping(page));
609
610 spin_lock_irqsave(&mapping->tree_lock, flags);
611 /*
612 * The non racy check for a busy page.
613 *
614 * Must be careful with the order of the tests. When someone has
615 * a ref to the page, it may be possible that they dirty it then
616 * drop the reference. So if PageDirty is tested before page_count
617 * here, then the following race may occur:
618 *
619 * get_user_pages(&page);
620 * [user mapping goes away]
621 * write_to(page);
622 * !PageDirty(page) [good]
623 * SetPageDirty(page);
624 * put_page(page);
625 * !page_count(page) [good, discard it]
626 *
627 * [oops, our write_to data is lost]
628 *
629 * Reversing the order of the tests ensures such a situation cannot
630 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
631 * load is not satisfied before that of page->_count.
632 *
633 * Note that if SetPageDirty is always performed via set_page_dirty,
634 * and thus under tree_lock, then this ordering is not required.
635 */
636 if (!page_freeze_refs(page, 2))
637 goto cannot_free;
638 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
639 if (unlikely(PageDirty(page))) {
640 page_unfreeze_refs(page, 2);
641 goto cannot_free;
642 }
643
644 if (PageSwapCache(page)) {
645 swp_entry_t swap = { .val = page_private(page) };
646 mem_cgroup_swapout(page, swap);
647 __delete_from_swap_cache(page);
648 spin_unlock_irqrestore(&mapping->tree_lock, flags);
649 swapcache_free(swap);
650 } else {
651 void (*freepage)(struct page *);
652 void *shadow = NULL;
653
654 freepage = mapping->a_ops->freepage;
655 /*
656 * Remember a shadow entry for reclaimed file cache in
657 * order to detect refaults, thus thrashing, later on.
658 *
659 * But don't store shadows in an address space that is
660 * already exiting. This is not just an optizimation,
661 * inode reclaim needs to empty out the radix tree or
662 * the nodes are lost. Don't plant shadows behind its
663 * back.
664 *
665 * We also don't store shadows for DAX mappings because the
666 * only page cache pages found in these are zero pages
667 * covering holes, and because we don't want to mix DAX
668 * exceptional entries and shadow exceptional entries in the
669 * same page_tree.
670 */
671 if (reclaimed && page_is_file_cache(page) &&
672 !mapping_exiting(mapping) && !dax_mapping(mapping))
673 shadow = workingset_eviction(mapping, page);
674 __delete_from_page_cache(page, shadow);
675 spin_unlock_irqrestore(&mapping->tree_lock, flags);
676
677 if (freepage != NULL)
678 freepage(page);
679 }
680
681 return 1;
682
683 cannot_free:
684 spin_unlock_irqrestore(&mapping->tree_lock, flags);
685 return 0;
686 }
687
688 /*
689 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
690 * someone else has a ref on the page, abort and return 0. If it was
691 * successfully detached, return 1. Assumes the caller has a single ref on
692 * this page.
693 */
694 int remove_mapping(struct address_space *mapping, struct page *page)
695 {
696 if (__remove_mapping(mapping, page, false)) {
697 /*
698 * Unfreezing the refcount with 1 rather than 2 effectively
699 * drops the pagecache ref for us without requiring another
700 * atomic operation.
701 */
702 page_unfreeze_refs(page, 1);
703 return 1;
704 }
705 return 0;
706 }
707
708 /**
709 * putback_lru_page - put previously isolated page onto appropriate LRU list
710 * @page: page to be put back to appropriate lru list
711 *
712 * Add previously isolated @page to appropriate LRU list.
713 * Page may still be unevictable for other reasons.
714 *
715 * lru_lock must not be held, interrupts must be enabled.
716 */
717 void putback_lru_page(struct page *page)
718 {
719 bool is_unevictable;
720 int was_unevictable = PageUnevictable(page);
721
722 VM_BUG_ON_PAGE(PageLRU(page), page);
723
724 redo:
725 ClearPageUnevictable(page);
726
727 if (page_evictable(page)) {
728 /*
729 * For evictable pages, we can use the cache.
730 * In event of a race, worst case is we end up with an
731 * unevictable page on [in]active list.
732 * We know how to handle that.
733 */
734 is_unevictable = false;
735 lru_cache_add(page);
736 } else {
737 /*
738 * Put unevictable pages directly on zone's unevictable
739 * list.
740 */
741 is_unevictable = true;
742 add_page_to_unevictable_list(page);
743 /*
744 * When racing with an mlock or AS_UNEVICTABLE clearing
745 * (page is unlocked) make sure that if the other thread
746 * does not observe our setting of PG_lru and fails
747 * isolation/check_move_unevictable_pages,
748 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
749 * the page back to the evictable list.
750 *
751 * The other side is TestClearPageMlocked() or shmem_lock().
752 */
753 smp_mb();
754 }
755
756 /*
757 * page's status can change while we move it among lru. If an evictable
758 * page is on unevictable list, it never be freed. To avoid that,
759 * check after we added it to the list, again.
760 */
761 if (is_unevictable && page_evictable(page)) {
762 if (!isolate_lru_page(page)) {
763 put_page(page);
764 goto redo;
765 }
766 /* This means someone else dropped this page from LRU
767 * So, it will be freed or putback to LRU again. There is
768 * nothing to do here.
769 */
770 }
771
772 if (was_unevictable && !is_unevictable)
773 count_vm_event(UNEVICTABLE_PGRESCUED);
774 else if (!was_unevictable && is_unevictable)
775 count_vm_event(UNEVICTABLE_PGCULLED);
776
777 put_page(page); /* drop ref from isolate */
778 }
779
780 enum page_references {
781 PAGEREF_RECLAIM,
782 PAGEREF_RECLAIM_CLEAN,
783 PAGEREF_KEEP,
784 PAGEREF_ACTIVATE,
785 };
786
787 static enum page_references page_check_references(struct page *page,
788 struct scan_control *sc)
789 {
790 int referenced_ptes, referenced_page;
791 unsigned long vm_flags;
792
793 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
794 &vm_flags);
795 referenced_page = TestClearPageReferenced(page);
796
797 /*
798 * Mlock lost the isolation race with us. Let try_to_unmap()
799 * move the page to the unevictable list.
800 */
801 if (vm_flags & VM_LOCKED)
802 return PAGEREF_RECLAIM;
803
804 if (referenced_ptes) {
805 if (PageSwapBacked(page))
806 return PAGEREF_ACTIVATE;
807 /*
808 * All mapped pages start out with page table
809 * references from the instantiating fault, so we need
810 * to look twice if a mapped file page is used more
811 * than once.
812 *
813 * Mark it and spare it for another trip around the
814 * inactive list. Another page table reference will
815 * lead to its activation.
816 *
817 * Note: the mark is set for activated pages as well
818 * so that recently deactivated but used pages are
819 * quickly recovered.
820 */
821 SetPageReferenced(page);
822
823 if (referenced_page || referenced_ptes > 1)
824 return PAGEREF_ACTIVATE;
825
826 /*
827 * Activate file-backed executable pages after first usage.
828 */
829 if (vm_flags & VM_EXEC)
830 return PAGEREF_ACTIVATE;
831
832 return PAGEREF_KEEP;
833 }
834
835 /* Reclaim if clean, defer dirty pages to writeback */
836 if (referenced_page && !PageSwapBacked(page))
837 return PAGEREF_RECLAIM_CLEAN;
838
839 return PAGEREF_RECLAIM;
840 }
841
842 /* Check if a page is dirty or under writeback */
843 static void page_check_dirty_writeback(struct page *page,
844 bool *dirty, bool *writeback)
845 {
846 struct address_space *mapping;
847
848 /*
849 * Anonymous pages are not handled by flushers and must be written
850 * from reclaim context. Do not stall reclaim based on them
851 */
852 if (!page_is_file_cache(page)) {
853 *dirty = false;
854 *writeback = false;
855 return;
856 }
857
858 /* By default assume that the page flags are accurate */
859 *dirty = PageDirty(page);
860 *writeback = PageWriteback(page);
861
862 /* Verify dirty/writeback state if the filesystem supports it */
863 if (!page_has_private(page))
864 return;
865
866 mapping = page_mapping(page);
867 if (mapping && mapping->a_ops->is_dirty_writeback)
868 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
869 }
870
871 /*
872 * shrink_page_list() returns the number of reclaimed pages
873 */
874 static unsigned long shrink_page_list(struct list_head *page_list,
875 struct zone *zone,
876 struct scan_control *sc,
877 enum ttu_flags ttu_flags,
878 unsigned long *ret_nr_dirty,
879 unsigned long *ret_nr_unqueued_dirty,
880 unsigned long *ret_nr_congested,
881 unsigned long *ret_nr_writeback,
882 unsigned long *ret_nr_immediate,
883 bool force_reclaim)
884 {
885 LIST_HEAD(ret_pages);
886 LIST_HEAD(free_pages);
887 int pgactivate = 0;
888 unsigned long nr_unqueued_dirty = 0;
889 unsigned long nr_dirty = 0;
890 unsigned long nr_congested = 0;
891 unsigned long nr_reclaimed = 0;
892 unsigned long nr_writeback = 0;
893 unsigned long nr_immediate = 0;
894
895 cond_resched();
896
897 while (!list_empty(page_list)) {
898 struct address_space *mapping;
899 struct page *page;
900 int may_enter_fs;
901 enum page_references references = PAGEREF_RECLAIM_CLEAN;
902 bool dirty, writeback;
903 bool lazyfree = false;
904 int ret = SWAP_SUCCESS;
905
906 cond_resched();
907
908 page = lru_to_page(page_list);
909 list_del(&page->lru);
910
911 if (!trylock_page(page))
912 goto keep;
913
914 VM_BUG_ON_PAGE(PageActive(page), page);
915 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
916
917 sc->nr_scanned++;
918
919 if (unlikely(!page_evictable(page)))
920 goto cull_mlocked;
921
922 if (!sc->may_unmap && page_mapped(page))
923 goto keep_locked;
924
925 /* Double the slab pressure for mapped and swapcache pages */
926 if (page_mapped(page) || PageSwapCache(page))
927 sc->nr_scanned++;
928
929 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
930 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
931
932 /*
933 * The number of dirty pages determines if a zone is marked
934 * reclaim_congested which affects wait_iff_congested. kswapd
935 * will stall and start writing pages if the tail of the LRU
936 * is all dirty unqueued pages.
937 */
938 page_check_dirty_writeback(page, &dirty, &writeback);
939 if (dirty || writeback)
940 nr_dirty++;
941
942 if (dirty && !writeback)
943 nr_unqueued_dirty++;
944
945 /*
946 * Treat this page as congested if the underlying BDI is or if
947 * pages are cycling through the LRU so quickly that the
948 * pages marked for immediate reclaim are making it to the
949 * end of the LRU a second time.
950 */
951 mapping = page_mapping(page);
952 if (((dirty || writeback) && mapping &&
953 inode_write_congested(mapping->host)) ||
954 (writeback && PageReclaim(page)))
955 nr_congested++;
956
957 /*
958 * If a page at the tail of the LRU is under writeback, there
959 * are three cases to consider.
960 *
961 * 1) If reclaim is encountering an excessive number of pages
962 * under writeback and this page is both under writeback and
963 * PageReclaim then it indicates that pages are being queued
964 * for IO but are being recycled through the LRU before the
965 * IO can complete. Waiting on the page itself risks an
966 * indefinite stall if it is impossible to writeback the
967 * page due to IO error or disconnected storage so instead
968 * note that the LRU is being scanned too quickly and the
969 * caller can stall after page list has been processed.
970 *
971 * 2) Global or new memcg reclaim encounters a page that is
972 * not marked for immediate reclaim, or the caller does not
973 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
974 * not to fs). In this case mark the page for immediate
975 * reclaim and continue scanning.
976 *
977 * Require may_enter_fs because we would wait on fs, which
978 * may not have submitted IO yet. And the loop driver might
979 * enter reclaim, and deadlock if it waits on a page for
980 * which it is needed to do the write (loop masks off
981 * __GFP_IO|__GFP_FS for this reason); but more thought
982 * would probably show more reasons.
983 *
984 * 3) Legacy memcg encounters a page that is already marked
985 * PageReclaim. memcg does not have any dirty pages
986 * throttling so we could easily OOM just because too many
987 * pages are in writeback and there is nothing else to
988 * reclaim. Wait for the writeback to complete.
989 */
990 if (PageWriteback(page)) {
991 /* Case 1 above */
992 if (current_is_kswapd() &&
993 PageReclaim(page) &&
994 test_bit(ZONE_WRITEBACK, &zone->flags)) {
995 nr_immediate++;
996 goto keep_locked;
997
998 /* Case 2 above */
999 } else if (sane_reclaim(sc) ||
1000 !PageReclaim(page) || !may_enter_fs) {
1001 /*
1002 * This is slightly racy - end_page_writeback()
1003 * might have just cleared PageReclaim, then
1004 * setting PageReclaim here end up interpreted
1005 * as PageReadahead - but that does not matter
1006 * enough to care. What we do want is for this
1007 * page to have PageReclaim set next time memcg
1008 * reclaim reaches the tests above, so it will
1009 * then wait_on_page_writeback() to avoid OOM;
1010 * and it's also appropriate in global reclaim.
