]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /* Can cgroups be reclaimed below their normal consumption range? */
101 unsigned int may_thrash:1;
102
103 unsigned int hibernation_mode:1;
104
105 /* One of the zones is ready for compaction */
106 unsigned int compaction_ready:1;
107
108 /* Incremented by the number of inactive pages that were scanned */
109 unsigned long nr_scanned;
110
111 /* Number of pages freed so far during a call to shrink_zones() */
112 unsigned long nr_reclaimed;
113 };
114
115 #ifdef ARCH_HAS_PREFETCH
116 #define prefetch_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetch(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 #ifdef ARCH_HAS_PREFETCHW
130 #define prefetchw_prev_lru_page(_page, _base, _field) \
131 do { \
132 if ((_page)->lru.prev != _base) { \
133 struct page *prev; \
134 \
135 prev = lru_to_page(&(_page->lru)); \
136 prefetchw(&prev->_field); \
137 } \
138 } while (0)
139 #else
140 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141 #endif
142
143 /*
144 * From 0 .. 100. Higher means more swappy.
145 */
146 int vm_swappiness = 60;
147 /*
148 * The total number of pages which are beyond the high watermark within all
149 * zones.
150 */
151 unsigned long vm_total_pages;
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_MEMCG
157 static bool global_reclaim(struct scan_control *sc)
158 {
159 return !sc->target_mem_cgroup;
160 }
161
162 /**
163 * sane_reclaim - is the usual dirty throttling mechanism operational?
164 * @sc: scan_control in question
165 *
166 * The normal page dirty throttling mechanism in balance_dirty_pages() is
167 * completely broken with the legacy memcg and direct stalling in
168 * shrink_page_list() is used for throttling instead, which lacks all the
169 * niceties such as fairness, adaptive pausing, bandwidth proportional
170 * allocation and configurability.
171 *
172 * This function tests whether the vmscan currently in progress can assume
173 * that the normal dirty throttling mechanism is operational.
174 */
175 static bool sane_reclaim(struct scan_control *sc)
176 {
177 struct mem_cgroup *memcg = sc->target_mem_cgroup;
178
179 if (!memcg)
180 return true;
181 #ifdef CONFIG_CGROUP_WRITEBACK
182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 return true;
184 #endif
185 return false;
186 }
187 #else
188 static bool global_reclaim(struct scan_control *sc)
189 {
190 return true;
191 }
192
193 static bool sane_reclaim(struct scan_control *sc)
194 {
195 return true;
196 }
197 #endif
198
199 /*
200 * This misses isolated pages which are not accounted for to save counters.
201 * As the data only determines if reclaim or compaction continues, it is
202 * not expected that isolated pages will be a dominating factor.
203 */
204 unsigned long zone_reclaimable_pages(struct zone *zone)
205 {
206 unsigned long nr;
207
208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 if (get_nr_swap_pages() > 0)
211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
213
214 return nr;
215 }
216
217 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
218 {
219 unsigned long nr;
220
221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224
225 if (get_nr_swap_pages() > 0)
226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229
230 return nr;
231 }
232
233 bool pgdat_reclaimable(struct pglist_data *pgdat)
234 {
235 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
236 pgdat_reclaimable_pages(pgdat) * 6;
237 }
238
239 /**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 {
247 unsigned long lru_size;
248 int zid;
249
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
258
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
271
272 }
273
274 /*
275 * Add a shrinker callback to be called from the vm.
276 */
277 int register_shrinker(struct shrinker *shrinker)
278 {
279 size_t size = sizeof(*shrinker->nr_deferred);
280
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
287
288 down_write(&shrinker_rwsem);
289 list_add_tail(&shrinker->list, &shrinker_list);
290 up_write(&shrinker_rwsem);
291 return 0;
292 }
293 EXPORT_SYMBOL(register_shrinker);
294
295 /*
296 * Remove one
297 */
298 void unregister_shrinker(struct shrinker *shrinker)
299 {
300 down_write(&shrinker_rwsem);
301 list_del(&shrinker->list);
302 up_write(&shrinker_rwsem);
303 kfree(shrinker->nr_deferred);
304 }
305 EXPORT_SYMBOL(unregister_shrinker);
306
307 #define SHRINK_BATCH 128
308
309 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
310 struct shrinker *shrinker,
311 unsigned long nr_scanned,
312 unsigned long nr_eligible)
313 {
314 unsigned long freed = 0;
315 unsigned long long delta;
316 long total_scan;
317 long freeable;
318 long nr;
319 long new_nr;
320 int nid = shrinkctl->nid;
321 long batch_size = shrinker->batch ? shrinker->batch
322 : SHRINK_BATCH;
323 long scanned = 0, next_deferred;
324
325 freeable = shrinker->count_objects(shrinker, shrinkctl);
326 if (freeable == 0)
327 return 0;
328
329 /*
330 * copy the current shrinker scan count into a local variable
331 * and zero it so that other concurrent shrinker invocations
332 * don't also do this scanning work.
333 */
334 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
335
336 total_scan = nr;
337 delta = (4 * nr_scanned) / shrinker->seeks;
338 delta *= freeable;
339 do_div(delta, nr_eligible + 1);
340 total_scan += delta;
341 if (total_scan < 0) {
342 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
343 shrinker->scan_objects, total_scan);
344 total_scan = freeable;
345 next_deferred = nr;
346 } else
347 next_deferred = total_scan;
348
349 /*
350 * We need to avoid excessive windup on filesystem shrinkers
351 * due to large numbers of GFP_NOFS allocations causing the
352 * shrinkers to return -1 all the time. This results in a large
353 * nr being built up so when a shrink that can do some work
354 * comes along it empties the entire cache due to nr >>>
355 * freeable. This is bad for sustaining a working set in
356 * memory.
357 *
358 * Hence only allow the shrinker to scan the entire cache when
359 * a large delta change is calculated directly.
360 */
361 if (delta < freeable / 4)
362 total_scan = min(total_scan, freeable / 2);
363
364 /*
365 * Avoid risking looping forever due to too large nr value:
366 * never try to free more than twice the estimate number of
367 * freeable entries.
368 */
369 if (total_scan > freeable * 2)
370 total_scan = freeable * 2;
371
372 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
373 nr_scanned, nr_eligible,
374 freeable, delta, total_scan);
375
376 /*
377 * Normally, we should not scan less than batch_size objects in one
378 * pass to avoid too frequent shrinker calls, but if the slab has less
379 * than batch_size objects in total and we are really tight on memory,
380 * we will try to reclaim all available objects, otherwise we can end
381 * up failing allocations although there are plenty of reclaimable
382 * objects spread over several slabs with usage less than the
383 * batch_size.
384 *
385 * We detect the "tight on memory" situations by looking at the total
386 * number of objects we want to scan (total_scan). If it is greater
387 * than the total number of objects on slab (freeable), we must be
388 * scanning at high prio and therefore should try to reclaim as much as
389 * possible.
390 */
391 while (total_scan >= batch_size ||
392 total_scan >= freeable) {
393 unsigned long ret;
394 unsigned long nr_to_scan = min(batch_size, total_scan);
395
396 shrinkctl->nr_to_scan = nr_to_scan;
397 ret = shrinker->scan_objects(shrinker, shrinkctl);
398 if (ret == SHRINK_STOP)
399 break;
400 freed += ret;
401
402 count_vm_events(SLABS_SCANNED, nr_to_scan);
403 total_scan -= nr_to_scan;
404 scanned += nr_to_scan;
405
406 cond_resched();
407 }
408
409 if (next_deferred >= scanned)
410 next_deferred -= scanned;
411 else
412 next_deferred = 0;
413 /*
414 * move the unused scan count back into the shrinker in a
415 * manner that handles concurrent updates. If we exhausted the
416 * scan, there is no need to do an update.
417 */
418 if (next_deferred > 0)
419 new_nr = atomic_long_add_return(next_deferred,
420 &shrinker->nr_deferred[nid]);
421 else
422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423
424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
425 return freed;
426 }
427
428 /**
429 * shrink_slab - shrink slab caches
430 * @gfp_mask: allocation context
431 * @nid: node whose slab caches to target
432 * @memcg: memory cgroup whose slab caches to target
433 * @nr_scanned: pressure numerator
434 * @nr_eligible: pressure denominator
435 *
436 * Call the shrink functions to age shrinkable caches.
437 *
438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439 * unaware shrinkers will receive a node id of 0 instead.
440 *
441 * @memcg specifies the memory cgroup to target. If it is not NULL,
442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443 * objects from the memory cgroup specified. Otherwise, only unaware
444 * shrinkers are called.
445 *
446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447 * the available objects should be scanned. Page reclaim for example
448 * passes the number of pages scanned and the number of pages on the
449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450 * when it encountered mapped pages. The ratio is further biased by
451 * the ->seeks setting of the shrink function, which indicates the
452 * cost to recreate an object relative to that of an LRU page.
453 *
454 * Returns the number of reclaimed slab objects.
455 */
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 struct mem_cgroup *memcg,
458 unsigned long nr_scanned,
459 unsigned long nr_eligible)
460 {
461 struct shrinker *shrinker;
462 unsigned long freed = 0;
463
464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 return 0;
466
467 if (nr_scanned == 0)
468 nr_scanned = SWAP_CLUSTER_MAX;
469
470 if (!down_read_trylock(&shrinker_rwsem)) {
471 /*
472 * If we would return 0, our callers would understand that we
473 * have nothing else to shrink and give up trying. By returning
474 * 1 we keep it going and assume we'll be able to shrink next
475 * time.
476 */
477 freed = 1;
478 goto out;
479 }
480
481 list_for_each_entry(shrinker, &shrinker_list, list) {
482 struct shrink_control sc = {
483 .gfp_mask = gfp_mask,
484 .nid = nid,
485 .memcg = memcg,
486 };
487
488 /*
489 * If kernel memory accounting is disabled, we ignore
490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 * passing NULL for memcg.
492 */
493 if (memcg_kmem_enabled() &&
494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 continue;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 sc.nid = 0;
499
500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 }
502
503 up_read(&shrinker_rwsem);
504 out:
505 cond_resched();
506 return freed;
507 }
508
509 void drop_slab_node(int nid)
510 {
511 unsigned long freed;
512
513 do {
514 struct mem_cgroup *memcg = NULL;
515
516 freed = 0;
517 do {
518 freed += shrink_slab(GFP_KERNEL, nid, memcg,
519 1000, 1000);
520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 } while (freed > 10);
522 }
523
524 void drop_slab(void)
525 {
526 int nid;
527
528 for_each_online_node(nid)
529 drop_slab_node(nid);
530 }
531
532 static inline int is_page_cache_freeable(struct page *page)
533 {
534 /*
535 * A freeable page cache page is referenced only by the caller
536 * that isolated the page, the page cache radix tree and
537 * optional buffer heads at page->private.
538 */
539 return page_count(page) - page_has_private(page) == 2;
540 }
541
542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
543 {
544 if (current->flags & PF_SWAPWRITE)
545 return 1;
546 if (!inode_write_congested(inode))
547 return 1;
548 if (inode_to_bdi(inode) == current->backing_dev_info)
549 return 1;
550 return 0;
551 }
552
553 /*
554 * We detected a synchronous write error writing a page out. Probably
555 * -ENOSPC. We need to propagate that into the address_space for a subsequent
556 * fsync(), msync() or close().
557 *
558 * The tricky part is that after writepage we cannot touch the mapping: nothing
559 * prevents it from being freed up. But we have a ref on the page and once
560 * that page is locked, the mapping is pinned.
561 *
562 * We're allowed to run sleeping lock_page() here because we know the caller has
563 * __GFP_FS.
564 */
565 static void handle_write_error(struct address_space *mapping,
566 struct page *page, int error)
567 {
568 lock_page(page);
569 if (page_mapping(page) == mapping)
570 mapping_set_error(mapping, error);
571 unlock_page(page);
572 }
573
574 /* possible outcome of pageout() */
575 typedef enum {
576 /* failed to write page out, page is locked */
577 PAGE_KEEP,
578 /* move page to the active list, page is locked */
579 PAGE_ACTIVATE,
580 /* page has been sent to the disk successfully, page is unlocked */
581 PAGE_SUCCESS,
582 /* page is clean and locked */
583 PAGE_CLEAN,
584 } pageout_t;
585
586 /*
587 * pageout is called by shrink_page_list() for each dirty page.
588 * Calls ->writepage().
589 */
590 static pageout_t pageout(struct page *page, struct address_space *mapping,
591 struct scan_control *sc)
592 {
593 /*
594 * If the page is dirty, only perform writeback if that write
595 * will be non-blocking. To prevent this allocation from being
596 * stalled by pagecache activity. But note that there may be
597 * stalls if we need to run get_block(). We could test
598 * PagePrivate for that.
599 *
600 * If this process is currently in __generic_file_write_iter() against
601 * this page's queue, we can perform writeback even if that
602 * will block.
603 *
604 * If the page is swapcache, write it back even if that would
605 * block, for some throttling. This happens by accident, because
606 * swap_backing_dev_info is bust: it doesn't reflect the
607 * congestion state of the swapdevs. Easy to fix, if needed.
608 */
609 if (!is_page_cache_freeable(page))
610 return PAGE_KEEP;
611 if (!mapping) {
612 /*
613 * Some data journaling orphaned pages can have
614 * page->mapping == NULL while being dirty with clean buffers.
615 */
616 if (page_has_private(page)) {
617 if (try_to_free_buffers(page)) {
618 ClearPageDirty(page);
619 pr_info("%s: orphaned page\n", __func__);
620 return PAGE_CLEAN;
621 }
622 }
623 return PAGE_KEEP;
624 }
625 if (mapping->a_ops->writepage == NULL)
626 return PAGE_ACTIVATE;
627 if (!may_write_to_inode(mapping->host, sc))
628 return PAGE_KEEP;
629
630 if (clear_page_dirty_for_io(page)) {
631 int res;
632 struct writeback_control wbc = {
633 .sync_mode = WB_SYNC_NONE,
634 .nr_to_write = SWAP_CLUSTER_MAX,
635 .range_start = 0,
636 .range_end = LLONG_MAX,
637 .for_reclaim = 1,
638 };
639
640 SetPageReclaim(page);
641 res = mapping->a_ops->writepage(page, &wbc);
642 if (res < 0)
643 handle_write_error(mapping, page, res);
644 if (res == AOP_WRITEPAGE_ACTIVATE) {
645 ClearPageReclaim(page);
646 return PAGE_ACTIVATE;
647 }
648
649 if (!PageWriteback(page)) {
650 /* synchronous write or broken a_ops? */
651 ClearPageReclaim(page);
652 }
653 trace_mm_vmscan_writepage(page);
654 inc_node_page_state(page, NR_VMSCAN_WRITE);
655 return PAGE_SUCCESS;
656 }
657
658 return PAGE_CLEAN;
659 }
660
661 /*
662 * Same as remove_mapping, but if the page is removed from the mapping, it
663 * gets returned with a refcount of 0.
