]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmscan.c
[PATCH] kill last zone_reclaim() bits
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
66 /* How many pages shrink_cache() should reclaim */
67 int nr_to_reclaim;
68
69 /* Ask shrink_caches, or shrink_zone to scan at this priority */
70 unsigned int priority;
71
72 /* This context's GFP mask */
73 gfp_t gfp_mask;
74
75 int may_writepage;
76
77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 * In this context, it doesn't matter that we scan the
80 * whole list at once. */
81 int swap_cluster_max;
82 };
83
84 /*
85 * The list of shrinker callbacks used by to apply pressure to
86 * ageable caches.
87 */
88 struct shrinker {
89 shrinker_t shrinker;
90 struct list_head list;
91 int seeks; /* seeks to recreate an obj */
92 long nr; /* objs pending delete */
93 };
94
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field) \
99 do { \
100 if ((_page)->lru.prev != _base) { \
101 struct page *prev; \
102 \
103 prev = lru_to_page(&(_page->lru)); \
104 prefetch(&prev->_field); \
105 } \
106 } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetchw(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 /*
126 * From 0 .. 100. Higher means more swappy.
127 */
128 int vm_swappiness = 60;
129 static long total_memory;
130
131 static LIST_HEAD(shrinker_list);
132 static DECLARE_RWSEM(shrinker_rwsem);
133
134 /*
135 * Add a shrinker callback to be called from the vm
136 */
137 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
138 {
139 struct shrinker *shrinker;
140
141 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
142 if (shrinker) {
143 shrinker->shrinker = theshrinker;
144 shrinker->seeks = seeks;
145 shrinker->nr = 0;
146 down_write(&shrinker_rwsem);
147 list_add_tail(&shrinker->list, &shrinker_list);
148 up_write(&shrinker_rwsem);
149 }
150 return shrinker;
151 }
152 EXPORT_SYMBOL(set_shrinker);
153
154 /*
155 * Remove one
156 */
157 void remove_shrinker(struct shrinker *shrinker)
158 {
159 down_write(&shrinker_rwsem);
160 list_del(&shrinker->list);
161 up_write(&shrinker_rwsem);
162 kfree(shrinker);
163 }
164 EXPORT_SYMBOL(remove_shrinker);
165
166 #define SHRINK_BATCH 128
167 /*
168 * Call the shrink functions to age shrinkable caches
169 *
170 * Here we assume it costs one seek to replace a lru page and that it also
171 * takes a seek to recreate a cache object. With this in mind we age equal
172 * percentages of the lru and ageable caches. This should balance the seeks
173 * generated by these structures.
174 *
175 * If the vm encounted mapped pages on the LRU it increase the pressure on
176 * slab to avoid swapping.
177 *
178 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
179 *
180 * `lru_pages' represents the number of on-LRU pages in all the zones which
181 * are eligible for the caller's allocation attempt. It is used for balancing
182 * slab reclaim versus page reclaim.
183 *
184 * Returns the number of slab objects which we shrunk.
185 */
186 static int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
187 unsigned long lru_pages)
188 {
189 struct shrinker *shrinker;
190 int ret = 0;
191
192 if (scanned == 0)
193 scanned = SWAP_CLUSTER_MAX;
194
195 if (!down_read_trylock(&shrinker_rwsem))
196 return 1; /* Assume we'll be able to shrink next time */
197
198 list_for_each_entry(shrinker, &shrinker_list, list) {
199 unsigned long long delta;
200 unsigned long total_scan;
201 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
202
203 delta = (4 * scanned) / shrinker->seeks;
204 delta *= max_pass;
205 do_div(delta, lru_pages + 1);
206 shrinker->nr += delta;
207 if (shrinker->nr < 0) {
208 printk(KERN_ERR "%s: nr=%ld\n",
209 __FUNCTION__, shrinker->nr);
210 shrinker->nr = max_pass;
211 }
212
213 /*
214 * Avoid risking looping forever due to too large nr value:
215 * never try to free more than twice the estimate number of
216 * freeable entries.