1011 */
1012 SetPageReclaim(page);
1013 nr_writeback++;
1014 goto keep_locked;
1015
1016 /* Case 3 above */
1017 } else {
1018 unlock_page(page);
1019 wait_on_page_writeback(page);
1020 /* then go back and try same page again */
1021 list_add_tail(&page->lru, page_list);
1022 continue;
1023 }
1024 }
1025
1026 if (!force_reclaim)
1027 references = page_check_references(page, sc);
1028
1029 switch (references) {
1030 case PAGEREF_ACTIVATE:
1031 goto activate_locked;
1032 case PAGEREF_KEEP:
1033 goto keep_locked;
1034 case PAGEREF_RECLAIM:
1035 case PAGEREF_RECLAIM_CLEAN:
1036 ; /* try to reclaim the page below */
1037 }
1038
1039 /*
1040 * Anonymous process memory has backing store?
1041 * Try to allocate it some swap space here.
1042 */
1043 if (PageAnon(page) && !PageSwapCache(page)) {
1044 if (!(sc->gfp_mask & __GFP_IO))
1045 goto keep_locked;
1046 if (!add_to_swap(page, page_list))
1047 goto activate_locked;
1048 lazyfree = true;
1049 may_enter_fs = 1;
1050
1051 /* Adding to swap updated mapping */
1052 mapping = page_mapping(page);
1053 }
1054
1055 /*
1056 * The page is mapped into the page tables of one or more
1057 * processes. Try to unmap it here.
1058 */
1059 if (page_mapped(page) && mapping) {
1060 switch (ret = try_to_unmap(page, lazyfree ?
1061 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1062 (ttu_flags | TTU_BATCH_FLUSH))) {
1063 case SWAP_FAIL:
1064 goto activate_locked;
1065 case SWAP_AGAIN:
1066 goto keep_locked;
1067 case SWAP_MLOCK:
1068 goto cull_mlocked;
1069 case SWAP_LZFREE:
1070 goto lazyfree;
1071 case SWAP_SUCCESS:
1072 ; /* try to free the page below */
1073 }
1074 }
1075
1076 if (PageDirty(page)) {
1077 /*
1078 * Only kswapd can writeback filesystem pages to
1079 * avoid risk of stack overflow but only writeback
1080 * if many dirty pages have been encountered.
1081 */
1082 if (page_is_file_cache(page) &&
1083 (!current_is_kswapd() ||
1084 !test_bit(ZONE_DIRTY, &zone->flags))) {
1085 /*
1086 * Immediately reclaim when written back.
1087 * Similar in principal to deactivate_page()
1088 * except we already have the page isolated
1089 * and know it's dirty
1090 */
1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 SetPageReclaim(page);
1093
1094 goto keep_locked;
1095 }
1096
1097 if (references == PAGEREF_RECLAIM_CLEAN)
1098 goto keep_locked;
1099 if (!may_enter_fs)
1100 goto keep_locked;
1101 if (!sc->may_writepage)
1102 goto keep_locked;
1103
1104 /*
1105 * Page is dirty. Flush the TLB if a writable entry
1106 * potentially exists to avoid CPU writes after IO
1107 * starts and then write it out here.
1108 */
1109 try_to_unmap_flush_dirty();
1110 switch (pageout(page, mapping, sc)) {
1111 case PAGE_KEEP:
1112 goto keep_locked;
1113 case PAGE_ACTIVATE:
1114 goto activate_locked;
1115 case PAGE_SUCCESS:
1116 if (PageWriteback(page))
1117 goto keep;
1118 if (PageDirty(page))
1119 goto keep;
1120
1121 /*
1122 * A synchronous write - probably a ramdisk. Go
1123 * ahead and try to reclaim the page.
1124 */
1125 if (!trylock_page(page))
1126 goto keep;
1127 if (PageDirty(page) || PageWriteback(page))
1128 goto keep_locked;
1129 mapping = page_mapping(page);
1130 case PAGE_CLEAN:
1131 ; /* try to free the page below */
1132 }
1133 }
1134
1135 /*
1136 * If the page has buffers, try to free the buffer mappings
1137 * associated with this page. If we succeed we try to free
1138 * the page as well.
1139 *
1140 * We do this even if the page is PageDirty().
1141 * try_to_release_page() does not perform I/O, but it is
1142 * possible for a page to have PageDirty set, but it is actually
1143 * clean (all its buffers are clean). This happens if the
1144 * buffers were written out directly, with submit_bh(). ext3
1145 * will do this, as well as the blockdev mapping.
1146 * try_to_release_page() will discover that cleanness and will
1147 * drop the buffers and mark the page clean - it can be freed.
1148 *
1149 * Rarely, pages can have buffers and no ->mapping. These are
1150 * the pages which were not successfully invalidated in
1151 * truncate_complete_page(). We try to drop those buffers here
1152 * and if that worked, and the page is no longer mapped into
1153 * process address space (page_count == 1) it can be freed.
1154 * Otherwise, leave the page on the LRU so it is swappable.
1155 */
1156 if (page_has_private(page)) {
1157 if (!try_to_release_page(page, sc->gfp_mask))
1158 goto activate_locked;
1159 if (!mapping && page_count(page) == 1) {
1160 unlock_page(page);
1161 if (put_page_testzero(page))
1162 goto free_it;
1163 else {
1164 /*
1165 * rare race with speculative reference.
1166 * the speculative reference will free
1167 * this page shortly, so we may
1168 * increment nr_reclaimed here (and
1169 * leave it off the LRU).
1170 */
1171 nr_reclaimed++;
1172 continue;
1173 }
1174 }
1175 }
1176
1177 lazyfree:
1178 if (!mapping || !__remove_mapping(mapping, page, true))
1179 goto keep_locked;
1180
1181 /*
1182 * At this point, we have no other references and there is
1183 * no way to pick any more up (removed from LRU, removed
1184 * from pagecache). Can use non-atomic bitops now (and
1185 * we obviously don't have to worry about waking up a process
1186 * waiting on the page lock, because there are no references.
1187 */
1188 __ClearPageLocked(page);
1189 free_it:
1190 if (ret == SWAP_LZFREE)
1191 count_vm_event(PGLAZYFREED);
1192
1193 nr_reclaimed++;
1194
1195 /*
1196 * Is there need to periodically free_page_list? It would
1197 * appear not as the counts should be low
1198 */
1199 list_add(&page->lru, &free_pages);
1200 continue;
1201
1202 cull_mlocked:
1203 if (PageSwapCache(page))
1204 try_to_free_swap(page);
1205 unlock_page(page);
1206 list_add(&page->lru, &ret_pages);
1207 continue;
1208
1209 activate_locked:
1210 /* Not a candidate for swapping, so reclaim swap space. */
1211 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1212 try_to_free_swap(page);
1213 VM_BUG_ON_PAGE(PageActive(page), page);
1214 SetPageActive(page);
1215 pgactivate++;
1216 keep_locked:
1217 unlock_page(page);
1218 keep:
1219 list_add(&page->lru, &ret_pages);
1220 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1221 }
1222
1223 mem_cgroup_uncharge_list(&free_pages);
1224 try_to_unmap_flush();
1225 free_hot_cold_page_list(&free_pages, true);
1226
1227 list_splice(&ret_pages, page_list);
1228 count_vm_events(PGACTIVATE, pgactivate);
1229
1230 *ret_nr_dirty += nr_dirty;
1231 *ret_nr_congested += nr_congested;
1232 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1233 *ret_nr_writeback += nr_writeback;
1234 *ret_nr_immediate += nr_immediate;
1235 return nr_reclaimed;
1236 }
1237
1238 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1239 struct list_head *page_list)
1240 {
1241 struct scan_control sc = {
1242 .gfp_mask = GFP_KERNEL,
1243 .priority = DEF_PRIORITY,
1244 .may_unmap = 1,
1245 };
1246 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1247 struct page *page, *next;
1248 LIST_HEAD(clean_pages);
1249
1250 list_for_each_entry_safe(page, next, page_list, lru) {
1251 if (page_is_file_cache(page) && !PageDirty(page) &&
1252 !isolated_balloon_page(page)) {
1253 ClearPageActive(page);
1254 list_move(&page->lru, &clean_pages);
1255 }
1256 }
1257
1258 ret = shrink_page_list(&clean_pages, zone, &sc,
1259 TTU_UNMAP|TTU_IGNORE_ACCESS,
1260 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1261 list_splice(&clean_pages, page_list);
1262 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1263 return ret;
1264 }
1265
1266 /*
1267 * Attempt to remove the specified page from its LRU. Only take this page
1268 * if it is of the appropriate PageActive status. Pages which are being
1269 * freed elsewhere are also ignored.
1270 *
1271 * page: page to consider
1272 * mode: one of the LRU isolation modes defined above
1273 *
1274 * returns 0 on success, -ve errno on failure.
1275 */
1276 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1277 {
1278 int ret = -EINVAL;
1279
1280 /* Only take pages on the LRU. */
1281 if (!PageLRU(page))
1282 return ret;
1283
1284 /* Compaction should not handle unevictable pages but CMA can do so */
1285 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1286 return ret;
1287
1288 ret = -EBUSY;
1289
1290 /*
1291 * To minimise LRU disruption, the caller can indicate that it only
1292 * wants to isolate pages it will be able to operate on without
1293 * blocking - clean pages for the most part.
1294 *
1295 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1296 * is used by reclaim when it is cannot write to backing storage
1297 *
1298 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1299 * that it is possible to migrate without blocking
1300 */
1301 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1302 /* All the caller can do on PageWriteback is block */
1303 if (PageWriteback(page))
1304 return ret;
1305
1306 if (PageDirty(page)) {
1307 struct address_space *mapping;
1308
1309 /* ISOLATE_CLEAN means only clean pages */
1310 if (mode & ISOLATE_CLEAN)
1311 return ret;
1312
1313 /*
1314 * Only pages without mappings or that have a
1315 * ->migratepage callback are possible to migrate
1316 * without blocking
1317 */
1318 mapping = page_mapping(page);
1319 if (mapping && !mapping->a_ops->migratepage)
1320 return ret;
1321 }
1322 }
1323
1324 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1325 return ret;
1326
1327 if (likely(get_page_unless_zero(page))) {
1328 /*
1329 * Be careful not to clear PageLRU until after we're
1330 * sure the page is not being freed elsewhere -- the
1331 * page release code relies on it.
1332 */
1333 ClearPageLRU(page);
1334 ret = 0;
1335 }
1336
1337 return ret;
1338 }
1339
1340 /*
1341 * zone->lru_lock is heavily contended. Some of the functions that
1342 * shrink the lists perform better by taking out a batch of pages
1343 * and working on them outside the LRU lock.
1344 *
1345 * For pagecache intensive workloads, this function is the hottest
1346 * spot in the kernel (apart from copy_*_user functions).
1347 *
1348 * Appropriate locks must be held before calling this function.
1349 *
1350 * @nr_to_scan: The number of pages to look through on the list.
1351 * @lruvec: The LRU vector to pull pages from.
1352 * @dst: The temp list to put pages on to.
1353 * @nr_scanned: The number of pages that were scanned.
1354 * @sc: The scan_control struct for this reclaim session
1355 * @mode: One of the LRU isolation modes
1356 * @lru: LRU list id for isolating
1357 *
1358 * returns how many pages were moved onto *@dst.
1359 */
1360 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1361 struct lruvec *lruvec, struct list_head *dst,
1362 unsigned long *nr_scanned, struct scan_control *sc,
1363 isolate_mode_t mode, enum lru_list lru)
1364 {
1365 struct list_head *src = &lruvec->lists[lru];
1366 unsigned long nr_taken = 0;
1367 unsigned long scan;
1368
1369 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1370 !list_empty(src); scan++) {
1371 struct page *page;
1372 int nr_pages;
1373
1374 page = lru_to_page(src);
1375 prefetchw_prev_lru_page(page, src, flags);
1376
1377 VM_BUG_ON_PAGE(!PageLRU(page), page);
1378
1379 switch (__isolate_lru_page(page, mode)) {
1380 case 0:
1381 nr_pages = hpage_nr_pages(page);
1382 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1383 list_move(&page->lru, dst);
1384 nr_taken += nr_pages;
1385 break;
1386
1387 case -EBUSY:
1388 /* else it is being freed elsewhere */
1389 list_move(&page->lru, src);
1390 continue;
1391
1392 default:
1393 BUG();
1394 }
1395 }
1396
1397 *nr_scanned = scan;
1398 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1399 nr_taken, mode, is_file_lru(lru));
1400 return nr_taken;
1401 }
1402
1403 /**
1404 * isolate_lru_page - tries to isolate a page from its LRU list
1405 * @page: page to isolate from its LRU list
1406 *
1407 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1408 * vmstat statistic corresponding to whatever LRU list the page was on.
1409 *
1410 * Returns 0 if the page was removed from an LRU list.
1411 * Returns -EBUSY if the page was not on an LRU list.