664 */
665 static int __remove_mapping(struct address_space *mapping, struct page *page,
666 bool reclaimed)
667 {
668 unsigned long flags;
669
670 BUG_ON(!PageLocked(page));
671 BUG_ON(mapping != page_mapping(page));
672
673 spin_lock_irqsave(&mapping->tree_lock, flags);
674 /*
675 * The non racy check for a busy page.
676 *
677 * Must be careful with the order of the tests. When someone has
678 * a ref to the page, it may be possible that they dirty it then
679 * drop the reference. So if PageDirty is tested before page_count
680 * here, then the following race may occur:
681 *
682 * get_user_pages(&page);
683 * [user mapping goes away]
684 * write_to(page);
685 * !PageDirty(page) [good]
686 * SetPageDirty(page);
687 * put_page(page);
688 * !page_count(page) [good, discard it]
689 *
690 * [oops, our write_to data is lost]
691 *
692 * Reversing the order of the tests ensures such a situation cannot
693 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
694 * load is not satisfied before that of page->_refcount.
695 *
696 * Note that if SetPageDirty is always performed via set_page_dirty,
697 * and thus under tree_lock, then this ordering is not required.
698 */
699 if (!page_ref_freeze(page, 2))
700 goto cannot_free;
701 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
702 if (unlikely(PageDirty(page))) {
703 page_ref_unfreeze(page, 2);
704 goto cannot_free;
705 }
706
707 if (PageSwapCache(page)) {
708 swp_entry_t swap = { .val = page_private(page) };
709 mem_cgroup_swapout(page, swap);
710 __delete_from_swap_cache(page);
711 spin_unlock_irqrestore(&mapping->tree_lock, flags);
712 swapcache_free(swap);
713 } else {
714 void (*freepage)(struct page *);
715 void *shadow = NULL;
716
717 freepage = mapping->a_ops->freepage;
718 /*
719 * Remember a shadow entry for reclaimed file cache in
720 * order to detect refaults, thus thrashing, later on.
721 *
722 * But don't store shadows in an address space that is
723 * already exiting. This is not just an optizimation,
724 * inode reclaim needs to empty out the radix tree or
725 * the nodes are lost. Don't plant shadows behind its
726 * back.
727 *
728 * We also don't store shadows for DAX mappings because the
729 * only page cache pages found in these are zero pages
730 * covering holes, and because we don't want to mix DAX
731 * exceptional entries and shadow exceptional entries in the
732 * same page_tree.
733 */
734 if (reclaimed && page_is_file_cache(page) &&
735 !mapping_exiting(mapping) && !dax_mapping(mapping))
736 shadow = workingset_eviction(mapping, page);
737 __delete_from_page_cache(page, shadow);
738 spin_unlock_irqrestore(&mapping->tree_lock, flags);
739
740 if (freepage != NULL)
741 freepage(page);
742 }
743
744 return 1;
745
746 cannot_free:
747 spin_unlock_irqrestore(&mapping->tree_lock, flags);
748 return 0;
749 }
750
751 /*
752 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
753 * someone else has a ref on the page, abort and return 0. If it was
754 * successfully detached, return 1. Assumes the caller has a single ref on
755 * this page.
756 */
757 int remove_mapping(struct address_space *mapping, struct page *page)
758 {
759 if (__remove_mapping(mapping, page, false)) {
760 /*
761 * Unfreezing the refcount with 1 rather than 2 effectively
762 * drops the pagecache ref for us without requiring another
763 * atomic operation.
764 */
765 page_ref_unfreeze(page, 1);
766 return 1;
767 }
768 return 0;
769 }
770
771 /**
772 * putback_lru_page - put previously isolated page onto appropriate LRU list
773 * @page: page to be put back to appropriate lru list
774 *
775 * Add previously isolated @page to appropriate LRU list.
776 * Page may still be unevictable for other reasons.
777 *
778 * lru_lock must not be held, interrupts must be enabled.
779 */
780 void putback_lru_page(struct page *page)
781 {
782 bool is_unevictable;
783 int was_unevictable = PageUnevictable(page);
784
785 VM_BUG_ON_PAGE(PageLRU(page), page);
786
787 redo:
788 ClearPageUnevictable(page);
789
790 if (page_evictable(page)) {
791 /*
792 * For evictable pages, we can use the cache.
793 * In event of a race, worst case is we end up with an
794 * unevictable page on [in]active list.
795 * We know how to handle that.
796 */
797 is_unevictable = false;
798 lru_cache_add(page);
799 } else {
800 /*
801 * Put unevictable pages directly on zone's unevictable
802 * list.
803 */
804 is_unevictable = true;
805 add_page_to_unevictable_list(page);
806 /*
807 * When racing with an mlock or AS_UNEVICTABLE clearing
808 * (page is unlocked) make sure that if the other thread
809 * does not observe our setting of PG_lru and fails
810 * isolation/check_move_unevictable_pages,
811 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
812 * the page back to the evictable list.
813 *
814 * The other side is TestClearPageMlocked() or shmem_lock().
815 */
816 smp_mb();
817 }
818
819 /*
820 * page's status can change while we move it among lru. If an evictable
821 * page is on unevictable list, it never be freed. To avoid that,
822 * check after we added it to the list, again.
823 */
824 if (is_unevictable && page_evictable(page)) {
825 if (!isolate_lru_page(page)) {
826 put_page(page);
827 goto redo;
828 }
829 /* This means someone else dropped this page from LRU
830 * So, it will be freed or putback to LRU again. There is
831 * nothing to do here.
832 */
833 }
834
835 if (was_unevictable && !is_unevictable)
836 count_vm_event(UNEVICTABLE_PGRESCUED);
837 else if (!was_unevictable && is_unevictable)
838 count_vm_event(UNEVICTABLE_PGCULLED);
839
840 put_page(page); /* drop ref from isolate */
841 }
842
843 enum page_references {
844 PAGEREF_RECLAIM,
845 PAGEREF_RECLAIM_CLEAN,
846 PAGEREF_KEEP,
847 PAGEREF_ACTIVATE,
848 };
849
850 static enum page_references page_check_references(struct page *page,
851 struct scan_control *sc)
852 {
853 int referenced_ptes, referenced_page;
854 unsigned long vm_flags;
855
856 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
857 &vm_flags);
858 referenced_page = TestClearPageReferenced(page);
859
860 /*
861 * Mlock lost the isolation race with us. Let try_to_unmap()
862 * move the page to the unevictable list.
863 */
864 if (vm_flags & VM_LOCKED)
865 return PAGEREF_RECLAIM;
866
867 if (referenced_ptes) {
868 if (PageSwapBacked(page))
869 return PAGEREF_ACTIVATE;
870 /*
871 * All mapped pages start out with page table
872 * references from the instantiating fault, so we need
873 * to look twice if a mapped file page is used more
874 * than once.
875 *
876 * Mark it and spare it for another trip around the
877 * inactive list. Another page table reference will
878 * lead to its activation.
879 *
880 * Note: the mark is set for activated pages as well
881 * so that recently deactivated but used pages are
882 * quickly recovered.
883 */
884 SetPageReferenced(page);
885
886 if (referenced_page || referenced_ptes > 1)
887 return PAGEREF_ACTIVATE;
888
889 /*
890 * Activate file-backed executable pages after first usage.
891 */
892 if (vm_flags & VM_EXEC)
893 return PAGEREF_ACTIVATE;
894
895 return PAGEREF_KEEP;
896 }
897
898 /* Reclaim if clean, defer dirty pages to writeback */
899 if (referenced_page && !PageSwapBacked(page))
900 return PAGEREF_RECLAIM_CLEAN;
901
902 return PAGEREF_RECLAIM;
903 }
904
905 /* Check if a page is dirty or under writeback */
906 static void page_check_dirty_writeback(struct page *page,
907 bool *dirty, bool *writeback)
908 {
909 struct address_space *mapping;
910
911 /*
912 * Anonymous pages are not handled by flushers and must be written
913 * from reclaim context. Do not stall reclaim based on them
914 */
915 if (!page_is_file_cache(page)) {
916 *dirty = false;
917 *writeback = false;
918 return;
919 }
920
921 /* By default assume that the page flags are accurate */
922 *dirty = PageDirty(page);
923 *writeback = PageWriteback(page);
924
925 /* Verify dirty/writeback state if the filesystem supports it */
926 if (!page_has_private(page))
927 return;
928
929 mapping = page_mapping(page);
930 if (mapping && mapping->a_ops->is_dirty_writeback)
931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
932 }
933
934 struct reclaim_stat {
935 unsigned nr_dirty;
936 unsigned nr_unqueued_dirty;
937 unsigned nr_congested;
938 unsigned nr_writeback;
939 unsigned nr_immediate;
940 unsigned nr_activate;
941 unsigned nr_ref_keep;
942 unsigned nr_unmap_fail;
943 };
944
945 /*
946 * shrink_page_list() returns the number of reclaimed pages
947 */
948 static unsigned long shrink_page_list(struct list_head *page_list,
949 struct pglist_data *pgdat,
950 struct scan_control *sc,
951 enum ttu_flags ttu_flags,
952 struct reclaim_stat *stat,
953 bool force_reclaim)
954 {
955 LIST_HEAD(ret_pages);
956 LIST_HEAD(free_pages);
957 int pgactivate = 0;
958 unsigned nr_unqueued_dirty = 0;
959 unsigned nr_dirty = 0;
960 unsigned nr_congested = 0;
961 unsigned nr_reclaimed = 0;
962 unsigned nr_writeback = 0;
963 unsigned nr_immediate = 0;
964 unsigned nr_ref_keep = 0;
965 unsigned nr_unmap_fail = 0;
966
967 cond_resched();
968
969 while (!list_empty(page_list)) {
970 struct address_space *mapping;
971 struct page *page;
972 int may_enter_fs;
973 enum page_references references = PAGEREF_RECLAIM_CLEAN;
974 bool dirty, writeback;
975 bool lazyfree = false;
976 int ret = SWAP_SUCCESS;
977
978 cond_resched();
979
980 page = lru_to_page(page_list);
981 list_del(&page->lru);
982
983 if (!trylock_page(page))
984 goto keep;
985
986 VM_BUG_ON_PAGE(PageActive(page), page);
987
988 sc->nr_scanned++;
989
990 if (unlikely(!page_evictable(page)))
991 goto cull_mlocked;
992
993 if (!sc->may_unmap && page_mapped(page))
994 goto keep_locked;
995
996 /* Double the slab pressure for mapped and swapcache pages */
997 if (page_mapped(page) || PageSwapCache(page))
998 sc->nr_scanned++;
999
1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1002
1003 /*
1004 * The number of dirty pages determines if a zone is marked
1005 * reclaim_congested which affects wait_iff_congested. kswapd
1006 * will stall and start writing pages if the tail of the LRU
1007 * is all dirty unqueued pages.
1008 */
1009 page_check_dirty_writeback(page, &dirty, &writeback);
1010 if (dirty || writeback)
1011 nr_dirty++;
1012
1013 if (dirty && !writeback)
1014 nr_unqueued_dirty++;
1015
1016 /*
1017 * Treat this page as congested if the underlying BDI is or if
1018 * pages are cycling through the LRU so quickly that the
1019 * pages marked for immediate reclaim are making it to the
1020 * end of the LRU a second time.
1021 */
1022 mapping = page_mapping(page);
1023 if (((dirty || writeback) && mapping &&
1024 inode_write_congested(mapping->host)) ||
1025 (writeback && PageReclaim(page)))
1026 nr_congested++;
1027
1028 /*
1029 * If a page at the tail of the LRU is under writeback, there
1030 * are three cases to consider.
1031 *
1032 * 1) If reclaim is encountering an excessive number of pages
1033 * under writeback and this page is both under writeback and
1034 * PageReclaim then it indicates that pages are being queued
1035 * for IO but are being recycled through the LRU before the
1036 * IO can complete. Waiting on the page itself risks an
1037 * indefinite stall if it is impossible to writeback the
1038 * page due to IO error or disconnected storage so instead
1039 * note that the LRU is being scanned too quickly and the
1040 * caller can stall after page list has been processed.
1041 *
1042 * 2) Global or new memcg reclaim encounters a page that is
1043 * not marked for immediate reclaim, or the caller does not
1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 * not to fs). In this case mark the page for immediate
1046 * reclaim and continue scanning.
1047 *
1048 * Require may_enter_fs because we would wait on fs, which
1049 * may not have submitted IO yet. And the loop driver might
1050 * enter reclaim, and deadlock if it waits on a page for
1051 * which it is needed to do the write (loop masks off
1052 * __GFP_IO|__GFP_FS for this reason); but more thought
1053 * would probably show more reasons.
1054 *
1055 * 3) Legacy memcg encounters a page that is already marked
1056 * PageReclaim. memcg does not have any dirty pages
1057 * throttling so we could easily OOM just because too many
1058 * pages are in writeback and there is nothing else to
1059 * reclaim. Wait for the writeback to complete.
1060 *
1061 * In cases 1) and 2) we activate the pages to get them out of
1062 * the way while we continue scanning for clean pages on the
1063 * inactive list and refilling from the active list. The
1064 * observation here is that waiting for disk writes is more
1065 * expensive than potentially causing reloads down the line.
1066 * Since they're marked for immediate reclaim, they won't put
1067 * memory pressure on the cache working set any longer than it
1068 * takes to write them to disk.
1069 */
1070 if (PageWriteback(page)) {
1071 /* Case 1 above */
1072 if (current_is_kswapd() &&
1073 PageReclaim(page) &&
1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075 nr_immediate++;
1076 goto activate_locked;
1077
1078 /* Case 2 above */
1079 } else if (sane_reclaim(sc) ||
1080 !PageReclaim(page) || !may_enter_fs) {
1081 /*
1082 * This is slightly racy - end_page_writeback()
1083 * might have just cleared PageReclaim, then
1084 * setting PageReclaim here end up interpreted
1085 * as PageReadahead - but that does not matter
1086 * enough to care. What we do want is for this
1087 * page to have PageReclaim set next time memcg
1088 * reclaim reaches the tests above, so it will
1089 * then wait_on_page_writeback() to avoid OOM;
1090 * and it's also appropriate in global reclaim.