217 */
218 if (shrinker->nr > max_pass * 2)
219 shrinker->nr = max_pass * 2;
220
221 total_scan = shrinker->nr;
222 shrinker->nr = 0;
223
224 while (total_scan >= SHRINK_BATCH) {
225 long this_scan = SHRINK_BATCH;
226 int shrink_ret;
227 int nr_before;
228
229 nr_before = (*shrinker->shrinker)(0, gfp_mask);
230 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
231 if (shrink_ret == -1)
232 break;
233 if (shrink_ret < nr_before)
234 ret += nr_before - shrink_ret;
235 mod_page_state(slabs_scanned, this_scan);
236 total_scan -= this_scan;
237
238 cond_resched();
239 }
240
241 shrinker->nr += total_scan;
242 }
243 up_read(&shrinker_rwsem);
244 return ret;
245 }
246
247 /* Called without lock on whether page is mapped, so answer is unstable */
248 static inline int page_mapping_inuse(struct page *page)
249 {
250 struct address_space *mapping;
251
252 /* Page is in somebody's page tables. */
253 if (page_mapped(page))
254 return 1;
255
256 /* Be more reluctant to reclaim swapcache than pagecache */
257 if (PageSwapCache(page))
258 return 1;
259
260 mapping = page_mapping(page);
261 if (!mapping)
262 return 0;
263
264 /* File is mmap'd by somebody? */
265 return mapping_mapped(mapping);
266 }
267
268 static inline int is_page_cache_freeable(struct page *page)
269 {
270 return page_count(page) - !!PagePrivate(page) == 2;
271 }
272
273 static int may_write_to_queue(struct backing_dev_info *bdi)
274 {
275 if (current_is_kswapd())
276 return 1;
277 if (current_is_pdflush()) /* This is unlikely, but why not... */
278 return 1;
279 if (!bdi_write_congested(bdi))
280 return 1;
281 if (bdi == current->backing_dev_info)
282 return 1;
283 return 0;
284 }
285
286 /*
287 * We detected a synchronous write error writing a page out. Probably
288 * -ENOSPC. We need to propagate that into the address_space for a subsequent
289 * fsync(), msync() or close().
290 *
291 * The tricky part is that after writepage we cannot touch the mapping: nothing
292 * prevents it from being freed up. But we have a ref on the page and once
293 * that page is locked, the mapping is pinned.
294 *
295 * We're allowed to run sleeping lock_page() here because we know the caller has
296 * __GFP_FS.
297 */
298 static void handle_write_error(struct address_space *mapping,
299 struct page *page, int error)
300 {
301 lock_page(page);
302 if (page_mapping(page) == mapping) {
303 if (error == -ENOSPC)
304 set_bit(AS_ENOSPC, &mapping->flags);
305 else
306 set_bit(AS_EIO, &mapping->flags);
307 }
308 unlock_page(page);
309 }
310
311 /*
312 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
313 */
314 static pageout_t pageout(struct page *page, struct address_space *mapping)
315 {
316 /*
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
322 *
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
326 *
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
332 */
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
336 /*
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
339 */
340 if (PagePrivate(page)) {
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __FUNCTION__);
344 return PAGE_CLEAN;
345 }
346 }
347 return PAGE_KEEP;
348 }
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
353
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
359 .nonblocking = 1,
360 .for_reclaim = 1,
361 };
362
363 SetPageReclaim(page);
364 res = mapping->a_ops->writepage(page, &wbc);
365 if (res < 0)
366 handle_write_error(mapping, page, res);
367 if (res == AOP_WRITEPAGE_ACTIVATE) {
368 ClearPageReclaim(page);
369 return PAGE_ACTIVATE;
370 }
371 if (!PageWriteback(page)) {
372 /* synchronous write or broken a_ops? */
373 ClearPageReclaim(page);
374 }
375
