]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
Merge tag 'backlight-for-linus-3.17' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
104 };
105
106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108 #ifdef ARCH_HAS_PREFETCH
109 #define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118 #else
119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
121
122 #ifdef ARCH_HAS_PREFETCHW
123 #define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132 #else
133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135
136 /*
137 * From 0 .. 100. Higher means more swappy.
138 */
139 int vm_swappiness = 60;
140 /*
141 * The total number of pages which are beyond the high watermark within all
142 * zones.
143 */
144 unsigned long vm_total_pages;
145
146 static LIST_HEAD(shrinker_list);
147 static DECLARE_RWSEM(shrinker_rwsem);
148
149 #ifdef CONFIG_MEMCG
150 static bool global_reclaim(struct scan_control *sc)
151 {
152 return !sc->target_mem_cgroup;
153 }
154 #else
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 return true;
158 }
159 #endif
160
161 static unsigned long zone_reclaimable_pages(struct zone *zone)
162 {
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173 }
174
175 bool zone_reclaimable(struct zone *zone)
176 {
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
179 }
180
181 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
182 {
183 if (!mem_cgroup_disabled())
184 return mem_cgroup_get_lru_size(lruvec, lru);
185
186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
187 }
188
189 /*
190 * Add a shrinker callback to be called from the vm.
191 */
192 int register_shrinker(struct shrinker *shrinker)
193 {
194 size_t size = sizeof(*shrinker->nr_deferred);
195
196 /*
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
200 */
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 size *= nr_node_ids;
206
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
209 return -ENOMEM;
210
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
214 return 0;
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219 * Remove one
220 */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 kfree(shrinker->nr_deferred);
227 }
228 EXPORT_SYMBOL(unregister_shrinker);
229
230 #define SHRINK_BATCH 128
231
232 static unsigned long
233 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
234 unsigned long nr_pages_scanned, unsigned long lru_pages)
235 {
236 unsigned long freed = 0;
237 unsigned long long delta;
238 long total_scan;
239 long freeable;
240 long nr;
241 long new_nr;
242 int nid = shrinkctl->nid;
243 long batch_size = shrinker->batch ? shrinker->batch
244 : SHRINK_BATCH;
245
246 freeable = shrinker->count_objects(shrinker, shrinkctl);
247 if (freeable == 0)
248 return 0;
249
250 /*
251 * copy the current shrinker scan count into a local variable
252 * and zero it so that other concurrent shrinker invocations
253 * don't also do this scanning work.
254 */
255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
256
257 total_scan = nr;
258 delta = (4 * nr_pages_scanned) / shrinker->seeks;
259 delta *= freeable;
260 do_div(delta, lru_pages + 1);
261 total_scan += delta;
262 if (total_scan < 0) {
263 printk(KERN_ERR
264 "shrink_slab: %pF negative objects to delete nr=%ld\n",
265 shrinker->scan_objects, total_scan);
266 total_scan = freeable;
267 }
268
269 /*
270 * We need to avoid excessive windup on filesystem shrinkers
271 * due to large numbers of GFP_NOFS allocations causing the
272 * shrinkers to return -1 all the time. This results in a large
273 * nr being built up so when a shrink that can do some work
274 * comes along it empties the entire cache due to nr >>>
275 * freeable. This is bad for sustaining a working set in
276 * memory.
277 *
278 * Hence only allow the shrinker to scan the entire cache when
279 * a large delta change is calculated directly.
280 */
281 if (delta < freeable / 4)
282 total_scan = min(total_scan, freeable / 2);
283
284 /*
285 * Avoid risking looping forever due to too large nr value:
286 * never try to free more than twice the estimate number of
287 * freeable entries.
288 */
289 if (total_scan > freeable * 2)
290 total_scan = freeable * 2;
291
292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
293 nr_pages_scanned, lru_pages,
294 freeable, delta, total_scan);
295
296 /*
297 * Normally, we should not scan less than batch_size objects in one
298 * pass to avoid too frequent shrinker calls, but if the slab has less
299 * than batch_size objects in total and we are really tight on memory,
300 * we will try to reclaim all available objects, otherwise we can end
301 * up failing allocations although there are plenty of reclaimable
302 * objects spread over several slabs with usage less than the
303 * batch_size.
304 *
305 * We detect the "tight on memory" situations by looking at the total
306 * number of objects we want to scan (total_scan). If it is greater
307 * than the total number of objects on slab (freeable), we must be
308 * scanning at high prio and therefore should try to reclaim as much as
309 * possible.
310 */
311 while (total_scan >= batch_size ||
312 total_scan >= freeable) {
313 unsigned long ret;
314 unsigned long nr_to_scan = min(batch_size, total_scan);
315
316 shrinkctl->nr_to_scan = nr_to_scan;
317 ret = shrinker->scan_objects(shrinker, shrinkctl);
318 if (ret == SHRINK_STOP)
319 break;
320 freed += ret;
321
322 count_vm_events(SLABS_SCANNED, nr_to_scan);
323 total_scan -= nr_to_scan;
324
325 cond_resched();
326 }
327
328 /*
329 * move the unused scan count back into the shrinker in a
330 * manner that handles concurrent updates. If we exhausted the
331 * scan, there is no need to do an update.
332 */
333 if (total_scan > 0)
334 new_nr = atomic_long_add_return(total_scan,
335 &shrinker->nr_deferred[nid]);
336 else
337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
338
339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
340 return freed;
341 }
342
343 /*
344 * Call the shrink functions to age shrinkable caches
345 *
346 * Here we assume it costs one seek to replace a lru page and that it also
347 * takes a seek to recreate a cache object. With this in mind we age equal
348 * percentages of the lru and ageable caches. This should balance the seeks
349 * generated by these structures.
350 *
351 * If the vm encountered mapped pages on the LRU it increase the pressure on
352 * slab to avoid swapping.
353 *
354 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
355 *
356 * `lru_pages' represents the number of on-LRU pages in all the zones which
357 * are eligible for the caller's allocation attempt. It is used for balancing
358 * slab reclaim versus page reclaim.
359 *
360 * Returns the number of slab objects which we shrunk.
361 */
362 unsigned long shrink_slab(struct shrink_control *shrinkctl,
363 unsigned long nr_pages_scanned,
364 unsigned long lru_pages)
365 {
366 struct shrinker *shrinker;
367 unsigned long freed = 0;
368
369 if (nr_pages_scanned == 0)
370 nr_pages_scanned = SWAP_CLUSTER_MAX;
371
372 if (!down_read_trylock(&shrinker_rwsem)) {
373 /*
374 * If we would return 0, our callers would understand that we
375 * have nothing else to shrink and give up trying. By returning
376 * 1 we keep it going and assume we'll be able to shrink next
377 * time.
378 */
379 freed = 1;
380 goto out;
381 }
382
383 list_for_each_entry(shrinker, &shrinker_list, list) {
384 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
385 shrinkctl->nid = 0;
386 freed += shrink_slab_node(shrinkctl, shrinker,
387 nr_pages_scanned, lru_pages);
388 continue;
389 }
390
391 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
392 if (node_online(shrinkctl->nid))
393 freed += shrink_slab_node(shrinkctl, shrinker,
394 nr_pages_scanned, lru_pages);
395
396 }
397 }
398 up_read(&shrinker_rwsem);
399 out:
400 cond_resched();
401 return freed;
402 }
403
404 static inline int is_page_cache_freeable(struct page *page)
405 {
406 /*
407 * A freeable page cache page is referenced only by the caller
408 * that isolated the page, the page cache radix tree and
409 * optional buffer heads at page->private.
410 */
411 return page_count(page) - page_has_private(page) == 2;
412 }
413
414 static int may_write_to_queue(struct backing_dev_info *bdi,
415 struct scan_control *sc)
416 {
417 if (current->flags & PF_SWAPWRITE)
418 return 1;
419 if (!bdi_write_congested(bdi))
420 return 1;
421 if (bdi == current->backing_dev_info)
422 return 1;
423 return 0;
424 }
425
426 /*
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
430 *
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
434 *
435 * We're allowed to run sleeping lock_page() here because we know the caller has
436 * __GFP_FS.
437 */
438 static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
440 {
441 lock_page(page);
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
444 unlock_page(page);
445 }
446
447 /* possible outcome of pageout() */
448 typedef enum {
449 /* failed to write page out, page is locked */
450 PAGE_KEEP,
451 /* move page to the active list, page is locked */
452 PAGE_ACTIVATE,
453 /* page has been sent to the disk successfully, page is unlocked */
454 PAGE_SUCCESS,
455 /* page is clean and locked */
456 PAGE_CLEAN,
457 } pageout_t;
458
459 /*
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
462 */
463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464 struct scan_control *sc)
465 {
466 /*
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
472 *
473 * If this process is currently in __generic_file_write_iter() against
474 * this page's queue, we can perform writeback even if that
475 * will block.
476 *
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
481 */
482 if (!is_page_cache_freeable(page))
483 return PAGE_KEEP;
484 if (!mapping) {
485 /*
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
488 */
489 if (page_has_private(page)) {
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
492 pr_info("%s: orphaned page\n", __func__);
493 return PAGE_CLEAN;
494 }
495 }
496 return PAGE_KEEP;
497 }
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
501 return PAGE_KEEP;
502
503 if (clear_page_dirty_for_io(page)) {
504 int res;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
508 .range_start = 0,
509 .range_end = LLONG_MAX,
510 .for_reclaim = 1,
511 };
512
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
515 if (res < 0)
516 handle_write_error(mapping, page, res);
517 if (res == AOP_WRITEPAGE_ACTIVATE) {
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
520 }
521
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
525 }
526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
527 inc_zone_page_state(page, NR_VMSCAN_WRITE);
528 return PAGE_SUCCESS;
529 }
530
531 return PAGE_CLEAN;
532 }
533
534 /*
535 * Same as remove_mapping, but if the page is removed from the mapping, it
536 * gets returned with a refcount of 0.
537 */
538 static int __remove_mapping(struct address_space *mapping, struct page *page,
539 bool reclaimed)
540 {
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
543
544 spin_lock_irq(&mapping->tree_lock);
545 /*
546 * The non racy check for a busy page.
547 *
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
552 *
553 * get_user_pages(&page);
554 * [user mapping goes away]
555 * write_to(page);
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
558 * put_page(page);
559 * !page_count(page) [good, discard it]
560 *
561 * [oops, our write_to data is lost]
562 *
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
566 *
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
569 */
570 if (!page_freeze_refs(page, 2))
571 goto cannot_free;
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
575 goto cannot_free;
576 }
577
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
580 __delete_from_swap_cache(page);
581 spin_unlock_irq(&mapping->tree_lock);
582 swapcache_free(swap, page);
583 } else {
584 void (*freepage)(struct page *);
585 void *shadow = NULL;
586
587 freepage = mapping->a_ops->freepage;
588 /*
589 * Remember a shadow entry for reclaimed file cache in
590 * order to detect refaults, thus thrashing, later on.
591 *
592 * But don't store shadows in an address space that is
593 * already exiting. This is not just an optizimation,
594 * inode reclaim needs to empty out the radix tree or
595 * the nodes are lost. Don't plant shadows behind its
596 * back.
597 */
598 if (reclaimed && page_is_file_cache(page) &&
599 !mapping_exiting(mapping))
600 shadow = workingset_eviction(mapping, page);
601 __delete_from_page_cache(page, shadow);
602 spin_unlock_irq(&mapping->tree_lock);
603 mem_cgroup_uncharge_cache_page(page);
604
605 if (freepage != NULL)
606 freepage(page);
607 }
608
609 return 1;
610
611 cannot_free:
612 spin_unlock_irq(&mapping->tree_lock);
613 return 0;
614 }
615
616 /*
617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
618 * someone else has a ref on the page, abort and return 0. If it was
619 * successfully detached, return 1. Assumes the caller has a single ref on
620 * this page.
621 */
622 int remove_mapping(struct address_space *mapping, struct page *page)
623 {
624 if (__remove_mapping(mapping, page, false)) {
625 /*
626 * Unfreezing the refcount with 1 rather than 2 effectively
627 * drops the pagecache ref for us without requiring another
628 * atomic operation.
629 */
630 page_unfreeze_refs(page, 1);
631 return 1;
632 }
633 return 0;
634 }
635
636 /**
637 * putback_lru_page - put previously isolated page onto appropriate LRU list
638 * @page: page to be put back to appropriate lru list
639 *
640 * Add previously isolated @page to appropriate LRU list.
641 * Page may still be unevictable for other reasons.
642 *
643 * lru_lock must not be held, interrupts must be enabled.
644 */
645 void putback_lru_page(struct page *page)
646 {
647 bool is_unevictable;
648 int was_unevictable = PageUnevictable(page);
649
650 VM_BUG_ON_PAGE(PageLRU(page), page);
651
652 redo:
653 ClearPageUnevictable(page);
654
655 if (page_evictable(page)) {
656 /*
657 * For evictable pages, we can use the cache.
658 * In event of a race, worst case is we end up with an
659 * unevictable page on [in]active list.
660 * We know how to handle that.
661 */
662 is_unevictable = false;
663 lru_cache_add(page);
664 } else {
665 /*
666 * Put unevictable pages directly on zone's unevictable
667 * list.
668 */
669 is_unevictable = true;
670 add_page_to_unevictable_list(page);
671 /*
672 * When racing with an mlock or AS_UNEVICTABLE clearing
673 * (page is unlocked) make sure that if the other thread
674 * does not observe our setting of PG_lru and fails
675 * isolation/check_move_unevictable_pages,
676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
677 * the page back to the evictable list.
678 *
679 * The other side is TestClearPageMlocked() or shmem_lock().
680 */
681 smp_mb();
682 }
683
684 /*
685 * page's status can change while we move it among lru. If an evictable
686 * page is on unevictable list, it never be freed. To avoid that,
687 * check after we added it to the list, again.
688 */
689 if (is_unevictable && page_evictable(page)) {
690 if (!isolate_lru_page(page)) {
691 put_page(page);
692 goto redo;
693 }
694 /* This means someone else dropped this page from LRU
695 * So, it will be freed or putback to LRU again. There is
696 * nothing to do here.