1091 */
1092 SetPageReclaim(page);
1093 nr_writeback++;
1094 goto activate_locked;
1095
1096 /* Case 3 above */
1097 } else {
1098 unlock_page(page);
1099 wait_on_page_writeback(page);
1100 /* then go back and try same page again */
1101 list_add_tail(&page->lru, page_list);
1102 continue;
1103 }
1104 }
1105
1106 if (!force_reclaim)
1107 references = page_check_references(page, sc);
1108
1109 switch (references) {
1110 case PAGEREF_ACTIVATE:
1111 goto activate_locked;
1112 case PAGEREF_KEEP:
1113 nr_ref_keep++;
1114 goto keep_locked;
1115 case PAGEREF_RECLAIM:
1116 case PAGEREF_RECLAIM_CLEAN:
1117 ; /* try to reclaim the page below */
1118 }
1119
1120 /*
1121 * Anonymous process memory has backing store?
1122 * Try to allocate it some swap space here.
1123 */
1124 if (PageAnon(page) && !PageSwapCache(page)) {
1125 if (!(sc->gfp_mask & __GFP_IO))
1126 goto keep_locked;
1127 if (!add_to_swap(page, page_list))
1128 goto activate_locked;
1129 lazyfree = true;
1130 may_enter_fs = 1;
1131
1132 /* Adding to swap updated mapping */
1133 mapping = page_mapping(page);
1134 } else if (unlikely(PageTransHuge(page))) {
1135 /* Split file THP */
1136 if (split_huge_page_to_list(page, page_list))
1137 goto keep_locked;
1138 }
1139
1140 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1141
1142 /*
1143 * The page is mapped into the page tables of one or more
1144 * processes. Try to unmap it here.
1145 */
1146 if (page_mapped(page) && mapping) {
1147 switch (ret = try_to_unmap(page, lazyfree ?
1148 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1149 (ttu_flags | TTU_BATCH_FLUSH))) {
1150 case SWAP_FAIL:
1151 nr_unmap_fail++;
1152 goto activate_locked;
1153 case SWAP_AGAIN:
1154 goto keep_locked;
1155 case SWAP_MLOCK:
1156 goto cull_mlocked;
1157 case SWAP_LZFREE:
1158 goto lazyfree;
1159 case SWAP_SUCCESS:
1160 ; /* try to free the page below */
1161 }
1162 }
1163
1164 if (PageDirty(page)) {
1165 /*
1166 * Only kswapd can writeback filesystem pages
1167 * to avoid risk of stack overflow. But avoid
1168 * injecting inefficient single-page IO into
1169 * flusher writeback as much as possible: only
1170 * write pages when we've encountered many
1171 * dirty pages, and when we've already scanned
1172 * the rest of the LRU for clean pages and see
1173 * the same dirty pages again (PageReclaim).
1174 */
1175 if (page_is_file_cache(page) &&
1176 (!current_is_kswapd() || !PageReclaim(page) ||
1177 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1178 /*
1179 * Immediately reclaim when written back.
1180 * Similar in principal to deactivate_page()
1181 * except we already have the page isolated
1182 * and know it's dirty
1183 */
1184 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1185 SetPageReclaim(page);
1186
1187 goto activate_locked;
1188 }
1189
1190 if (references == PAGEREF_RECLAIM_CLEAN)
1191 goto keep_locked;
1192 if (!may_enter_fs)
1193 goto keep_locked;
1194 if (!sc->may_writepage)
1195 goto keep_locked;
1196
1197 /*
1198 * Page is dirty. Flush the TLB if a writable entry
1199 * potentially exists to avoid CPU writes after IO
1200 * starts and then write it out here.
1201 */
1202 try_to_unmap_flush_dirty();
1203 switch (pageout(page, mapping, sc)) {
1204 case PAGE_KEEP:
1205 goto keep_locked;
1206 case PAGE_ACTIVATE:
1207 goto activate_locked;
1208 case PAGE_SUCCESS:
1209 if (PageWriteback(page))
1210 goto keep;
1211 if (PageDirty(page))
1212 goto keep;
1213
1214 /*
1215 * A synchronous write - probably a ramdisk. Go
1216 * ahead and try to reclaim the page.
1217 */
1218 if (!trylock_page(page))
1219 goto keep;
1220 if (PageDirty(page) || PageWriteback(page))
1221 goto keep_locked;
1222 mapping = page_mapping(page);
1223 case PAGE_CLEAN:
1224 ; /* try to free the page below */
1225 }
1226 }
1227
1228 /*
1229 * If the page has buffers, try to free the buffer mappings
1230 * associated with this page. If we succeed we try to free
1231 * the page as well.
1232 *
1233 * We do this even if the page is PageDirty().
1234 * try_to_release_page() does not perform I/O, but it is
1235 * possible for a page to have PageDirty set, but it is actually
1236 * clean (all its buffers are clean). This happens if the
1237 * buffers were written out directly, with submit_bh(). ext3
1238 * will do this, as well as the blockdev mapping.
1239 * try_to_release_page() will discover that cleanness and will
1240 * drop the buffers and mark the page clean - it can be freed.
1241 *
1242 * Rarely, pages can have buffers and no ->mapping. These are
1243 * the pages which were not successfully invalidated in
1244 * truncate_complete_page(). We try to drop those buffers here
1245 * and if that worked, and the page is no longer mapped into
1246 * process address space (page_count == 1) it can be freed.
1247 * Otherwise, leave the page on the LRU so it is swappable.
1248 */
1249 if (page_has_private(page)) {
1250 if (!try_to_release_page(page, sc->gfp_mask))
1251 goto activate_locked;
1252 if (!mapping && page_count(page) == 1) {
1253 unlock_page(page);
1254 if (put_page_testzero(page))
1255 goto free_it;
1256 else {
1257 /*
1258 * rare race with speculative reference.
1259 * the speculative reference will free
1260 * this page shortly, so we may
1261 * increment nr_reclaimed here (and
1262 * leave it off the LRU).
1263 */
1264 nr_reclaimed++;
1265 continue;
1266 }
1267 }
1268 }
1269
1270 lazyfree:
1271 if (!mapping || !__remove_mapping(mapping, page, true))
1272 goto keep_locked;
1273
1274 /*
1275 * At this point, we have no other references and there is
1276 * no way to pick any more up (removed from LRU, removed
1277 * from pagecache). Can use non-atomic bitops now (and
1278 * we obviously don't have to worry about waking up a process
1279 * waiting on the page lock, because there are no references.
1280 */
1281 __ClearPageLocked(page);
1282 free_it:
1283 if (ret == SWAP_LZFREE)
1284 count_vm_event(PGLAZYFREED);
1285
1286 nr_reclaimed++;
1287
1288 /*
1289 * Is there need to periodically free_page_list? It would
1290 * appear not as the counts should be low
1291 */
1292 list_add(&page->lru, &free_pages);
1293 continue;
1294
1295 cull_mlocked:
1296 if (PageSwapCache(page))
1297 try_to_free_swap(page);
1298 unlock_page(page);
1299 list_add(&page->lru, &ret_pages);
1300 continue;
1301
1302 activate_locked:
1303 /* Not a candidate for swapping, so reclaim swap space. */
1304 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1305 try_to_free_swap(page);
1306 VM_BUG_ON_PAGE(PageActive(page), page);
1307 SetPageActive(page);
1308 pgactivate++;
1309 keep_locked:
1310 unlock_page(page);
1311 keep:
1312 list_add(&page->lru, &ret_pages);
1313 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1314 }
1315
1316 mem_cgroup_uncharge_list(&free_pages);
1317 try_to_unmap_flush();
1318 free_hot_cold_page_list(&free_pages, true);
1319
1320 list_splice(&ret_pages, page_list);
1321 count_vm_events(PGACTIVATE, pgactivate);
1322
1323 if (stat) {
1324 stat->nr_dirty = nr_dirty;
1325 stat->nr_congested = nr_congested;
1326 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1327 stat->nr_writeback = nr_writeback;
1328 stat->nr_immediate = nr_immediate;
1329 stat->nr_activate = pgactivate;
1330 stat->nr_ref_keep = nr_ref_keep;
1331 stat->nr_unmap_fail = nr_unmap_fail;
1332 }
1333 return nr_reclaimed;
1334 }
1335
1336 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1337 struct list_head *page_list)
1338 {
1339 struct scan_control sc = {
1340 .gfp_mask = GFP_KERNEL,
1341 .priority = DEF_PRIORITY,
1342 .may_unmap = 1,
1343 };
1344 unsigned long ret;
1345 struct page *page, *next;
1346 LIST_HEAD(clean_pages);
1347
1348 list_for_each_entry_safe(page, next, page_list, lru) {
1349 if (page_is_file_cache(page) && !PageDirty(page) &&
1350 !__PageMovable(page)) {
1351 ClearPageActive(page);
1352 list_move(&page->lru, &clean_pages);
1353 }
1354 }
1355
1356 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1357 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1358 list_splice(&clean_pages, page_list);
1359 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1360 return ret;
1361 }
1362
1363 /*
1364 * Attempt to remove the specified page from its LRU. Only take this page
1365 * if it is of the appropriate PageActive status. Pages which are being
1366 * freed elsewhere are also ignored.
1367 *
1368 * page: page to consider
1369 * mode: one of the LRU isolation modes defined above
1370 *
1371 * returns 0 on success, -ve errno on failure.
1372 */
1373 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1374 {
1375 int ret = -EINVAL;
1376
1377 /* Only take pages on the LRU. */
1378 if (!PageLRU(page))
1379 return ret;
1380
1381 /* Compaction should not handle unevictable pages but CMA can do so */
1382 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1383 return ret;
1384
1385 ret = -EBUSY;
1386
1387 /*
1388 * To minimise LRU disruption, the caller can indicate that it only
1389 * wants to isolate pages it will be able to operate on without
1390 * blocking - clean pages for the most part.
1391 *
1392 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1393 * that it is possible to migrate without blocking
1394 */
1395 if (mode & ISOLATE_ASYNC_MIGRATE) {
1396 /* All the caller can do on PageWriteback is block */
1397 if (PageWriteback(page))
1398 return ret;
1399
1400 if (PageDirty(page)) {
1401 struct address_space *mapping;
1402
1403 /*
1404 * Only pages without mappings or that have a
1405 * ->migratepage callback are possible to migrate
1406 * without blocking
1407 */
1408 mapping = page_mapping(page);
1409 if (mapping && !mapping->a_ops->migratepage)
1410 return ret;
1411 }
1412 }
1413
1414 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1415 return ret;
1416
1417 if (likely(get_page_unless_zero(page))) {
1418 /*
1419 * Be careful not to clear PageLRU until after we're
1420 * sure the page is not being freed elsewhere -- the
1421 * page release code relies on it.
1422 */
1423 ClearPageLRU(page);
1424 ret = 0;
1425 }
1426
1427 return ret;
1428 }
1429
1430
1431 /*
1432 * Update LRU sizes after isolating pages. The LRU size updates must
1433 * be complete before mem_cgroup_update_lru_size due to a santity check.
1434 */
1435 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1436 enum lru_list lru, unsigned long *nr_zone_taken)
1437 {
1438 int zid;
1439
1440 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1441 if (!nr_zone_taken[zid])
1442 continue;
1443
1444 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1445 #ifdef CONFIG_MEMCG
1446 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1447 #endif
1448 }
1449
1450 }
1451
1452 /*
1453 * zone_lru_lock is heavily contended. Some of the functions that
1454 * shrink the lists perform better by taking out a batch of pages
1455 * and working on them outside the LRU lock.
1456 *
1457 * For pagecache intensive workloads, this function is the hottest
1458 * spot in the kernel (apart from copy_*_user functions).
1459 *
1460 * Appropriate locks must be held before calling this function.
1461 *
1462 * @nr_to_scan: The number of pages to look through on the list.
1463 * @lruvec: The LRU vector to pull pages from.
1464 * @dst: The temp list to put pages on to.
1465 * @nr_scanned: The number of pages that were scanned.
1466 * @sc: The scan_control struct for this reclaim session
1467 * @mode: One of the LRU isolation modes
1468 * @lru: LRU list id for isolating
1469 *
1470 * returns how many pages were moved onto *@dst.
1471 */
1472 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1473 struct lruvec *lruvec, struct list_head *dst,
1474 unsigned long *nr_scanned, struct scan_control *sc,
1475 isolate_mode_t mode, enum lru_list lru)
1476 {
1477 struct list_head *src = &lruvec->lists[lru];
1478 unsigned long nr_taken = 0;
1479 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1480 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1481 unsigned long skipped = 0, total_skipped = 0;
1482 unsigned long scan, nr_pages;
1483 LIST_HEAD(pages_skipped);
1484
1485 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1486 !list_empty(src);) {
1487 struct page *page;
1488
1489 page = lru_to_page(src);
1490 prefetchw_prev_lru_page(page, src, flags);
1491
1492 VM_BUG_ON_PAGE(!PageLRU(page), page);
1493
1494 if (page_zonenum(page) > sc->reclaim_idx) {
1495 list_move(&page->lru, &pages_skipped);
1496 nr_skipped[page_zonenum(page)]++;
1497 continue;
1498 }
1499
1500 /*
1501 * Account for scanned and skipped separetly to avoid the pgdat
1502 * being prematurely marked unreclaimable by pgdat_reclaimable.
1503 */
1504 scan++;
1505
1506 switch (__isolate_lru_page(page, mode)) {
1507 case 0:
1508 nr_pages = hpage_nr_pages(page);
1509 nr_taken += nr_pages;
1510 nr_zone_taken[page_zonenum(page)] += nr_pages;
1511 list_move(&page->lru, dst);
1512 break;
1513
1514 case -EBUSY:
1515 /* else it is being freed elsewhere */
1516 list_move(&page->lru, src);
1517 continue;
1518
1519 default:
1520 BUG();
1521 }
1522 }
1523
1524 /*
1525 * Splice any skipped pages to the start of the LRU list. Note that
1526 * this disrupts the LRU order when reclaiming for lower zones but
1527 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1528 * scanning would soon rescan the same pages to skip and put the
1529 * system at risk of premature OOM.
1530 */
1531 if (!list_empty(&pages_skipped)) {
1532 int zid;
1533
1534 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1535 if (!nr_skipped[zid])
1536 continue;
1537
1538 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1539 skipped += nr_skipped[zid];
1540 }
1541
1542 /*
1543 * Account skipped pages as a partial scan as the pgdat may be
1544 * close to unreclaimable. If the LRU list is empty, account
1545 * skipped pages as a full scan.