1412 *
1413 * The returned page will have PageLRU() cleared. If it was found on
1414 * the active list, it will have PageActive set. If it was found on
1415 * the unevictable list, it will have the PageUnevictable bit set. That flag
1416 * may need to be cleared by the caller before letting the page go.
1417 *
1418 * The vmstat statistic corresponding to the list on which the page was
1419 * found will be decremented.
1420 *
1421 * Restrictions:
1422 * (1) Must be called with an elevated refcount on the page. This is a
1423 * fundamentnal difference from isolate_lru_pages (which is called
1424 * without a stable reference).
1425 * (2) the lru_lock must not be held.
1426 * (3) interrupts must be enabled.
1427 */
1428 int isolate_lru_page(struct page *page)
1429 {
1430 int ret = -EBUSY;
1431
1432 VM_BUG_ON_PAGE(!page_count(page), page);
1433 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1434
1435 if (PageLRU(page)) {
1436 struct zone *zone = page_zone(page);
1437 struct lruvec *lruvec;
1438
1439 spin_lock_irq(&zone->lru_lock);
1440 lruvec = mem_cgroup_page_lruvec(page, zone);
1441 if (PageLRU(page)) {
1442 int lru = page_lru(page);
1443 get_page(page);
1444 ClearPageLRU(page);
1445 del_page_from_lru_list(page, lruvec, lru);
1446 ret = 0;
1447 }
1448 spin_unlock_irq(&zone->lru_lock);
1449 }
1450 return ret;
1451 }
1452
1453 /*
1454 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1455 * then get resheduled. When there are massive number of tasks doing page
1456 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1457 * the LRU list will go small and be scanned faster than necessary, leading to
1458 * unnecessary swapping, thrashing and OOM.
1459 */
1460 static int too_many_isolated(struct zone *zone, int file,
1461 struct scan_control *sc)
1462 {
1463 unsigned long inactive, isolated;
1464
1465 if (current_is_kswapd())
1466 return 0;
1467
1468 if (!sane_reclaim(sc))
1469 return 0;
1470
1471 if (file) {
1472 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1473 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1474 } else {
1475 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1476 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1477 }
1478
1479 /*
1480 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1481 * won't get blocked by normal direct-reclaimers, forming a circular
1482 * deadlock.
1483 */
1484 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1485 inactive >>= 3;
1486
1487 return isolated > inactive;
1488 }
1489
1490 static noinline_for_stack void
1491 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1492 {
1493 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1494 struct zone *zone = lruvec_zone(lruvec);
1495 LIST_HEAD(pages_to_free);
1496
1497 /*
1498 * Put back any unfreeable pages.
1499 */
1500 while (!list_empty(page_list)) {
1501 struct page *page = lru_to_page(page_list);
1502 int lru;
1503
1504 VM_BUG_ON_PAGE(PageLRU(page), page);
1505 list_del(&page->lru);
1506 if (unlikely(!page_evictable(page))) {
1507 spin_unlock_irq(&zone->lru_lock);
1508 putback_lru_page(page);
1509 spin_lock_irq(&zone->lru_lock);
1510 continue;
1511 }
1512
1513 lruvec = mem_cgroup_page_lruvec(page, zone);
1514
1515 SetPageLRU(page);
1516 lru = page_lru(page);
1517 add_page_to_lru_list(page, lruvec, lru);
1518
1519 if (is_active_lru(lru)) {
1520 int file = is_file_lru(lru);
1521 int numpages = hpage_nr_pages(page);
1522 reclaim_stat->recent_rotated[file] += numpages;
1523 }
1524 if (put_page_testzero(page)) {
1525 __ClearPageLRU(page);
1526 __ClearPageActive(page);
1527 del_page_from_lru_list(page, lruvec, lru);
1528
1529 if (unlikely(PageCompound(page))) {
1530 spin_unlock_irq(&zone->lru_lock);
1531 mem_cgroup_uncharge(page);
1532 (*get_compound_page_dtor(page))(page);
1533 spin_lock_irq(&zone->lru_lock);
1534 } else
1535 list_add(&page->lru, &pages_to_free);
1536 }
1537 }
1538
1539 /*
1540 * To save our caller's stack, now use input list for pages to free.
1541 */
1542 list_splice(&pages_to_free, page_list);
1543 }
1544
1545 /*
1546 * If a kernel thread (such as nfsd for loop-back mounts) services
1547 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1548 * In that case we should only throttle if the backing device it is
1549 * writing to is congested. In other cases it is safe to throttle.
1550 */
1551 static int current_may_throttle(void)
1552 {
1553 return !(current->flags & PF_LESS_THROTTLE) ||
1554 current->backing_dev_info == NULL ||
1555 bdi_write_congested(current->backing_dev_info);
1556 }
1557
1558 /*
1559 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1560 * of reclaimed pages
1561 */
1562 static noinline_for_stack unsigned long
1563 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1564 struct scan_control *sc, enum lru_list lru)
1565 {
1566 LIST_HEAD(page_list);
1567 unsigned long nr_scanned;
1568 unsigned long nr_reclaimed = 0;
1569 unsigned long nr_taken;
1570 unsigned long nr_dirty = 0;
1571 unsigned long nr_congested = 0;
1572 unsigned long nr_unqueued_dirty = 0;
1573 unsigned long nr_writeback = 0;
1574 unsigned long nr_immediate = 0;
1575 isolate_mode_t isolate_mode = 0;
1576 int file = is_file_lru(lru);
1577 struct zone *zone = lruvec_zone(lruvec);
1578 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1579
1580 while (unlikely(too_many_isolated(zone, file, sc))) {
1581 congestion_wait(BLK_RW_ASYNC, HZ/10);
1582
1583 /* We are about to die and free our memory. Return now. */
1584 if (fatal_signal_pending(current))
1585 return SWAP_CLUSTER_MAX;
1586 }
1587
1588 lru_add_drain();
1589
1590 if (!sc->may_unmap)
1591 isolate_mode |= ISOLATE_UNMAPPED;
1592 if (!sc->may_writepage)
1593 isolate_mode |= ISOLATE_CLEAN;
1594
1595 spin_lock_irq(&zone->lru_lock);
1596
1597 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1598 &nr_scanned, sc, isolate_mode, lru);
1599
1600 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1601 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1602
1603 if (global_reclaim(sc)) {
1604 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1605 if (current_is_kswapd())
1606 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1607 else
1608 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1609 }
1610 spin_unlock_irq(&zone->lru_lock);
1611
1612 if (nr_taken == 0)
1613 return 0;
1614
1615 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1616 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1617 &nr_writeback, &nr_immediate,
1618 false);
1619
1620 spin_lock_irq(&zone->lru_lock);
1621
1622 reclaim_stat->recent_scanned[file] += nr_taken;
1623
1624 if (global_reclaim(sc)) {
1625 if (current_is_kswapd())
1626 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1627 nr_reclaimed);
1628 else
1629 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1630 nr_reclaimed);
1631 }
1632
1633 putback_inactive_pages(lruvec, &page_list);
1634
1635 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1636
1637 spin_unlock_irq(&zone->lru_lock);
1638
1639 mem_cgroup_uncharge_list(&page_list);
1640 free_hot_cold_page_list(&page_list, true);
1641
1642 /*
1643 * If reclaim is isolating dirty pages under writeback, it implies
1644 * that the long-lived page allocation rate is exceeding the page
1645 * laundering rate. Either the global limits are not being effective
1646 * at throttling processes due to the page distribution throughout
1647 * zones or there is heavy usage of a slow backing device. The
1648 * only option is to throttle from reclaim context which is not ideal
1649 * as there is no guarantee the dirtying process is throttled in the
1650 * same way balance_dirty_pages() manages.
1651 *
1652 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1653 * of pages under pages flagged for immediate reclaim and stall if any
1654 * are encountered in the nr_immediate check below.
1655 */
1656 if (nr_writeback && nr_writeback == nr_taken)
1657 set_bit(ZONE_WRITEBACK, &zone->flags);
1658
1659 /*
1660 * Legacy memcg will stall in page writeback so avoid forcibly
1661 * stalling here.
1662 */
1663 if (sane_reclaim(sc)) {
1664 /*
1665 * Tag a zone as congested if all the dirty pages scanned were
1666 * backed by a congested BDI and wait_iff_congested will stall.
1667 */
1668 if (nr_dirty && nr_dirty == nr_congested)
1669 set_bit(ZONE_CONGESTED, &zone->flags);
1670
1671 /*
1672 * If dirty pages are scanned that are not queued for IO, it
1673 * implies that flushers are not keeping up. In this case, flag
1674 * the zone ZONE_DIRTY and kswapd will start writing pages from
1675 * reclaim context.
1676 */
1677 if (nr_unqueued_dirty == nr_taken)
1678 set_bit(ZONE_DIRTY, &zone->flags);
1679
1680 /*
1681 * If kswapd scans pages marked marked for immediate
1682 * reclaim and under writeback (nr_immediate), it implies
1683 * that pages are cycling through the LRU faster than
1684 * they are written so also forcibly stall.
1685 */
1686 if (nr_immediate && current_may_throttle())
1687 congestion_wait(BLK_RW_ASYNC, HZ/10);
1688 }
1689
1690 /*
1691 * Stall direct reclaim for IO completions if underlying BDIs or zone
1692 * is congested. Allow kswapd to continue until it starts encountering
1693 * unqueued dirty pages or cycling through the LRU too quickly.
1694 */
1695 if (!sc->hibernation_mode && !current_is_kswapd() &&
1696 current_may_throttle())
1697 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1698
1699 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1700 sc->priority, file);
1701 return nr_reclaimed;
1702 }
1703
1704 /*
1705 * This moves pages from the active list to the inactive list.
1706 *
1707 * We move them the other way if the page is referenced by one or more
1708 * processes, from rmap.
1709 *
1710 * If the pages are mostly unmapped, the processing is fast and it is
1711 * appropriate to hold zone->lru_lock across the whole operation. But if
1712 * the pages are mapped, the processing is slow (page_referenced()) so we
1713 * should drop zone->lru_lock around each page. It's impossible to balance
1714 * this, so instead we remove the pages from the LRU while processing them.
1715 * It is safe to rely on PG_active against the non-LRU pages in here because
1716 * nobody will play with that bit on a non-LRU page.
1717 *
1718 * The downside is that we have to touch page->_count against each page.
1719 * But we had to alter page->flags anyway.
1720 */
1721
1722 static void move_active_pages_to_lru(struct lruvec *lruvec,
1723 struct list_head *list,
1724 struct list_head *pages_to_free,
1725 enum lru_list lru)
1726 {
1727 struct zone *zone = lruvec_zone(lruvec);
1728 unsigned long pgmoved = 0;
1729 struct page *page;
1730 int nr_pages;
1731
1732 while (!list_empty(list)) {
1733 page = lru_to_page(list);
1734 lruvec = mem_cgroup_page_lruvec(page, zone);
1735
1736 VM_BUG_ON_PAGE(PageLRU(page), page);
1737 SetPageLRU(page);
1738
1739 nr_pages = hpage_nr_pages(page);
1740 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1741 list_move(&page->lru, &lruvec->lists[lru]);
1742 pgmoved += nr_pages;
1743
1744 if (put_page_testzero(page)) {
1745 __ClearPageLRU(page);
1746 __ClearPageActive(page);
1747 del_page_from_lru_list(page, lruvec, lru);
1748
1749 if (unlikely(PageCompound(page))) {
1750 spin_unlock_irq(&zone->lru_lock);
1751 mem_cgroup_uncharge(page);
1752 (*get_compound_page_dtor(page))(page);
1753 spin_lock_irq(&zone->lru_lock);
1754 } else
1755 list_add(&page->lru, pages_to_free);
1756 }
1757 }
1758 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1759 if (!is_active_lru(lru))
1760 __count_vm_events(PGDEACTIVATE, pgmoved);
1761 }
1762
1763 static void shrink_active_list(unsigned long nr_to_scan,
1764 struct lruvec *lruvec,
1765 struct scan_control *sc,
1766 enum lru_list lru)
1767 {
1768 unsigned long nr_taken;
1769 unsigned long nr_scanned;
1770 unsigned long vm_flags;
1771 LIST_HEAD(l_hold); /* The pages which were snipped off */
1772 LIST_HEAD(l_active);
1773 LIST_HEAD(l_inactive);
1774 struct page *page;
1775 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1776 unsigned long nr_rotated = 0;
1777 isolate_mode_t isolate_mode = 0;
1778 int file = is_file_lru(lru);
1779 struct zone *zone = lruvec_zone(lruvec);
1780
1781 lru_add_drain();
1782
1783 if (!sc->may_unmap)
1784 isolate_mode |= ISOLATE_UNMAPPED;
1785 if (!sc->may_writepage)
1786 isolate_mode |= ISOLATE_CLEAN;
1787
1788 spin_lock_irq(&zone->lru_lock);
1789
1790 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1791 &nr_scanned, sc, isolate_mode, lru);
1792 if (global_reclaim(sc))
1793 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1794
1795 reclaim_stat->recent_scanned[file] += nr_taken;
1796
1797 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1798 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1799 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1800 spin_unlock_irq(&zone->lru_lock);
1801
1802 while (!list_empty(&l_hold)) {
1803 cond_resched();
1804 page = lru_to_page(&l_hold);
1805 list_del(&page->lru);
1806
1807 if (unlikely(!page_evictable(page))) {
1808 putback_lru_page(page);
1809 continue;
1810 }
1811
1812 if (unlikely(buffer_heads_over_limit)) {
1813 if (page_has_private(page) && trylock_page(page)) {
1814 if (page_has_private(page))
1815 try_to_release_page(page, 0);
1816 unlock_page(page);
1817 }
1818 }
1819
1820 if (page_referenced(page, 0, sc->target_mem_cgroup,
1821 &vm_flags)) {
1822 nr_rotated += hpage_nr_pages(page);
1823 /*
1824 * Identify referenced, file-backed active pages and
1825 * give them one more trip around the active list. So
1826 * that executable code get better chances to stay in
1827 * memory under moderate memory pressure. Anon pages
1828 * are not likely to be evicted by use-once streaming
1829 * IO, plus JVM can create lots of anon VM_EXEC pages,
1830 * so we ignore them here.