697 */
698 }
699
700 if (was_unevictable && !is_unevictable)
701 count_vm_event(UNEVICTABLE_PGRESCUED);
702 else if (!was_unevictable && is_unevictable)
703 count_vm_event(UNEVICTABLE_PGCULLED);
704
705 put_page(page); /* drop ref from isolate */
706 }
707
708 enum page_references {
709 PAGEREF_RECLAIM,
710 PAGEREF_RECLAIM_CLEAN,
711 PAGEREF_KEEP,
712 PAGEREF_ACTIVATE,
713 };
714
715 static enum page_references page_check_references(struct page *page,
716 struct scan_control *sc)
717 {
718 int referenced_ptes, referenced_page;
719 unsigned long vm_flags;
720
721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
722 &vm_flags);
723 referenced_page = TestClearPageReferenced(page);
724
725 /*
726 * Mlock lost the isolation race with us. Let try_to_unmap()
727 * move the page to the unevictable list.
728 */
729 if (vm_flags & VM_LOCKED)
730 return PAGEREF_RECLAIM;
731
732 if (referenced_ptes) {
733 if (PageSwapBacked(page))
734 return PAGEREF_ACTIVATE;
735 /*
736 * All mapped pages start out with page table
737 * references from the instantiating fault, so we need
738 * to look twice if a mapped file page is used more
739 * than once.
740 *
741 * Mark it and spare it for another trip around the
742 * inactive list. Another page table reference will
743 * lead to its activation.
744 *
745 * Note: the mark is set for activated pages as well
746 * so that recently deactivated but used pages are
747 * quickly recovered.
748 */
749 SetPageReferenced(page);
750
751 if (referenced_page || referenced_ptes > 1)
752 return PAGEREF_ACTIVATE;
753
754 /*
755 * Activate file-backed executable pages after first usage.
756 */
757 if (vm_flags & VM_EXEC)
758 return PAGEREF_ACTIVATE;
759
760 return PAGEREF_KEEP;
761 }
762
763 /* Reclaim if clean, defer dirty pages to writeback */
764 if (referenced_page && !PageSwapBacked(page))
765 return PAGEREF_RECLAIM_CLEAN;
766
767 return PAGEREF_RECLAIM;
768 }
769
770 /* Check if a page is dirty or under writeback */
771 static void page_check_dirty_writeback(struct page *page,
772 bool *dirty, bool *writeback)
773 {
774 struct address_space *mapping;
775
776 /*
777 * Anonymous pages are not handled by flushers and must be written
778 * from reclaim context. Do not stall reclaim based on them
779 */
780 if (!page_is_file_cache(page)) {
781 *dirty = false;
782 *writeback = false;
783 return;
784 }
785
786 /* By default assume that the page flags are accurate */
787 *dirty = PageDirty(page);
788 *writeback = PageWriteback(page);
789
790 /* Verify dirty/writeback state if the filesystem supports it */
791 if (!page_has_private(page))
792 return;
793
794 mapping = page_mapping(page);
795 if (mapping && mapping->a_ops->is_dirty_writeback)
796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
797 }
798
799 /*
800 * shrink_page_list() returns the number of reclaimed pages
801 */
802 static unsigned long shrink_page_list(struct list_head *page_list,
803 struct zone *zone,
804 struct scan_control *sc,
805 enum ttu_flags ttu_flags,
806 unsigned long *ret_nr_dirty,
807 unsigned long *ret_nr_unqueued_dirty,
808 unsigned long *ret_nr_congested,
809 unsigned long *ret_nr_writeback,
810 unsigned long *ret_nr_immediate,
811 bool force_reclaim)
812 {
813 LIST_HEAD(ret_pages);
814 LIST_HEAD(free_pages);
815 int pgactivate = 0;
816 unsigned long nr_unqueued_dirty = 0;
817 unsigned long nr_dirty = 0;
818 unsigned long nr_congested = 0;
819 unsigned long nr_reclaimed = 0;
820 unsigned long nr_writeback = 0;
821 unsigned long nr_immediate = 0;
822
823 cond_resched();
824
825 mem_cgroup_uncharge_start();
826 while (!list_empty(page_list)) {
827 struct address_space *mapping;
828 struct page *page;
829 int may_enter_fs;
830 enum page_references references = PAGEREF_RECLAIM_CLEAN;
831 bool dirty, writeback;
832
833 cond_resched();
834
835 page = lru_to_page(page_list);
836 list_del(&page->lru);
837
838 if (!trylock_page(page))
839 goto keep;
840
841 VM_BUG_ON_PAGE(PageActive(page), page);
842 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
843
844 sc->nr_scanned++;
845
846 if (unlikely(!page_evictable(page)))
847 goto cull_mlocked;
848
849 if (!sc->may_unmap && page_mapped(page))
850 goto keep_locked;
851
852 /* Double the slab pressure for mapped and swapcache pages */
853 if (page_mapped(page) || PageSwapCache(page))
854 sc->nr_scanned++;
855
856 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
857 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
858
859 /*
860 * The number of dirty pages determines if a zone is marked
861 * reclaim_congested which affects wait_iff_congested. kswapd
862 * will stall and start writing pages if the tail of the LRU
863 * is all dirty unqueued pages.
864 */
865 page_check_dirty_writeback(page, &dirty, &writeback);
866 if (dirty || writeback)
867 nr_dirty++;
868
869 if (dirty && !writeback)
870 nr_unqueued_dirty++;
871
872 /*
873 * Treat this page as congested if the underlying BDI is or if
874 * pages are cycling through the LRU so quickly that the
875 * pages marked for immediate reclaim are making it to the
876 * end of the LRU a second time.
877 */
878 mapping = page_mapping(page);
879 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
880 (writeback && PageReclaim(page)))
881 nr_congested++;
882
883 /*
884 * If a page at the tail of the LRU is under writeback, there
885 * are three cases to consider.
886 *
887 * 1) If reclaim is encountering an excessive number of pages
888 * under writeback and this page is both under writeback and
889 * PageReclaim then it indicates that pages are being queued
890 * for IO but are being recycled through the LRU before the
891 * IO can complete. Waiting on the page itself risks an
892 * indefinite stall if it is impossible to writeback the
893 * page due to IO error or disconnected storage so instead
894 * note that the LRU is being scanned too quickly and the
895 * caller can stall after page list has been processed.
896 *
897 * 2) Global reclaim encounters a page, memcg encounters a
898 * page that is not marked for immediate reclaim or
899 * the caller does not have __GFP_IO. In this case mark
900 * the page for immediate reclaim and continue scanning.
901 *
902 * __GFP_IO is checked because a loop driver thread might
903 * enter reclaim, and deadlock if it waits on a page for
904 * which it is needed to do the write (loop masks off
905 * __GFP_IO|__GFP_FS for this reason); but more thought
906 * would probably show more reasons.
907 *
908 * Don't require __GFP_FS, since we're not going into the
909 * FS, just waiting on its writeback completion. Worryingly,
910 * ext4 gfs2 and xfs allocate pages with
911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 * may_enter_fs here is liable to OOM on them.
913 *
914 * 3) memcg encounters a page that is not already marked
915 * PageReclaim. memcg does not have any dirty pages
916 * throttling so we could easily OOM just because too many
917 * pages are in writeback and there is nothing else to
918 * reclaim. Wait for the writeback to complete.
919 */
920 if (PageWriteback(page)) {
921 /* Case 1 above */
922 if (current_is_kswapd() &&
923 PageReclaim(page) &&
924 zone_is_reclaim_writeback(zone)) {
925 nr_immediate++;
926 goto keep_locked;
927
928 /* Case 2 above */
929 } else if (global_reclaim(sc) ||
930 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
931 /*
932 * This is slightly racy - end_page_writeback()
933 * might have just cleared PageReclaim, then
934 * setting PageReclaim here end up interpreted
935 * as PageReadahead - but that does not matter
936 * enough to care. What we do want is for this
937 * page to have PageReclaim set next time memcg
938 * reclaim reaches the tests above, so it will
939 * then wait_on_page_writeback() to avoid OOM;
940 * and it's also appropriate in global reclaim.
941 */
942 SetPageReclaim(page);
943 nr_writeback++;
944
945 goto keep_locked;
946
947 /* Case 3 above */
948 } else {
949 wait_on_page_writeback(page);
950 }
951 }
952
953 if (!force_reclaim)
954 references = page_check_references(page, sc);
955
956 switch (references) {
957 case PAGEREF_ACTIVATE:
958 goto activate_locked;
959 case PAGEREF_KEEP:
960 goto keep_locked;
961 case PAGEREF_RECLAIM:
962 case PAGEREF_RECLAIM_CLEAN:
963 ; /* try to reclaim the page below */
964 }
965
966 /*
967 * Anonymous process memory has backing store?
968 * Try to allocate it some swap space here.
969 */
970 if (PageAnon(page) && !PageSwapCache(page)) {
971 if (!(sc->gfp_mask & __GFP_IO))
972 goto keep_locked;
973 if (!add_to_swap(page, page_list))
974 goto activate_locked;
975 may_enter_fs = 1;
976
977 /* Adding to swap updated mapping */
978 mapping = page_mapping(page);
979 }
980
981 /*
982 * The page is mapped into the page tables of one or more
983 * processes. Try to unmap it here.
984 */
985 if (page_mapped(page) && mapping) {
986 switch (try_to_unmap(page, ttu_flags)) {
987 case SWAP_FAIL:
988 goto activate_locked;
989 case SWAP_AGAIN:
990 goto keep_locked;
991 case SWAP_MLOCK:
992 goto cull_mlocked;
993 case SWAP_SUCCESS:
994 ; /* try to free the page below */
995 }
996 }
997
998 if (PageDirty(page)) {
999 /*
1000 * Only kswapd can writeback filesystem pages to
1001 * avoid risk of stack overflow but only writeback
1002 * if many dirty pages have been encountered.
1003 */
1004 if (page_is_file_cache(page) &&
1005 (!current_is_kswapd() ||
1006 !zone_is_reclaim_dirty(zone))) {
1007 /*
1008 * Immediately reclaim when written back.
1009 * Similar in principal to deactivate_page()
1010 * except we already have the page isolated
1011 * and know it's dirty
1012 */
1013 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1014 SetPageReclaim(page);
1015
1016 goto keep_locked;
1017 }
1018
1019 if (references == PAGEREF_RECLAIM_CLEAN)
1020 goto keep_locked;
1021 if (!may_enter_fs)
1022 goto keep_locked;
1023 if (!sc->may_writepage)
1024 goto keep_locked;
1025
1026 /* Page is dirty, try to write it out here */
1027 switch (pageout(page, mapping, sc)) {
1028 case PAGE_KEEP:
1029 goto keep_locked;
1030 case PAGE_ACTIVATE:
1031 goto activate_locked;
1032 case PAGE_SUCCESS:
1033 if (PageWriteback(page))
1034 goto keep;
1035 if (PageDirty(page))
1036 goto keep;
1037
1038 /*
1039 * A synchronous write - probably a ramdisk. Go
1040 * ahead and try to reclaim the page.
1041 */
1042 if (!trylock_page(page))
1043 goto keep;
1044 if (PageDirty(page) || PageWriteback(page))
1045 goto keep_locked;
1046 mapping = page_mapping(page);
1047 case PAGE_CLEAN:
1048 ; /* try to free the page below */
1049 }
1050 }
1051
1052 /*
1053 * If the page has buffers, try to free the buffer mappings
1054 * associated with this page. If we succeed we try to free
1055 * the page as well.
1056 *
1057 * We do this even if the page is PageDirty().
1058 * try_to_release_page() does not perform I/O, but it is
1059 * possible for a page to have PageDirty set, but it is actually
1060 * clean (all its buffers are clean). This happens if the
1061 * buffers were written out directly, with submit_bh(). ext3
1062 * will do this, as well as the blockdev mapping.
1063 * try_to_release_page() will discover that cleanness and will
1064 * drop the buffers and mark the page clean - it can be freed.
1065 *
1066 * Rarely, pages can have buffers and no ->mapping. These are
1067 * the pages which were not successfully invalidated in
1068 * truncate_complete_page(). We try to drop those buffers here
1069 * and if that worked, and the page is no longer mapped into
1070 * process address space (page_count == 1) it can be freed.
1071 * Otherwise, leave the page on the LRU so it is swappable.
1072 */
1073 if (page_has_private(page)) {
1074 if (!try_to_release_page(page, sc->gfp_mask))
1075 goto activate_locked;
1076 if (!mapping && page_count(page) == 1) {
1077 unlock_page(page);
1078 if (put_page_testzero(page))
1079 goto free_it;
1080 else {
1081 /*
1082 * rare race with speculative reference.
1083 * the speculative reference will free
1084 * this page shortly, so we may
1085 * increment nr_reclaimed here (and
1086 * leave it off the LRU).
1087 */
1088 nr_reclaimed++;
1089 continue;
1090 }
1091 }
1092 }
1093
1094 if (!mapping || !__remove_mapping(mapping, page, true))
1095 goto keep_locked;
1096
1097 /*
1098 * At this point, we have no other references and there is
1099 * no way to pick any more up (removed from LRU, removed
1100 * from pagecache). Can use non-atomic bitops now (and
1101 * we obviously don't have to worry about waking up a process
1102 * waiting on the page lock, because there are no references.