376 return PAGE_SUCCESS;
377 }
378
379 return PAGE_CLEAN;
380 }
381
382 /*
383 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
384 */
385 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
386 {
387 LIST_HEAD(ret_pages);
388 struct pagevec freed_pvec;
389 int pgactivate = 0;
390 int reclaimed = 0;
391
392 cond_resched();
393
394 pagevec_init(&freed_pvec, 1);
395 while (!list_empty(page_list)) {
396 struct address_space *mapping;
397 struct page *page;
398 int may_enter_fs;
399 int referenced;
400
401 cond_resched();
402
403 page = lru_to_page(page_list);
404 list_del(&page->lru);
405
406 if (TestSetPageLocked(page))
407 goto keep;
408
409 BUG_ON(PageActive(page));
410
411 sc->nr_scanned++;
412 /* Double the slab pressure for mapped and swapcache pages */
413 if (page_mapped(page) || PageSwapCache(page))
414 sc->nr_scanned++;
415
416 if (PageWriteback(page))
417 goto keep_locked;
418
419 referenced = page_referenced(page, 1);
420 /* In active use or really unfreeable? Activate it. */
421 if (referenced && page_mapping_inuse(page))
422 goto activate_locked;
423
424 #ifdef CONFIG_SWAP
425 /*
426 * Anonymous process memory has backing store?
427 * Try to allocate it some swap space here.
428 */
429 if (PageAnon(page) && !PageSwapCache(page)) {
430 if (!add_to_swap(page))
431 goto activate_locked;
432 }
433 #endif /* CONFIG_SWAP */
434
435 mapping = page_mapping(page);
436 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
437 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
438
439 /*
440 * The page is mapped into the page tables of one or more
441 * processes. Try to unmap it here.
442 */
443 if (page_mapped(page) && mapping) {
444 switch (try_to_unmap(page)) {
445 case SWAP_FAIL:
446 goto activate_locked;
447 case SWAP_AGAIN:
448 goto keep_locked;
449 case SWAP_SUCCESS:
450 ; /* try to free the page below */
451 }
452 }
453
454 if (PageDirty(page)) {
455 if (referenced)
456 goto keep_locked;
457 if (!may_enter_fs)
458 goto keep_locked;
459 if (laptop_mode && !sc->may_writepage)
460 goto keep_locked;
461
462 /* Page is dirty, try to write it out here */
463 switch(pageout(page, mapping)) {
464 case PAGE_KEEP:
465 goto keep_locked;
466 case PAGE_ACTIVATE:
467 goto activate_locked;
468 case PAGE_SUCCESS:
469 if (PageWriteback(page) || PageDirty(page))
470 goto keep;
471 /*
472 * A synchronous write - probably a ramdisk. Go
473 * ahead and try to reclaim the page.
474 */
475 if (TestSetPageLocked(page))
476 goto keep;
477 if (PageDirty(page) || PageWriteback(page))
478 goto keep_locked;
479 mapping = page_mapping(page);
480 case PAGE_CLEAN:
481 ; /* try to free the page below */
482 }
483 }
484
485 /*
486 * If the page has buffers, try to free the buffer mappings
487 * associated with this page. If we succeed we try to free
488 * the page as well.
489 *
490 * We do this even if the page is PageDirty().
491 * try_to_release_page() does not perform I/O, but it is
492 * possible for a page to have PageDirty set, but it is actually
493 * clean (all its buffers are clean). This happens if the
494 * buffers were written out directly, with submit_bh(). ext3
495 * will do this, as well as the blockdev mapping.
496 * try_to_release_page() will discover that cleanness and will
497 * drop the buffers and mark the page clean - it can be freed.
498 *
499 * Rarely, pages can have buffers and no ->mapping. These are
500 * the pages which were not successfully invalidated in
501 * truncate_complete_page(). We try to drop those buffers here
502 * and if that worked, and the page is no longer mapped into
503 * process address space (page_count == 1) it can be freed.
504 * Otherwise, leave the page on the LRU so it is swappable.