1831 */
1832 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1833 list_add(&page->lru, &l_active);
1834 continue;
1835 }
1836 }
1837
1838 ClearPageActive(page); /* we are de-activating */
1839 list_add(&page->lru, &l_inactive);
1840 }
1841
1842 /*
1843 * Move pages back to the lru list.
1844 */
1845 spin_lock_irq(&zone->lru_lock);
1846 /*
1847 * Count referenced pages from currently used mappings as rotated,
1848 * even though only some of them are actually re-activated. This
1849 * helps balance scan pressure between file and anonymous pages in
1850 * get_scan_count.
1851 */
1852 reclaim_stat->recent_rotated[file] += nr_rotated;
1853
1854 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1855 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1856 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1857 spin_unlock_irq(&zone->lru_lock);
1858
1859 mem_cgroup_uncharge_list(&l_hold);
1860 free_hot_cold_page_list(&l_hold, true);
1861 }
1862
1863 #ifdef CONFIG_SWAP
1864 static bool inactive_anon_is_low_global(struct zone *zone)
1865 {
1866 unsigned long active, inactive;
1867
1868 active = zone_page_state(zone, NR_ACTIVE_ANON);
1869 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1870
1871 return inactive * zone->inactive_ratio < active;
1872 }
1873
1874 /**
1875 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1876 * @lruvec: LRU vector to check
1877 *
1878 * Returns true if the zone does not have enough inactive anon pages,
1879 * meaning some active anon pages need to be deactivated.
1880 */
1881 static bool inactive_anon_is_low(struct lruvec *lruvec)
1882 {
1883 /*
1884 * If we don't have swap space, anonymous page deactivation
1885 * is pointless.
1886 */
1887 if (!total_swap_pages)
1888 return false;
1889
1890 if (!mem_cgroup_disabled())
1891 return mem_cgroup_inactive_anon_is_low(lruvec);
1892
1893 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1894 }
1895 #else
1896 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1897 {
1898 return false;
1899 }
1900 #endif
1901
1902 /**
1903 * inactive_file_is_low - check if file pages need to be deactivated
1904 * @lruvec: LRU vector to check
1905 *
1906 * When the system is doing streaming IO, memory pressure here
1907 * ensures that active file pages get deactivated, until more
1908 * than half of the file pages are on the inactive list.
1909 *
1910 * Once we get to that situation, protect the system's working
1911 * set from being evicted by disabling active file page aging.
1912 *
1913 * This uses a different ratio than the anonymous pages, because
1914 * the page cache uses a use-once replacement algorithm.
1915 */
1916 static bool inactive_file_is_low(struct lruvec *lruvec)
1917 {
1918 unsigned long inactive;
1919 unsigned long active;
1920
1921 inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
1922 active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
1923
1924 return active > inactive;
1925 }
1926
1927 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1928 {
1929 if (is_file_lru(lru))
1930 return inactive_file_is_low(lruvec);
1931 else
1932 return inactive_anon_is_low(lruvec);
1933 }
1934
1935 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1936 struct lruvec *lruvec, struct scan_control *sc)
1937 {
1938 if (is_active_lru(lru)) {
1939 if (inactive_list_is_low(lruvec, lru))
1940 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1941 return 0;
1942 }
1943
1944 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1945 }
1946
1947 enum scan_balance {
1948 SCAN_EQUAL,
1949 SCAN_FRACT,
1950 SCAN_ANON,
1951 SCAN_FILE,
1952 };
1953
1954 /*
1955 * Determine how aggressively the anon and file LRU lists should be
1956 * scanned. The relative value of each set of LRU lists is determined
1957 * by looking at the fraction of the pages scanned we did rotate back
1958 * onto the active list instead of evict.
1959 *
1960 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1961 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1962 */
1963 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1964 struct scan_control *sc, unsigned long *nr,
1965 unsigned long *lru_pages)
1966 {
1967 int swappiness = mem_cgroup_swappiness(memcg);
1968 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1969 u64 fraction[2];
1970 u64 denominator = 0; /* gcc */
1971 struct zone *zone = lruvec_zone(lruvec);
1972 unsigned long anon_prio, file_prio;
1973 enum scan_balance scan_balance;
1974 unsigned long anon, file;
1975 bool force_scan = false;
1976 unsigned long ap, fp;
1977 enum lru_list lru;
1978 bool some_scanned;
1979 int pass;
1980
1981 /*
1982 * If the zone or memcg is small, nr[l] can be 0. This
1983 * results in no scanning on this priority and a potential
1984 * priority drop. Global direct reclaim can go to the next
1985 * zone and tends to have no problems. Global kswapd is for
1986 * zone balancing and it needs to scan a minimum amount. When
1987 * reclaiming for a memcg, a priority drop can cause high
1988 * latencies, so it's better to scan a minimum amount there as
1989 * well.
1990 */
1991 if (current_is_kswapd()) {
1992 if (!zone_reclaimable(zone))
1993 force_scan = true;
1994 if (!mem_cgroup_online(memcg))
1995 force_scan = true;
1996 }
1997 if (!global_reclaim(sc))
1998 force_scan = true;
1999
2000 /* If we have no swap space, do not bother scanning anon pages. */
2001 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2002 scan_balance = SCAN_FILE;
2003 goto out;
2004 }
2005
2006 /*
2007 * Global reclaim will swap to prevent OOM even with no
2008 * swappiness, but memcg users want to use this knob to
2009 * disable swapping for individual groups completely when
2010 * using the memory controller's swap limit feature would be
2011 * too expensive.
2012 */
2013 if (!global_reclaim(sc) && !swappiness) {
2014 scan_balance = SCAN_FILE;
2015 goto out;
2016 }
2017
2018 /*
2019 * Do not apply any pressure balancing cleverness when the
2020 * system is close to OOM, scan both anon and file equally
2021 * (unless the swappiness setting disagrees with swapping).
2022 */
2023 if (!sc->priority && swappiness) {
2024 scan_balance = SCAN_EQUAL;
2025 goto out;
2026 }
2027
2028 /*
2029 * Prevent the reclaimer from falling into the cache trap: as
2030 * cache pages start out inactive, every cache fault will tip
2031 * the scan balance towards the file LRU. And as the file LRU
2032 * shrinks, so does the window for rotation from references.
2033 * This means we have a runaway feedback loop where a tiny
2034 * thrashing file LRU becomes infinitely more attractive than
2035 * anon pages. Try to detect this based on file LRU size.
2036 */
2037 if (global_reclaim(sc)) {
2038 unsigned long zonefile;
2039 unsigned long zonefree;
2040
2041 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2042 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2043 zone_page_state(zone, NR_INACTIVE_FILE);
2044
2045 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2046 scan_balance = SCAN_ANON;
2047 goto out;
2048 }
2049 }
2050
2051 /*
2052 * If there is enough inactive page cache, i.e. if the size of the
2053 * inactive list is greater than that of the active list *and* the
2054 * inactive list actually has some pages to scan on this priority, we
2055 * do not reclaim anything from the anonymous working set right now.
2056 * Without the second condition we could end up never scanning an
2057 * lruvec even if it has plenty of old anonymous pages unless the
2058 * system is under heavy pressure.
2059 */
2060 if (!inactive_file_is_low(lruvec) &&
2061 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2062 scan_balance = SCAN_FILE;
2063 goto out;
2064 }
2065
2066 scan_balance = SCAN_FRACT;
2067
2068 /*
2069 * With swappiness at 100, anonymous and file have the same priority.
2070 * This scanning priority is essentially the inverse of IO cost.
2071 */
2072 anon_prio = swappiness;
2073 file_prio = 200 - anon_prio;
2074
2075 /*
2076 * OK, so we have swap space and a fair amount of page cache
2077 * pages. We use the recently rotated / recently scanned
2078 * ratios to determine how valuable each cache is.
2079 *
2080 * Because workloads change over time (and to avoid overflow)
2081 * we keep these statistics as a floating average, which ends
2082 * up weighing recent references more than old ones.
2083 *
2084 * anon in [0], file in [1]
2085 */
2086
2087 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2088 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2089 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2090 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2091
2092 spin_lock_irq(&zone->lru_lock);
2093 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2094 reclaim_stat->recent_scanned[0] /= 2;
2095 reclaim_stat->recent_rotated[0] /= 2;
2096 }
2097
2098 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2099 reclaim_stat->recent_scanned[1] /= 2;
2100 reclaim_stat->recent_rotated[1] /= 2;
2101 }
2102
2103 /*
2104 * The amount of pressure on anon vs file pages is inversely
2105 * proportional to the fraction of recently scanned pages on
2106 * each list that were recently referenced and in active use.
2107 */
2108 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2109 ap /= reclaim_stat->recent_rotated[0] + 1;
2110
2111 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2112 fp /= reclaim_stat->recent_rotated[1] + 1;
2113 spin_unlock_irq(&zone->lru_lock);
2114
2115 fraction[0] = ap;
2116 fraction[1] = fp;
2117 denominator = ap + fp + 1;
2118 out:
2119 some_scanned = false;
2120 /* Only use force_scan on second pass. */
2121 for (pass = 0; !some_scanned && pass < 2; pass++) {
2122 *lru_pages = 0;
2123 for_each_evictable_lru(lru) {
2124 int file = is_file_lru(lru);
2125 unsigned long size;
2126 unsigned long scan;
2127
2128 size = lruvec_lru_size(lruvec, lru);
2129 scan = size >> sc->priority;
2130
2131 if (!scan && pass && force_scan)
2132 scan = min(size, SWAP_CLUSTER_MAX);
2133
2134 switch (scan_balance) {
2135 case SCAN_EQUAL:
2136 /* Scan lists relative to size */
2137 break;
2138 case SCAN_FRACT:
2139 /*
2140 * Scan types proportional to swappiness and
2141 * their relative recent reclaim efficiency.
2142 */
2143 scan = div64_u64(scan * fraction[file],
2144 denominator);
2145 break;
2146 case SCAN_FILE:
2147 case SCAN_ANON:
2148 /* Scan one type exclusively */
2149 if ((scan_balance == SCAN_FILE) != file) {
2150 size = 0;
2151 scan = 0;
2152 }
2153 break;
2154 default:
2155 /* Look ma, no brain */
2156 BUG();
2157 }
2158
2159 *lru_pages += size;
2160 nr[lru] = scan;
2161
2162 /*
2163 * Skip the second pass and don't force_scan,
2164 * if we found something to scan.
2165 */
2166 some_scanned |= !!scan;
2167 }
2168 }
2169 }
2170
2171 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2172 static void init_tlb_ubc(void)
2173 {
2174 /*
2175 * This deliberately does not clear the cpumask as it's expensive
2176 * and unnecessary. If there happens to be data in there then the
2177 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2178 * then will be cleared.
2179 */
2180 current->tlb_ubc.flush_required = false;
2181 }
2182 #else
2183 static inline void init_tlb_ubc(void)
2184 {
2185 }
2186 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2187
2188 /*
2189 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2190 */
2191 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2192 struct scan_control *sc, unsigned long *lru_pages)
2193 {
2194 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2195 unsigned long nr[NR_LRU_LISTS];
2196 unsigned long targets[NR_LRU_LISTS];
2197 unsigned long nr_to_scan;
2198 enum lru_list lru;
2199 unsigned long nr_reclaimed = 0;
2200 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2201 struct blk_plug plug;
2202 bool scan_adjusted;
2203
2204 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2205
2206 /* Record the original scan target for proportional adjustments later */
2207 memcpy(targets, nr, sizeof(nr));
2208
2209 /*
2210 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2211 * event that can occur when there is little memory pressure e.g.
2212 * multiple streaming readers/writers. Hence, we do not abort scanning
2213 * when the requested number of pages are reclaimed when scanning at
2214 * DEF_PRIORITY on the assumption that the fact we are direct
2215 * reclaiming implies that kswapd is not keeping up and it is best to
2216 * do a batch of work at once. For memcg reclaim one check is made to
2217 * abort proportional reclaim if either the file or anon lru has already
2218 * dropped to zero at the first pass.