1546 */
1547 total_skipped = list_empty(src) ? skipped : skipped >> 2;
1548
1549 list_splice(&pages_skipped, src);
1550 }
1551 *nr_scanned = scan + total_skipped;
1552 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1553 scan, skipped, nr_taken, mode, lru);
1554 update_lru_sizes(lruvec, lru, nr_zone_taken);
1555 return nr_taken;
1556 }
1557
1558 /**
1559 * isolate_lru_page - tries to isolate a page from its LRU list
1560 * @page: page to isolate from its LRU list
1561 *
1562 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1563 * vmstat statistic corresponding to whatever LRU list the page was on.
1564 *
1565 * Returns 0 if the page was removed from an LRU list.
1566 * Returns -EBUSY if the page was not on an LRU list.
1567 *
1568 * The returned page will have PageLRU() cleared. If it was found on
1569 * the active list, it will have PageActive set. If it was found on
1570 * the unevictable list, it will have the PageUnevictable bit set. That flag
1571 * may need to be cleared by the caller before letting the page go.
1572 *
1573 * The vmstat statistic corresponding to the list on which the page was
1574 * found will be decremented.
1575 *
1576 * Restrictions:
1577 * (1) Must be called with an elevated refcount on the page. This is a
1578 * fundamentnal difference from isolate_lru_pages (which is called
1579 * without a stable reference).
1580 * (2) the lru_lock must not be held.
1581 * (3) interrupts must be enabled.
1582 */
1583 int isolate_lru_page(struct page *page)
1584 {
1585 int ret = -EBUSY;
1586
1587 VM_BUG_ON_PAGE(!page_count(page), page);
1588 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1589
1590 if (PageLRU(page)) {
1591 struct zone *zone = page_zone(page);
1592 struct lruvec *lruvec;
1593
1594 spin_lock_irq(zone_lru_lock(zone));
1595 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1596 if (PageLRU(page)) {
1597 int lru = page_lru(page);
1598 get_page(page);
1599 ClearPageLRU(page);
1600 del_page_from_lru_list(page, lruvec, lru);
1601 ret = 0;
1602 }
1603 spin_unlock_irq(zone_lru_lock(zone));
1604 }
1605 return ret;
1606 }
1607
1608 /*
1609 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1610 * then get resheduled. When there are massive number of tasks doing page
1611 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1612 * the LRU list will go small and be scanned faster than necessary, leading to
1613 * unnecessary swapping, thrashing and OOM.
1614 */
1615 static int too_many_isolated(struct pglist_data *pgdat, int file,
1616 struct scan_control *sc)
1617 {
1618 unsigned long inactive, isolated;
1619
1620 if (current_is_kswapd())
1621 return 0;
1622
1623 if (!sane_reclaim(sc))
1624 return 0;
1625
1626 if (file) {
1627 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1628 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1629 } else {
1630 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1631 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1632 }
1633
1634 /*
1635 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1636 * won't get blocked by normal direct-reclaimers, forming a circular
1637 * deadlock.
1638 */
1639 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1640 inactive >>= 3;
1641
1642 return isolated > inactive;
1643 }
1644
1645 static noinline_for_stack void
1646 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1647 {
1648 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1649 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1650 LIST_HEAD(pages_to_free);
1651
1652 /*
1653 * Put back any unfreeable pages.
1654 */
1655 while (!list_empty(page_list)) {
1656 struct page *page = lru_to_page(page_list);
1657 int lru;
1658
1659 VM_BUG_ON_PAGE(PageLRU(page), page);
1660 list_del(&page->lru);
1661 if (unlikely(!page_evictable(page))) {
1662 spin_unlock_irq(&pgdat->lru_lock);
1663 putback_lru_page(page);
1664 spin_lock_irq(&pgdat->lru_lock);
1665 continue;
1666 }
1667
1668 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1669
1670 SetPageLRU(page);
1671 lru = page_lru(page);
1672 add_page_to_lru_list(page, lruvec, lru);
1673
1674 if (is_active_lru(lru)) {
1675 int file = is_file_lru(lru);
1676 int numpages = hpage_nr_pages(page);
1677 reclaim_stat->recent_rotated[file] += numpages;
1678 }
1679 if (put_page_testzero(page)) {
1680 __ClearPageLRU(page);
1681 __ClearPageActive(page);
1682 del_page_from_lru_list(page, lruvec, lru);
1683
1684 if (unlikely(PageCompound(page))) {
1685 spin_unlock_irq(&pgdat->lru_lock);
1686 mem_cgroup_uncharge(page);
1687 (*get_compound_page_dtor(page))(page);
1688 spin_lock_irq(&pgdat->lru_lock);
1689 } else
1690 list_add(&page->lru, &pages_to_free);
1691 }
1692 }
1693
1694 /*
1695 * To save our caller's stack, now use input list for pages to free.
1696 */
1697 list_splice(&pages_to_free, page_list);
1698 }
1699
1700 /*
1701 * If a kernel thread (such as nfsd for loop-back mounts) services
1702 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1703 * In that case we should only throttle if the backing device it is
1704 * writing to is congested. In other cases it is safe to throttle.
1705 */
1706 static int current_may_throttle(void)
1707 {
1708 return !(current->flags & PF_LESS_THROTTLE) ||
1709 current->backing_dev_info == NULL ||
1710 bdi_write_congested(current->backing_dev_info);
1711 }
1712
1713 /*
1714 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1715 * of reclaimed pages
1716 */
1717 static noinline_for_stack unsigned long
1718 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719 struct scan_control *sc, enum lru_list lru)
1720 {
1721 LIST_HEAD(page_list);
1722 unsigned long nr_scanned;
1723 unsigned long nr_reclaimed = 0;
1724 unsigned long nr_taken;
1725 struct reclaim_stat stat = {};
1726 isolate_mode_t isolate_mode = 0;
1727 int file = is_file_lru(lru);
1728 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1729 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1730
1731 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1732 congestion_wait(BLK_RW_ASYNC, HZ/10);
1733
1734 /* We are about to die and free our memory. Return now. */
1735 if (fatal_signal_pending(current))
1736 return SWAP_CLUSTER_MAX;
1737 }
1738
1739 lru_add_drain();
1740
1741 if (!sc->may_unmap)
1742 isolate_mode |= ISOLATE_UNMAPPED;
1743
1744 spin_lock_irq(&pgdat->lru_lock);
1745
1746 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1747 &nr_scanned, sc, isolate_mode, lru);
1748
1749 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1750 reclaim_stat->recent_scanned[file] += nr_taken;
1751
1752 if (global_reclaim(sc)) {
1753 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1754 if (current_is_kswapd())
1755 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1756 else
1757 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1758 }
1759 spin_unlock_irq(&pgdat->lru_lock);
1760
1761 if (nr_taken == 0)
1762 return 0;
1763
1764 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1765 &stat, false);
1766
1767 spin_lock_irq(&pgdat->lru_lock);
1768
1769 if (global_reclaim(sc)) {
1770 if (current_is_kswapd())
1771 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1772 else
1773 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1774 }
1775
1776 putback_inactive_pages(lruvec, &page_list);
1777
1778 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1779
1780 spin_unlock_irq(&pgdat->lru_lock);
1781
1782 mem_cgroup_uncharge_list(&page_list);
1783 free_hot_cold_page_list(&page_list, true);
1784
1785 /*
1786 * If reclaim is isolating dirty pages under writeback, it implies
1787 * that the long-lived page allocation rate is exceeding the page
1788 * laundering rate. Either the global limits are not being effective
1789 * at throttling processes due to the page distribution throughout
1790 * zones or there is heavy usage of a slow backing device. The
1791 * only option is to throttle from reclaim context which is not ideal
1792 * as there is no guarantee the dirtying process is throttled in the
1793 * same way balance_dirty_pages() manages.
1794 *
1795 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1796 * of pages under pages flagged for immediate reclaim and stall if any
1797 * are encountered in the nr_immediate check below.
1798 */
1799 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1800 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1801
1802 /*
1803 * Legacy memcg will stall in page writeback so avoid forcibly
1804 * stalling here.
1805 */
1806 if (sane_reclaim(sc)) {
1807 /*
1808 * Tag a zone as congested if all the dirty pages scanned were
1809 * backed by a congested BDI and wait_iff_congested will stall.
1810 */
1811 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1812 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1813
1814 /*
1815 * If dirty pages are scanned that are not queued for IO, it
1816 * implies that flushers are not doing their job. This can
1817 * happen when memory pressure pushes dirty pages to the end of
1818 * the LRU before the dirty limits are breached and the dirty
1819 * data has expired. It can also happen when the proportion of
1820 * dirty pages grows not through writes but through memory
1821 * pressure reclaiming all the clean cache. And in some cases,
1822 * the flushers simply cannot keep up with the allocation
1823 * rate. Nudge the flusher threads in case they are asleep, but
1824 * also allow kswapd to start writing pages during reclaim.
1825 */
1826 if (stat.nr_unqueued_dirty == nr_taken) {
1827 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1828 set_bit(PGDAT_DIRTY, &pgdat->flags);
1829 }
1830
1831 /*
1832 * If kswapd scans pages marked marked for immediate
1833 * reclaim and under writeback (nr_immediate), it implies
1834 * that pages are cycling through the LRU faster than
1835 * they are written so also forcibly stall.
1836 */
1837 if (stat.nr_immediate && current_may_throttle())
1838 congestion_wait(BLK_RW_ASYNC, HZ/10);
1839 }
1840
1841 /*
1842 * Stall direct reclaim for IO completions if underlying BDIs or zone
1843 * is congested. Allow kswapd to continue until it starts encountering
1844 * unqueued dirty pages or cycling through the LRU too quickly.
1845 */
1846 if (!sc->hibernation_mode && !current_is_kswapd() &&
1847 current_may_throttle())
1848 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1849
1850 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1851 nr_scanned, nr_reclaimed,
1852 stat.nr_dirty, stat.nr_writeback,
1853 stat.nr_congested, stat.nr_immediate,
1854 stat.nr_activate, stat.nr_ref_keep,
1855 stat.nr_unmap_fail,
1856 sc->priority, file);
1857 return nr_reclaimed;
1858 }
1859
1860 /*
1861 * This moves pages from the active list to the inactive list.
1862 *
1863 * We move them the other way if the page is referenced by one or more
1864 * processes, from rmap.
1865 *
1866 * If the pages are mostly unmapped, the processing is fast and it is
1867 * appropriate to hold zone_lru_lock across the whole operation. But if
1868 * the pages are mapped, the processing is slow (page_referenced()) so we
1869 * should drop zone_lru_lock around each page. It's impossible to balance
1870 * this, so instead we remove the pages from the LRU while processing them.
1871 * It is safe to rely on PG_active against the non-LRU pages in here because
1872 * nobody will play with that bit on a non-LRU page.
1873 *
1874 * The downside is that we have to touch page->_refcount against each page.
1875 * But we had to alter page->flags anyway.
1876 *
1877 * Returns the number of pages moved to the given lru.
1878 */
1879
1880 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1881 struct list_head *list,
1882 struct list_head *pages_to_free,
1883 enum lru_list lru)
1884 {
1885 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886 struct page *page;
1887 int nr_pages;
1888 int nr_moved = 0;
1889
1890 while (!list_empty(list)) {
1891 page = lru_to_page(list);
1892 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1893
1894 VM_BUG_ON_PAGE(PageLRU(page), page);
1895 SetPageLRU(page);
1896
1897 nr_pages = hpage_nr_pages(page);
1898 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899 list_move(&page->lru, &lruvec->lists[lru]);
1900
1901 if (put_page_testzero(page)) {
1902 __ClearPageLRU(page);
1903 __ClearPageActive(page);
1904 del_page_from_lru_list(page, lruvec, lru);
1905
1906 if (unlikely(PageCompound(page))) {
1907 spin_unlock_irq(&pgdat->lru_lock);
1908 mem_cgroup_uncharge(page);
1909 (*get_compound_page_dtor(page))(page);
1910 spin_lock_irq(&pgdat->lru_lock);
1911 } else
1912 list_add(&page->lru, pages_to_free);
1913 } else {
1914 nr_moved += nr_pages;
1915 }
1916 }
1917
1918 if (!is_active_lru(lru))
1919 __count_vm_events(PGDEACTIVATE, nr_moved);
1920
1921 return nr_moved;
1922 }
1923
1924 static void shrink_active_list(unsigned long nr_to_scan,
1925 struct lruvec *lruvec,
1926 struct scan_control *sc,
1927 enum lru_list lru)
1928 {
1929 unsigned long nr_taken;
1930 unsigned long nr_scanned;
1931 unsigned long vm_flags;
1932 LIST_HEAD(l_hold); /* The pages which were snipped off */
1933 LIST_HEAD(l_active);
1934 LIST_HEAD(l_inactive);
1935 struct page *page;
1936 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1937 unsigned nr_deactivate, nr_activate;
1938 unsigned nr_rotated = 0;
1939 isolate_mode_t isolate_mode = 0;
1940 int file = is_file_lru(lru);
1941 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1942
1943 lru_add_drain();
1944
1945 if (!sc->may_unmap)
1946 isolate_mode |= ISOLATE_UNMAPPED;
1947
1948 spin_lock_irq(&pgdat->lru_lock);
1949
1950 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1951 &nr_scanned, sc, isolate_mode, lru);
1952
1953 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1954 reclaim_stat->recent_scanned[file] += nr_taken;
1955
1956 if (global_reclaim(sc))
1957 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1958 __count_vm_events(PGREFILL, nr_scanned);
1959
1960 spin_unlock_irq(&pgdat->lru_lock);
1961
1962 while (!list_empty(&l_hold)) {
1963 cond_resched();
1964 page = lru_to_page(&l_hold);
1965 list_del(&page->lru);
1966
1967 if (unlikely(!page_evictable(page))) {
1968 putback_lru_page(page);
1969 continue;
1970 }
1971
1972 if (unlikely(buffer_heads_over_limit)) {
1973 if (page_has_private(page) && trylock_page(page)) {
1974 if (page_has_private(page))
1975 try_to_release_page(page, 0);
1976 unlock_page(page);
1977 }
1978 }
1979
1980 if (page_referenced(page, 0, sc->target_mem_cgroup,
1981 &vm_flags)) {
1982 nr_rotated += hpage_nr_pages(page);
1983 /*
1984 * Identify referenced, file-backed active pages and
1985 * give them one more trip around the active list. So
1986 * that executable code get better chances to stay in
1987 * memory under moderate memory pressure. Anon pages
1988 * are not likely to be evicted by use-once streaming
1989 * IO, plus JVM can create lots of anon VM_EXEC pages,
1990 * so we ignore them here.