1103 */
1104 __clear_page_locked(page);
1105 free_it:
1106 nr_reclaimed++;
1107
1108 /*
1109 * Is there need to periodically free_page_list? It would
1110 * appear not as the counts should be low
1111 */
1112 list_add(&page->lru, &free_pages);
1113 continue;
1114
1115 cull_mlocked:
1116 if (PageSwapCache(page))
1117 try_to_free_swap(page);
1118 unlock_page(page);
1119 putback_lru_page(page);
1120 continue;
1121
1122 activate_locked:
1123 /* Not a candidate for swapping, so reclaim swap space. */
1124 if (PageSwapCache(page) && vm_swap_full())
1125 try_to_free_swap(page);
1126 VM_BUG_ON_PAGE(PageActive(page), page);
1127 SetPageActive(page);
1128 pgactivate++;
1129 keep_locked:
1130 unlock_page(page);
1131 keep:
1132 list_add(&page->lru, &ret_pages);
1133 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1134 }
1135
1136 free_hot_cold_page_list(&free_pages, true);
1137
1138 list_splice(&ret_pages, page_list);
1139 count_vm_events(PGACTIVATE, pgactivate);
1140 mem_cgroup_uncharge_end();
1141 *ret_nr_dirty += nr_dirty;
1142 *ret_nr_congested += nr_congested;
1143 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1144 *ret_nr_writeback += nr_writeback;
1145 *ret_nr_immediate += nr_immediate;
1146 return nr_reclaimed;
1147 }
1148
1149 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1150 struct list_head *page_list)
1151 {
1152 struct scan_control sc = {
1153 .gfp_mask = GFP_KERNEL,
1154 .priority = DEF_PRIORITY,
1155 .may_unmap = 1,
1156 };
1157 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1158 struct page *page, *next;
1159 LIST_HEAD(clean_pages);
1160
1161 list_for_each_entry_safe(page, next, page_list, lru) {
1162 if (page_is_file_cache(page) && !PageDirty(page) &&
1163 !isolated_balloon_page(page)) {
1164 ClearPageActive(page);
1165 list_move(&page->lru, &clean_pages);
1166 }
1167 }
1168
1169 ret = shrink_page_list(&clean_pages, zone, &sc,
1170 TTU_UNMAP|TTU_IGNORE_ACCESS,
1171 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1172 list_splice(&clean_pages, page_list);
1173 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1174 return ret;
1175 }
1176
1177 /*
1178 * Attempt to remove the specified page from its LRU. Only take this page
1179 * if it is of the appropriate PageActive status. Pages which are being
1180 * freed elsewhere are also ignored.
1181 *
1182 * page: page to consider
1183 * mode: one of the LRU isolation modes defined above
1184 *
1185 * returns 0 on success, -ve errno on failure.
1186 */
1187 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1188 {
1189 int ret = -EINVAL;
1190
1191 /* Only take pages on the LRU. */
1192 if (!PageLRU(page))
1193 return ret;
1194
1195 /* Compaction should not handle unevictable pages but CMA can do so */
1196 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1197 return ret;
1198
1199 ret = -EBUSY;
1200
1201 /*
1202 * To minimise LRU disruption, the caller can indicate that it only
1203 * wants to isolate pages it will be able to operate on without
1204 * blocking - clean pages for the most part.
1205 *
1206 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1207 * is used by reclaim when it is cannot write to backing storage
1208 *
1209 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1210 * that it is possible to migrate without blocking
1211 */
1212 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1213 /* All the caller can do on PageWriteback is block */
1214 if (PageWriteback(page))
1215 return ret;
1216
1217 if (PageDirty(page)) {
1218 struct address_space *mapping;
1219
1220 /* ISOLATE_CLEAN means only clean pages */
1221 if (mode & ISOLATE_CLEAN)
1222 return ret;
1223
1224 /*
1225 * Only pages without mappings or that have a
1226 * ->migratepage callback are possible to migrate
1227 * without blocking
1228 */
1229 mapping = page_mapping(page);
1230 if (mapping && !mapping->a_ops->migratepage)
1231 return ret;
1232 }
1233 }
1234
1235 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1236 return ret;
1237
1238 if (likely(get_page_unless_zero(page))) {
1239 /*
1240 * Be careful not to clear PageLRU until after we're
1241 * sure the page is not being freed elsewhere -- the
1242 * page release code relies on it.
1243 */
1244 ClearPageLRU(page);
1245 ret = 0;
1246 }
1247
1248 return ret;
1249 }
1250
1251 /*
1252 * zone->lru_lock is heavily contended. Some of the functions that
1253 * shrink the lists perform better by taking out a batch of pages
1254 * and working on them outside the LRU lock.
1255 *
1256 * For pagecache intensive workloads, this function is the hottest
1257 * spot in the kernel (apart from copy_*_user functions).
1258 *
1259 * Appropriate locks must be held before calling this function.
1260 *
1261 * @nr_to_scan: The number of pages to look through on the list.
1262 * @lruvec: The LRU vector to pull pages from.
1263 * @dst: The temp list to put pages on to.
1264 * @nr_scanned: The number of pages that were scanned.
1265 * @sc: The scan_control struct for this reclaim session
1266 * @mode: One of the LRU isolation modes
1267 * @lru: LRU list id for isolating
1268 *
1269 * returns how many pages were moved onto *@dst.
1270 */
1271 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1272 struct lruvec *lruvec, struct list_head *dst,
1273 unsigned long *nr_scanned, struct scan_control *sc,
1274 isolate_mode_t mode, enum lru_list lru)
1275 {
1276 struct list_head *src = &lruvec->lists[lru];
1277 unsigned long nr_taken = 0;
1278 unsigned long scan;
1279
1280 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1281 struct page *page;
1282 int nr_pages;
1283
1284 page = lru_to_page(src);
1285 prefetchw_prev_lru_page(page, src, flags);
1286
1287 VM_BUG_ON_PAGE(!PageLRU(page), page);
1288
1289 switch (__isolate_lru_page(page, mode)) {
1290 case 0:
1291 nr_pages = hpage_nr_pages(page);
1292 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1293 list_move(&page->lru, dst);
1294 nr_taken += nr_pages;
1295 break;
1296
1297 case -EBUSY:
1298 /* else it is being freed elsewhere */
1299 list_move(&page->lru, src);
1300 continue;
1301
1302 default:
1303 BUG();
1304 }
1305 }
1306
1307 *nr_scanned = scan;
1308 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1309 nr_taken, mode, is_file_lru(lru));
1310 return nr_taken;
1311 }
1312
1313 /**
1314 * isolate_lru_page - tries to isolate a page from its LRU list
1315 * @page: page to isolate from its LRU list
1316 *
1317 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1318 * vmstat statistic corresponding to whatever LRU list the page was on.
1319 *
1320 * Returns 0 if the page was removed from an LRU list.
1321 * Returns -EBUSY if the page was not on an LRU list.
1322 *
1323 * The returned page will have PageLRU() cleared. If it was found on
1324 * the active list, it will have PageActive set. If it was found on
1325 * the unevictable list, it will have the PageUnevictable bit set. That flag
1326 * may need to be cleared by the caller before letting the page go.
1327 *
1328 * The vmstat statistic corresponding to the list on which the page was
1329 * found will be decremented.
1330 *
1331 * Restrictions:
1332 * (1) Must be called with an elevated refcount on the page. This is a
1333 * fundamentnal difference from isolate_lru_pages (which is called
1334 * without a stable reference).
1335 * (2) the lru_lock must not be held.
1336 * (3) interrupts must be enabled.
1337 */
1338 int isolate_lru_page(struct page *page)
1339 {
1340 int ret = -EBUSY;
1341
1342 VM_BUG_ON_PAGE(!page_count(page), page);
1343
1344 if (PageLRU(page)) {
1345 struct zone *zone = page_zone(page);
1346 struct lruvec *lruvec;
1347
1348 spin_lock_irq(&zone->lru_lock);
1349 lruvec = mem_cgroup_page_lruvec(page, zone);
1350 if (PageLRU(page)) {
1351 int lru = page_lru(page);
1352 get_page(page);
1353 ClearPageLRU(page);
1354 del_page_from_lru_list(page, lruvec, lru);
1355 ret = 0;
1356 }
1357 spin_unlock_irq(&zone->lru_lock);
1358 }
1359 return ret;
1360 }
1361
1362 /*
1363 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1364 * then get resheduled. When there are massive number of tasks doing page
1365 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1366 * the LRU list will go small and be scanned faster than necessary, leading to
1367 * unnecessary swapping, thrashing and OOM.
1368 */
1369 static int too_many_isolated(struct zone *zone, int file,
1370 struct scan_control *sc)
1371 {
1372 unsigned long inactive, isolated;
1373
1374 if (current_is_kswapd())
1375 return 0;
1376
1377 if (!global_reclaim(sc))
1378 return 0;
1379
1380 if (file) {
1381 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1382 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1383 } else {
1384 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1385 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1386 }
1387
1388 /*
1389 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1390 * won't get blocked by normal direct-reclaimers, forming a circular
1391 * deadlock.
1392 */
1393 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1394 inactive >>= 3;
1395
1396 return isolated > inactive;
1397 }
1398
1399 static noinline_for_stack void
1400 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1401 {
1402 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1403 struct zone *zone = lruvec_zone(lruvec);
1404 LIST_HEAD(pages_to_free);
1405
1406 /*
1407 * Put back any unfreeable pages.
1408 */
1409 while (!list_empty(page_list)) {
1410 struct page *page = lru_to_page(page_list);
1411 int lru;
1412
1413 VM_BUG_ON_PAGE(PageLRU(page), page);
1414 list_del(&page->lru);
1415 if (unlikely(!page_evictable(page))) {
1416 spin_unlock_irq(&zone->lru_lock);
1417 putback_lru_page(page);
1418 spin_lock_irq(&zone->lru_lock);
1419 continue;
1420 }
1421
1422 lruvec = mem_cgroup_page_lruvec(page, zone);
1423
1424 SetPageLRU(page);
1425 lru = page_lru(page);
1426 add_page_to_lru_list(page, lruvec, lru);
1427
1428 if (is_active_lru(lru)) {
1429 int file = is_file_lru(lru);
1430 int numpages = hpage_nr_pages(page);
1431 reclaim_stat->recent_rotated[file] += numpages;
1432 }
1433 if (put_page_testzero(page)) {
1434 __ClearPageLRU(page);
1435 __ClearPageActive(page);
1436 del_page_from_lru_list(page, lruvec, lru);
1437
1438 if (unlikely(PageCompound(page))) {
1439 spin_unlock_irq(&zone->lru_lock);
1440 (*get_compound_page_dtor(page))(page);
1441 spin_lock_irq(&zone->lru_lock);
1442 } else
1443 list_add(&page->lru, &pages_to_free);
1444 }
1445 }
1446
1447 /*
1448 * To save our caller's stack, now use input list for pages to free.
1449 */
1450 list_splice(&pages_to_free, page_list);
1451 }
1452
1453 /*
1454 * If a kernel thread (such as nfsd for loop-back mounts) services
1455 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1456 * In that case we should only throttle if the backing device it is
1457 * writing to is congested. In other cases it is safe to throttle.
1458 */
1459 static int current_may_throttle(void)
1460 {
1461 return !(current->flags & PF_LESS_THROTTLE) ||
1462 current->backing_dev_info == NULL ||
1463 bdi_write_congested(current->backing_dev_info);
1464 }
1465
1466 /*
1467 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1468 * of reclaimed pages
1469 */
1470 static noinline_for_stack unsigned long
1471 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1472 struct scan_control *sc, enum lru_list lru)
1473 {
1474 LIST_HEAD(page_list);
1475 unsigned long nr_scanned;
1476 unsigned long nr_reclaimed = 0;
1477 unsigned long nr_taken;
1478 unsigned long nr_dirty = 0;
1479 unsigned long nr_congested = 0;
1480 unsigned long nr_unqueued_dirty = 0;
1481 unsigned long nr_writeback = 0;
1482 unsigned long nr_immediate = 0;
1483 isolate_mode_t isolate_mode = 0;
1484 int file = is_file_lru(lru);
1485 struct zone *zone = lruvec_zone(lruvec);
1486 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1487
1488 while (unlikely(too_many_isolated(zone, file, sc))) {
1489 congestion_wait(BLK_RW_ASYNC, HZ/10);
1490
1491 /* We are about to die and free our memory. Return now. */
1492 if (fatal_signal_pending(current))
1493 return SWAP_CLUSTER_MAX;
1494 }
1495
1496 lru_add_drain();
1497
1498 if (!sc->may_unmap)
1499 isolate_mode |= ISOLATE_UNMAPPED;
1500 if (!sc->may_writepage)
1501 isolate_mode |= ISOLATE_CLEAN;
1502
1503 spin_lock_irq(&zone->lru_lock);
1504
1505 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1506 &nr_scanned, sc, isolate_mode, lru);
1507
1508 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1509 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1510
1511 if (global_reclaim(sc)) {
1512 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1513 if (current_is_kswapd())
1514 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1515 else
1516 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1517 }
1518 spin_unlock_irq(&zone->lru_lock);
1519
1520 if (nr_taken == 0)
1521 return 0;
1522
1523 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1524 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1525 &nr_writeback, &nr_immediate,
1526 false);
1527
1528 spin_lock_irq(&zone->lru_lock);
1529
1530 reclaim_stat->recent_scanned[file] += nr_taken;
1531
1532 if (global_reclaim(sc)) {
1533 if (current_is_kswapd())
1534 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1535 nr_reclaimed);
1536 else
1537 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1538 nr_reclaimed);
1539 }
1540
1541 putback_inactive_pages(lruvec, &page_list);
1542
1543 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1544
1545 spin_unlock_irq(&zone->lru_lock);
1546
1547 free_hot_cold_page_list(&page_list, true);
1548
1549 /*
1550 * If reclaim is isolating dirty pages under writeback, it implies
1551 * that the long-lived page allocation rate is exceeding the page
1552 * laundering rate. Either the global limits are not being effective
1553 * at throttling processes due to the page distribution throughout
1554 * zones or there is heavy usage of a slow backing device. The
1555 * only option is to throttle from reclaim context which is not ideal
1556 * as there is no guarantee the dirtying process is throttled in the
1557 * same way balance_dirty_pages() manages.
1558 *
1559 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1560 * of pages under pages flagged for immediate reclaim and stall if any
1561 * are encountered in the nr_immediate check below.
1562 */
1563 if (nr_writeback && nr_writeback == nr_taken)
1564 zone_set_flag(zone, ZONE_WRITEBACK);
1565
1566 /*
1567 * memcg will stall in page writeback so only consider forcibly
1568 * stalling for global reclaim
1569 */
1570 if (global_reclaim(sc)) {
1571 /*
1572 * Tag a zone as congested if all the dirty pages scanned were
1573 * backed by a congested BDI and wait_iff_congested will stall.
1574 */
1575 if (nr_dirty && nr_dirty == nr_congested)
1576 zone_set_flag(zone, ZONE_CONGESTED);
1577
1578 /*
1579 * If dirty pages are scanned that are not queued for IO, it
1580 * implies that flushers are not keeping up. In this case, flag
1581 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1582 * pages from reclaim context.