2219 */
2220 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2221 sc->priority == DEF_PRIORITY);
2222
2223 init_tlb_ubc();
2224
2225 blk_start_plug(&plug);
2226 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2227 nr[LRU_INACTIVE_FILE]) {
2228 unsigned long nr_anon, nr_file, percentage;
2229 unsigned long nr_scanned;
2230
2231 for_each_evictable_lru(lru) {
2232 if (nr[lru]) {
2233 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2234 nr[lru] -= nr_to_scan;
2235
2236 nr_reclaimed += shrink_list(lru, nr_to_scan,
2237 lruvec, sc);
2238 }
2239 }
2240
2241 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2242 continue;
2243
2244 /*
2245 * For kswapd and memcg, reclaim at least the number of pages
2246 * requested. Ensure that the anon and file LRUs are scanned
2247 * proportionally what was requested by get_scan_count(). We
2248 * stop reclaiming one LRU and reduce the amount scanning
2249 * proportional to the original scan target.
2250 */
2251 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2252 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2253
2254 /*
2255 * It's just vindictive to attack the larger once the smaller
2256 * has gone to zero. And given the way we stop scanning the
2257 * smaller below, this makes sure that we only make one nudge
2258 * towards proportionality once we've got nr_to_reclaim.
2259 */
2260 if (!nr_file || !nr_anon)
2261 break;
2262
2263 if (nr_file > nr_anon) {
2264 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2265 targets[LRU_ACTIVE_ANON] + 1;
2266 lru = LRU_BASE;
2267 percentage = nr_anon * 100 / scan_target;
2268 } else {
2269 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2270 targets[LRU_ACTIVE_FILE] + 1;
2271 lru = LRU_FILE;
2272 percentage = nr_file * 100 / scan_target;
2273 }
2274
2275 /* Stop scanning the smaller of the LRU */
2276 nr[lru] = 0;
2277 nr[lru + LRU_ACTIVE] = 0;
2278
2279 /*
2280 * Recalculate the other LRU scan count based on its original
2281 * scan target and the percentage scanning already complete
2282 */
2283 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2284 nr_scanned = targets[lru] - nr[lru];
2285 nr[lru] = targets[lru] * (100 - percentage) / 100;
2286 nr[lru] -= min(nr[lru], nr_scanned);
2287
2288 lru += LRU_ACTIVE;
2289 nr_scanned = targets[lru] - nr[lru];
2290 nr[lru] = targets[lru] * (100 - percentage) / 100;
2291 nr[lru] -= min(nr[lru], nr_scanned);
2292
2293 scan_adjusted = true;
2294 }
2295 blk_finish_plug(&plug);
2296 sc->nr_reclaimed += nr_reclaimed;
2297
2298 /*
2299 * Even if we did not try to evict anon pages at all, we want to
2300 * rebalance the anon lru active/inactive ratio.
2301 */
2302 if (inactive_anon_is_low(lruvec))
2303 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2304 sc, LRU_ACTIVE_ANON);
2305
2306 throttle_vm_writeout(sc->gfp_mask);
2307 }
2308
2309 /* Use reclaim/compaction for costly allocs or under memory pressure */
2310 static bool in_reclaim_compaction(struct scan_control *sc)
2311 {
2312 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2313 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2314 sc->priority < DEF_PRIORITY - 2))
2315 return true;
2316
2317 return false;
2318 }
2319
2320 /*
2321 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2322 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2323 * true if more pages should be reclaimed such that when the page allocator
2324 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2325 * It will give up earlier than that if there is difficulty reclaiming pages.
2326 */
2327 static inline bool should_continue_reclaim(struct zone *zone,
2328 unsigned long nr_reclaimed,
2329 unsigned long nr_scanned,
2330 struct scan_control *sc)
2331 {
2332 unsigned long pages_for_compaction;
2333 unsigned long inactive_lru_pages;
2334
2335 /* If not in reclaim/compaction mode, stop */
2336 if (!in_reclaim_compaction(sc))
2337 return false;
2338
2339 /* Consider stopping depending on scan and reclaim activity */
2340 if (sc->gfp_mask & __GFP_REPEAT) {
2341 /*
2342 * For __GFP_REPEAT allocations, stop reclaiming if the
2343 * full LRU list has been scanned and we are still failing
2344 * to reclaim pages. This full LRU scan is potentially
2345 * expensive but a __GFP_REPEAT caller really wants to succeed
2346 */
2347 if (!nr_reclaimed && !nr_scanned)
2348 return false;
2349 } else {
2350 /*
2351 * For non-__GFP_REPEAT allocations which can presumably
2352 * fail without consequence, stop if we failed to reclaim
2353 * any pages from the last SWAP_CLUSTER_MAX number of
2354 * pages that were scanned. This will return to the
2355 * caller faster at the risk reclaim/compaction and
2356 * the resulting allocation attempt fails
2357 */
2358 if (!nr_reclaimed)
2359 return false;
2360 }
2361
2362 /*
2363 * If we have not reclaimed enough pages for compaction and the
2364 * inactive lists are large enough, continue reclaiming
2365 */
2366 pages_for_compaction = (2UL << sc->order);
2367 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2368 if (get_nr_swap_pages() > 0)
2369 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2370 if (sc->nr_reclaimed < pages_for_compaction &&
2371 inactive_lru_pages > pages_for_compaction)
2372 return true;
2373
2374 /* If compaction would go ahead or the allocation would succeed, stop */
2375 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2376 case COMPACT_PARTIAL:
2377 case COMPACT_CONTINUE:
2378 return false;
2379 default:
2380 return true;
2381 }
2382 }
2383
2384 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2385 bool is_classzone)
2386 {
2387 struct reclaim_state *reclaim_state = current->reclaim_state;
2388 unsigned long nr_reclaimed, nr_scanned;
2389 bool reclaimable = false;
2390
2391 do {
2392 struct mem_cgroup *root = sc->target_mem_cgroup;
2393 struct mem_cgroup_reclaim_cookie reclaim = {
2394 .zone = zone,
2395 .priority = sc->priority,
2396 };
2397 unsigned long zone_lru_pages = 0;
2398 struct mem_cgroup *memcg;
2399
2400 nr_reclaimed = sc->nr_reclaimed;
2401 nr_scanned = sc->nr_scanned;
2402
2403 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2404 do {
2405 unsigned long lru_pages;
2406 unsigned long reclaimed;
2407 unsigned long scanned;
2408
2409 if (mem_cgroup_low(root, memcg)) {
2410 if (!sc->may_thrash)
2411 continue;
2412 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2413 }
2414
2415 reclaimed = sc->nr_reclaimed;
2416 scanned = sc->nr_scanned;
2417
2418 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2419 zone_lru_pages += lru_pages;
2420
2421 if (memcg && is_classzone)
2422 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2423 memcg, sc->nr_scanned - scanned,
2424 lru_pages);
2425
2426 /* Record the group's reclaim efficiency */
2427 vmpressure(sc->gfp_mask, memcg, false,
2428 sc->nr_scanned - scanned,
2429 sc->nr_reclaimed - reclaimed);
2430
2431 /*
2432 * Direct reclaim and kswapd have to scan all memory
2433 * cgroups to fulfill the overall scan target for the
2434 * zone.
2435 *
2436 * Limit reclaim, on the other hand, only cares about
2437 * nr_to_reclaim pages to be reclaimed and it will
2438 * retry with decreasing priority if one round over the
2439 * whole hierarchy is not sufficient.
2440 */
2441 if (!global_reclaim(sc) &&
2442 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2443 mem_cgroup_iter_break(root, memcg);
2444 break;
2445 }
2446 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2447
2448 /*
2449 * Shrink the slab caches in the same proportion that
2450 * the eligible LRU pages were scanned.
2451 */
2452 if (global_reclaim(sc) && is_classzone)
2453 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2454 sc->nr_scanned - nr_scanned,
2455 zone_lru_pages);
2456
2457 if (reclaim_state) {
2458 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2459 reclaim_state->reclaimed_slab = 0;
2460 }
2461
2462 /* Record the subtree's reclaim efficiency */
2463 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2464 sc->nr_scanned - nr_scanned,
2465 sc->nr_reclaimed - nr_reclaimed);
2466
2467 if (sc->nr_reclaimed - nr_reclaimed)
2468 reclaimable = true;
2469
2470 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2471 sc->nr_scanned - nr_scanned, sc));
2472
2473 return reclaimable;
2474 }
2475
2476 /*
2477 * Returns true if compaction should go ahead for a high-order request, or
2478 * the high-order allocation would succeed without compaction.
2479 */
2480 static inline bool compaction_ready(struct zone *zone, int order)
2481 {
2482 unsigned long balance_gap, watermark;
2483 bool watermark_ok;
2484
2485 /*
2486 * Compaction takes time to run and there are potentially other
2487 * callers using the pages just freed. Continue reclaiming until
2488 * there is a buffer of free pages available to give compaction
2489 * a reasonable chance of completing and allocating the page
2490 */
2491 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2492 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2493 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2494 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2495
2496 /*
2497 * If compaction is deferred, reclaim up to a point where
2498 * compaction will have a chance of success when re-enabled
2499 */
2500 if (compaction_deferred(zone, order))
2501 return watermark_ok;
2502
2503 /*
2504 * If compaction is not ready to start and allocation is not likely
2505 * to succeed without it, then keep reclaiming.
2506 */
2507 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2508 return false;
2509
2510 return watermark_ok;
2511 }
2512
2513 /*
2514 * This is the direct reclaim path, for page-allocating processes. We only
2515 * try to reclaim pages from zones which will satisfy the caller's allocation
2516 * request.
2517 *
2518 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2519 * Because:
2520 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2521 * allocation or
2522 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2523 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2524 * zone defense algorithm.
2525 *
2526 * If a zone is deemed to be full of pinned pages then just give it a light
2527 * scan then give up on it.
2528 *
2529 * Returns true if a zone was reclaimable.
2530 */
2531 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2532 {
2533 struct zoneref *z;
2534 struct zone *zone;
2535 unsigned long nr_soft_reclaimed;
2536 unsigned long nr_soft_scanned;
2537 gfp_t orig_mask;
2538 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2539 bool reclaimable = false;
2540
2541 /*
2542 * If the number of buffer_heads in the machine exceeds the maximum
2543 * allowed level, force direct reclaim to scan the highmem zone as
2544 * highmem pages could be pinning lowmem pages storing buffer_heads
2545 */
2546 orig_mask = sc->gfp_mask;
2547 if (buffer_heads_over_limit)
2548 sc->gfp_mask |= __GFP_HIGHMEM;
2549
2550 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2551 requested_highidx, sc->nodemask) {
2552 enum zone_type classzone_idx;
2553
2554 if (!populated_zone(zone))
2555 continue;
2556
2557 classzone_idx = requested_highidx;
2558 while (!populated_zone(zone->zone_pgdat->node_zones +
2559 classzone_idx))
2560 classzone_idx--;
2561
2562 /*
2563 * Take care memory controller reclaiming has small influence
2564 * to global LRU.
2565 */
2566 if (global_reclaim(sc)) {
2567 if (!cpuset_zone_allowed(zone,
2568 GFP_KERNEL | __GFP_HARDWALL))
2569 continue;
2570
2571 if (sc->priority != DEF_PRIORITY &&
2572 !zone_reclaimable(zone))
2573 continue; /* Let kswapd poll it */
2574
2575 /*
2576 * If we already have plenty of memory free for
2577 * compaction in this zone, don't free any more.
2578 * Even though compaction is invoked for any
2579 * non-zero order, only frequent costly order
2580 * reclamation is disruptive enough to become a
2581 * noticeable problem, like transparent huge
2582 * page allocations.
2583 */
2584 if (IS_ENABLED(CONFIG_COMPACTION) &&
2585 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2586 zonelist_zone_idx(z) <= requested_highidx &&
2587 compaction_ready(zone, sc->order)) {
2588 sc->compaction_ready = true;
2589 continue;
2590 }
2591
2592 /*
2593 * This steals pages from memory cgroups over softlimit
2594 * and returns the number of reclaimed pages and
2595 * scanned pages. This works for global memory pressure
2596 * and balancing, not for a memcg's limit.
2597 */
2598 nr_soft_scanned = 0;
2599 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2600 sc->order, sc->gfp_mask,
2601 &nr_soft_scanned);
2602 sc->nr_reclaimed += nr_soft_reclaimed;
2603 sc->nr_scanned += nr_soft_scanned;
2604 if (nr_soft_reclaimed)
2605 reclaimable = true;
2606 /* need some check for avoid more shrink_zone() */
2607 }
2608
2609 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2610 reclaimable = true;
2611
2612 if (global_reclaim(sc) &&
2613 !reclaimable && zone_reclaimable(zone))
2614 reclaimable = true;
2615 }
2616
2617 /*
2618 * Restore to original mask to avoid the impact on the caller if we
2619 * promoted it to __GFP_HIGHMEM.
2620 */
2621 sc->gfp_mask = orig_mask;
2622
2623 return reclaimable;
2624 }
2625
2626 /*
2627 * This is the main entry point to direct page reclaim.