1991 */
1992 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1993 list_add(&page->lru, &l_active);
1994 continue;
1995 }
1996 }
1997
1998 ClearPageActive(page); /* we are de-activating */
1999 list_add(&page->lru, &l_inactive);
2000 }
2001
2002 /*
2003 * Move pages back to the lru list.
2004 */
2005 spin_lock_irq(&pgdat->lru_lock);
2006 /*
2007 * Count referenced pages from currently used mappings as rotated,
2008 * even though only some of them are actually re-activated. This
2009 * helps balance scan pressure between file and anonymous pages in
2010 * get_scan_count.
2011 */
2012 reclaim_stat->recent_rotated[file] += nr_rotated;
2013
2014 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2015 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2016 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2017 spin_unlock_irq(&pgdat->lru_lock);
2018
2019 mem_cgroup_uncharge_list(&l_hold);
2020 free_hot_cold_page_list(&l_hold, true);
2021 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2022 nr_deactivate, nr_rotated, sc->priority, file);
2023 }
2024
2025 /*
2026 * The inactive anon list should be small enough that the VM never has
2027 * to do too much work.
2028 *
2029 * The inactive file list should be small enough to leave most memory
2030 * to the established workingset on the scan-resistant active list,
2031 * but large enough to avoid thrashing the aggregate readahead window.
2032 *
2033 * Both inactive lists should also be large enough that each inactive
2034 * page has a chance to be referenced again before it is reclaimed.
2035 *
2036 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2037 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2038 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2039 *
2040 * total target max
2041 * memory ratio inactive
2042 * -------------------------------------
2043 * 10MB 1 5MB
2044 * 100MB 1 50MB
2045 * 1GB 3 250MB
2046 * 10GB 10 0.9GB
2047 * 100GB 31 3GB
2048 * 1TB 101 10GB
2049 * 10TB 320 32GB
2050 */
2051 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2052 struct scan_control *sc, bool trace)
2053 {
2054 unsigned long inactive_ratio;
2055 unsigned long inactive, active;
2056 enum lru_list inactive_lru = file * LRU_FILE;
2057 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2058 unsigned long gb;
2059
2060 /*
2061 * If we don't have swap space, anonymous page deactivation
2062 * is pointless.
2063 */
2064 if (!file && !total_swap_pages)
2065 return false;
2066
2067 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2068 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2069
2070 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2071 if (gb)
2072 inactive_ratio = int_sqrt(10 * gb);
2073 else
2074 inactive_ratio = 1;
2075
2076 if (trace)
2077 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2078 sc->reclaim_idx,
2079 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2080 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2081 inactive_ratio, file);
2082
2083 return inactive * inactive_ratio < active;
2084 }
2085
2086 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2087 struct lruvec *lruvec, struct scan_control *sc)
2088 {
2089 if (is_active_lru(lru)) {
2090 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2091 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2092 return 0;
2093 }
2094
2095 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2096 }
2097
2098 enum scan_balance {
2099 SCAN_EQUAL,
2100 SCAN_FRACT,
2101 SCAN_ANON,
2102 SCAN_FILE,
2103 };
2104
2105 /*
2106 * Determine how aggressively the anon and file LRU lists should be
2107 * scanned. The relative value of each set of LRU lists is determined
2108 * by looking at the fraction of the pages scanned we did rotate back
2109 * onto the active list instead of evict.
2110 *
2111 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2112 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2113 */
2114 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2115 struct scan_control *sc, unsigned long *nr,
2116 unsigned long *lru_pages)
2117 {
2118 int swappiness = mem_cgroup_swappiness(memcg);
2119 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2120 u64 fraction[2];
2121 u64 denominator = 0; /* gcc */
2122 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2123 unsigned long anon_prio, file_prio;
2124 enum scan_balance scan_balance;
2125 unsigned long anon, file;
2126 bool force_scan = false;
2127 unsigned long ap, fp;
2128 enum lru_list lru;
2129 bool some_scanned;
2130 int pass;
2131
2132 /*
2133 * If the zone or memcg is small, nr[l] can be 0. This
2134 * results in no scanning on this priority and a potential
2135 * priority drop. Global direct reclaim can go to the next
2136 * zone and tends to have no problems. Global kswapd is for
2137 * zone balancing and it needs to scan a minimum amount. When
2138 * reclaiming for a memcg, a priority drop can cause high
2139 * latencies, so it's better to scan a minimum amount there as
2140 * well.
2141 */
2142 if (current_is_kswapd()) {
2143 if (!pgdat_reclaimable(pgdat))
2144 force_scan = true;
2145 if (!mem_cgroup_online(memcg))
2146 force_scan = true;
2147 }
2148 if (!global_reclaim(sc))
2149 force_scan = true;
2150
2151 /* If we have no swap space, do not bother scanning anon pages. */
2152 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2153 scan_balance = SCAN_FILE;
2154 goto out;
2155 }
2156
2157 /*
2158 * Global reclaim will swap to prevent OOM even with no
2159 * swappiness, but memcg users want to use this knob to
2160 * disable swapping for individual groups completely when
2161 * using the memory controller's swap limit feature would be
2162 * too expensive.
2163 */
2164 if (!global_reclaim(sc) && !swappiness) {
2165 scan_balance = SCAN_FILE;
2166 goto out;
2167 }
2168
2169 /*
2170 * Do not apply any pressure balancing cleverness when the
2171 * system is close to OOM, scan both anon and file equally
2172 * (unless the swappiness setting disagrees with swapping).
2173 */
2174 if (!sc->priority && swappiness) {
2175 scan_balance = SCAN_EQUAL;
2176 goto out;
2177 }
2178
2179 /*
2180 * Prevent the reclaimer from falling into the cache trap: as
2181 * cache pages start out inactive, every cache fault will tip
2182 * the scan balance towards the file LRU. And as the file LRU
2183 * shrinks, so does the window for rotation from references.
2184 * This means we have a runaway feedback loop where a tiny
2185 * thrashing file LRU becomes infinitely more attractive than
2186 * anon pages. Try to detect this based on file LRU size.
2187 */
2188 if (global_reclaim(sc)) {
2189 unsigned long pgdatfile;
2190 unsigned long pgdatfree;
2191 int z;
2192 unsigned long total_high_wmark = 0;
2193
2194 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2195 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2196 node_page_state(pgdat, NR_INACTIVE_FILE);
2197
2198 for (z = 0; z < MAX_NR_ZONES; z++) {
2199 struct zone *zone = &pgdat->node_zones[z];
2200 if (!managed_zone(zone))
2201 continue;
2202
2203 total_high_wmark += high_wmark_pages(zone);
2204 }
2205
2206 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2207 scan_balance = SCAN_ANON;
2208 goto out;
2209 }
2210 }
2211
2212 /*
2213 * If there is enough inactive page cache, i.e. if the size of the
2214 * inactive list is greater than that of the active list *and* the
2215 * inactive list actually has some pages to scan on this priority, we
2216 * do not reclaim anything from the anonymous working set right now.
2217 * Without the second condition we could end up never scanning an
2218 * lruvec even if it has plenty of old anonymous pages unless the
2219 * system is under heavy pressure.
2220 */
2221 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2222 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2223 scan_balance = SCAN_FILE;
2224 goto out;
2225 }
2226
2227 scan_balance = SCAN_FRACT;
2228
2229 /*
2230 * With swappiness at 100, anonymous and file have the same priority.
2231 * This scanning priority is essentially the inverse of IO cost.
2232 */
2233 anon_prio = swappiness;
2234 file_prio = 200 - anon_prio;
2235
2236 /*
2237 * OK, so we have swap space and a fair amount of page cache
2238 * pages. We use the recently rotated / recently scanned
2239 * ratios to determine how valuable each cache is.
2240 *
2241 * Because workloads change over time (and to avoid overflow)
2242 * we keep these statistics as a floating average, which ends
2243 * up weighing recent references more than old ones.
2244 *
2245 * anon in [0], file in [1]
2246 */
2247
2248 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2249 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2250 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2251 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2252
2253 spin_lock_irq(&pgdat->lru_lock);
2254 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2255 reclaim_stat->recent_scanned[0] /= 2;
2256 reclaim_stat->recent_rotated[0] /= 2;
2257 }
2258
2259 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2260 reclaim_stat->recent_scanned[1] /= 2;
2261 reclaim_stat->recent_rotated[1] /= 2;
2262 }
2263
2264 /*
2265 * The amount of pressure on anon vs file pages is inversely
2266 * proportional to the fraction of recently scanned pages on
2267 * each list that were recently referenced and in active use.
2268 */
2269 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2270 ap /= reclaim_stat->recent_rotated[0] + 1;
2271
2272 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2273 fp /= reclaim_stat->recent_rotated[1] + 1;
2274 spin_unlock_irq(&pgdat->lru_lock);
2275
2276 fraction[0] = ap;
2277 fraction[1] = fp;
2278 denominator = ap + fp + 1;
2279 out:
2280 some_scanned = false;
2281 /* Only use force_scan on second pass. */
2282 for (pass = 0; !some_scanned && pass < 2; pass++) {
2283 *lru_pages = 0;
2284 for_each_evictable_lru(lru) {
2285 int file = is_file_lru(lru);
2286 unsigned long size;
2287 unsigned long scan;
2288
2289 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2290 scan = size >> sc->priority;
2291
2292 if (!scan && pass && force_scan)
2293 scan = min(size, SWAP_CLUSTER_MAX);
2294
2295 switch (scan_balance) {
2296 case SCAN_EQUAL:
2297 /* Scan lists relative to size */
2298 break;
2299 case SCAN_FRACT:
2300 /*
2301 * Scan types proportional to swappiness and
2302 * their relative recent reclaim efficiency.
2303 */
2304 scan = div64_u64(scan * fraction[file],
2305 denominator);
2306 break;
2307 case SCAN_FILE:
2308 case SCAN_ANON:
2309 /* Scan one type exclusively */
2310 if ((scan_balance == SCAN_FILE) != file) {
2311 size = 0;
2312 scan = 0;
2313 }
2314 break;
2315 default:
2316 /* Look ma, no brain */
2317 BUG();
2318 }
2319
2320 *lru_pages += size;
2321 nr[lru] = scan;
2322
2323 /*
2324 * Skip the second pass and don't force_scan,
2325 * if we found something to scan.
2326 */
2327 some_scanned |= !!scan;
2328 }
2329 }
2330 }
2331
2332 /*
2333 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2334 */
2335 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2336 struct scan_control *sc, unsigned long *lru_pages)
2337 {
2338 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2339 unsigned long nr[NR_LRU_LISTS];
2340 unsigned long targets[NR_LRU_LISTS];
2341 unsigned long nr_to_scan;
2342 enum lru_list lru;
2343 unsigned long nr_reclaimed = 0;
2344 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2345 struct blk_plug plug;
2346 bool scan_adjusted;
2347
2348 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2349
2350 /* Record the original scan target for proportional adjustments later */
2351 memcpy(targets, nr, sizeof(nr));
2352
2353 /*
2354 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2355 * event that can occur when there is little memory pressure e.g.
2356 * multiple streaming readers/writers. Hence, we do not abort scanning
2357 * when the requested number of pages are reclaimed when scanning at
2358 * DEF_PRIORITY on the assumption that the fact we are direct
2359 * reclaiming implies that kswapd is not keeping up and it is best to
2360 * do a batch of work at once. For memcg reclaim one check is made to
2361 * abort proportional reclaim if either the file or anon lru has already
2362 * dropped to zero at the first pass.
2363 */
2364 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2365 sc->priority == DEF_PRIORITY);
2366
2367 blk_start_plug(&plug);
2368 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2369 nr[LRU_INACTIVE_FILE]) {
2370 unsigned long nr_anon, nr_file, percentage;
2371 unsigned long nr_scanned;
2372
2373 for_each_evictable_lru(lru) {
2374 if (nr[lru]) {
2375 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2376 nr[lru] -= nr_to_scan;
2377
2378 nr_reclaimed += shrink_list(lru, nr_to_scan,
2379 lruvec, sc);
2380 }
2381 }
2382
2383 cond_resched();
2384
2385 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2386 continue;
2387
2388 /*
2389 * For kswapd and memcg, reclaim at least the number of pages
2390 * requested. Ensure that the anon and file LRUs are scanned
2391 * proportionally what was requested by get_scan_count(). We
2392 * stop reclaiming one LRU and reduce the amount scanning
2393 * proportional to the original scan target.
2394 */
2395 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2396 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2397
2398 /*
2399 * It's just vindictive to attack the larger once the smaller
2400 * has gone to zero. And given the way we stop scanning the
2401 * smaller below, this makes sure that we only make one nudge
2402 * towards proportionality once we've got nr_to_reclaim.
2403 */
2404 if (!nr_file || !nr_anon)
2405 break;
2406
2407 if (nr_file > nr_anon) {
2408 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2409 targets[LRU_ACTIVE_ANON] + 1;
2410 lru = LRU_BASE;
2411 percentage = nr_anon * 100 / scan_target;
2412 } else {
2413 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2414 targets[LRU_ACTIVE_FILE] + 1;
2415 lru = LRU_FILE;
2416 percentage = nr_file * 100 / scan_target;
2417 }
2418
2419 /* Stop scanning the smaller of the LRU */
2420 nr[lru] = 0;
2421 nr[lru + LRU_ACTIVE] = 0;
2422
2423 /*
2424 * Recalculate the other LRU scan count based on its original
2425 * scan target and the percentage scanning already complete
2426 */
2427 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2428 nr_scanned = targets[lru] - nr[lru];
2429 nr[lru] = targets[lru] * (100 - percentage) / 100;
2430 nr[lru] -= min(nr[lru], nr_scanned);
2431
2432 lru += LRU_ACTIVE;
2433 nr_scanned = targets[lru] - nr[lru];
2434 nr[lru] = targets[lru] * (100 - percentage) / 100;
2435 nr[lru] -= min(nr[lru], nr_scanned);
2436
2437 scan_adjusted = true;
2438 }
2439 blk_finish_plug(&plug);
2440 sc->nr_reclaimed += nr_reclaimed;
2441
2442 /*
2443 * Even if we did not try to evict anon pages at all, we want to
2444 * rebalance the anon lru active/inactive ratio.
2445 */
2446 if (inactive_list_is_low(lruvec, false, sc, true))
2447 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2448 sc, LRU_ACTIVE_ANON);
2449 }
2450
2451 /* Use reclaim/compaction for costly allocs or under memory pressure */
2452 static bool in_reclaim_compaction(struct scan_control *sc)
2453 {
2454 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2455 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2456 sc->priority < DEF_PRIORITY - 2))
2457 return true;
2458
2459 return false;
2460 }
2461
2462 /*
2463 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2464 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2465 * true if more pages should be reclaimed such that when the page allocator
2466 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2467 * It will give up earlier than that if there is difficulty reclaiming pages.