1583 */
1584 if (nr_unqueued_dirty == nr_taken)
1585 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1586
1587 /*
1588 * If kswapd scans pages marked marked for immediate
1589 * reclaim and under writeback (nr_immediate), it implies
1590 * that pages are cycling through the LRU faster than
1591 * they are written so also forcibly stall.
1592 */
1593 if (nr_immediate && current_may_throttle())
1594 congestion_wait(BLK_RW_ASYNC, HZ/10);
1595 }
1596
1597 /*
1598 * Stall direct reclaim for IO completions if underlying BDIs or zone
1599 * is congested. Allow kswapd to continue until it starts encountering
1600 * unqueued dirty pages or cycling through the LRU too quickly.
1601 */
1602 if (!sc->hibernation_mode && !current_is_kswapd() &&
1603 current_may_throttle())
1604 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1605
1606 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1607 zone_idx(zone),
1608 nr_scanned, nr_reclaimed,
1609 sc->priority,
1610 trace_shrink_flags(file));
1611 return nr_reclaimed;
1612 }
1613
1614 /*
1615 * This moves pages from the active list to the inactive list.
1616 *
1617 * We move them the other way if the page is referenced by one or more
1618 * processes, from rmap.
1619 *
1620 * If the pages are mostly unmapped, the processing is fast and it is
1621 * appropriate to hold zone->lru_lock across the whole operation. But if
1622 * the pages are mapped, the processing is slow (page_referenced()) so we
1623 * should drop zone->lru_lock around each page. It's impossible to balance
1624 * this, so instead we remove the pages from the LRU while processing them.
1625 * It is safe to rely on PG_active against the non-LRU pages in here because
1626 * nobody will play with that bit on a non-LRU page.
1627 *
1628 * The downside is that we have to touch page->_count against each page.
1629 * But we had to alter page->flags anyway.
1630 */
1631
1632 static void move_active_pages_to_lru(struct lruvec *lruvec,
1633 struct list_head *list,
1634 struct list_head *pages_to_free,
1635 enum lru_list lru)
1636 {
1637 struct zone *zone = lruvec_zone(lruvec);
1638 unsigned long pgmoved = 0;
1639 struct page *page;
1640 int nr_pages;
1641
1642 while (!list_empty(list)) {
1643 page = lru_to_page(list);
1644 lruvec = mem_cgroup_page_lruvec(page, zone);
1645
1646 VM_BUG_ON_PAGE(PageLRU(page), page);
1647 SetPageLRU(page);
1648
1649 nr_pages = hpage_nr_pages(page);
1650 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1651 list_move(&page->lru, &lruvec->lists[lru]);
1652 pgmoved += nr_pages;
1653
1654 if (put_page_testzero(page)) {
1655 __ClearPageLRU(page);
1656 __ClearPageActive(page);
1657 del_page_from_lru_list(page, lruvec, lru);
1658
1659 if (unlikely(PageCompound(page))) {
1660 spin_unlock_irq(&zone->lru_lock);
1661 (*get_compound_page_dtor(page))(page);
1662 spin_lock_irq(&zone->lru_lock);
1663 } else
1664 list_add(&page->lru, pages_to_free);
1665 }
1666 }
1667 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1668 if (!is_active_lru(lru))
1669 __count_vm_events(PGDEACTIVATE, pgmoved);
1670 }
1671
1672 static void shrink_active_list(unsigned long nr_to_scan,
1673 struct lruvec *lruvec,
1674 struct scan_control *sc,
1675 enum lru_list lru)
1676 {
1677 unsigned long nr_taken;
1678 unsigned long nr_scanned;
1679 unsigned long vm_flags;
1680 LIST_HEAD(l_hold); /* The pages which were snipped off */
1681 LIST_HEAD(l_active);
1682 LIST_HEAD(l_inactive);
1683 struct page *page;
1684 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1685 unsigned long nr_rotated = 0;
1686 isolate_mode_t isolate_mode = 0;
1687 int file = is_file_lru(lru);
1688 struct zone *zone = lruvec_zone(lruvec);
1689
1690 lru_add_drain();
1691
1692 if (!sc->may_unmap)
1693 isolate_mode |= ISOLATE_UNMAPPED;
1694 if (!sc->may_writepage)
1695 isolate_mode |= ISOLATE_CLEAN;
1696
1697 spin_lock_irq(&zone->lru_lock);
1698
1699 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1700 &nr_scanned, sc, isolate_mode, lru);
1701 if (global_reclaim(sc))
1702 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1703
1704 reclaim_stat->recent_scanned[file] += nr_taken;
1705
1706 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1707 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1708 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1709 spin_unlock_irq(&zone->lru_lock);
1710
1711 while (!list_empty(&l_hold)) {
1712 cond_resched();
1713 page = lru_to_page(&l_hold);
1714 list_del(&page->lru);
1715
1716 if (unlikely(!page_evictable(page))) {
1717 putback_lru_page(page);
1718 continue;
1719 }
1720
1721 if (unlikely(buffer_heads_over_limit)) {
1722 if (page_has_private(page) && trylock_page(page)) {
1723 if (page_has_private(page))
1724 try_to_release_page(page, 0);
1725 unlock_page(page);
1726 }
1727 }
1728
1729 if (page_referenced(page, 0, sc->target_mem_cgroup,
1730 &vm_flags)) {
1731 nr_rotated += hpage_nr_pages(page);
1732 /*
1733 * Identify referenced, file-backed active pages and
1734 * give them one more trip around the active list. So
1735 * that executable code get better chances to stay in
1736 * memory under moderate memory pressure. Anon pages
1737 * are not likely to be evicted by use-once streaming
1738 * IO, plus JVM can create lots of anon VM_EXEC pages,
1739 * so we ignore them here.
1740 */
1741 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1742 list_add(&page->lru, &l_active);
1743 continue;
1744 }
1745 }
1746
1747 ClearPageActive(page); /* we are de-activating */
1748 list_add(&page->lru, &l_inactive);
1749 }
1750
1751 /*
1752 * Move pages back to the lru list.
1753 */
1754 spin_lock_irq(&zone->lru_lock);
1755 /*
1756 * Count referenced pages from currently used mappings as rotated,
1757 * even though only some of them are actually re-activated. This
1758 * helps balance scan pressure between file and anonymous pages in
1759 * get_scan_count.
1760 */
1761 reclaim_stat->recent_rotated[file] += nr_rotated;
1762
1763 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1764 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1765 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1766 spin_unlock_irq(&zone->lru_lock);
1767
1768 free_hot_cold_page_list(&l_hold, true);
1769 }
1770
1771 #ifdef CONFIG_SWAP
1772 static int inactive_anon_is_low_global(struct zone *zone)
1773 {
1774 unsigned long active, inactive;
1775
1776 active = zone_page_state(zone, NR_ACTIVE_ANON);
1777 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1778
1779 if (inactive * zone->inactive_ratio < active)
1780 return 1;
1781
1782 return 0;
1783 }
1784
1785 /**
1786 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1787 * @lruvec: LRU vector to check
1788 *
1789 * Returns true if the zone does not have enough inactive anon pages,
1790 * meaning some active anon pages need to be deactivated.
1791 */
1792 static int inactive_anon_is_low(struct lruvec *lruvec)
1793 {
1794 /*
1795 * If we don't have swap space, anonymous page deactivation
1796 * is pointless.
1797 */
1798 if (!total_swap_pages)
1799 return 0;
1800
1801 if (!mem_cgroup_disabled())
1802 return mem_cgroup_inactive_anon_is_low(lruvec);
1803
1804 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1805 }
1806 #else
1807 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1808 {
1809 return 0;
1810 }
1811 #endif
1812
1813 /**
1814 * inactive_file_is_low - check if file pages need to be deactivated
1815 * @lruvec: LRU vector to check
1816 *
1817 * When the system is doing streaming IO, memory pressure here
1818 * ensures that active file pages get deactivated, until more
1819 * than half of the file pages are on the inactive list.
1820 *
1821 * Once we get to that situation, protect the system's working
1822 * set from being evicted by disabling active file page aging.
1823 *
1824 * This uses a different ratio than the anonymous pages, because
1825 * the page cache uses a use-once replacement algorithm.
1826 */
1827 static int inactive_file_is_low(struct lruvec *lruvec)
1828 {
1829 unsigned long inactive;
1830 unsigned long active;
1831
1832 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1833 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1834
1835 return active > inactive;
1836 }
1837
1838 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1839 {
1840 if (is_file_lru(lru))
1841 return inactive_file_is_low(lruvec);
1842 else
1843 return inactive_anon_is_low(lruvec);
1844 }
1845
1846 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1847 struct lruvec *lruvec, struct scan_control *sc)
1848 {
1849 if (is_active_lru(lru)) {
1850 if (inactive_list_is_low(lruvec, lru))
1851 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1852 return 0;
1853 }
1854
1855 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1856 }
1857
1858 enum scan_balance {
1859 SCAN_EQUAL,
1860 SCAN_FRACT,
1861 SCAN_ANON,
1862 SCAN_FILE,
1863 };
1864
1865 /*
1866 * Determine how aggressively the anon and file LRU lists should be
1867 * scanned. The relative value of each set of LRU lists is determined
1868 * by looking at the fraction of the pages scanned we did rotate back
1869 * onto the active list instead of evict.
1870 *
1871 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1872 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1873 */
1874 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1875 struct scan_control *sc, unsigned long *nr)
1876 {
1877 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1878 u64 fraction[2];
1879 u64 denominator = 0; /* gcc */
1880 struct zone *zone = lruvec_zone(lruvec);
1881 unsigned long anon_prio, file_prio;
1882 enum scan_balance scan_balance;
1883 unsigned long anon, file;
1884 bool force_scan = false;
1885 unsigned long ap, fp;
1886 enum lru_list lru;
1887 bool some_scanned;
1888 int pass;
1889
1890 /*
1891 * If the zone or memcg is small, nr[l] can be 0. This
1892 * results in no scanning on this priority and a potential
1893 * priority drop. Global direct reclaim can go to the next
1894 * zone and tends to have no problems. Global kswapd is for
1895 * zone balancing and it needs to scan a minimum amount. When
1896 * reclaiming for a memcg, a priority drop can cause high
1897 * latencies, so it's better to scan a minimum amount there as
1898 * well.
1899 */
1900 if (current_is_kswapd() && !zone_reclaimable(zone))
1901 force_scan = true;
1902 if (!global_reclaim(sc))
1903 force_scan = true;
1904
1905 /* If we have no swap space, do not bother scanning anon pages. */
1906 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1907 scan_balance = SCAN_FILE;
1908 goto out;
1909 }
1910
1911 /*
1912 * Global reclaim will swap to prevent OOM even with no
1913 * swappiness, but memcg users want to use this knob to
1914 * disable swapping for individual groups completely when
1915 * using the memory controller's swap limit feature would be
1916 * too expensive.
1917 */
1918 if (!global_reclaim(sc) && !swappiness) {
1919 scan_balance = SCAN_FILE;
1920 goto out;
1921 }
1922
1923 /*
1924 * Do not apply any pressure balancing cleverness when the
1925 * system is close to OOM, scan both anon and file equally
1926 * (unless the swappiness setting disagrees with swapping).
1927 */
1928 if (!sc->priority && swappiness) {
1929 scan_balance = SCAN_EQUAL;
1930 goto out;
1931 }
1932
1933 /*
1934 * Prevent the reclaimer from falling into the cache trap: as
1935 * cache pages start out inactive, every cache fault will tip
1936 * the scan balance towards the file LRU. And as the file LRU
1937 * shrinks, so does the window for rotation from references.
1938 * This means we have a runaway feedback loop where a tiny
1939 * thrashing file LRU becomes infinitely more attractive than
1940 * anon pages. Try to detect this based on file LRU size.
1941 */
1942 if (global_reclaim(sc)) {
1943 unsigned long zonefile;
1944 unsigned long zonefree;
1945
1946 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1947 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1948 zone_page_state(zone, NR_INACTIVE_FILE);
1949
1950 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1951 scan_balance = SCAN_ANON;
1952 goto out;
1953 }
1954 }
1955
1956 /*
1957 * There is enough inactive page cache, do not reclaim
1958 * anything from the anonymous working set right now.
1959 */
1960 if (!inactive_file_is_low(lruvec)) {
1961 scan_balance = SCAN_FILE;
1962 goto out;
1963 }
1964
1965 scan_balance = SCAN_FRACT;
1966
1967 /*
1968 * With swappiness at 100, anonymous and file have the same priority.
1969 * This scanning priority is essentially the inverse of IO cost.
1970 */
1971 anon_prio = swappiness;
1972 file_prio = 200 - anon_prio;
1973
1974 /*
1975 * OK, so we have swap space and a fair amount of page cache
1976 * pages. We use the recently rotated / recently scanned
1977 * ratios to determine how valuable each cache is.
1978 *
1979 * Because workloads change over time (and to avoid overflow)
1980 * we keep these statistics as a floating average, which ends
1981 * up weighing recent references more than old ones.
1982 *
1983 * anon in [0], file in [1]
1984 */
1985
1986 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1987 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1988 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1989 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1990
1991 spin_lock_irq(&zone->lru_lock);
1992 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1993 reclaim_stat->recent_scanned[0] /= 2;
1994 reclaim_stat->recent_rotated[0] /= 2;
1995 }
1996
1997 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1998 reclaim_stat->recent_scanned[1] /= 2;
1999 reclaim_stat->recent_rotated[1] /= 2;
2000 }
2001
2002 /*
2003 * The amount of pressure on anon vs file pages is inversely
2004 * proportional to the fraction of recently scanned pages on
2005 * each list that were recently referenced and in active use.