2628 *
2629 * If a full scan of the inactive list fails to free enough memory then we
2630 * are "out of memory" and something needs to be killed.
2631 *
2632 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2633 * high - the zone may be full of dirty or under-writeback pages, which this
2634 * caller can't do much about. We kick the writeback threads and take explicit
2635 * naps in the hope that some of these pages can be written. But if the
2636 * allocating task holds filesystem locks which prevent writeout this might not
2637 * work, and the allocation attempt will fail.
2638 *
2639 * returns: 0, if no pages reclaimed
2640 * else, the number of pages reclaimed
2641 */
2642 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2643 struct scan_control *sc)
2644 {
2645 int initial_priority = sc->priority;
2646 unsigned long total_scanned = 0;
2647 unsigned long writeback_threshold;
2648 bool zones_reclaimable;
2649 retry:
2650 delayacct_freepages_start();
2651
2652 if (global_reclaim(sc))
2653 count_vm_event(ALLOCSTALL);
2654
2655 do {
2656 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2657 sc->priority);
2658 sc->nr_scanned = 0;
2659 zones_reclaimable = shrink_zones(zonelist, sc);
2660
2661 total_scanned += sc->nr_scanned;
2662 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2663 break;
2664
2665 if (sc->compaction_ready)
2666 break;
2667
2668 /*
2669 * If we're getting trouble reclaiming, start doing
2670 * writepage even in laptop mode.
2671 */
2672 if (sc->priority < DEF_PRIORITY - 2)
2673 sc->may_writepage = 1;
2674
2675 /*
2676 * Try to write back as many pages as we just scanned. This
2677 * tends to cause slow streaming writers to write data to the
2678 * disk smoothly, at the dirtying rate, which is nice. But
2679 * that's undesirable in laptop mode, where we *want* lumpy
2680 * writeout. So in laptop mode, write out the whole world.
2681 */
2682 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2683 if (total_scanned > writeback_threshold) {
2684 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2685 WB_REASON_TRY_TO_FREE_PAGES);
2686 sc->may_writepage = 1;
2687 }
2688 } while (--sc->priority >= 0);
2689
2690 delayacct_freepages_end();
2691
2692 if (sc->nr_reclaimed)
2693 return sc->nr_reclaimed;
2694
2695 /* Aborted reclaim to try compaction? don't OOM, then */
2696 if (sc->compaction_ready)
2697 return 1;
2698
2699 /* Untapped cgroup reserves? Don't OOM, retry. */
2700 if (!sc->may_thrash) {
2701 sc->priority = initial_priority;
2702 sc->may_thrash = 1;
2703 goto retry;
2704 }
2705
2706 /* Any of the zones still reclaimable? Don't OOM. */
2707 if (zones_reclaimable)
2708 return 1;
2709
2710 return 0;
2711 }
2712
2713 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2714 {
2715 struct zone *zone;
2716 unsigned long pfmemalloc_reserve = 0;
2717 unsigned long free_pages = 0;
2718 int i;
2719 bool wmark_ok;
2720
2721 for (i = 0; i <= ZONE_NORMAL; i++) {
2722 zone = &pgdat->node_zones[i];
2723 if (!populated_zone(zone) ||
2724 zone_reclaimable_pages(zone) == 0)
2725 continue;
2726
2727 pfmemalloc_reserve += min_wmark_pages(zone);
2728 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2729 }
2730
2731 /* If there are no reserves (unexpected config) then do not throttle */
2732 if (!pfmemalloc_reserve)
2733 return true;
2734
2735 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2736
2737 /* kswapd must be awake if processes are being throttled */
2738 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2739 pgdat->classzone_idx = min(pgdat->classzone_idx,
2740 (enum zone_type)ZONE_NORMAL);
2741 wake_up_interruptible(&pgdat->kswapd_wait);
2742 }
2743
2744 return wmark_ok;
2745 }
2746
2747 /*
2748 * Throttle direct reclaimers if backing storage is backed by the network
2749 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2750 * depleted. kswapd will continue to make progress and wake the processes
2751 * when the low watermark is reached.
2752 *
2753 * Returns true if a fatal signal was delivered during throttling. If this
2754 * happens, the page allocator should not consider triggering the OOM killer.
2755 */
2756 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2757 nodemask_t *nodemask)
2758 {
2759 struct zoneref *z;
2760 struct zone *zone;
2761 pg_data_t *pgdat = NULL;
2762
2763 /*
2764 * Kernel threads should not be throttled as they may be indirectly
2765 * responsible for cleaning pages necessary for reclaim to make forward
2766 * progress. kjournald for example may enter direct reclaim while
2767 * committing a transaction where throttling it could forcing other
2768 * processes to block on log_wait_commit().
2769 */
2770 if (current->flags & PF_KTHREAD)
2771 goto out;
2772
2773 /*
2774 * If a fatal signal is pending, this process should not throttle.
2775 * It should return quickly so it can exit and free its memory
2776 */
2777 if (fatal_signal_pending(current))
2778 goto out;
2779
2780 /*
2781 * Check if the pfmemalloc reserves are ok by finding the first node
2782 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2783 * GFP_KERNEL will be required for allocating network buffers when
2784 * swapping over the network so ZONE_HIGHMEM is unusable.
2785 *
2786 * Throttling is based on the first usable node and throttled processes
2787 * wait on a queue until kswapd makes progress and wakes them. There
2788 * is an affinity then between processes waking up and where reclaim
2789 * progress has been made assuming the process wakes on the same node.
2790 * More importantly, processes running on remote nodes will not compete
2791 * for remote pfmemalloc reserves and processes on different nodes
2792 * should make reasonable progress.
2793 */
2794 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2795 gfp_zone(gfp_mask), nodemask) {
2796 if (zone_idx(zone) > ZONE_NORMAL)
2797 continue;
2798
2799 /* Throttle based on the first usable node */
2800 pgdat = zone->zone_pgdat;
2801 if (pfmemalloc_watermark_ok(pgdat))
2802 goto out;
2803 break;
2804 }
2805
2806 /* If no zone was usable by the allocation flags then do not throttle */
2807 if (!pgdat)
2808 goto out;
2809
2810 /* Account for the throttling */
2811 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2812
2813 /*
2814 * If the caller cannot enter the filesystem, it's possible that it
2815 * is due to the caller holding an FS lock or performing a journal
2816 * transaction in the case of a filesystem like ext[3|4]. In this case,
2817 * it is not safe to block on pfmemalloc_wait as kswapd could be
2818 * blocked waiting on the same lock. Instead, throttle for up to a
2819 * second before continuing.
2820 */
2821 if (!(gfp_mask & __GFP_FS)) {
2822 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2823 pfmemalloc_watermark_ok(pgdat), HZ);
2824
2825 goto check_pending;
2826 }
2827
2828 /* Throttle until kswapd wakes the process */
2829 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2830 pfmemalloc_watermark_ok(pgdat));
2831
2832 check_pending:
2833 if (fatal_signal_pending(current))
2834 return true;
2835
2836 out:
2837 return false;
2838 }
2839
2840 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2841 gfp_t gfp_mask, nodemask_t *nodemask)
2842 {
2843 unsigned long nr_reclaimed;
2844 struct scan_control sc = {
2845 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2846 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2847 .order = order,
2848 .nodemask = nodemask,
2849 .priority = DEF_PRIORITY,
2850 .may_writepage = !laptop_mode,
2851 .may_unmap = 1,
2852 .may_swap = 1,
2853 };
2854
2855 /*
2856 * Do not enter reclaim if fatal signal was delivered while throttled.
2857 * 1 is returned so that the page allocator does not OOM kill at this
2858 * point.
2859 */
2860 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2861 return 1;
2862
2863 trace_mm_vmscan_direct_reclaim_begin(order,
2864 sc.may_writepage,
2865 gfp_mask);
2866
2867 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2868
2869 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2870
2871 return nr_reclaimed;
2872 }
2873
2874 #ifdef CONFIG_MEMCG
2875
2876 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2877 gfp_t gfp_mask, bool noswap,
2878 struct zone *zone,
2879 unsigned long *nr_scanned)
2880 {
2881 struct scan_control sc = {
2882 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2883 .target_mem_cgroup = memcg,
2884 .may_writepage = !laptop_mode,
2885 .may_unmap = 1,
2886 .may_swap = !noswap,
2887 };
2888 unsigned long lru_pages;
2889
2890 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2891 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2892
2893 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2894 sc.may_writepage,
2895 sc.gfp_mask);
2896
2897 /*
2898 * NOTE: Although we can get the priority field, using it
2899 * here is not a good idea, since it limits the pages we can scan.
2900 * if we don't reclaim here, the shrink_zone from balance_pgdat
2901 * will pick up pages from other mem cgroup's as well. We hack
2902 * the priority and make it zero.
2903 */
2904 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2905
2906 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2907
2908 *nr_scanned = sc.nr_scanned;
2909 return sc.nr_reclaimed;
2910 }
2911
2912 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2913 unsigned long nr_pages,
2914 gfp_t gfp_mask,
2915 bool may_swap)
2916 {
2917 struct zonelist *zonelist;
2918 unsigned long nr_reclaimed;
2919 int nid;
2920 struct scan_control sc = {
2921 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2922 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2923 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2924 .target_mem_cgroup = memcg,
2925 .priority = DEF_PRIORITY,
2926 .may_writepage = !laptop_mode,
2927 .may_unmap = 1,
2928 .may_swap = may_swap,
2929 };
2930
2931 /*
2932 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2933 * take care of from where we get pages. So the node where we start the
2934 * scan does not need to be the current node.
2935 */
2936 nid = mem_cgroup_select_victim_node(memcg);
2937
2938 zonelist = NODE_DATA(nid)->node_zonelists;
2939
2940 trace_mm_vmscan_memcg_reclaim_begin(0,
2941 sc.may_writepage,
2942 sc.gfp_mask);
2943
2944 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2945
2946 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2947
2948 return nr_reclaimed;
2949 }
2950 #endif
2951
2952 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2953 {
2954 struct mem_cgroup *memcg;
2955
2956 if (!total_swap_pages)
2957 return;
2958
2959 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2960 do {
2961 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2962
2963 if (inactive_anon_is_low(lruvec))
2964 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2965 sc, LRU_ACTIVE_ANON);
2966
2967 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2968 } while (memcg);
2969 }
2970
2971 static bool zone_balanced(struct zone *zone, int order,
2972 unsigned long balance_gap, int classzone_idx)
2973 {
2974 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2975 balance_gap, classzone_idx))
2976 return false;
2977
2978 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2979 order, 0, classzone_idx) == COMPACT_SKIPPED)
2980 return false;
2981
2982 return true;
2983 }
2984
2985 /*
2986 * pgdat_balanced() is used when checking if a node is balanced.
2987 *
2988 * For order-0, all zones must be balanced!
2989 *
2990 * For high-order allocations only zones that meet watermarks and are in a
2991 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2992 * total of balanced pages must be at least 25% of the zones allowed by
2993 * classzone_idx for the node to be considered balanced. Forcing all zones to
2994 * be balanced for high orders can cause excessive reclaim when there are
2995 * imbalanced zones.
2996 * The choice of 25% is due to
2997 * o a 16M DMA zone that is balanced will not balance a zone on any
2998 * reasonable sized machine
2999 * o On all other machines, the top zone must be at least a reasonable
3000 * percentage of the middle zones. For example, on 32-bit x86, highmem
3001 * would need to be at least 256M for it to be balance a whole node.
3002 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3003 * to balance a node on its own. These seemed like reasonable ratios.
3004 */
3005 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3006 {
3007 unsigned long managed_pages = 0;
3008 unsigned long balanced_pages = 0;
3009 int i;
3010
3011 /* Check the watermark levels */
3012 for (i = 0; i <= classzone_idx; i++) {
3013 struct zone *zone = pgdat->node_zones + i;
3014
3015 if (!populated_zone(zone))
3016 continue;
3017
3018 managed_pages += zone->managed_pages;
3019
3020 /*
3021 * A special case here:
3022 *
3023 * balance_pgdat() skips over all_unreclaimable after
3024 * DEF_PRIORITY. Effectively, it considers them balanced so
3025 * they must be considered balanced here as well!
3026 */
3027 if (!zone_reclaimable(zone)) {
3028 balanced_pages += zone->managed_pages;
3029 continue;
3030 }
3031
3032 if (zone_balanced(zone, order, 0, i))
3033 balanced_pages += zone->managed_pages;
3034 else if (!order)
3035 return false;
3036 }
3037
3038 if (order)
3039 return balanced_pages >= (managed_pages >> 2);
3040 else
3041 return true;
3042 }
3043
3044 /*
3045 * Prepare kswapd for sleeping. This verifies that there are no processes
3046 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3047 *
3048 * Returns true if kswapd is ready to sleep
3049 */
3050 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3051 int classzone_idx)
3052 {
3053 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3054 if (remaining)
3055 return false;
3056
3057 /*
3058 * The throttled processes are normally woken up in balance_pgdat() as
3059 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3060 * race between when kswapd checks the watermarks and a process gets
3061 * throttled. There is also a potential race if processes get
3062 * throttled, kswapd wakes, a large process exits thereby balancing the
3063 * zones, which causes kswapd to exit balance_pgdat() before reaching
3064 * the wake up checks. If kswapd is going to sleep, no process should
3065 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3066 * the wake up is premature, processes will wake kswapd and get
3067 * throttled again. The difference from wake ups in balance_pgdat() is
3068 * that here we are under prepare_to_wait().