2468 */
2469 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2470 unsigned long nr_reclaimed,
2471 unsigned long nr_scanned,
2472 struct scan_control *sc)
2473 {
2474 unsigned long pages_for_compaction;
2475 unsigned long inactive_lru_pages;
2476 int z;
2477
2478 /* If not in reclaim/compaction mode, stop */
2479 if (!in_reclaim_compaction(sc))
2480 return false;
2481
2482 /* Consider stopping depending on scan and reclaim activity */
2483 if (sc->gfp_mask & __GFP_REPEAT) {
2484 /*
2485 * For __GFP_REPEAT allocations, stop reclaiming if the
2486 * full LRU list has been scanned and we are still failing
2487 * to reclaim pages. This full LRU scan is potentially
2488 * expensive but a __GFP_REPEAT caller really wants to succeed
2489 */
2490 if (!nr_reclaimed && !nr_scanned)
2491 return false;
2492 } else {
2493 /*
2494 * For non-__GFP_REPEAT allocations which can presumably
2495 * fail without consequence, stop if we failed to reclaim
2496 * any pages from the last SWAP_CLUSTER_MAX number of
2497 * pages that were scanned. This will return to the
2498 * caller faster at the risk reclaim/compaction and
2499 * the resulting allocation attempt fails
2500 */
2501 if (!nr_reclaimed)
2502 return false;
2503 }
2504
2505 /*
2506 * If we have not reclaimed enough pages for compaction and the
2507 * inactive lists are large enough, continue reclaiming
2508 */
2509 pages_for_compaction = compact_gap(sc->order);
2510 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2511 if (get_nr_swap_pages() > 0)
2512 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2513 if (sc->nr_reclaimed < pages_for_compaction &&
2514 inactive_lru_pages > pages_for_compaction)
2515 return true;
2516
2517 /* If compaction would go ahead or the allocation would succeed, stop */
2518 for (z = 0; z <= sc->reclaim_idx; z++) {
2519 struct zone *zone = &pgdat->node_zones[z];
2520 if (!managed_zone(zone))
2521 continue;
2522
2523 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2524 case COMPACT_SUCCESS:
2525 case COMPACT_CONTINUE:
2526 return false;
2527 default:
2528 /* check next zone */
2529 ;
2530 }
2531 }
2532 return true;
2533 }
2534
2535 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2536 {
2537 struct reclaim_state *reclaim_state = current->reclaim_state;
2538 unsigned long nr_reclaimed, nr_scanned;
2539 bool reclaimable = false;
2540
2541 do {
2542 struct mem_cgroup *root = sc->target_mem_cgroup;
2543 struct mem_cgroup_reclaim_cookie reclaim = {
2544 .pgdat = pgdat,
2545 .priority = sc->priority,
2546 };
2547 unsigned long node_lru_pages = 0;
2548 struct mem_cgroup *memcg;
2549
2550 nr_reclaimed = sc->nr_reclaimed;
2551 nr_scanned = sc->nr_scanned;
2552
2553 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2554 do {
2555 unsigned long lru_pages;
2556 unsigned long reclaimed;
2557 unsigned long scanned;
2558
2559 if (mem_cgroup_low(root, memcg)) {
2560 if (!sc->may_thrash)
2561 continue;
2562 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2563 }
2564
2565 reclaimed = sc->nr_reclaimed;
2566 scanned = sc->nr_scanned;
2567
2568 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2569 node_lru_pages += lru_pages;
2570
2571 if (memcg)
2572 shrink_slab(sc->gfp_mask, pgdat->node_id,
2573 memcg, sc->nr_scanned - scanned,
2574 lru_pages);
2575
2576 /* Record the group's reclaim efficiency */
2577 vmpressure(sc->gfp_mask, memcg, false,
2578 sc->nr_scanned - scanned,
2579 sc->nr_reclaimed - reclaimed);
2580
2581 /*
2582 * Direct reclaim and kswapd have to scan all memory
2583 * cgroups to fulfill the overall scan target for the
2584 * node.
2585 *
2586 * Limit reclaim, on the other hand, only cares about
2587 * nr_to_reclaim pages to be reclaimed and it will
2588 * retry with decreasing priority if one round over the
2589 * whole hierarchy is not sufficient.
2590 */
2591 if (!global_reclaim(sc) &&
2592 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2593 mem_cgroup_iter_break(root, memcg);
2594 break;
2595 }
2596 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2597
2598 /*
2599 * Shrink the slab caches in the same proportion that
2600 * the eligible LRU pages were scanned.
2601 */
2602 if (global_reclaim(sc))
2603 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2604 sc->nr_scanned - nr_scanned,
2605 node_lru_pages);
2606
2607 if (reclaim_state) {
2608 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2609 reclaim_state->reclaimed_slab = 0;
2610 }
2611
2612 /* Record the subtree's reclaim efficiency */
2613 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2614 sc->nr_scanned - nr_scanned,
2615 sc->nr_reclaimed - nr_reclaimed);
2616
2617 if (sc->nr_reclaimed - nr_reclaimed)
2618 reclaimable = true;
2619
2620 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2621 sc->nr_scanned - nr_scanned, sc));
2622
2623 return reclaimable;
2624 }
2625
2626 /*
2627 * Returns true if compaction should go ahead for a costly-order request, or
2628 * the allocation would already succeed without compaction. Return false if we
2629 * should reclaim first.
2630 */
2631 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2632 {
2633 unsigned long watermark;
2634 enum compact_result suitable;
2635
2636 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2637 if (suitable == COMPACT_SUCCESS)
2638 /* Allocation should succeed already. Don't reclaim. */
2639 return true;
2640 if (suitable == COMPACT_SKIPPED)
2641 /* Compaction cannot yet proceed. Do reclaim. */
2642 return false;
2643
2644 /*
2645 * Compaction is already possible, but it takes time to run and there
2646 * are potentially other callers using the pages just freed. So proceed
2647 * with reclaim to make a buffer of free pages available to give
2648 * compaction a reasonable chance of completing and allocating the page.
2649 * Note that we won't actually reclaim the whole buffer in one attempt
2650 * as the target watermark in should_continue_reclaim() is lower. But if
2651 * we are already above the high+gap watermark, don't reclaim at all.
2652 */
2653 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2654
2655 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2656 }
2657
2658 /*
2659 * This is the direct reclaim path, for page-allocating processes. We only
2660 * try to reclaim pages from zones which will satisfy the caller's allocation
2661 * request.
2662 *
2663 * If a zone is deemed to be full of pinned pages then just give it a light
2664 * scan then give up on it.
2665 */
2666 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2667 {
2668 struct zoneref *z;
2669 struct zone *zone;
2670 unsigned long nr_soft_reclaimed;
2671 unsigned long nr_soft_scanned;
2672 gfp_t orig_mask;
2673 pg_data_t *last_pgdat = NULL;
2674
2675 /*
2676 * If the number of buffer_heads in the machine exceeds the maximum
2677 * allowed level, force direct reclaim to scan the highmem zone as
2678 * highmem pages could be pinning lowmem pages storing buffer_heads
2679 */
2680 orig_mask = sc->gfp_mask;
2681 if (buffer_heads_over_limit) {
2682 sc->gfp_mask |= __GFP_HIGHMEM;
2683 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2684 }
2685
2686 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2687 sc->reclaim_idx, sc->nodemask) {
2688 /*
2689 * Take care memory controller reclaiming has small influence
2690 * to global LRU.
2691 */
2692 if (global_reclaim(sc)) {
2693 if (!cpuset_zone_allowed(zone,
2694 GFP_KERNEL | __GFP_HARDWALL))
2695 continue;
2696
2697 if (sc->priority != DEF_PRIORITY &&
2698 !pgdat_reclaimable(zone->zone_pgdat))
2699 continue; /* Let kswapd poll it */
2700
2701 /*
2702 * If we already have plenty of memory free for
2703 * compaction in this zone, don't free any more.
2704 * Even though compaction is invoked for any
2705 * non-zero order, only frequent costly order
2706 * reclamation is disruptive enough to become a
2707 * noticeable problem, like transparent huge
2708 * page allocations.
2709 */
2710 if (IS_ENABLED(CONFIG_COMPACTION) &&
2711 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2712 compaction_ready(zone, sc)) {
2713 sc->compaction_ready = true;
2714 continue;
2715 }
2716
2717 /*
2718 * Shrink each node in the zonelist once. If the
2719 * zonelist is ordered by zone (not the default) then a
2720 * node may be shrunk multiple times but in that case
2721 * the user prefers lower zones being preserved.
2722 */
2723 if (zone->zone_pgdat == last_pgdat)
2724 continue;
2725
2726 /*
2727 * This steals pages from memory cgroups over softlimit
2728 * and returns the number of reclaimed pages and
2729 * scanned pages. This works for global memory pressure
2730 * and balancing, not for a memcg's limit.
2731 */
2732 nr_soft_scanned = 0;
2733 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2734 sc->order, sc->gfp_mask,
2735 &nr_soft_scanned);
2736 sc->nr_reclaimed += nr_soft_reclaimed;
2737 sc->nr_scanned += nr_soft_scanned;
2738 /* need some check for avoid more shrink_zone() */
2739 }
2740
2741 /* See comment about same check for global reclaim above */
2742 if (zone->zone_pgdat == last_pgdat)
2743 continue;
2744 last_pgdat = zone->zone_pgdat;
2745 shrink_node(zone->zone_pgdat, sc);
2746 }
2747
2748 /*
2749 * Restore to original mask to avoid the impact on the caller if we
2750 * promoted it to __GFP_HIGHMEM.
2751 */
2752 sc->gfp_mask = orig_mask;
2753 }
2754
2755 /*
2756 * This is the main entry point to direct page reclaim.
2757 *
2758 * If a full scan of the inactive list fails to free enough memory then we
2759 * are "out of memory" and something needs to be killed.
2760 *
2761 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2762 * high - the zone may be full of dirty or under-writeback pages, which this
2763 * caller can't do much about. We kick the writeback threads and take explicit
2764 * naps in the hope that some of these pages can be written. But if the
2765 * allocating task holds filesystem locks which prevent writeout this might not
2766 * work, and the allocation attempt will fail.
2767 *
2768 * returns: 0, if no pages reclaimed
2769 * else, the number of pages reclaimed
2770 */
2771 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2772 struct scan_control *sc)
2773 {
2774 int initial_priority = sc->priority;
2775 retry:
2776 delayacct_freepages_start();
2777
2778 if (global_reclaim(sc))
2779 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2780
2781 do {
2782 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2783 sc->priority);
2784 sc->nr_scanned = 0;
2785 shrink_zones(zonelist, sc);
2786
2787 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2788 break;
2789
2790 if (sc->compaction_ready)
2791 break;
2792
2793 /*
2794 * If we're getting trouble reclaiming, start doing
2795 * writepage even in laptop mode.
2796 */
2797 if (sc->priority < DEF_PRIORITY - 2)
2798 sc->may_writepage = 1;
2799 } while (--sc->priority >= 0);
2800
2801 delayacct_freepages_end();
2802
2803 if (sc->nr_reclaimed)
2804 return sc->nr_reclaimed;
2805
2806 /* Aborted reclaim to try compaction? don't OOM, then */
2807 if (sc->compaction_ready)
2808 return 1;
2809
2810 /* Untapped cgroup reserves? Don't OOM, retry. */
2811 if (!sc->may_thrash) {
2812 sc->priority = initial_priority;
2813 sc->may_thrash = 1;
2814 goto retry;
2815 }
2816
2817 return 0;
2818 }
2819
2820 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2821 {
2822 struct zone *zone;
2823 unsigned long pfmemalloc_reserve = 0;
2824 unsigned long free_pages = 0;
2825 int i;
2826 bool wmark_ok;
2827
2828 for (i = 0; i <= ZONE_NORMAL; i++) {
2829 zone = &pgdat->node_zones[i];
2830 if (!managed_zone(zone) ||
2831 pgdat_reclaimable_pages(pgdat) == 0)
2832 continue;
2833
2834 pfmemalloc_reserve += min_wmark_pages(zone);
2835 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2836 }
2837
2838 /* If there are no reserves (unexpected config) then do not throttle */
2839 if (!pfmemalloc_reserve)
2840 return true;
2841
2842 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2843
2844 /* kswapd must be awake if processes are being throttled */
2845 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2846 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2847 (enum zone_type)ZONE_NORMAL);
2848 wake_up_interruptible(&pgdat->kswapd_wait);
2849 }
2850
2851 return wmark_ok;
2852 }
2853
2854 /*
2855 * Throttle direct reclaimers if backing storage is backed by the network
2856 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2857 * depleted. kswapd will continue to make progress and wake the processes
2858 * when the low watermark is reached.
2859 *
2860 * Returns true if a fatal signal was delivered during throttling. If this
2861 * happens, the page allocator should not consider triggering the OOM killer.
2862 */
2863 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2864 nodemask_t *nodemask)
2865 {
2866 struct zoneref *z;
2867 struct zone *zone;
2868 pg_data_t *pgdat = NULL;
2869
2870 /*
2871 * Kernel threads should not be throttled as they may be indirectly
2872 * responsible for cleaning pages necessary for reclaim to make forward
2873 * progress. kjournald for example may enter direct reclaim while
2874 * committing a transaction where throttling it could forcing other
2875 * processes to block on log_wait_commit().
2876 */
2877 if (current->flags & PF_KTHREAD)
2878 goto out;
2879
2880 /*
2881 * If a fatal signal is pending, this process should not throttle.
2882 * It should return quickly so it can exit and free its memory
2883 */
2884 if (fatal_signal_pending(current))
2885 goto out;
2886
2887 /*
2888 * Check if the pfmemalloc reserves are ok by finding the first node
2889 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2890 * GFP_KERNEL will be required for allocating network buffers when
2891 * swapping over the network so ZONE_HIGHMEM is unusable.
2892 *
2893 * Throttling is based on the first usable node and throttled processes
2894 * wait on a queue until kswapd makes progress and wakes them. There
2895 * is an affinity then between processes waking up and where reclaim
2896 * progress has been made assuming the process wakes on the same node.
2897 * More importantly, processes running on remote nodes will not compete
2898 * for remote pfmemalloc reserves and processes on different nodes
2899 * should make reasonable progress.