2006 */
2007 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2008 ap /= reclaim_stat->recent_rotated[0] + 1;
2009
2010 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2011 fp /= reclaim_stat->recent_rotated[1] + 1;
2012 spin_unlock_irq(&zone->lru_lock);
2013
2014 fraction[0] = ap;
2015 fraction[1] = fp;
2016 denominator = ap + fp + 1;
2017 out:
2018 some_scanned = false;
2019 /* Only use force_scan on second pass. */
2020 for (pass = 0; !some_scanned && pass < 2; pass++) {
2021 for_each_evictable_lru(lru) {
2022 int file = is_file_lru(lru);
2023 unsigned long size;
2024 unsigned long scan;
2025
2026 size = get_lru_size(lruvec, lru);
2027 scan = size >> sc->priority;
2028
2029 if (!scan && pass && force_scan)
2030 scan = min(size, SWAP_CLUSTER_MAX);
2031
2032 switch (scan_balance) {
2033 case SCAN_EQUAL:
2034 /* Scan lists relative to size */
2035 break;
2036 case SCAN_FRACT:
2037 /*
2038 * Scan types proportional to swappiness and
2039 * their relative recent reclaim efficiency.
2040 */
2041 scan = div64_u64(scan * fraction[file],
2042 denominator);
2043 break;
2044 case SCAN_FILE:
2045 case SCAN_ANON:
2046 /* Scan one type exclusively */
2047 if ((scan_balance == SCAN_FILE) != file)
2048 scan = 0;
2049 break;
2050 default:
2051 /* Look ma, no brain */
2052 BUG();
2053 }
2054 nr[lru] = scan;
2055 /*
2056 * Skip the second pass and don't force_scan,
2057 * if we found something to scan.
2058 */
2059 some_scanned |= !!scan;
2060 }
2061 }
2062 }
2063
2064 /*
2065 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2066 */
2067 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2068 struct scan_control *sc)
2069 {
2070 unsigned long nr[NR_LRU_LISTS];
2071 unsigned long targets[NR_LRU_LISTS];
2072 unsigned long nr_to_scan;
2073 enum lru_list lru;
2074 unsigned long nr_reclaimed = 0;
2075 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2076 struct blk_plug plug;
2077 bool scan_adjusted;
2078
2079 get_scan_count(lruvec, swappiness, sc, nr);
2080
2081 /* Record the original scan target for proportional adjustments later */
2082 memcpy(targets, nr, sizeof(nr));
2083
2084 /*
2085 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2086 * event that can occur when there is little memory pressure e.g.
2087 * multiple streaming readers/writers. Hence, we do not abort scanning
2088 * when the requested number of pages are reclaimed when scanning at
2089 * DEF_PRIORITY on the assumption that the fact we are direct
2090 * reclaiming implies that kswapd is not keeping up and it is best to
2091 * do a batch of work at once. For memcg reclaim one check is made to
2092 * abort proportional reclaim if either the file or anon lru has already
2093 * dropped to zero at the first pass.
2094 */
2095 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2096 sc->priority == DEF_PRIORITY);
2097
2098 blk_start_plug(&plug);
2099 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2100 nr[LRU_INACTIVE_FILE]) {
2101 unsigned long nr_anon, nr_file, percentage;
2102 unsigned long nr_scanned;
2103
2104 for_each_evictable_lru(lru) {
2105 if (nr[lru]) {
2106 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2107 nr[lru] -= nr_to_scan;
2108
2109 nr_reclaimed += shrink_list(lru, nr_to_scan,
2110 lruvec, sc);
2111 }
2112 }
2113
2114 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2115 continue;
2116
2117 /*
2118 * For kswapd and memcg, reclaim at least the number of pages
2119 * requested. Ensure that the anon and file LRUs are scanned
2120 * proportionally what was requested by get_scan_count(). We
2121 * stop reclaiming one LRU and reduce the amount scanning
2122 * proportional to the original scan target.
2123 */
2124 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2125 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2126
2127 /*
2128 * It's just vindictive to attack the larger once the smaller
2129 * has gone to zero. And given the way we stop scanning the
2130 * smaller below, this makes sure that we only make one nudge
2131 * towards proportionality once we've got nr_to_reclaim.
2132 */
2133 if (!nr_file || !nr_anon)
2134 break;
2135
2136 if (nr_file > nr_anon) {
2137 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2138 targets[LRU_ACTIVE_ANON] + 1;
2139 lru = LRU_BASE;
2140 percentage = nr_anon * 100 / scan_target;
2141 } else {
2142 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2143 targets[LRU_ACTIVE_FILE] + 1;
2144 lru = LRU_FILE;
2145 percentage = nr_file * 100 / scan_target;
2146 }
2147
2148 /* Stop scanning the smaller of the LRU */
2149 nr[lru] = 0;
2150 nr[lru + LRU_ACTIVE] = 0;
2151
2152 /*
2153 * Recalculate the other LRU scan count based on its original
2154 * scan target and the percentage scanning already complete
2155 */
2156 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2157 nr_scanned = targets[lru] - nr[lru];
2158 nr[lru] = targets[lru] * (100 - percentage) / 100;
2159 nr[lru] -= min(nr[lru], nr_scanned);
2160
2161 lru += LRU_ACTIVE;
2162 nr_scanned = targets[lru] - nr[lru];
2163 nr[lru] = targets[lru] * (100 - percentage) / 100;
2164 nr[lru] -= min(nr[lru], nr_scanned);
2165
2166 scan_adjusted = true;
2167 }
2168 blk_finish_plug(&plug);
2169 sc->nr_reclaimed += nr_reclaimed;
2170
2171 /*
2172 * Even if we did not try to evict anon pages at all, we want to
2173 * rebalance the anon lru active/inactive ratio.
2174 */
2175 if (inactive_anon_is_low(lruvec))
2176 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2177 sc, LRU_ACTIVE_ANON);
2178
2179 throttle_vm_writeout(sc->gfp_mask);
2180 }
2181
2182 /* Use reclaim/compaction for costly allocs or under memory pressure */
2183 static bool in_reclaim_compaction(struct scan_control *sc)
2184 {
2185 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2186 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2187 sc->priority < DEF_PRIORITY - 2))
2188 return true;
2189
2190 return false;
2191 }
2192
2193 /*
2194 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2195 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2196 * true if more pages should be reclaimed such that when the page allocator
2197 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2198 * It will give up earlier than that if there is difficulty reclaiming pages.
2199 */
2200 static inline bool should_continue_reclaim(struct zone *zone,
2201 unsigned long nr_reclaimed,
2202 unsigned long nr_scanned,
2203 struct scan_control *sc)
2204 {
2205 unsigned long pages_for_compaction;
2206 unsigned long inactive_lru_pages;
2207
2208 /* If not in reclaim/compaction mode, stop */
2209 if (!in_reclaim_compaction(sc))
2210 return false;
2211
2212 /* Consider stopping depending on scan and reclaim activity */
2213 if (sc->gfp_mask & __GFP_REPEAT) {
2214 /*
2215 * For __GFP_REPEAT allocations, stop reclaiming if the
2216 * full LRU list has been scanned and we are still failing
2217 * to reclaim pages. This full LRU scan is potentially
2218 * expensive but a __GFP_REPEAT caller really wants to succeed
2219 */
2220 if (!nr_reclaimed && !nr_scanned)
2221 return false;
2222 } else {
2223 /*
2224 * For non-__GFP_REPEAT allocations which can presumably
2225 * fail without consequence, stop if we failed to reclaim
2226 * any pages from the last SWAP_CLUSTER_MAX number of
2227 * pages that were scanned. This will return to the
2228 * caller faster at the risk reclaim/compaction and
2229 * the resulting allocation attempt fails
2230 */
2231 if (!nr_reclaimed)
2232 return false;
2233 }
2234
2235 /*
2236 * If we have not reclaimed enough pages for compaction and the
2237 * inactive lists are large enough, continue reclaiming
2238 */
2239 pages_for_compaction = (2UL << sc->order);
2240 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2241 if (get_nr_swap_pages() > 0)
2242 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2243 if (sc->nr_reclaimed < pages_for_compaction &&
2244 inactive_lru_pages > pages_for_compaction)
2245 return true;
2246
2247 /* If compaction would go ahead or the allocation would succeed, stop */
2248 switch (compaction_suitable(zone, sc->order)) {
2249 case COMPACT_PARTIAL:
2250 case COMPACT_CONTINUE:
2251 return false;
2252 default:
2253 return true;
2254 }
2255 }
2256
2257 static bool shrink_zone(struct zone *zone, struct scan_control *sc)
2258 {
2259 unsigned long nr_reclaimed, nr_scanned;
2260 bool reclaimable = false;
2261
2262 do {
2263 struct mem_cgroup *root = sc->target_mem_cgroup;
2264 struct mem_cgroup_reclaim_cookie reclaim = {
2265 .zone = zone,
2266 .priority = sc->priority,
2267 };
2268 struct mem_cgroup *memcg;
2269
2270 nr_reclaimed = sc->nr_reclaimed;
2271 nr_scanned = sc->nr_scanned;
2272
2273 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2274 do {
2275 struct lruvec *lruvec;
2276 int swappiness;
2277
2278 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2279 swappiness = mem_cgroup_swappiness(memcg);
2280
2281 shrink_lruvec(lruvec, swappiness, sc);
2282
2283 /*
2284 * Direct reclaim and kswapd have to scan all memory
2285 * cgroups to fulfill the overall scan target for the
2286 * zone.
2287 *
2288 * Limit reclaim, on the other hand, only cares about
2289 * nr_to_reclaim pages to be reclaimed and it will
2290 * retry with decreasing priority if one round over the
2291 * whole hierarchy is not sufficient.
2292 */
2293 if (!global_reclaim(sc) &&
2294 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2295 mem_cgroup_iter_break(root, memcg);
2296 break;
2297 }
2298 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2299 } while (memcg);
2300
2301 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2302 sc->nr_scanned - nr_scanned,
2303 sc->nr_reclaimed - nr_reclaimed);
2304
2305 if (sc->nr_reclaimed - nr_reclaimed)
2306 reclaimable = true;
2307
2308 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2309 sc->nr_scanned - nr_scanned, sc));
2310
2311 return reclaimable;
2312 }
2313
2314 /* Returns true if compaction should go ahead for a high-order request */
2315 static inline bool compaction_ready(struct zone *zone, int order)
2316 {
2317 unsigned long balance_gap, watermark;
2318 bool watermark_ok;
2319
2320 /*
2321 * Compaction takes time to run and there are potentially other
2322 * callers using the pages just freed. Continue reclaiming until
2323 * there is a buffer of free pages available to give compaction
2324 * a reasonable chance of completing and allocating the page
2325 */
2326 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2327 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2328 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2329 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2330
2331 /*
2332 * If compaction is deferred, reclaim up to a point where
2333 * compaction will have a chance of success when re-enabled
2334 */
2335 if (compaction_deferred(zone, order))
2336 return watermark_ok;
2337
2338 /* If compaction is not ready to start, keep reclaiming */
2339 if (!compaction_suitable(zone, order))
2340 return false;
2341
2342 return watermark_ok;
2343 }
2344
2345 /*
2346 * This is the direct reclaim path, for page-allocating processes. We only
2347 * try to reclaim pages from zones which will satisfy the caller's allocation
2348 * request.
2349 *
2350 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2351 * Because:
2352 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2353 * allocation or
2354 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2355 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2356 * zone defense algorithm.
2357 *
2358 * If a zone is deemed to be full of pinned pages then just give it a light
2359 * scan then give up on it.
2360 *
2361 * Returns true if a zone was reclaimable.
2362 */
2363 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2364 {
2365 struct zoneref *z;
2366 struct zone *zone;
2367 unsigned long nr_soft_reclaimed;
2368 unsigned long nr_soft_scanned;
2369 unsigned long lru_pages = 0;
2370 struct reclaim_state *reclaim_state = current->reclaim_state;
2371 gfp_t orig_mask;
2372 struct shrink_control shrink = {
2373 .gfp_mask = sc->gfp_mask,
2374 };
2375 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2376 bool reclaimable = false;
2377
2378 /*
2379 * If the number of buffer_heads in the machine exceeds the maximum
2380 * allowed level, force direct reclaim to scan the highmem zone as
2381 * highmem pages could be pinning lowmem pages storing buffer_heads
2382 */
2383 orig_mask = sc->gfp_mask;
2384 if (buffer_heads_over_limit)
2385 sc->gfp_mask |= __GFP_HIGHMEM;
2386
2387 nodes_clear(shrink.nodes_to_scan);
2388
2389 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2390 gfp_zone(sc->gfp_mask), sc->nodemask) {
2391 if (!populated_zone(zone))
2392 continue;
2393 /*
2394 * Take care memory controller reclaiming has small influence
2395 * to global LRU.
2396 */
2397 if (global_reclaim(sc)) {
2398 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2399 continue;
2400
2401 lru_pages += zone_reclaimable_pages(zone);
2402 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2403
2404 if (sc->priority != DEF_PRIORITY &&
2405 !zone_reclaimable(zone))
2406 continue; /* Let kswapd poll it */
2407
2408 /*
2409 * If we already have plenty of memory free for
2410 * compaction in this zone, don't free any more.
2411 * Even though compaction is invoked for any
2412 * non-zero order, only frequent costly order
2413 * reclamation is disruptive enough to become a
2414 * noticeable problem, like transparent huge
2415 * page allocations.
2416 */
2417 if (IS_ENABLED(CONFIG_COMPACTION) &&
2418 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2419 zonelist_zone_idx(z) <= requested_highidx &&
2420 compaction_ready(zone, sc->order)) {
2421 sc->compaction_ready = true;
2422 continue;
2423 }
2424
2425 /*
2426 * This steals pages from memory cgroups over softlimit
2427 * and returns the number of reclaimed pages and
2428 * scanned pages. This works for global memory pressure
2429 * and balancing, not for a memcg's limit.
2430 */
2431 nr_soft_scanned = 0;
2432 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2433 sc->order, sc->gfp_mask,
2434 &nr_soft_scanned);
2435 sc->nr_reclaimed += nr_soft_reclaimed;
2436 sc->nr_scanned += nr_soft_scanned;
2437 if (nr_soft_reclaimed)
2438 reclaimable = true;
2439 /* need some check for avoid more shrink_zone() */
2440 }
2441
2442 if (shrink_zone(zone, sc))
2443 reclaimable = true;
2444
2445 if (global_reclaim(sc) &&
2446 !reclaimable && zone_reclaimable(zone))
2447 reclaimable = true;
2448 }
2449
2450 /*
2451 * Don't shrink slabs when reclaiming memory from over limit cgroups
2452 * but do shrink slab at least once when aborting reclaim for
2453 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2454 * pages.