505 */
506 if (PagePrivate(page)) {
507 if (!try_to_release_page(page, sc->gfp_mask))
508 goto activate_locked;
509 if (!mapping && page_count(page) == 1)
510 goto free_it;
511 }
512
513 if (!mapping)
514 goto keep_locked; /* truncate got there first */
515
516 write_lock_irq(&mapping->tree_lock);
517
518 /*
519 * The non-racy check for busy page. It is critical to check
520 * PageDirty _after_ making sure that the page is freeable and
521 * not in use by anybody. (pagecache + us == 2)
522 */
523 if (unlikely(page_count(page) != 2))
524 goto cannot_free;
525 smp_rmb();
526 if (unlikely(PageDirty(page)))
527 goto cannot_free;
528
529 #ifdef CONFIG_SWAP
530 if (PageSwapCache(page)) {
531 swp_entry_t swap = { .val = page_private(page) };
532 __delete_from_swap_cache(page);
533 write_unlock_irq(&mapping->tree_lock);
534 swap_free(swap);
535 __put_page(page); /* The pagecache ref */
536 goto free_it;
537 }
538 #endif /* CONFIG_SWAP */
539
540 __remove_from_page_cache(page);
541 write_unlock_irq(&mapping->tree_lock);
542 __put_page(page);
543
544 free_it:
545 unlock_page(page);
546 reclaimed++;
547 if (!pagevec_add(&freed_pvec, page))
548 __pagevec_release_nonlru(&freed_pvec);
549 continue;
550
551 cannot_free:
552 write_unlock_irq(&mapping->tree_lock);
553 goto keep_locked;
554
555 activate_locked:
556 SetPageActive(page);
557 pgactivate++;
558 keep_locked:
559 unlock_page(page);
560 keep:
561 list_add(&page->lru, &ret_pages);
562 BUG_ON(PageLRU(page));
563 }
564 list_splice(&ret_pages, page_list);
565 if (pagevec_count(&freed_pvec))
566 __pagevec_release_nonlru(&freed_pvec);
567 mod_page_state(pgactivate, pgactivate);
568 sc->nr_reclaimed += reclaimed;
569 return reclaimed;
570 }
571
572 /*
573 * zone->lru_lock is heavily contended. Some of the functions that
574 * shrink the lists perform better by taking out a batch of pages
575 * and working on them outside the LRU lock.
576 *
577 * For pagecache intensive workloads, this function is the hottest
578 * spot in the kernel (apart from copy_*_user functions).
579 *
580 * Appropriate locks must be held before calling this function.
581 *
582 * @nr_to_scan: The number of pages to look through on the list.
583 * @src: The LRU list to pull pages off.
584 * @dst: The temp list to put pages on to.
585 * @scanned: The number of pages that were scanned.
586 *
587 * returns how many pages were moved onto *@dst.
588 */
589 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
590 struct list_head *dst, int *scanned)
591 {
592 int nr_taken = 0;
593 struct page *page;
594 int scan = 0;
595
596 while (scan++ < nr_to_scan && !list_empty(src)) {
597 page = lru_to_page(src);
598 prefetchw_prev_lru_page(page, src, flags);
599
600 if (!TestClearPageLRU(page))
601 BUG();
602 list_del(&page->lru);
603 if (get_page_testone(page)) {
604 /*
605 * It is being freed elsewhere
606 */
607 __put_page(page);
608 SetPageLRU(page);
609 list_add(&page->lru, src);
610 continue;
611 } else {
612 list_add(&page->lru, dst);
613 nr_taken++;
614 }
615 }
616
617 *scanned = scan;
618 return nr_taken;
619 }
620
621 /*
622 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
623 */
624 static void shrink_cache(struct zone *zone, struct scan_control *sc)
625 {
626 LIST_HEAD(page_list);
627 struct pagevec pvec;
628 int max_scan = sc->nr_to_scan;
629
630 pagevec_init(&pvec, 1);
631
632 lru_add_drain();
633 spin_lock_irq(&zone->lru_lock);
634 while (max_scan > 0) {
635 struct page *page;
636 int nr_taken;
637 int nr_scan;
638 int nr_freed;
639
640 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
641 &zone->inactive_list,
642 &page_list, &nr_scan);
643 zone->nr_inactive -= nr_taken;
644 zone->pages_scanned += nr_scan;
645 spin_unlock_irq(&zone->lru_lock);
646
647 if (nr_taken == 0)
648 goto done;
649
650 max_scan -= nr_scan;
651 if (current_is_kswapd())
652 mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
653 else
654 mod_page_state_zone(zone, pgscan_direct, nr_scan);
655 nr_freed = shrink_list(&page_list, sc);
656 if (current_is_kswapd())
657 mod_page_state(kswapd_steal, nr_freed);
658 mod_page_state_zone(zone, pgsteal, nr_freed);
659 sc->nr_to_reclaim -= nr_freed;
660
661 spin_lock_irq(&zone->lru_lock);
662 /*
663 * Put back any unfreeable pages.