3069 */
3070 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3071 wake_up_all(&pgdat->pfmemalloc_wait);
3072
3073 return pgdat_balanced(pgdat, order, classzone_idx);
3074 }
3075
3076 /*
3077 * kswapd shrinks the zone by the number of pages required to reach
3078 * the high watermark.
3079 *
3080 * Returns true if kswapd scanned at least the requested number of pages to
3081 * reclaim or if the lack of progress was due to pages under writeback.
3082 * This is used to determine if the scanning priority needs to be raised.
3083 */
3084 static bool kswapd_shrink_zone(struct zone *zone,
3085 int classzone_idx,
3086 struct scan_control *sc,
3087 unsigned long *nr_attempted)
3088 {
3089 int testorder = sc->order;
3090 unsigned long balance_gap;
3091 bool lowmem_pressure;
3092
3093 /* Reclaim above the high watermark. */
3094 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3095
3096 /*
3097 * Kswapd reclaims only single pages with compaction enabled. Trying
3098 * too hard to reclaim until contiguous free pages have become
3099 * available can hurt performance by evicting too much useful data
3100 * from memory. Do not reclaim more than needed for compaction.
3101 */
3102 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3103 compaction_suitable(zone, sc->order, 0, classzone_idx)
3104 != COMPACT_SKIPPED)
3105 testorder = 0;
3106
3107 /*
3108 * We put equal pressure on every zone, unless one zone has way too
3109 * many pages free already. The "too many pages" is defined as the
3110 * high wmark plus a "gap" where the gap is either the low
3111 * watermark or 1% of the zone, whichever is smaller.
3112 */
3113 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3114 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3115
3116 /*
3117 * If there is no low memory pressure or the zone is balanced then no
3118 * reclaim is necessary
3119 */
3120 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3121 if (!lowmem_pressure && zone_balanced(zone, testorder,
3122 balance_gap, classzone_idx))
3123 return true;
3124
3125 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3126
3127 /* Account for the number of pages attempted to reclaim */
3128 *nr_attempted += sc->nr_to_reclaim;
3129
3130 clear_bit(ZONE_WRITEBACK, &zone->flags);
3131
3132 /*
3133 * If a zone reaches its high watermark, consider it to be no longer
3134 * congested. It's possible there are dirty pages backed by congested
3135 * BDIs but as pressure is relieved, speculatively avoid congestion
3136 * waits.
3137 */
3138 if (zone_reclaimable(zone) &&
3139 zone_balanced(zone, testorder, 0, classzone_idx)) {
3140 clear_bit(ZONE_CONGESTED, &zone->flags);
3141 clear_bit(ZONE_DIRTY, &zone->flags);
3142 }
3143
3144 return sc->nr_scanned >= sc->nr_to_reclaim;
3145 }
3146
3147 /*
3148 * For kswapd, balance_pgdat() will work across all this node's zones until
3149 * they are all at high_wmark_pages(zone).
3150 *
3151 * Returns the final order kswapd was reclaiming at
3152 *
3153 * There is special handling here for zones which are full of pinned pages.
3154 * This can happen if the pages are all mlocked, or if they are all used by
3155 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3156 * What we do is to detect the case where all pages in the zone have been
3157 * scanned twice and there has been zero successful reclaim. Mark the zone as
3158 * dead and from now on, only perform a short scan. Basically we're polling
3159 * the zone for when the problem goes away.
3160 *
3161 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3162 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3163 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3164 * lower zones regardless of the number of free pages in the lower zones. This
3165 * interoperates with the page allocator fallback scheme to ensure that aging
3166 * of pages is balanced across the zones.
3167 */
3168 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3169 int *classzone_idx)
3170 {
3171 int i;
3172 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3173 unsigned long nr_soft_reclaimed;
3174 unsigned long nr_soft_scanned;
3175 struct scan_control sc = {
3176 .gfp_mask = GFP_KERNEL,
3177 .order = order,
3178 .priority = DEF_PRIORITY,
3179 .may_writepage = !laptop_mode,
3180 .may_unmap = 1,
3181 .may_swap = 1,
3182 };
3183 count_vm_event(PAGEOUTRUN);
3184
3185 do {
3186 unsigned long nr_attempted = 0;
3187 bool raise_priority = true;
3188 bool pgdat_needs_compaction = (order > 0);
3189
3190 sc.nr_reclaimed = 0;
3191
3192 /*
3193 * Scan in the highmem->dma direction for the highest
3194 * zone which needs scanning
3195 */
3196 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3197 struct zone *zone = pgdat->node_zones + i;
3198
3199 if (!populated_zone(zone))
3200 continue;
3201
3202 if (sc.priority != DEF_PRIORITY &&
3203 !zone_reclaimable(zone))
3204 continue;
3205
3206 /*
3207 * Do some background aging of the anon list, to give
3208 * pages a chance to be referenced before reclaiming.
3209 */
3210 age_active_anon(zone, &sc);
3211
3212 /*
3213 * If the number of buffer_heads in the machine
3214 * exceeds the maximum allowed level and this node
3215 * has a highmem zone, force kswapd to reclaim from
3216 * it to relieve lowmem pressure.
3217 */
3218 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3219 end_zone = i;
3220 break;
3221 }
3222
3223 if (!zone_balanced(zone, order, 0, 0)) {
3224 end_zone = i;
3225 break;
3226 } else {
3227 /*
3228 * If balanced, clear the dirty and congested
3229 * flags
3230 */
3231 clear_bit(ZONE_CONGESTED, &zone->flags);
3232 clear_bit(ZONE_DIRTY, &zone->flags);
3233 }
3234 }
3235
3236 if (i < 0)
3237 goto out;
3238
3239 for (i = 0; i <= end_zone; i++) {
3240 struct zone *zone = pgdat->node_zones + i;
3241
3242 if (!populated_zone(zone))
3243 continue;
3244
3245 /*
3246 * If any zone is currently balanced then kswapd will
3247 * not call compaction as it is expected that the
3248 * necessary pages are already available.
3249 */
3250 if (pgdat_needs_compaction &&
3251 zone_watermark_ok(zone, order,
3252 low_wmark_pages(zone),
3253 *classzone_idx, 0))
3254 pgdat_needs_compaction = false;
3255 }
3256
3257 /*
3258 * If we're getting trouble reclaiming, start doing writepage
3259 * even in laptop mode.
3260 */
3261 if (sc.priority < DEF_PRIORITY - 2)
3262 sc.may_writepage = 1;
3263
3264 /*
3265 * Now scan the zone in the dma->highmem direction, stopping
3266 * at the last zone which needs scanning.
3267 *
3268 * We do this because the page allocator works in the opposite
3269 * direction. This prevents the page allocator from allocating
3270 * pages behind kswapd's direction of progress, which would
3271 * cause too much scanning of the lower zones.
3272 */
3273 for (i = 0; i <= end_zone; i++) {
3274 struct zone *zone = pgdat->node_zones + i;
3275
3276 if (!populated_zone(zone))
3277 continue;
3278
3279 if (sc.priority != DEF_PRIORITY &&
3280 !zone_reclaimable(zone))
3281 continue;
3282
3283 sc.nr_scanned = 0;
3284
3285 nr_soft_scanned = 0;
3286 /*
3287 * Call soft limit reclaim before calling shrink_zone.
3288 */
3289 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3290 order, sc.gfp_mask,
3291 &nr_soft_scanned);
3292 sc.nr_reclaimed += nr_soft_reclaimed;
3293
3294 /*
3295 * There should be no need to raise the scanning
3296 * priority if enough pages are already being scanned
3297 * that that high watermark would be met at 100%
3298 * efficiency.
3299 */
3300 if (kswapd_shrink_zone(zone, end_zone,
3301 &sc, &nr_attempted))
3302 raise_priority = false;
3303 }
3304
3305 /*
3306 * If the low watermark is met there is no need for processes
3307 * to be throttled on pfmemalloc_wait as they should not be
3308 * able to safely make forward progress. Wake them
3309 */
3310 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3311 pfmemalloc_watermark_ok(pgdat))
3312 wake_up_all(&pgdat->pfmemalloc_wait);
3313
3314 /*
3315 * Fragmentation may mean that the system cannot be rebalanced
3316 * for high-order allocations in all zones. If twice the
3317 * allocation size has been reclaimed and the zones are still
3318 * not balanced then recheck the watermarks at order-0 to
3319 * prevent kswapd reclaiming excessively. Assume that a
3320 * process requested a high-order can direct reclaim/compact.
3321 */
3322 if (order && sc.nr_reclaimed >= 2UL << order)
3323 order = sc.order = 0;
3324
3325 /* Check if kswapd should be suspending */
3326 if (try_to_freeze() || kthread_should_stop())
3327 break;
3328
3329 /*
3330 * Compact if necessary and kswapd is reclaiming at least the
3331 * high watermark number of pages as requsted
3332 */
3333 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3334 compact_pgdat(pgdat, order);
3335
3336 /*
3337 * Raise priority if scanning rate is too low or there was no
3338 * progress in reclaiming pages
3339 */
3340 if (raise_priority || !sc.nr_reclaimed)
3341 sc.priority--;
3342 } while (sc.priority >= 1 &&
3343 !pgdat_balanced(pgdat, order, *classzone_idx));
3344
3345 out:
3346 /*
3347 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3348 * makes a decision on the order we were last reclaiming at. However,
3349 * if another caller entered the allocator slow path while kswapd
3350 * was awake, order will remain at the higher level
3351 */
3352 *classzone_idx = end_zone;
3353 return order;
3354 }
3355
3356 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3357 {
3358 long remaining = 0;
3359 DEFINE_WAIT(wait);
3360
3361 if (freezing(current) || kthread_should_stop())
3362 return;
3363
3364 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3365
3366 /* Try to sleep for a short interval */
3367 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3368 remaining = schedule_timeout(HZ/10);
3369 finish_wait(&pgdat->kswapd_wait, &wait);
3370 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3371 }
3372
3373 /*
3374 * After a short sleep, check if it was a premature sleep. If not, then
3375 * go fully to sleep until explicitly woken up.
3376 */
3377 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3378 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3379
3380 /*
3381 * vmstat counters are not perfectly accurate and the estimated
3382 * value for counters such as NR_FREE_PAGES can deviate from the
3383 * true value by nr_online_cpus * threshold. To avoid the zone
3384 * watermarks being breached while under pressure, we reduce the
3385 * per-cpu vmstat threshold while kswapd is awake and restore
3386 * them before going back to sleep.
3387 */
3388 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3389
3390 /*
3391 * Compaction records what page blocks it recently failed to
3392 * isolate pages from and skips them in the future scanning.
3393 * When kswapd is going to sleep, it is reasonable to assume
3394 * that pages and compaction may succeed so reset the cache.
3395 */
3396 reset_isolation_suitable(pgdat);
3397
3398 if (!kthread_should_stop())
3399 schedule();
3400
3401 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3402 } else {
3403 if (remaining)
3404 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3405 else
3406 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3407 }
3408 finish_wait(&pgdat->kswapd_wait, &wait);
3409 }
3410
3411 /*
3412 * The background pageout daemon, started as a kernel thread
3413 * from the init process.
3414 *
3415 * This basically trickles out pages so that we have _some_
3416 * free memory available even if there is no other activity
3417 * that frees anything up. This is needed for things like routing
3418 * etc, where we otherwise might have all activity going on in
3419 * asynchronous contexts that cannot page things out.
3420 *
3421 * If there are applications that are active memory-allocators
3422 * (most normal use), this basically shouldn't matter.
3423 */
3424 static int kswapd(void *p)
3425 {
3426 unsigned long order, new_order;
3427 unsigned balanced_order;
3428 int classzone_idx, new_classzone_idx;
3429 int balanced_classzone_idx;
3430 pg_data_t *pgdat = (pg_data_t*)p;
3431 struct task_struct *tsk = current;
3432
3433 struct reclaim_state reclaim_state = {
3434 .reclaimed_slab = 0,
3435 };
3436 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3437
3438 lockdep_set_current_reclaim_state(GFP_KERNEL);
3439
3440 if (!cpumask_empty(cpumask))
3441 set_cpus_allowed_ptr(tsk, cpumask);
3442 current->reclaim_state = &reclaim_state;
3443
3444 /*
3445 * Tell the memory management that we're a "memory allocator",
3446 * and that if we need more memory we should get access to it
3447 * regardless (see "__alloc_pages()"). "kswapd" should
3448 * never get caught in the normal page freeing logic.
3449 *
3450 * (Kswapd normally doesn't need memory anyway, but sometimes
3451 * you need a small amount of memory in order to be able to
3452 * page out something else, and this flag essentially protects
3453 * us from recursively trying to free more memory as we're
3454 * trying to free the first piece of memory in the first place).