2455 */
2456 if (global_reclaim(sc)) {
2457 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2458 if (reclaim_state) {
2459 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2460 reclaim_state->reclaimed_slab = 0;
2461 }
2462 }
2463
2464 /*
2465 * Restore to original mask to avoid the impact on the caller if we
2466 * promoted it to __GFP_HIGHMEM.
2467 */
2468 sc->gfp_mask = orig_mask;
2469
2470 return reclaimable;
2471 }
2472
2473 /*
2474 * This is the main entry point to direct page reclaim.
2475 *
2476 * If a full scan of the inactive list fails to free enough memory then we
2477 * are "out of memory" and something needs to be killed.
2478 *
2479 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2480 * high - the zone may be full of dirty or under-writeback pages, which this
2481 * caller can't do much about. We kick the writeback threads and take explicit
2482 * naps in the hope that some of these pages can be written. But if the
2483 * allocating task holds filesystem locks which prevent writeout this might not
2484 * work, and the allocation attempt will fail.
2485 *
2486 * returns: 0, if no pages reclaimed
2487 * else, the number of pages reclaimed
2488 */
2489 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2490 struct scan_control *sc)
2491 {
2492 unsigned long total_scanned = 0;
2493 unsigned long writeback_threshold;
2494 bool zones_reclaimable;
2495
2496 delayacct_freepages_start();
2497
2498 if (global_reclaim(sc))
2499 count_vm_event(ALLOCSTALL);
2500
2501 do {
2502 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2503 sc->priority);
2504 sc->nr_scanned = 0;
2505 zones_reclaimable = shrink_zones(zonelist, sc);
2506
2507 total_scanned += sc->nr_scanned;
2508 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2509 break;
2510
2511 if (sc->compaction_ready)
2512 break;
2513
2514 /*
2515 * If we're getting trouble reclaiming, start doing
2516 * writepage even in laptop mode.
2517 */
2518 if (sc->priority < DEF_PRIORITY - 2)
2519 sc->may_writepage = 1;
2520
2521 /*
2522 * Try to write back as many pages as we just scanned. This
2523 * tends to cause slow streaming writers to write data to the
2524 * disk smoothly, at the dirtying rate, which is nice. But
2525 * that's undesirable in laptop mode, where we *want* lumpy
2526 * writeout. So in laptop mode, write out the whole world.
2527 */
2528 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2529 if (total_scanned > writeback_threshold) {
2530 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2531 WB_REASON_TRY_TO_FREE_PAGES);
2532 sc->may_writepage = 1;
2533 }
2534 } while (--sc->priority >= 0);
2535
2536 delayacct_freepages_end();
2537
2538 if (sc->nr_reclaimed)
2539 return sc->nr_reclaimed;
2540
2541 /* Aborted reclaim to try compaction? don't OOM, then */
2542 if (sc->compaction_ready)
2543 return 1;
2544
2545 /* Any of the zones still reclaimable? Don't OOM. */
2546 if (zones_reclaimable)
2547 return 1;
2548
2549 return 0;
2550 }
2551
2552 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2553 {
2554 struct zone *zone;
2555 unsigned long pfmemalloc_reserve = 0;
2556 unsigned long free_pages = 0;
2557 int i;
2558 bool wmark_ok;
2559
2560 for (i = 0; i <= ZONE_NORMAL; i++) {
2561 zone = &pgdat->node_zones[i];
2562 if (!populated_zone(zone))
2563 continue;
2564
2565 pfmemalloc_reserve += min_wmark_pages(zone);
2566 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2567 }
2568
2569 /* If there are no reserves (unexpected config) then do not throttle */
2570 if (!pfmemalloc_reserve)
2571 return true;
2572
2573 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2574
2575 /* kswapd must be awake if processes are being throttled */
2576 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2577 pgdat->classzone_idx = min(pgdat->classzone_idx,
2578 (enum zone_type)ZONE_NORMAL);
2579 wake_up_interruptible(&pgdat->kswapd_wait);
2580 }
2581
2582 return wmark_ok;
2583 }
2584
2585 /*
2586 * Throttle direct reclaimers if backing storage is backed by the network
2587 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2588 * depleted. kswapd will continue to make progress and wake the processes
2589 * when the low watermark is reached.
2590 *
2591 * Returns true if a fatal signal was delivered during throttling. If this
2592 * happens, the page allocator should not consider triggering the OOM killer.
2593 */
2594 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2595 nodemask_t *nodemask)
2596 {
2597 struct zoneref *z;
2598 struct zone *zone;
2599 pg_data_t *pgdat = NULL;
2600
2601 /*
2602 * Kernel threads should not be throttled as they may be indirectly
2603 * responsible for cleaning pages necessary for reclaim to make forward
2604 * progress. kjournald for example may enter direct reclaim while
2605 * committing a transaction where throttling it could forcing other
2606 * processes to block on log_wait_commit().
2607 */
2608 if (current->flags & PF_KTHREAD)
2609 goto out;
2610
2611 /*
2612 * If a fatal signal is pending, this process should not throttle.
2613 * It should return quickly so it can exit and free its memory
2614 */
2615 if (fatal_signal_pending(current))
2616 goto out;
2617
2618 /*
2619 * Check if the pfmemalloc reserves are ok by finding the first node
2620 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2621 * GFP_KERNEL will be required for allocating network buffers when
2622 * swapping over the network so ZONE_HIGHMEM is unusable.
2623 *
2624 * Throttling is based on the first usable node and throttled processes
2625 * wait on a queue until kswapd makes progress and wakes them. There
2626 * is an affinity then between processes waking up and where reclaim
2627 * progress has been made assuming the process wakes on the same node.
2628 * More importantly, processes running on remote nodes will not compete
2629 * for remote pfmemalloc reserves and processes on different nodes
2630 * should make reasonable progress.
2631 */
2632 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2633 gfp_mask, nodemask) {
2634 if (zone_idx(zone) > ZONE_NORMAL)
2635 continue;
2636
2637 /* Throttle based on the first usable node */
2638 pgdat = zone->zone_pgdat;
2639 if (pfmemalloc_watermark_ok(pgdat))
2640 goto out;
2641 break;
2642 }
2643
2644 /* If no zone was usable by the allocation flags then do not throttle */
2645 if (!pgdat)
2646 goto out;
2647
2648 /* Account for the throttling */
2649 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2650
2651 /*
2652 * If the caller cannot enter the filesystem, it's possible that it
2653 * is due to the caller holding an FS lock or performing a journal
2654 * transaction in the case of a filesystem like ext[3|4]. In this case,
2655 * it is not safe to block on pfmemalloc_wait as kswapd could be
2656 * blocked waiting on the same lock. Instead, throttle for up to a
2657 * second before continuing.
2658 */
2659 if (!(gfp_mask & __GFP_FS)) {
2660 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2661 pfmemalloc_watermark_ok(pgdat), HZ);
2662
2663 goto check_pending;
2664 }
2665
2666 /* Throttle until kswapd wakes the process */
2667 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2668 pfmemalloc_watermark_ok(pgdat));
2669
2670 check_pending:
2671 if (fatal_signal_pending(current))
2672 return true;
2673
2674 out:
2675 return false;
2676 }
2677
2678 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2679 gfp_t gfp_mask, nodemask_t *nodemask)
2680 {
2681 unsigned long nr_reclaimed;
2682 struct scan_control sc = {
2683 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2684 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2685 .order = order,
2686 .nodemask = nodemask,
2687 .priority = DEF_PRIORITY,
2688 .may_writepage = !laptop_mode,
2689 .may_unmap = 1,
2690 .may_swap = 1,
2691 };
2692
2693 /*
2694 * Do not enter reclaim if fatal signal was delivered while throttled.
2695 * 1 is returned so that the page allocator does not OOM kill at this
2696 * point.
2697 */
2698 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2699 return 1;
2700
2701 trace_mm_vmscan_direct_reclaim_begin(order,
2702 sc.may_writepage,
2703 gfp_mask);
2704
2705 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2706
2707 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2708
2709 return nr_reclaimed;
2710 }
2711
2712 #ifdef CONFIG_MEMCG
2713
2714 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2715 gfp_t gfp_mask, bool noswap,
2716 struct zone *zone,
2717 unsigned long *nr_scanned)
2718 {
2719 struct scan_control sc = {
2720 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2721 .target_mem_cgroup = memcg,
2722 .may_writepage = !laptop_mode,
2723 .may_unmap = 1,
2724 .may_swap = !noswap,
2725 };
2726 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2727 int swappiness = mem_cgroup_swappiness(memcg);
2728
2729 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2730 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2731
2732 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2733 sc.may_writepage,
2734 sc.gfp_mask);
2735
2736 /*
2737 * NOTE: Although we can get the priority field, using it
2738 * here is not a good idea, since it limits the pages we can scan.
2739 * if we don't reclaim here, the shrink_zone from balance_pgdat
2740 * will pick up pages from other mem cgroup's as well. We hack
2741 * the priority and make it zero.
2742 */
2743 shrink_lruvec(lruvec, swappiness, &sc);
2744
2745 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2746
2747 *nr_scanned = sc.nr_scanned;
2748 return sc.nr_reclaimed;
2749 }
2750
2751 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2752 gfp_t gfp_mask,
2753 bool noswap)
2754 {
2755 struct zonelist *zonelist;
2756 unsigned long nr_reclaimed;
2757 int nid;
2758 struct scan_control sc = {
2759 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2760 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2761 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2762 .target_mem_cgroup = memcg,
2763 .priority = DEF_PRIORITY,
2764 .may_writepage = !laptop_mode,
2765 .may_unmap = 1,
2766 .may_swap = !noswap,
2767 };
2768
2769 /*
2770 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2771 * take care of from where we get pages. So the node where we start the
2772 * scan does not need to be the current node.
2773 */
2774 nid = mem_cgroup_select_victim_node(memcg);
2775
2776 zonelist = NODE_DATA(nid)->node_zonelists;
2777
2778 trace_mm_vmscan_memcg_reclaim_begin(0,
2779 sc.may_writepage,
2780 sc.gfp_mask);
2781
2782 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2783
2784 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2785
2786 return nr_reclaimed;
2787 }
2788 #endif
2789
2790 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2791 {
2792 struct mem_cgroup *memcg;
2793
2794 if (!total_swap_pages)
2795 return;
2796
2797 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2798 do {
2799 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2800
2801 if (inactive_anon_is_low(lruvec))
2802 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2803 sc, LRU_ACTIVE_ANON);
2804
2805 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2806 } while (memcg);
2807 }
2808
2809 static bool zone_balanced(struct zone *zone, int order,
2810 unsigned long balance_gap, int classzone_idx)
2811 {
2812 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2813 balance_gap, classzone_idx, 0))
2814 return false;
2815
2816 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2817 !compaction_suitable(zone, order))
2818 return false;
2819
2820 return true;
2821 }
2822
2823 /*
2824 * pgdat_balanced() is used when checking if a node is balanced.
2825 *
2826 * For order-0, all zones must be balanced!
2827 *
2828 * For high-order allocations only zones that meet watermarks and are in a
2829 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2830 * total of balanced pages must be at least 25% of the zones allowed by
2831 * classzone_idx for the node to be considered balanced. Forcing all zones to
2832 * be balanced for high orders can cause excessive reclaim when there are
2833 * imbalanced zones.
2834 * The choice of 25% is due to
2835 * o a 16M DMA zone that is balanced will not balance a zone on any
2836 * reasonable sized machine
2837 * o On all other machines, the top zone must be at least a reasonable
2838 * percentage of the middle zones. For example, on 32-bit x86, highmem
2839 * would need to be at least 256M for it to be balance a whole node.
2840 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2841 * to balance a node on its own. These seemed like reasonable ratios.
2842 */
2843 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2844 {
2845 unsigned long managed_pages = 0;
2846 unsigned long balanced_pages = 0;
2847 int i;
2848
2849 /* Check the watermark levels */
2850 for (i = 0; i <= classzone_idx; i++) {
2851 struct zone *zone = pgdat->node_zones + i;
2852
2853 if (!populated_zone(zone))
2854 continue;
2855
2856 managed_pages += zone->managed_pages;
2857
2858 /*
2859 * A special case here:
2860 *
2861 * balance_pgdat() skips over all_unreclaimable after
2862 * DEF_PRIORITY. Effectively, it considers them balanced so
2863 * they must be considered balanced here as well!
2864 */
2865 if (!zone_reclaimable(zone)) {
2866 balanced_pages += zone->managed_pages;
2867 continue;
2868 }
2869
2870 if (zone_balanced(zone, order, 0, i))
2871 balanced_pages += zone->managed_pages;
2872 else if (!order)
2873 return false;
2874 }
2875
2876 if (order)
2877 return balanced_pages >= (managed_pages >> 2);
2878 else
2879 return true;
2880 }
2881
2882 /*
2883 * Prepare kswapd for sleeping. This verifies that there are no processes
2884 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2885 *
2886 * Returns true if kswapd is ready to sleep
2887 */
2888 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2889 int classzone_idx)
2890 {
2891 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2892 if (remaining)
2893 return false;
2894
2895 /*
2896 * There is a potential race between when kswapd checks its watermarks
2897 * and a process gets throttled. There is also a potential race if
2898 * processes get throttled, kswapd wakes, a large process exits therby
2899 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2900 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2901 * so wake them now if necessary. If necessary, processes will wake
2902 * kswapd and get throttled again
2903 */
2904 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2905 wake_up(&pgdat->pfmemalloc_wait);
2906 return false;
2907 }
2908
2909 return pgdat_balanced(pgdat, order, classzone_idx);
2910 }
2911
2912 /*
2913 * kswapd shrinks the zone by the number of pages required to reach
2914 * the high watermark.
2915 *
2916 * Returns true if kswapd scanned at least the requested number of pages to
2917 * reclaim or if the lack of progress was due to pages under writeback.
2918 * This is used to determine if the scanning priority needs to be raised.