664 */
665 while (!list_empty(&page_list)) {
666 page = lru_to_page(&page_list);
667 if (TestSetPageLRU(page))
668 BUG();
669 list_del(&page->lru);
670 if (PageActive(page))
671 add_page_to_active_list(zone, page);
672 else
673 add_page_to_inactive_list(zone, page);
674 if (!pagevec_add(&pvec, page)) {
675 spin_unlock_irq(&zone->lru_lock);
676 __pagevec_release(&pvec);
677 spin_lock_irq(&zone->lru_lock);
678 }
679 }
680 }
681 spin_unlock_irq(&zone->lru_lock);
682 done:
683 pagevec_release(&pvec);
684 }
685
686 /*
687 * This moves pages from the active list to the inactive list.
688 *
689 * We move them the other way if the page is referenced by one or more
690 * processes, from rmap.
691 *
692 * If the pages are mostly unmapped, the processing is fast and it is
693 * appropriate to hold zone->lru_lock across the whole operation. But if
694 * the pages are mapped, the processing is slow (page_referenced()) so we
695 * should drop zone->lru_lock around each page. It's impossible to balance
696 * this, so instead we remove the pages from the LRU while processing them.
697 * It is safe to rely on PG_active against the non-LRU pages in here because
698 * nobody will play with that bit on a non-LRU page.
699 *
700 * The downside is that we have to touch page->_count against each page.
701 * But we had to alter page->flags anyway.
702 */
703 static void
704 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
705 {
706 int pgmoved;
707 int pgdeactivate = 0;
708 int pgscanned;
709 int nr_pages = sc->nr_to_scan;
710 LIST_HEAD(l_hold); /* The pages which were snipped off */
711 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
712 LIST_HEAD(l_active); /* Pages to go onto the active_list */
713 struct page *page;
714 struct pagevec pvec;
715 int reclaim_mapped = 0;
716 long mapped_ratio;
717 long distress;
718 long swap_tendency;
719
720 lru_add_drain();
721 spin_lock_irq(&zone->lru_lock);
722 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
723 &l_hold, &pgscanned);
724 zone->pages_scanned += pgscanned;
725 zone->nr_active -= pgmoved;
726 spin_unlock_irq(&zone->lru_lock);
727
728 /*
729 * `distress' is a measure of how much trouble we're having reclaiming
730 * pages. 0 -> no problems. 100 -> great trouble.
731 */
732 distress = 100 >> zone->prev_priority;
733
734 /*
735 * The point of this algorithm is to decide when to start reclaiming
736 * mapped memory instead of just pagecache. Work out how much memory
737 * is mapped.
738 */
739 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
740
741 /*
742 * Now decide how much we really want to unmap some pages. The mapped
743 * ratio is downgraded - just because there's a lot of mapped memory
744 * doesn't necessarily mean that page reclaim isn't succeeding.
745 *
746 * The distress ratio is important - we don't want to start going oom.
747 *
748 * A 100% value of vm_swappiness overrides this algorithm altogether.