3455 */
3456 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3457 set_freezable();
3458
3459 order = new_order = 0;
3460 balanced_order = 0;
3461 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3462 balanced_classzone_idx = classzone_idx;
3463 for ( ; ; ) {
3464 bool ret;
3465
3466 /*
3467 * If the last balance_pgdat was unsuccessful it's unlikely a
3468 * new request of a similar or harder type will succeed soon
3469 * so consider going to sleep on the basis we reclaimed at
3470 */
3471 if (balanced_classzone_idx >= new_classzone_idx &&
3472 balanced_order == new_order) {
3473 new_order = pgdat->kswapd_max_order;
3474 new_classzone_idx = pgdat->classzone_idx;
3475 pgdat->kswapd_max_order = 0;
3476 pgdat->classzone_idx = pgdat->nr_zones - 1;
3477 }
3478
3479 if (order < new_order || classzone_idx > new_classzone_idx) {
3480 /*
3481 * Don't sleep if someone wants a larger 'order'
3482 * allocation or has tigher zone constraints
3483 */
3484 order = new_order;
3485 classzone_idx = new_classzone_idx;
3486 } else {
3487 kswapd_try_to_sleep(pgdat, balanced_order,
3488 balanced_classzone_idx);
3489 order = pgdat->kswapd_max_order;
3490 classzone_idx = pgdat->classzone_idx;
3491 new_order = order;
3492 new_classzone_idx = classzone_idx;
3493 pgdat->kswapd_max_order = 0;
3494 pgdat->classzone_idx = pgdat->nr_zones - 1;
3495 }
3496
3497 ret = try_to_freeze();
3498 if (kthread_should_stop())
3499 break;
3500
3501 /*
3502 * We can speed up thawing tasks if we don't call balance_pgdat
3503 * after returning from the refrigerator
3504 */
3505 if (!ret) {
3506 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3507 balanced_classzone_idx = classzone_idx;
3508 balanced_order = balance_pgdat(pgdat, order,
3509 &balanced_classzone_idx);
3510 }
3511 }
3512
3513 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3514 current->reclaim_state = NULL;
3515 lockdep_clear_current_reclaim_state();
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * A zone is low on free memory, so wake its kswapd task to service it.
3522 */
3523 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3524 {
3525 pg_data_t *pgdat;
3526
3527 if (!populated_zone(zone))
3528 return;
3529
3530 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3531 return;
3532 pgdat = zone->zone_pgdat;
3533 if (pgdat->kswapd_max_order < order) {
3534 pgdat->kswapd_max_order = order;
3535 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3536 }
3537 if (!waitqueue_active(&pgdat->kswapd_wait))
3538 return;
3539 if (zone_balanced(zone, order, 0, 0))
3540 return;
3541
3542 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3543 wake_up_interruptible(&pgdat->kswapd_wait);
3544 }
3545
3546 #ifdef CONFIG_HIBERNATION
3547 /*
3548 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3549 * freed pages.
3550 *
3551 * Rather than trying to age LRUs the aim is to preserve the overall
3552 * LRU order by reclaiming preferentially
3553 * inactive > active > active referenced > active mapped
3554 */
3555 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3556 {
3557 struct reclaim_state reclaim_state;
3558 struct scan_control sc = {
3559 .nr_to_reclaim = nr_to_reclaim,
3560 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3561 .priority = DEF_PRIORITY,
3562 .may_writepage = 1,
3563 .may_unmap = 1,
3564 .may_swap = 1,
3565 .hibernation_mode = 1,
3566 };
3567 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3568 struct task_struct *p = current;
3569 unsigned long nr_reclaimed;
3570
3571 p->flags |= PF_MEMALLOC;
3572 lockdep_set_current_reclaim_state(sc.gfp_mask);
3573 reclaim_state.reclaimed_slab = 0;
3574 p->reclaim_state = &reclaim_state;
3575
3576 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3577
3578 p->reclaim_state = NULL;
3579 lockdep_clear_current_reclaim_state();
3580 p->flags &= ~PF_MEMALLOC;
3581
3582 return nr_reclaimed;
3583 }
3584 #endif /* CONFIG_HIBERNATION */
3585
3586 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3587 not required for correctness. So if the last cpu in a node goes
3588 away, we get changed to run anywhere: as the first one comes back,
3589 restore their cpu bindings. */
3590 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3591 void *hcpu)
3592 {
3593 int nid;
3594
3595 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3596 for_each_node_state(nid, N_MEMORY) {
3597 pg_data_t *pgdat = NODE_DATA(nid);
3598 const struct cpumask *mask;
3599
3600 mask = cpumask_of_node(pgdat->node_id);
3601
3602 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3603 /* One of our CPUs online: restore mask */
3604 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3605 }
3606 }
3607 return NOTIFY_OK;
3608 }
3609
3610 /*
3611 * This kswapd start function will be called by init and node-hot-add.
3612 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3613 */
3614 int kswapd_run(int nid)
3615 {
3616 pg_data_t *pgdat = NODE_DATA(nid);
3617 int ret = 0;
3618
3619 if (pgdat->kswapd)
3620 return 0;
3621
3622 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3623 if (IS_ERR(pgdat->kswapd)) {
3624 /* failure at boot is fatal */
3625 BUG_ON(system_state == SYSTEM_BOOTING);
3626 pr_err("Failed to start kswapd on node %d\n", nid);
3627 ret = PTR_ERR(pgdat->kswapd);
3628 pgdat->kswapd = NULL;
3629 }
3630 return ret;
3631 }
3632
3633 /*
3634 * Called by memory hotplug when all memory in a node is offlined. Caller must
3635 * hold mem_hotplug_begin/end().
3636 */
3637 void kswapd_stop(int nid)
3638 {
3639 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3640
3641 if (kswapd) {
3642 kthread_stop(kswapd);
3643 NODE_DATA(nid)->kswapd = NULL;
3644 }
3645 }
3646
3647 static int __init kswapd_init(void)
3648 {
3649 int nid;
3650
3651 swap_setup();
3652 for_each_node_state(nid, N_MEMORY)
3653 kswapd_run(nid);
3654 hotcpu_notifier(cpu_callback, 0);
3655 return 0;
3656 }
3657
3658 module_init(kswapd_init)
3659
3660 #ifdef CONFIG_NUMA
3661 /*
3662 * Zone reclaim mode
3663 *
3664 * If non-zero call zone_reclaim when the number of free pages falls below
3665 * the watermarks.
3666 */
3667 int zone_reclaim_mode __read_mostly;
3668
3669 #define RECLAIM_OFF 0
3670 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3671 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3672 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3673
3674 /*
3675 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3676 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3677 * a zone.
3678 */
3679 #define ZONE_RECLAIM_PRIORITY 4
3680
3681 /*
3682 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3683 * occur.
3684 */
3685 int sysctl_min_unmapped_ratio = 1;
3686
3687 /*
3688 * If the number of slab pages in a zone grows beyond this percentage then
3689 * slab reclaim needs to occur.
3690 */
3691 int sysctl_min_slab_ratio = 5;
3692
3693 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3694 {
3695 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3696 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3697 zone_page_state(zone, NR_ACTIVE_FILE);
3698
3699 /*
3700 * It's possible for there to be more file mapped pages than
3701 * accounted for by the pages on the file LRU lists because
3702 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3703 */
3704 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3705 }
3706
3707 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3708 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3709 {
3710 unsigned long nr_pagecache_reclaimable;
3711 unsigned long delta = 0;
3712
3713 /*
3714 * If RECLAIM_UNMAP is set, then all file pages are considered
3715 * potentially reclaimable. Otherwise, we have to worry about
3716 * pages like swapcache and zone_unmapped_file_pages() provides
3717 * a better estimate
3718 */
3719 if (zone_reclaim_mode & RECLAIM_UNMAP)
3720 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3721 else
3722 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3723
3724 /* If we can't clean pages, remove dirty pages from consideration */
3725 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3726 delta += zone_page_state(zone, NR_FILE_DIRTY);
3727
3728 /* Watch for any possible underflows due to delta */
3729 if (unlikely(delta > nr_pagecache_reclaimable))
3730 delta = nr_pagecache_reclaimable;
3731
3732 return nr_pagecache_reclaimable - delta;
3733 }
3734
3735 /*
3736 * Try to free up some pages from this zone through reclaim.
3737 */
3738 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3739 {
3740 /* Minimum pages needed in order to stay on node */
3741 const unsigned long nr_pages = 1 << order;
3742 struct task_struct *p = current;
3743 struct reclaim_state reclaim_state;
3744 struct scan_control sc = {
3745 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3746 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3747 .order = order,
3748 .priority = ZONE_RECLAIM_PRIORITY,
3749 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3750 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3751 .may_swap = 1,
3752 };
3753
3754 cond_resched();
3755 /*
3756 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3757 * and we also need to be able to write out pages for RECLAIM_WRITE
3758 * and RECLAIM_UNMAP.
3759 */
3760 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3761 lockdep_set_current_reclaim_state(gfp_mask);
3762 reclaim_state.reclaimed_slab = 0;
3763 p->reclaim_state = &reclaim_state;
3764
3765 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3766 /*
3767 * Free memory by calling shrink zone with increasing
3768 * priorities until we have enough memory freed.
3769 */
3770 do {
3771 shrink_zone(zone, &sc, true);
3772 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3773 }
3774
3775 p->reclaim_state = NULL;
3776 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3777 lockdep_clear_current_reclaim_state();
3778 return sc.nr_reclaimed >= nr_pages;
3779 }
3780
3781 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3782 {
3783 int node_id;
3784 int ret;
3785
3786 /*
3787 * Zone reclaim reclaims unmapped file backed pages and
3788 * slab pages if we are over the defined limits.
3789 *
3790 * A small portion of unmapped file backed pages is needed for
3791 * file I/O otherwise pages read by file I/O will be immediately
3792 * thrown out if the zone is overallocated. So we do not reclaim
3793 * if less than a specified percentage of the zone is used by
3794 * unmapped file backed pages.
3795 */
3796 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3797 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3798 return ZONE_RECLAIM_FULL;
3799
3800 if (!zone_reclaimable(zone))
3801 return ZONE_RECLAIM_FULL;
3802
3803 /*
3804 * Do not scan if the allocation should not be delayed.
3805 */
3806 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3807 return ZONE_RECLAIM_NOSCAN;
3808
3809 /*
3810 * Only run zone reclaim on the local zone or on zones that do not
3811 * have associated processors. This will favor the local processor
3812 * over remote processors and spread off node memory allocations
3813 * as wide as possible.
3814 */
3815 node_id = zone_to_nid(zone);
3816 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3817 return ZONE_RECLAIM_NOSCAN;
3818
3819 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3820 return ZONE_RECLAIM_NOSCAN;
3821
3822 ret = __zone_reclaim(zone, gfp_mask, order);
3823 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3824
3825 if (!ret)
3826 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3827
3828 return ret;
3829 }
3830 #endif
3831
3832 /*
3833 * page_evictable - test whether a page is evictable
3834 * @page: the page to test
3835 *
3836 * Test whether page is evictable--i.e., should be placed on active/inactive
3837 * lists vs unevictable list.
3838 *
3839 * Reasons page might not be evictable:
3840 * (1) page's mapping marked unevictable
3841 * (2) page is part of an mlocked VMA
3842 *
3843 */
3844 int page_evictable(struct page *page)
3845 {
3846 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3847 }
3848
3849 #ifdef CONFIG_SHMEM
3850 /**
3851 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3852 * @pages: array of pages to check
3853 * @nr_pages: number of pages to check
3854 *
3855 * Checks pages for evictability and moves them to the appropriate lru list.
3856 *
3857 * This function is only used for SysV IPC SHM_UNLOCK.
3858 */
3859 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3860 {
3861 struct lruvec *lruvec;
3862 struct zone *zone = NULL;
3863 int pgscanned = 0;
3864 int pgrescued = 0;
3865 int i;
3866
3867 for (i = 0; i < nr_pages; i++) {
3868 struct page *page = pages[i];
3869 struct zone *pagezone;
3870
3871 pgscanned++;
3872 pagezone = page_zone(page);
3873 if (pagezone != zone) {
3874 if (zone)
3875 spin_unlock_irq(&zone->lru_lock);
3876 zone = pagezone;
3877 spin_lock_irq(&zone->lru_lock);
3878 }
3879 lruvec = mem_cgroup_page_lruvec(page, zone);
3880
3881 if (!PageLRU(page) || !PageUnevictable(page))
3882 continue;
3883
3884 if (page_evictable(page)) {
3885 enum lru_list lru = page_lru_base_type(page);
3886
3887 VM_BUG_ON_PAGE(PageActive(page), page);
3888 ClearPageUnevictable(page);
3889 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3890 add_page_to_lru_list(page, lruvec, lru);
3891 pgrescued++;
3892 }
3893 }
3894
3895 if (zone) {
3896 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3897 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3898 spin_unlock_irq(&zone->lru_lock);
3899 }
3900 }
3901 #endif /* CONFIG_SHMEM */