2919 */
2920 static bool kswapd_shrink_zone(struct zone *zone,
2921 int classzone_idx,
2922 struct scan_control *sc,
2923 unsigned long lru_pages,
2924 unsigned long *nr_attempted)
2925 {
2926 int testorder = sc->order;
2927 unsigned long balance_gap;
2928 struct reclaim_state *reclaim_state = current->reclaim_state;
2929 struct shrink_control shrink = {
2930 .gfp_mask = sc->gfp_mask,
2931 };
2932 bool lowmem_pressure;
2933
2934 /* Reclaim above the high watermark. */
2935 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2936
2937 /*
2938 * Kswapd reclaims only single pages with compaction enabled. Trying
2939 * too hard to reclaim until contiguous free pages have become
2940 * available can hurt performance by evicting too much useful data
2941 * from memory. Do not reclaim more than needed for compaction.
2942 */
2943 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2944 compaction_suitable(zone, sc->order) !=
2945 COMPACT_SKIPPED)
2946 testorder = 0;
2947
2948 /*
2949 * We put equal pressure on every zone, unless one zone has way too
2950 * many pages free already. The "too many pages" is defined as the
2951 * high wmark plus a "gap" where the gap is either the low
2952 * watermark or 1% of the zone, whichever is smaller.
2953 */
2954 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2955 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2956
2957 /*
2958 * If there is no low memory pressure or the zone is balanced then no
2959 * reclaim is necessary
2960 */
2961 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2962 if (!lowmem_pressure && zone_balanced(zone, testorder,
2963 balance_gap, classzone_idx))
2964 return true;
2965
2966 shrink_zone(zone, sc);
2967 nodes_clear(shrink.nodes_to_scan);
2968 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2969
2970 reclaim_state->reclaimed_slab = 0;
2971 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2972 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2973
2974 /* Account for the number of pages attempted to reclaim */
2975 *nr_attempted += sc->nr_to_reclaim;
2976
2977 zone_clear_flag(zone, ZONE_WRITEBACK);
2978
2979 /*
2980 * If a zone reaches its high watermark, consider it to be no longer
2981 * congested. It's possible there are dirty pages backed by congested
2982 * BDIs but as pressure is relieved, speculatively avoid congestion
2983 * waits.
2984 */
2985 if (zone_reclaimable(zone) &&
2986 zone_balanced(zone, testorder, 0, classzone_idx)) {
2987 zone_clear_flag(zone, ZONE_CONGESTED);
2988 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2989 }
2990
2991 return sc->nr_scanned >= sc->nr_to_reclaim;
2992 }
2993
2994 /*
2995 * For kswapd, balance_pgdat() will work across all this node's zones until
2996 * they are all at high_wmark_pages(zone).
2997 *
2998 * Returns the final order kswapd was reclaiming at
2999 *
3000 * There is special handling here for zones which are full of pinned pages.
3001 * This can happen if the pages are all mlocked, or if they are all used by
3002 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3003 * What we do is to detect the case where all pages in the zone have been
3004 * scanned twice and there has been zero successful reclaim. Mark the zone as
3005 * dead and from now on, only perform a short scan. Basically we're polling
3006 * the zone for when the problem goes away.
3007 *
3008 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3009 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3010 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3011 * lower zones regardless of the number of free pages in the lower zones. This
3012 * interoperates with the page allocator fallback scheme to ensure that aging
3013 * of pages is balanced across the zones.
3014 */
3015 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3016 int *classzone_idx)
3017 {
3018 int i;
3019 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3020 unsigned long nr_soft_reclaimed;
3021 unsigned long nr_soft_scanned;
3022 struct scan_control sc = {
3023 .gfp_mask = GFP_KERNEL,
3024 .order = order,
3025 .priority = DEF_PRIORITY,
3026 .may_writepage = !laptop_mode,
3027 .may_unmap = 1,
3028 .may_swap = 1,
3029 };
3030 count_vm_event(PAGEOUTRUN);
3031
3032 do {
3033 unsigned long lru_pages = 0;
3034 unsigned long nr_attempted = 0;
3035 bool raise_priority = true;
3036 bool pgdat_needs_compaction = (order > 0);
3037
3038 sc.nr_reclaimed = 0;
3039
3040 /*
3041 * Scan in the highmem->dma direction for the highest
3042 * zone which needs scanning
3043 */
3044 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3045 struct zone *zone = pgdat->node_zones + i;
3046
3047 if (!populated_zone(zone))
3048 continue;
3049
3050 if (sc.priority != DEF_PRIORITY &&
3051 !zone_reclaimable(zone))
3052 continue;
3053
3054 /*
3055 * Do some background aging of the anon list, to give
3056 * pages a chance to be referenced before reclaiming.
3057 */
3058 age_active_anon(zone, &sc);
3059
3060 /*
3061 * If the number of buffer_heads in the machine
3062 * exceeds the maximum allowed level and this node
3063 * has a highmem zone, force kswapd to reclaim from
3064 * it to relieve lowmem pressure.
3065 */
3066 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3067 end_zone = i;
3068 break;
3069 }
3070
3071 if (!zone_balanced(zone, order, 0, 0)) {
3072 end_zone = i;
3073 break;
3074 } else {
3075 /*
3076 * If balanced, clear the dirty and congested
3077 * flags
3078 */
3079 zone_clear_flag(zone, ZONE_CONGESTED);
3080 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3081 }
3082 }
3083
3084 if (i < 0)
3085 goto out;
3086
3087 for (i = 0; i <= end_zone; i++) {
3088 struct zone *zone = pgdat->node_zones + i;
3089
3090 if (!populated_zone(zone))
3091 continue;
3092
3093 lru_pages += zone_reclaimable_pages(zone);
3094
3095 /*
3096 * If any zone is currently balanced then kswapd will
3097 * not call compaction as it is expected that the
3098 * necessary pages are already available.
3099 */
3100 if (pgdat_needs_compaction &&
3101 zone_watermark_ok(zone, order,
3102 low_wmark_pages(zone),
3103 *classzone_idx, 0))
3104 pgdat_needs_compaction = false;
3105 }
3106
3107 /*
3108 * If we're getting trouble reclaiming, start doing writepage
3109 * even in laptop mode.
3110 */
3111 if (sc.priority < DEF_PRIORITY - 2)
3112 sc.may_writepage = 1;
3113
3114 /*
3115 * Now scan the zone in the dma->highmem direction, stopping
3116 * at the last zone which needs scanning.
3117 *
3118 * We do this because the page allocator works in the opposite
3119 * direction. This prevents the page allocator from allocating
3120 * pages behind kswapd's direction of progress, which would
3121 * cause too much scanning of the lower zones.
3122 */
3123 for (i = 0; i <= end_zone; i++) {
3124 struct zone *zone = pgdat->node_zones + i;
3125
3126 if (!populated_zone(zone))
3127 continue;
3128
3129 if (sc.priority != DEF_PRIORITY &&
3130 !zone_reclaimable(zone))
3131 continue;
3132
3133 sc.nr_scanned = 0;
3134
3135 nr_soft_scanned = 0;
3136 /*
3137 * Call soft limit reclaim before calling shrink_zone.
3138 */
3139 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3140 order, sc.gfp_mask,
3141 &nr_soft_scanned);
3142 sc.nr_reclaimed += nr_soft_reclaimed;
3143
3144 /*
3145 * There should be no need to raise the scanning
3146 * priority if enough pages are already being scanned
3147 * that that high watermark would be met at 100%
3148 * efficiency.
3149 */
3150 if (kswapd_shrink_zone(zone, end_zone, &sc,
3151 lru_pages, &nr_attempted))
3152 raise_priority = false;
3153 }
3154
3155 /*
3156 * If the low watermark is met there is no need for processes
3157 * to be throttled on pfmemalloc_wait as they should not be
3158 * able to safely make forward progress. Wake them
3159 */
3160 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3161 pfmemalloc_watermark_ok(pgdat))
3162 wake_up(&pgdat->pfmemalloc_wait);
3163
3164 /*
3165 * Fragmentation may mean that the system cannot be rebalanced
3166 * for high-order allocations in all zones. If twice the
3167 * allocation size has been reclaimed and the zones are still
3168 * not balanced then recheck the watermarks at order-0 to
3169 * prevent kswapd reclaiming excessively. Assume that a
3170 * process requested a high-order can direct reclaim/compact.
3171 */
3172 if (order && sc.nr_reclaimed >= 2UL << order)
3173 order = sc.order = 0;
3174
3175 /* Check if kswapd should be suspending */
3176 if (try_to_freeze() || kthread_should_stop())
3177 break;
3178
3179 /*
3180 * Compact if necessary and kswapd is reclaiming at least the
3181 * high watermark number of pages as requsted
3182 */
3183 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3184 compact_pgdat(pgdat, order);
3185
3186 /*
3187 * Raise priority if scanning rate is too low or there was no
3188 * progress in reclaiming pages
3189 */
3190 if (raise_priority || !sc.nr_reclaimed)
3191 sc.priority--;
3192 } while (sc.priority >= 1 &&
3193 !pgdat_balanced(pgdat, order, *classzone_idx));
3194
3195 out:
3196 /*
3197 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3198 * makes a decision on the order we were last reclaiming at. However,
3199 * if another caller entered the allocator slow path while kswapd
3200 * was awake, order will remain at the higher level
3201 */
3202 *classzone_idx = end_zone;
3203 return order;
3204 }
3205
3206 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3207 {
3208 long remaining = 0;
3209 DEFINE_WAIT(wait);
3210
3211 if (freezing(current) || kthread_should_stop())
3212 return;
3213
3214 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3215
3216 /* Try to sleep for a short interval */
3217 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3218 remaining = schedule_timeout(HZ/10);
3219 finish_wait(&pgdat->kswapd_wait, &wait);
3220 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3221 }
3222
3223 /*
3224 * After a short sleep, check if it was a premature sleep. If not, then
3225 * go fully to sleep until explicitly woken up.
3226 */
3227 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3228 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3229
3230 /*
3231 * vmstat counters are not perfectly accurate and the estimated
3232 * value for counters such as NR_FREE_PAGES can deviate from the
3233 * true value by nr_online_cpus * threshold. To avoid the zone
3234 * watermarks being breached while under pressure, we reduce the
3235 * per-cpu vmstat threshold while kswapd is awake and restore
3236 * them before going back to sleep.
3237 */
3238 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3239
3240 /*
3241 * Compaction records what page blocks it recently failed to
3242 * isolate pages from and skips them in the future scanning.
3243 * When kswapd is going to sleep, it is reasonable to assume
3244 * that pages and compaction may succeed so reset the cache.
3245 */
3246 reset_isolation_suitable(pgdat);
3247
3248 if (!kthread_should_stop())
3249 schedule();
3250
3251 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3252 } else {
3253 if (remaining)
3254 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3255 else
3256 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3257 }
3258 finish_wait(&pgdat->kswapd_wait, &wait);
3259 }
3260
3261 /*
3262 * The background pageout daemon, started as a kernel thread
3263 * from the init process.
3264 *
3265 * This basically trickles out pages so that we have _some_
3266 * free memory available even if there is no other activity
3267 * that frees anything up. This is needed for things like routing
3268 * etc, where we otherwise might have all activity going on in
3269 * asynchronous contexts that cannot page things out.
3270 *
3271 * If there are applications that are active memory-allocators
3272 * (most normal use), this basically shouldn't matter.
3273 */
3274 static int kswapd(void *p)
3275 {
3276 unsigned long order, new_order;
3277 unsigned balanced_order;
3278 int classzone_idx, new_classzone_idx;
3279 int balanced_classzone_idx;
3280 pg_data_t *pgdat = (pg_data_t*)p;
3281 struct task_struct *tsk = current;
3282
3283 struct reclaim_state reclaim_state = {
3284 .reclaimed_slab = 0,
3285 };
3286 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3287
3288 lockdep_set_current_reclaim_state(GFP_KERNEL);
3289
3290 if (!cpumask_empty(cpumask))
3291 set_cpus_allowed_ptr(tsk, cpumask);
3292 current->reclaim_state = &reclaim_state;
3293
3294 /*
3295 * Tell the memory management that we're a "memory allocator",
3296 * and that if we need more memory we should get access to it
3297 * regardless (see "__alloc_pages()"). "kswapd" should
3298 * never get caught in the normal page freeing logic.
3299 *
3300 * (Kswapd normally doesn't need memory anyway, but sometimes
3301 * you need a small amount of memory in order to be able to
3302 * page out something else, and this flag essentially protects
3303 * us from recursively trying to free more memory as we're
3304 * trying to free the first piece of memory in the first place).
3305 */
3306 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3307 set_freezable();
3308
3309 order = new_order = 0;
3310 balanced_order = 0;
3311 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3312 balanced_classzone_idx = classzone_idx;
3313 for ( ; ; ) {
3314 bool ret;
3315
3316 /*
3317 * If the last balance_pgdat was unsuccessful it's unlikely a
3318 * new request of a similar or harder type will succeed soon
3319 * so consider going to sleep on the basis we reclaimed at
3320 */
3321 if (balanced_classzone_idx >= new_classzone_idx &&
3322 balanced_order == new_order) {
3323 new_order = pgdat->kswapd_max_order;
3324 new_classzone_idx = pgdat->classzone_idx;
3325 pgdat->kswapd_max_order = 0;
3326 pgdat->classzone_idx = pgdat->nr_zones - 1;
3327 }
3328
3329 if (order < new_order || classzone_idx > new_classzone_idx) {
3330 /*
3331 * Don't sleep if someone wants a larger 'order'
3332 * allocation or has tigher zone constraints
3333 */
3334 order = new_order;
3335 classzone_idx = new_classzone_idx;
3336 } else {
3337 kswapd_try_to_sleep(pgdat, balanced_order,
3338 balanced_classzone_idx);
3339 order = pgdat->kswapd_max_order;
3340 classzone_idx = pgdat->classzone_idx;
3341 new_order = order;
3342 new_classzone_idx = classzone_idx;
3343 pgdat->kswapd_max_order = 0;
3344 pgdat->classzone_idx = pgdat->nr_zones - 1;
3345 }
3346
3347 ret = try_to_freeze();
3348 if (kthread_should_stop())
3349 break;
3350
3351 /*
3352 * We can speed up thawing tasks if we don't call balance_pgdat
3353 * after returning from the refrigerator
3354 */
3355 if (!ret) {
3356 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3357 balanced_classzone_idx = classzone_idx;
3358 balanced_order = balance_pgdat(pgdat, order,
3359 &balanced_classzone_idx);
3360 }
3361 }
3362
3363 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3364 current->reclaim_state = NULL;
3365 lockdep_clear_current_reclaim_state();
3366
3367 return 0;
3368 }
3369
3370 /*
3371 * A zone is low on free memory, so wake its kswapd task to service it.