2900 */
2901 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2902 gfp_zone(gfp_mask), nodemask) {
2903 if (zone_idx(zone) > ZONE_NORMAL)
2904 continue;
2905
2906 /* Throttle based on the first usable node */
2907 pgdat = zone->zone_pgdat;
2908 if (pfmemalloc_watermark_ok(pgdat))
2909 goto out;
2910 break;
2911 }
2912
2913 /* If no zone was usable by the allocation flags then do not throttle */
2914 if (!pgdat)
2915 goto out;
2916
2917 /* Account for the throttling */
2918 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2919
2920 /*
2921 * If the caller cannot enter the filesystem, it's possible that it
2922 * is due to the caller holding an FS lock or performing a journal
2923 * transaction in the case of a filesystem like ext[3|4]. In this case,
2924 * it is not safe to block on pfmemalloc_wait as kswapd could be
2925 * blocked waiting on the same lock. Instead, throttle for up to a
2926 * second before continuing.
2927 */
2928 if (!(gfp_mask & __GFP_FS)) {
2929 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2930 pfmemalloc_watermark_ok(pgdat), HZ);
2931
2932 goto check_pending;
2933 }
2934
2935 /* Throttle until kswapd wakes the process */
2936 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2937 pfmemalloc_watermark_ok(pgdat));
2938
2939 check_pending:
2940 if (fatal_signal_pending(current))
2941 return true;
2942
2943 out:
2944 return false;
2945 }
2946
2947 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2948 gfp_t gfp_mask, nodemask_t *nodemask)
2949 {
2950 unsigned long nr_reclaimed;
2951 struct scan_control sc = {
2952 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2953 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2954 .reclaim_idx = gfp_zone(gfp_mask),
2955 .order = order,
2956 .nodemask = nodemask,
2957 .priority = DEF_PRIORITY,
2958 .may_writepage = !laptop_mode,
2959 .may_unmap = 1,
2960 .may_swap = 1,
2961 };
2962
2963 /*
2964 * Do not enter reclaim if fatal signal was delivered while throttled.
2965 * 1 is returned so that the page allocator does not OOM kill at this
2966 * point.
2967 */
2968 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2969 return 1;
2970
2971 trace_mm_vmscan_direct_reclaim_begin(order,
2972 sc.may_writepage,
2973 gfp_mask,
2974 sc.reclaim_idx);
2975
2976 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2977
2978 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2979
2980 return nr_reclaimed;
2981 }
2982
2983 #ifdef CONFIG_MEMCG
2984
2985 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2986 gfp_t gfp_mask, bool noswap,
2987 pg_data_t *pgdat,
2988 unsigned long *nr_scanned)
2989 {
2990 struct scan_control sc = {
2991 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2992 .target_mem_cgroup = memcg,
2993 .may_writepage = !laptop_mode,
2994 .may_unmap = 1,
2995 .reclaim_idx = MAX_NR_ZONES - 1,
2996 .may_swap = !noswap,
2997 };
2998 unsigned long lru_pages;
2999
3000 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3001 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3002
3003 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3004 sc.may_writepage,
3005 sc.gfp_mask,
3006 sc.reclaim_idx);
3007
3008 /*
3009 * NOTE: Although we can get the priority field, using it
3010 * here is not a good idea, since it limits the pages we can scan.
3011 * if we don't reclaim here, the shrink_node from balance_pgdat
3012 * will pick up pages from other mem cgroup's as well. We hack
3013 * the priority and make it zero.
3014 */
3015 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3016
3017 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3018
3019 *nr_scanned = sc.nr_scanned;
3020 return sc.nr_reclaimed;
3021 }
3022
3023 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3024 unsigned long nr_pages,
3025 gfp_t gfp_mask,
3026 bool may_swap)
3027 {
3028 struct zonelist *zonelist;
3029 unsigned long nr_reclaimed;
3030 int nid;
3031 struct scan_control sc = {
3032 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3033 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3034 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3035 .reclaim_idx = MAX_NR_ZONES - 1,
3036 .target_mem_cgroup = memcg,
3037 .priority = DEF_PRIORITY,
3038 .may_writepage = !laptop_mode,
3039 .may_unmap = 1,
3040 .may_swap = may_swap,
3041 };
3042
3043 /*
3044 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3045 * take care of from where we get pages. So the node where we start the
3046 * scan does not need to be the current node.
3047 */
3048 nid = mem_cgroup_select_victim_node(memcg);
3049
3050 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3051
3052 trace_mm_vmscan_memcg_reclaim_begin(0,
3053 sc.may_writepage,
3054 sc.gfp_mask,
3055 sc.reclaim_idx);
3056
3057 current->flags |= PF_MEMALLOC;
3058 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3059 current->flags &= ~PF_MEMALLOC;
3060
3061 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3062
3063 return nr_reclaimed;
3064 }
3065 #endif
3066
3067 static void age_active_anon(struct pglist_data *pgdat,
3068 struct scan_control *sc)
3069 {
3070 struct mem_cgroup *memcg;
3071
3072 if (!total_swap_pages)
3073 return;
3074
3075 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3076 do {
3077 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3078
3079 if (inactive_list_is_low(lruvec, false, sc, true))
3080 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3081 sc, LRU_ACTIVE_ANON);
3082
3083 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3084 } while (memcg);
3085 }
3086
3087 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3088 {
3089 unsigned long mark = high_wmark_pages(zone);
3090
3091 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3092 return false;
3093
3094 /*
3095 * If any eligible zone is balanced then the node is not considered
3096 * to be congested or dirty
3097 */
3098 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3099 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3100 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3101
3102 return true;
3103 }
3104
3105 /*
3106 * Prepare kswapd for sleeping. This verifies that there are no processes
3107 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3108 *
3109 * Returns true if kswapd is ready to sleep
3110 */
3111 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3112 {
3113 int i;
3114
3115 /*
3116 * The throttled processes are normally woken up in balance_pgdat() as
3117 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3118 * race between when kswapd checks the watermarks and a process gets
3119 * throttled. There is also a potential race if processes get
3120 * throttled, kswapd wakes, a large process exits thereby balancing the
3121 * zones, which causes kswapd to exit balance_pgdat() before reaching
3122 * the wake up checks. If kswapd is going to sleep, no process should
3123 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3124 * the wake up is premature, processes will wake kswapd and get
3125 * throttled again. The difference from wake ups in balance_pgdat() is
3126 * that here we are under prepare_to_wait().
3127 */
3128 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3129 wake_up_all(&pgdat->pfmemalloc_wait);
3130
3131 for (i = 0; i <= classzone_idx; i++) {
3132 struct zone *zone = pgdat->node_zones + i;
3133
3134 if (!managed_zone(zone))
3135 continue;
3136
3137 if (!zone_balanced(zone, order, classzone_idx))
3138 return false;
3139 }
3140
3141 return true;
3142 }
3143
3144 /*
3145 * kswapd shrinks a node of pages that are at or below the highest usable
3146 * zone that is currently unbalanced.
3147 *
3148 * Returns true if kswapd scanned at least the requested number of pages to
3149 * reclaim or if the lack of progress was due to pages under writeback.
3150 * This is used to determine if the scanning priority needs to be raised.
3151 */
3152 static bool kswapd_shrink_node(pg_data_t *pgdat,
3153 struct scan_control *sc)
3154 {
3155 struct zone *zone;
3156 int z;
3157
3158 /* Reclaim a number of pages proportional to the number of zones */
3159 sc->nr_to_reclaim = 0;
3160 for (z = 0; z <= sc->reclaim_idx; z++) {
3161 zone = pgdat->node_zones + z;
3162 if (!managed_zone(zone))
3163 continue;
3164
3165 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3166 }
3167
3168 /*
3169 * Historically care was taken to put equal pressure on all zones but
3170 * now pressure is applied based on node LRU order.
3171 */
3172 shrink_node(pgdat, sc);
3173
3174 /*
3175 * Fragmentation may mean that the system cannot be rebalanced for
3176 * high-order allocations. If twice the allocation size has been
3177 * reclaimed then recheck watermarks only at order-0 to prevent
3178 * excessive reclaim. Assume that a process requested a high-order
3179 * can direct reclaim/compact.
3180 */
3181 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3182 sc->order = 0;
3183
3184 return sc->nr_scanned >= sc->nr_to_reclaim;
3185 }
3186
3187 /*
3188 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3189 * that are eligible for use by the caller until at least one zone is
3190 * balanced.
3191 *
3192 * Returns the order kswapd finished reclaiming at.
3193 *
3194 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3195 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3196 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3197 * or lower is eligible for reclaim until at least one usable zone is
3198 * balanced.
3199 */
3200 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3201 {
3202 int i;
3203 unsigned long nr_soft_reclaimed;
3204 unsigned long nr_soft_scanned;
3205 struct zone *zone;
3206 struct scan_control sc = {
3207 .gfp_mask = GFP_KERNEL,
3208 .order = order,
3209 .priority = DEF_PRIORITY,
3210 .may_writepage = !laptop_mode,
3211 .may_unmap = 1,
3212 .may_swap = 1,
3213 };
3214 count_vm_event(PAGEOUTRUN);
3215
3216 do {
3217 bool raise_priority = true;
3218
3219 sc.nr_reclaimed = 0;
3220 sc.reclaim_idx = classzone_idx;
3221
3222 /*
3223 * If the number of buffer_heads exceeds the maximum allowed
3224 * then consider reclaiming from all zones. This has a dual
3225 * purpose -- on 64-bit systems it is expected that
3226 * buffer_heads are stripped during active rotation. On 32-bit
3227 * systems, highmem pages can pin lowmem memory and shrinking
3228 * buffers can relieve lowmem pressure. Reclaim may still not
3229 * go ahead if all eligible zones for the original allocation
3230 * request are balanced to avoid excessive reclaim from kswapd.
3231 */
3232 if (buffer_heads_over_limit) {
3233 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3234 zone = pgdat->node_zones + i;
3235 if (!managed_zone(zone))
3236 continue;
3237
3238 sc.reclaim_idx = i;
3239 break;
3240 }
3241 }
3242
3243 /*
3244 * Only reclaim if there are no eligible zones. Check from
3245 * high to low zone as allocations prefer higher zones.
3246 * Scanning from low to high zone would allow congestion to be
3247 * cleared during a very small window when a small low
3248 * zone was balanced even under extreme pressure when the
3249 * overall node may be congested. Note that sc.reclaim_idx
3250 * is not used as buffer_heads_over_limit may have adjusted
3251 * it.
3252 */
3253 for (i = classzone_idx; i >= 0; i--) {
3254 zone = pgdat->node_zones + i;
3255 if (!managed_zone(zone))
3256 continue;
3257
3258 if (zone_balanced(zone, sc.order, classzone_idx))
3259 goto out;
3260 }
3261
3262 /*
3263 * Do some background aging of the anon list, to give
3264 * pages a chance to be referenced before reclaiming. All
3265 * pages are rotated regardless of classzone as this is
3266 * about consistent aging.
3267 */
3268 age_active_anon(pgdat, &sc);
3269
3270 /*
3271 * If we're getting trouble reclaiming, start doing writepage
3272 * even in laptop mode.
3273 */
3274 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3275 sc.may_writepage = 1;
3276
3277 /* Call soft limit reclaim before calling shrink_node. */
3278 sc.nr_scanned = 0;
3279 nr_soft_scanned = 0;
3280 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3281 sc.gfp_mask, &nr_soft_scanned);
3282 sc.nr_reclaimed += nr_soft_reclaimed;
3283
3284 /*
3285 * There should be no need to raise the scanning priority if
3286 * enough pages are already being scanned that that high
3287 * watermark would be met at 100% efficiency.
3288 */
3289 if (kswapd_shrink_node(pgdat, &sc))
3290 raise_priority = false;
3291
3292 /*
3293 * If the low watermark is met there is no need for processes
3294 * to be throttled on pfmemalloc_wait as they should not be
3295 * able to safely make forward progress. Wake them
3296 */
3297 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3298 pfmemalloc_watermark_ok(pgdat))
3299 wake_up_all(&pgdat->pfmemalloc_wait);
3300
3301 /* Check if kswapd should be suspending */
3302 if (try_to_freeze() || kthread_should_stop())
3303 break;
3304
3305 /*
3306 * Raise priority if scanning rate is too low or there was no
3307 * progress in reclaiming pages
3308 */
3309 if (raise_priority || !sc.nr_reclaimed)
3310 sc.priority--;
3311 } while (sc.priority >= 1);
3312
3313 out:
3314 /*
3315 * Return the order kswapd stopped reclaiming at as
3316 * prepare_kswapd_sleep() takes it into account. If another caller
3317 * entered the allocator slow path while kswapd was awake, order will
3318 * remain at the higher level.
3319 */
3320 return sc.order;
3321 }
3322
3323 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3324 unsigned int classzone_idx)
3325 {
3326 long remaining = 0;
3327 DEFINE_WAIT(wait);
3328
3329 if (freezing(current) || kthread_should_stop())
3330 return;
3331
3332 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3333
3334 /* Try to sleep for a short interval */
3335 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3336 /*
3337 * Compaction records what page blocks it recently failed to
3338 * isolate pages from and skips them in the future scanning.
3339 * When kswapd is going to sleep, it is reasonable to assume
3340 * that pages and compaction may succeed so reset the cache.
3341 */
3342 reset_isolation_suitable(pgdat);
3343
3344 /*
3345 * We have freed the memory, now we should compact it to make
3346 * allocation of the requested order possible.
3347 */
3348 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3349
3350 remaining = schedule_timeout(HZ/10);
3351
3352 /*
3353 * If woken prematurely then reset kswapd_classzone_idx and
3354 * order. The values will either be from a wakeup request or
3355 * the previous request that slept prematurely.
3356 */
3357 if (remaining) {
3358 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3359 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3360 }
3361
3362 finish_wait(&pgdat->kswapd_wait, &wait);
3363 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3364 }
3365
3366 /*
3367 * After a short sleep, check if it was a premature sleep. If not, then
3368 * go fully to sleep until explicitly woken up.
3369 */
3370 if (!remaining &&
3371 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3372 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3373
3374 /*
3375 * vmstat counters are not perfectly accurate and the estimated
3376 * value for counters such as NR_FREE_PAGES can deviate from the
3377 * true value by nr_online_cpus * threshold. To avoid the zone
3378 * watermarks being breached while under pressure, we reduce the
3379 * per-cpu vmstat threshold while kswapd is awake and restore
3380 * them before going back to sleep.