749 */
750 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
751
752 /*
753 * Now use this metric to decide whether to start moving mapped memory
754 * onto the inactive list.
755 */
756 if (swap_tendency >= 100)
757 reclaim_mapped = 1;
758
759 while (!list_empty(&l_hold)) {
760 cond_resched();
761 page = lru_to_page(&l_hold);
762 list_del(&page->lru);
763 if (page_mapped(page)) {
764 if (!reclaim_mapped ||
765 (total_swap_pages == 0 && PageAnon(page)) ||
766 page_referenced(page, 0)) {
767 list_add(&page->lru, &l_active);
768 continue;
769 }
770 }
771 list_add(&page->lru, &l_inactive);
772 }
773
774 pagevec_init(&pvec, 1);
775 pgmoved = 0;
776 spin_lock_irq(&zone->lru_lock);
777 while (!list_empty(&l_inactive)) {
778 page = lru_to_page(&l_inactive);
779 prefetchw_prev_lru_page(page, &l_inactive, flags);
780 if (TestSetPageLRU(page))
781 BUG();
782 if (!TestClearPageActive(page))
783 BUG();
784 list_move(&page->lru, &zone->inactive_list);
785 pgmoved++;
786 if (!pagevec_add(&pvec, page)) {
787 zone->nr_inactive += pgmoved;
788 spin_unlock_irq(&zone->lru_lock);
789 pgdeactivate += pgmoved;
790 pgmoved = 0;
791 if (buffer_heads_over_limit)
792 pagevec_strip(&pvec);
793 __pagevec_release(&pvec);
794 spin_lock_irq(&zone->lru_lock);
795 }
796 }
797 zone->nr_inactive += pgmoved;
798 pgdeactivate += pgmoved;
799 if (buffer_heads_over_limit) {
800 spin_unlock_irq(&zone->lru_lock);
801 pagevec_strip(&pvec);
802 spin_lock_irq(&zone->lru_lock);
803 }
804
805 pgmoved = 0;
806 while (!list_empty(&l_active)) {
807 page = lru_to_page(&l_active);
808 prefetchw_prev_lru_page(page, &l_active, flags);
809 if (TestSetPageLRU(page))
810 BUG();
811 BUG_ON(!PageActive(page));
812 list_move(&page->lru, &zone->active_list);
813 pgmoved++;
814 if (!pagevec_add(&pvec, page)) {
815 zone->nr_active += pgmoved;
816 pgmoved = 0;
817 spin_unlock_irq(&zone->lru_lock);
818 __pagevec_release(&pvec);
819 spin_lock_irq(&zone->lru_lock);
820 }
821 }
822 zone->nr_active += pgmoved;
823 spin_unlock_irq(&zone->lru_lock);
824 pagevec_release(&pvec);
825
826 mod_page_state_zone(zone, pgrefill, pgscanned);
827 mod_page_state(pgdeactivate, pgdeactivate);
828 }
829
830 /*
831 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
832 */
833 static void
834 shrink_zone(struct zone *zone, struct scan_control *sc)
835 {
836 unsigned long nr_active;
837 unsigned long nr_inactive;
838
839 atomic_inc(&zone->reclaim_in_progress);
840
841 /*
842 * Add one to `nr_to_scan' just to make sure that the kernel will
843 * slowly sift through the active list.