3372 */
3373 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3374 {
3375 pg_data_t *pgdat;
3376
3377 if (!populated_zone(zone))
3378 return;
3379
3380 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3381 return;
3382 pgdat = zone->zone_pgdat;
3383 if (pgdat->kswapd_max_order < order) {
3384 pgdat->kswapd_max_order = order;
3385 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3386 }
3387 if (!waitqueue_active(&pgdat->kswapd_wait))
3388 return;
3389 if (zone_balanced(zone, order, 0, 0))
3390 return;
3391
3392 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3393 wake_up_interruptible(&pgdat->kswapd_wait);
3394 }
3395
3396 #ifdef CONFIG_HIBERNATION
3397 /*
3398 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3399 * freed pages.
3400 *
3401 * Rather than trying to age LRUs the aim is to preserve the overall
3402 * LRU order by reclaiming preferentially
3403 * inactive > active > active referenced > active mapped
3404 */
3405 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3406 {
3407 struct reclaim_state reclaim_state;
3408 struct scan_control sc = {
3409 .nr_to_reclaim = nr_to_reclaim,
3410 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3411 .priority = DEF_PRIORITY,
3412 .may_writepage = 1,
3413 .may_unmap = 1,
3414 .may_swap = 1,
3415 .hibernation_mode = 1,
3416 };
3417 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3418 struct task_struct *p = current;
3419 unsigned long nr_reclaimed;
3420
3421 p->flags |= PF_MEMALLOC;
3422 lockdep_set_current_reclaim_state(sc.gfp_mask);
3423 reclaim_state.reclaimed_slab = 0;
3424 p->reclaim_state = &reclaim_state;
3425
3426 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3427
3428 p->reclaim_state = NULL;
3429 lockdep_clear_current_reclaim_state();
3430 p->flags &= ~PF_MEMALLOC;
3431
3432 return nr_reclaimed;
3433 }
3434 #endif /* CONFIG_HIBERNATION */
3435
3436 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3437 not required for correctness. So if the last cpu in a node goes
3438 away, we get changed to run anywhere: as the first one comes back,
3439 restore their cpu bindings. */
3440 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3441 void *hcpu)
3442 {
3443 int nid;
3444
3445 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3446 for_each_node_state(nid, N_MEMORY) {
3447 pg_data_t *pgdat = NODE_DATA(nid);
3448 const struct cpumask *mask;
3449
3450 mask = cpumask_of_node(pgdat->node_id);
3451
3452 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3453 /* One of our CPUs online: restore mask */
3454 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3455 }
3456 }
3457 return NOTIFY_OK;
3458 }
3459
3460 /*
3461 * This kswapd start function will be called by init and node-hot-add.
3462 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3463 */
3464 int kswapd_run(int nid)
3465 {
3466 pg_data_t *pgdat = NODE_DATA(nid);
3467 int ret = 0;
3468
3469 if (pgdat->kswapd)
3470 return 0;
3471
3472 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3473 if (IS_ERR(pgdat->kswapd)) {
3474 /* failure at boot is fatal */
3475 BUG_ON(system_state == SYSTEM_BOOTING);
3476 pr_err("Failed to start kswapd on node %d\n", nid);
3477 ret = PTR_ERR(pgdat->kswapd);
3478 pgdat->kswapd = NULL;
3479 }
3480 return ret;
3481 }
3482
3483 /*
3484 * Called by memory hotplug when all memory in a node is offlined. Caller must
3485 * hold mem_hotplug_begin/end().
3486 */
3487 void kswapd_stop(int nid)
3488 {
3489 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3490
3491 if (kswapd) {
3492 kthread_stop(kswapd);
3493 NODE_DATA(nid)->kswapd = NULL;
3494 }
3495 }
3496
3497 static int __init kswapd_init(void)
3498 {
3499 int nid;
3500
3501 swap_setup();
3502 for_each_node_state(nid, N_MEMORY)
3503 kswapd_run(nid);
3504 hotcpu_notifier(cpu_callback, 0);
3505 return 0;
3506 }
3507
3508 module_init(kswapd_init)
3509
3510 #ifdef CONFIG_NUMA
3511 /*
3512 * Zone reclaim mode
3513 *
3514 * If non-zero call zone_reclaim when the number of free pages falls below
3515 * the watermarks.
3516 */
3517 int zone_reclaim_mode __read_mostly;
3518
3519 #define RECLAIM_OFF 0
3520 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3521 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3522 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3523
3524 /*
3525 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3526 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3527 * a zone.
3528 */
3529 #define ZONE_RECLAIM_PRIORITY 4
3530
3531 /*
3532 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3533 * occur.
3534 */
3535 int sysctl_min_unmapped_ratio = 1;
3536
3537 /*
3538 * If the number of slab pages in a zone grows beyond this percentage then
3539 * slab reclaim needs to occur.
3540 */
3541 int sysctl_min_slab_ratio = 5;
3542
3543 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3544 {
3545 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3546 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3547 zone_page_state(zone, NR_ACTIVE_FILE);
3548
3549 /*
3550 * It's possible for there to be more file mapped pages than
3551 * accounted for by the pages on the file LRU lists because
3552 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3553 */
3554 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3555 }
3556
3557 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3558 static long zone_pagecache_reclaimable(struct zone *zone)
3559 {
3560 long nr_pagecache_reclaimable;
3561 long delta = 0;
3562
3563 /*
3564 * If RECLAIM_SWAP is set, then all file pages are considered
3565 * potentially reclaimable. Otherwise, we have to worry about
3566 * pages like swapcache and zone_unmapped_file_pages() provides
3567 * a better estimate
3568 */
3569 if (zone_reclaim_mode & RECLAIM_SWAP)
3570 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3571 else
3572 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3573
3574 /* If we can't clean pages, remove dirty pages from consideration */
3575 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3576 delta += zone_page_state(zone, NR_FILE_DIRTY);
3577
3578 /* Watch for any possible underflows due to delta */
3579 if (unlikely(delta > nr_pagecache_reclaimable))
3580 delta = nr_pagecache_reclaimable;
3581
3582 return nr_pagecache_reclaimable - delta;
3583 }
3584
3585 /*
3586 * Try to free up some pages from this zone through reclaim.
3587 */
3588 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3589 {
3590 /* Minimum pages needed in order to stay on node */
3591 const unsigned long nr_pages = 1 << order;
3592 struct task_struct *p = current;
3593 struct reclaim_state reclaim_state;
3594 struct scan_control sc = {
3595 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3596 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3597 .order = order,
3598 .priority = ZONE_RECLAIM_PRIORITY,
3599 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3600 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3601 .may_swap = 1,
3602 };
3603 struct shrink_control shrink = {
3604 .gfp_mask = sc.gfp_mask,
3605 };
3606 unsigned long nr_slab_pages0, nr_slab_pages1;
3607
3608 cond_resched();
3609 /*
3610 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3611 * and we also need to be able to write out pages for RECLAIM_WRITE
3612 * and RECLAIM_SWAP.
3613 */
3614 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3615 lockdep_set_current_reclaim_state(gfp_mask);
3616 reclaim_state.reclaimed_slab = 0;
3617 p->reclaim_state = &reclaim_state;
3618
3619 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3620 /*
3621 * Free memory by calling shrink zone with increasing
3622 * priorities until we have enough memory freed.
3623 */
3624 do {
3625 shrink_zone(zone, &sc);
3626 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3627 }
3628
3629 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3630 if (nr_slab_pages0 > zone->min_slab_pages) {
3631 /*
3632 * shrink_slab() does not currently allow us to determine how
3633 * many pages were freed in this zone. So we take the current
3634 * number of slab pages and shake the slab until it is reduced
3635 * by the same nr_pages that we used for reclaiming unmapped
3636 * pages.
3637 */
3638 nodes_clear(shrink.nodes_to_scan);
3639 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3640 for (;;) {
3641 unsigned long lru_pages = zone_reclaimable_pages(zone);
3642
3643 /* No reclaimable slab or very low memory pressure */
3644 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3645 break;
3646
3647 /* Freed enough memory */
3648 nr_slab_pages1 = zone_page_state(zone,
3649 NR_SLAB_RECLAIMABLE);
3650 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3651 break;
3652 }
3653
3654 /*
3655 * Update nr_reclaimed by the number of slab pages we
3656 * reclaimed from this zone.
3657 */
3658 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3659 if (nr_slab_pages1 < nr_slab_pages0)
3660 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3661 }
3662
3663 p->reclaim_state = NULL;
3664 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3665 lockdep_clear_current_reclaim_state();
3666 return sc.nr_reclaimed >= nr_pages;
3667 }
3668
3669 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3670 {
3671 int node_id;
3672 int ret;
3673
3674 /*
3675 * Zone reclaim reclaims unmapped file backed pages and
3676 * slab pages if we are over the defined limits.
3677 *
3678 * A small portion of unmapped file backed pages is needed for
3679 * file I/O otherwise pages read by file I/O will be immediately
3680 * thrown out if the zone is overallocated. So we do not reclaim
3681 * if less than a specified percentage of the zone is used by
3682 * unmapped file backed pages.
3683 */
3684 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3685 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3686 return ZONE_RECLAIM_FULL;
3687
3688 if (!zone_reclaimable(zone))
3689 return ZONE_RECLAIM_FULL;
3690
3691 /*
3692 * Do not scan if the allocation should not be delayed.
3693 */
3694 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3695 return ZONE_RECLAIM_NOSCAN;
3696
3697 /*
3698 * Only run zone reclaim on the local zone or on zones that do not
3699 * have associated processors. This will favor the local processor
3700 * over remote processors and spread off node memory allocations
3701 * as wide as possible.
3702 */
3703 node_id = zone_to_nid(zone);
3704 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3705 return ZONE_RECLAIM_NOSCAN;
3706
3707 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3708 return ZONE_RECLAIM_NOSCAN;
3709
3710 ret = __zone_reclaim(zone, gfp_mask, order);
3711 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3712
3713 if (!ret)
3714 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3715
3716 return ret;
3717 }
3718 #endif
3719
3720 /*
3721 * page_evictable - test whether a page is evictable
3722 * @page: the page to test
3723 *
3724 * Test whether page is evictable--i.e., should be placed on active/inactive
3725 * lists vs unevictable list.
3726 *
3727 * Reasons page might not be evictable:
3728 * (1) page's mapping marked unevictable
3729 * (2) page is part of an mlocked VMA
3730 *
3731 */
3732 int page_evictable(struct page *page)
3733 {
3734 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3735 }
3736
3737 #ifdef CONFIG_SHMEM
3738 /**
3739 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3740 * @pages: array of pages to check
3741 * @nr_pages: number of pages to check
3742 *
3743 * Checks pages for evictability and moves them to the appropriate lru list.
3744 *
3745 * This function is only used for SysV IPC SHM_UNLOCK.
3746 */
3747 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3748 {
3749 struct lruvec *lruvec;
3750 struct zone *zone = NULL;
3751 int pgscanned = 0;
3752 int pgrescued = 0;
3753 int i;
3754
3755 for (i = 0; i < nr_pages; i++) {
3756 struct page *page = pages[i];
3757 struct zone *pagezone;
3758
3759 pgscanned++;
3760 pagezone = page_zone(page);
3761 if (pagezone != zone) {
3762 if (zone)
3763 spin_unlock_irq(&zone->lru_lock);
3764 zone = pagezone;
3765 spin_lock_irq(&zone->lru_lock);
3766 }
3767 lruvec = mem_cgroup_page_lruvec(page, zone);
3768
3769 if (!PageLRU(page) || !PageUnevictable(page))
3770 continue;
3771
3772 if (page_evictable(page)) {
3773 enum lru_list lru = page_lru_base_type(page);
3774
3775 VM_BUG_ON_PAGE(PageActive(page), page);
3776 ClearPageUnevictable(page);
3777 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3778 add_page_to_lru_list(page, lruvec, lru);
3779 pgrescued++;
3780 }
3781 }
3782
3783 if (zone) {
3784 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3785 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3786 spin_unlock_irq(&zone->lru_lock);
3787 }
3788 }
3789 #endif /* CONFIG_SHMEM */
3790
3791 static void warn_scan_unevictable_pages(void)
3792 {
3793 printk_once(KERN_WARNING
3794 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3795 "disabled for lack of a legitimate use case. If you have "
3796 "one, please send an email to linux-mm@kvack.org.\n",
3797 current->comm);
3798 }
3799
3800 /*
3801 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3802 * all nodes' unevictable lists for evictable pages
3803 */
3804 unsigned long scan_unevictable_pages;
3805
3806 int scan_unevictable_handler(struct ctl_table *table, int write,
3807 void __user *buffer,
3808 size_t *length, loff_t *ppos)
3809 {
3810 warn_scan_unevictable_pages();
3811 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3812 scan_unevictable_pages = 0;
3813 return 0;
3814 }
3815
3816 #ifdef CONFIG_NUMA
3817 /*
3818 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3819 * a specified node's per zone unevictable lists for evictable pages.
3820 */
3821
3822 static ssize_t read_scan_unevictable_node(struct device *dev,
3823 struct device_attribute *attr,
3824 char *buf)
3825 {
3826 warn_scan_unevictable_pages();
3827 return sprintf(buf, "0\n"); /* always zero; should fit... */
3828 }
3829
3830 static ssize_t write_scan_unevictable_node(struct device *dev,
3831 struct device_attribute *attr,
3832 const char *buf, size_t count)
3833 {
3834 warn_scan_unevictable_pages();
3835 return 1;
3836 }
3837
3838
3839 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3840 read_scan_unevictable_node,
3841 write_scan_unevictable_node);
3842
3843 int scan_unevictable_register_node(struct node *node)
3844 {
3845 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3846 }
3847
3848 void scan_unevictable_unregister_node(struct node *node)
3849 {
3850 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3851 }
3852 #endif