3381 */
3382 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3383
3384 if (!kthread_should_stop())
3385 schedule();
3386
3387 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3388 } else {
3389 if (remaining)
3390 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3391 else
3392 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3393 }
3394 finish_wait(&pgdat->kswapd_wait, &wait);
3395 }
3396
3397 /*
3398 * The background pageout daemon, started as a kernel thread
3399 * from the init process.
3400 *
3401 * This basically trickles out pages so that we have _some_
3402 * free memory available even if there is no other activity
3403 * that frees anything up. This is needed for things like routing
3404 * etc, where we otherwise might have all activity going on in
3405 * asynchronous contexts that cannot page things out.
3406 *
3407 * If there are applications that are active memory-allocators
3408 * (most normal use), this basically shouldn't matter.
3409 */
3410 static int kswapd(void *p)
3411 {
3412 unsigned int alloc_order, reclaim_order, classzone_idx;
3413 pg_data_t *pgdat = (pg_data_t*)p;
3414 struct task_struct *tsk = current;
3415
3416 struct reclaim_state reclaim_state = {
3417 .reclaimed_slab = 0,
3418 };
3419 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3420
3421 lockdep_set_current_reclaim_state(GFP_KERNEL);
3422
3423 if (!cpumask_empty(cpumask))
3424 set_cpus_allowed_ptr(tsk, cpumask);
3425 current->reclaim_state = &reclaim_state;
3426
3427 /*
3428 * Tell the memory management that we're a "memory allocator",
3429 * and that if we need more memory we should get access to it
3430 * regardless (see "__alloc_pages()"). "kswapd" should
3431 * never get caught in the normal page freeing logic.
3432 *
3433 * (Kswapd normally doesn't need memory anyway, but sometimes
3434 * you need a small amount of memory in order to be able to
3435 * page out something else, and this flag essentially protects
3436 * us from recursively trying to free more memory as we're
3437 * trying to free the first piece of memory in the first place).
3438 */
3439 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3440 set_freezable();
3441
3442 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3443 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3444 for ( ; ; ) {
3445 bool ret;
3446
3447 kswapd_try_sleep:
3448 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3449 classzone_idx);
3450
3451 /* Read the new order and classzone_idx */
3452 alloc_order = reclaim_order = pgdat->kswapd_order;
3453 classzone_idx = pgdat->kswapd_classzone_idx;
3454 pgdat->kswapd_order = 0;
3455 pgdat->kswapd_classzone_idx = 0;
3456
3457 ret = try_to_freeze();
3458 if (kthread_should_stop())
3459 break;
3460
3461 /*
3462 * We can speed up thawing tasks if we don't call balance_pgdat
3463 * after returning from the refrigerator
3464 */
3465 if (ret)
3466 continue;
3467
3468 /*
3469 * Reclaim begins at the requested order but if a high-order
3470 * reclaim fails then kswapd falls back to reclaiming for
3471 * order-0. If that happens, kswapd will consider sleeping
3472 * for the order it finished reclaiming at (reclaim_order)
3473 * but kcompactd is woken to compact for the original
3474 * request (alloc_order).
3475 */
3476 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3477 alloc_order);
3478 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3479 if (reclaim_order < alloc_order)
3480 goto kswapd_try_sleep;
3481
3482 alloc_order = reclaim_order = pgdat->kswapd_order;
3483 classzone_idx = pgdat->kswapd_classzone_idx;
3484 }
3485
3486 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3487 current->reclaim_state = NULL;
3488 lockdep_clear_current_reclaim_state();
3489
3490 return 0;
3491 }
3492
3493 /*
3494 * A zone is low on free memory, so wake its kswapd task to service it.
3495 */
3496 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3497 {
3498 pg_data_t *pgdat;
3499 int z;
3500
3501 if (!managed_zone(zone))
3502 return;
3503
3504 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3505 return;
3506 pgdat = zone->zone_pgdat;
3507 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3508 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3509 if (!waitqueue_active(&pgdat->kswapd_wait))
3510 return;
3511
3512 /* Only wake kswapd if all zones are unbalanced */
3513 for (z = 0; z <= classzone_idx; z++) {
3514 zone = pgdat->node_zones + z;
3515 if (!managed_zone(zone))
3516 continue;
3517
3518 if (zone_balanced(zone, order, classzone_idx))
3519 return;
3520 }
3521
3522 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3523 wake_up_interruptible(&pgdat->kswapd_wait);
3524 }
3525
3526 #ifdef CONFIG_HIBERNATION
3527 /*
3528 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3529 * freed pages.
3530 *
3531 * Rather than trying to age LRUs the aim is to preserve the overall
3532 * LRU order by reclaiming preferentially
3533 * inactive > active > active referenced > active mapped
3534 */
3535 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3536 {
3537 struct reclaim_state reclaim_state;
3538 struct scan_control sc = {
3539 .nr_to_reclaim = nr_to_reclaim,
3540 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3541 .reclaim_idx = MAX_NR_ZONES - 1,
3542 .priority = DEF_PRIORITY,
3543 .may_writepage = 1,
3544 .may_unmap = 1,
3545 .may_swap = 1,
3546 .hibernation_mode = 1,
3547 };
3548 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3549 struct task_struct *p = current;
3550 unsigned long nr_reclaimed;
3551
3552 p->flags |= PF_MEMALLOC;
3553 lockdep_set_current_reclaim_state(sc.gfp_mask);
3554 reclaim_state.reclaimed_slab = 0;
3555 p->reclaim_state = &reclaim_state;
3556
3557 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3558
3559 p->reclaim_state = NULL;
3560 lockdep_clear_current_reclaim_state();
3561 p->flags &= ~PF_MEMALLOC;
3562
3563 return nr_reclaimed;
3564 }
3565 #endif /* CONFIG_HIBERNATION */
3566
3567 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3568 not required for correctness. So if the last cpu in a node goes
3569 away, we get changed to run anywhere: as the first one comes back,
3570 restore their cpu bindings. */
3571 static int kswapd_cpu_online(unsigned int cpu)
3572 {
3573 int nid;
3574
3575 for_each_node_state(nid, N_MEMORY) {
3576 pg_data_t *pgdat = NODE_DATA(nid);
3577 const struct cpumask *mask;
3578
3579 mask = cpumask_of_node(pgdat->node_id);
3580
3581 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3582 /* One of our CPUs online: restore mask */
3583 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3584 }
3585 return 0;
3586 }
3587
3588 /*
3589 * This kswapd start function will be called by init and node-hot-add.
3590 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3591 */
3592 int kswapd_run(int nid)
3593 {
3594 pg_data_t *pgdat = NODE_DATA(nid);
3595 int ret = 0;
3596
3597 if (pgdat->kswapd)
3598 return 0;
3599
3600 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3601 if (IS_ERR(pgdat->kswapd)) {
3602 /* failure at boot is fatal */
3603 BUG_ON(system_state == SYSTEM_BOOTING);
3604 pr_err("Failed to start kswapd on node %d\n", nid);
3605 ret = PTR_ERR(pgdat->kswapd);
3606 pgdat->kswapd = NULL;
3607 }
3608 return ret;
3609 }
3610
3611 /*
3612 * Called by memory hotplug when all memory in a node is offlined. Caller must
3613 * hold mem_hotplug_begin/end().
3614 */
3615 void kswapd_stop(int nid)
3616 {
3617 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3618
3619 if (kswapd) {
3620 kthread_stop(kswapd);
3621 NODE_DATA(nid)->kswapd = NULL;
3622 }
3623 }
3624
3625 static int __init kswapd_init(void)
3626 {
3627 int nid, ret;
3628
3629 swap_setup();
3630 for_each_node_state(nid, N_MEMORY)
3631 kswapd_run(nid);
3632 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3633 "mm/vmscan:online", kswapd_cpu_online,
3634 NULL);
3635 WARN_ON(ret < 0);
3636 return 0;
3637 }
3638
3639 module_init(kswapd_init)
3640
3641 #ifdef CONFIG_NUMA
3642 /*
3643 * Node reclaim mode
3644 *
3645 * If non-zero call node_reclaim when the number of free pages falls below
3646 * the watermarks.
3647 */
3648 int node_reclaim_mode __read_mostly;
3649
3650 #define RECLAIM_OFF 0
3651 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3652 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3653 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3654
3655 /*
3656 * Priority for NODE_RECLAIM. This determines the fraction of pages
3657 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3658 * a zone.
3659 */
3660 #define NODE_RECLAIM_PRIORITY 4
3661
3662 /*
3663 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3664 * occur.
3665 */
3666 int sysctl_min_unmapped_ratio = 1;
3667
3668 /*
3669 * If the number of slab pages in a zone grows beyond this percentage then
3670 * slab reclaim needs to occur.
3671 */
3672 int sysctl_min_slab_ratio = 5;
3673
3674 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3675 {
3676 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3677 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3678 node_page_state(pgdat, NR_ACTIVE_FILE);
3679
3680 /*
3681 * It's possible for there to be more file mapped pages than
3682 * accounted for by the pages on the file LRU lists because
3683 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3684 */
3685 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3686 }
3687
3688 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3689 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3690 {
3691 unsigned long nr_pagecache_reclaimable;
3692 unsigned long delta = 0;
3693
3694 /*
3695 * If RECLAIM_UNMAP is set, then all file pages are considered
3696 * potentially reclaimable. Otherwise, we have to worry about
3697 * pages like swapcache and node_unmapped_file_pages() provides
3698 * a better estimate
3699 */
3700 if (node_reclaim_mode & RECLAIM_UNMAP)
3701 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3702 else
3703 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3704
3705 /* If we can't clean pages, remove dirty pages from consideration */
3706 if (!(node_reclaim_mode & RECLAIM_WRITE))
3707 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3708
3709 /* Watch for any possible underflows due to delta */
3710 if (unlikely(delta > nr_pagecache_reclaimable))
3711 delta = nr_pagecache_reclaimable;
3712
3713 return nr_pagecache_reclaimable - delta;
3714 }
3715
3716 /*
3717 * Try to free up some pages from this node through reclaim.
3718 */
3719 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3720 {
3721 /* Minimum pages needed in order to stay on node */
3722 const unsigned long nr_pages = 1 << order;
3723 struct task_struct *p = current;
3724 struct reclaim_state reclaim_state;
3725 int classzone_idx = gfp_zone(gfp_mask);
3726 struct scan_control sc = {
3727 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3728 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3729 .order = order,
3730 .priority = NODE_RECLAIM_PRIORITY,
3731 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3732 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3733 .may_swap = 1,
3734 .reclaim_idx = classzone_idx,
3735 };
3736
3737 cond_resched();
3738 /*
3739 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3740 * and we also need to be able to write out pages for RECLAIM_WRITE
3741 * and RECLAIM_UNMAP.
3742 */
3743 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3744 lockdep_set_current_reclaim_state(gfp_mask);
3745 reclaim_state.reclaimed_slab = 0;
3746 p->reclaim_state = &reclaim_state;
3747
3748 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3749 /*
3750 * Free memory by calling shrink zone with increasing
3751 * priorities until we have enough memory freed.
3752 */
3753 do {
3754 shrink_node(pgdat, &sc);
3755 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3756 }
3757
3758 p->reclaim_state = NULL;
3759 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3760 lockdep_clear_current_reclaim_state();
3761 return sc.nr_reclaimed >= nr_pages;
3762 }
3763
3764 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3765 {
3766 int ret;
3767
3768 /*
3769 * Node reclaim reclaims unmapped file backed pages and
3770 * slab pages if we are over the defined limits.
3771 *
3772 * A small portion of unmapped file backed pages is needed for
3773 * file I/O otherwise pages read by file I/O will be immediately
3774 * thrown out if the node is overallocated. So we do not reclaim
3775 * if less than a specified percentage of the node is used by
3776 * unmapped file backed pages.
3777 */
3778 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3779 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3780 return NODE_RECLAIM_FULL;
3781
3782 if (!pgdat_reclaimable(pgdat))
3783 return NODE_RECLAIM_FULL;
3784
3785 /*
3786 * Do not scan if the allocation should not be delayed.
3787 */
3788 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3789 return NODE_RECLAIM_NOSCAN;
3790
3791 /*
3792 * Only run node reclaim on the local node or on nodes that do not
3793 * have associated processors. This will favor the local processor
3794 * over remote processors and spread off node memory allocations
3795 * as wide as possible.
3796 */
3797 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3798 return NODE_RECLAIM_NOSCAN;
3799
3800 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3801 return NODE_RECLAIM_NOSCAN;
3802
3803 ret = __node_reclaim(pgdat, gfp_mask, order);
3804 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3805
3806 if (!ret)
3807 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3808
3809 return ret;
3810 }
3811 #endif
3812
3813 /*
3814 * page_evictable - test whether a page is evictable
3815 * @page: the page to test
3816 *
3817 * Test whether page is evictable--i.e., should be placed on active/inactive
3818 * lists vs unevictable list.
3819 *
3820 * Reasons page might not be evictable:
3821 * (1) page's mapping marked unevictable
3822 * (2) page is part of an mlocked VMA
3823 *
3824 */
3825 int page_evictable(struct page *page)
3826 {
3827 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3828 }
3829
3830 #ifdef CONFIG_SHMEM
3831 /**
3832 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3833 * @pages: array of pages to check
3834 * @nr_pages: number of pages to check
3835 *
3836 * Checks pages for evictability and moves them to the appropriate lru list.
3837 *
3838 * This function is only used for SysV IPC SHM_UNLOCK.
3839 */
3840 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3841 {
3842 struct lruvec *lruvec;
3843 struct pglist_data *pgdat = NULL;
3844 int pgscanned = 0;
3845 int pgrescued = 0;
3846 int i;
3847
3848 for (i = 0; i < nr_pages; i++) {
3849 struct page *page = pages[i];
3850 struct pglist_data *pagepgdat = page_pgdat(page);
3851
3852 pgscanned++;
3853 if (pagepgdat != pgdat) {
3854 if (pgdat)
3855 spin_unlock_irq(&pgdat->lru_lock);
3856 pgdat = pagepgdat;
3857 spin_lock_irq(&pgdat->lru_lock);
3858 }
3859 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3860
3861 if (!PageLRU(page) || !PageUnevictable(page))
3862 continue;
3863
3864 if (page_evictable(page)) {
3865 enum lru_list lru = page_lru_base_type(page);
3866
3867 VM_BUG_ON_PAGE(PageActive(page), page);
3868 ClearPageUnevictable(page);
3869 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3870 add_page_to_lru_list(page, lruvec, lru);
3871 pgrescued++;
3872 }
3873 }
3874
3875 if (pgdat) {
3876 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3877 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3878 spin_unlock_irq(&pgdat->lru_lock);
3879 }
3880 }
3881 #endif /* CONFIG_SHMEM */