844 */
845 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
846 nr_active = zone->nr_scan_active;
847 if (nr_active >= sc->swap_cluster_max)
848 zone->nr_scan_active = 0;
849 else
850 nr_active = 0;
851
852 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
853 nr_inactive = zone->nr_scan_inactive;
854 if (nr_inactive >= sc->swap_cluster_max)
855 zone->nr_scan_inactive = 0;
856 else
857 nr_inactive = 0;
858
859 sc->nr_to_reclaim = sc->swap_cluster_max;
860
861 while (nr_active || nr_inactive) {
862 if (nr_active) {
863 sc->nr_to_scan = min(nr_active,
864 (unsigned long)sc->swap_cluster_max);
865 nr_active -= sc->nr_to_scan;
866 refill_inactive_zone(zone, sc);
867 }
868
869 if (nr_inactive) {
870 sc->nr_to_scan = min(nr_inactive,
871 (unsigned long)sc->swap_cluster_max);
872 nr_inactive -= sc->nr_to_scan;
873 shrink_cache(zone, sc);
874 if (sc->nr_to_reclaim <= 0)
875 break;
876 }
877 }
878
879 throttle_vm_writeout();
880
881 atomic_dec(&zone->reclaim_in_progress);
882 }
883
884 /*
885 * This is the direct reclaim path, for page-allocating processes. We only
886 * try to reclaim pages from zones which will satisfy the caller's allocation
887 * request.
888 *
889 * We reclaim from a zone even if that zone is over pages_high. Because:
890 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
891 * allocation or
892 * b) The zones may be over pages_high but they must go *over* pages_high to
893 * satisfy the `incremental min' zone defense algorithm.
894 *
895 * Returns the number of reclaimed pages.
896 *
897 * If a zone is deemed to be full of pinned pages then just give it a light
898 * scan then give up on it.
899 */
900 static void
901 shrink_caches(struct zone **zones, struct scan_control *sc)
902 {
903 int i;
904
905 for (i = 0; zones[i] != NULL; i++) {
906 struct zone *zone = zones[i];
907
908 if (zone->present_pages == 0)
909 continue;
910
911 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
912 continue;
913
914 zone->temp_priority = sc->priority;
915 if (zone->prev_priority > sc->priority)
916 zone->prev_priority = sc->priority;
917
918 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
919 continue; /* Let kswapd poll it */
920
921 shrink_zone(zone, sc);
922 }
923 }
924
925 /*
926 * This is the main entry point to direct page reclaim.
927 *
928 * If a full scan of the inactive list fails to free enough memory then we
929 * are "out of memory" and something needs to be killed.
930 *
931 * If the caller is !__GFP_FS then the probability of a failure is reasonably
932 * high - the zone may be full of dirty or under-writeback pages, which this
933 * caller can't do much about. We kick pdflush and take explicit naps in the
934 * hope that some of these pages can be written. But if the allocating task
935 * holds filesystem locks which prevent writeout this might not work, and the
936 * allocation attempt will fail.
937 */
938 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
939 {
940 int priority;
941 int ret = 0;
942 int total_scanned = 0, total_reclaimed = 0;
943 struct reclaim_state *reclaim_state = current->reclaim_state;
944 struct scan_control sc;
945 unsigned long lru_pages = 0;
946 int i;
947
948 sc.gfp_mask = gfp_mask;
949 sc.may_writepage = 0;
950
951 inc_page_state(allocstall);
952
953 for (i = 0; zones[i] != NULL; i++) {
954 struct zone *zone = zones[i];
955
956 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
957 continue;
958
959 zone->temp_priority = DEF_PRIORITY;
960 lru_pages += zone->nr_active + zone->nr_inactive;
961 }
962
963 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
964 sc.nr_mapped = read_page_state(nr_mapped);
965 sc.nr_scanned = 0;
966 sc.nr_reclaimed = 0;
967 sc.priority = priority;
968 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
969 if (!priority)
970 disable_swap_token();
971 shrink_caches(zones, &sc);
972 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
973 if (reclaim_state) {
974 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
975 reclaim_state->reclaimed_slab = 0;
976 }
977 total_scanned += sc.nr_scanned;
978 total_reclaimed += sc.nr_reclaimed;
979 if (total_reclaimed >= sc.swap_cluster_max) {
980 ret = 1;
981 goto out;
982 }
983
984 /*
985 * Try to write back as many pages as we just scanned. This
986 * tends to cause slow streaming writers to write data to the
987 * disk smoothly, at the dirtying rate, which is nice. But
988 * that's undesirable in laptop mode, where we *want* lumpy
989 * writeout. So in laptop mode, write out the whole world.
990 */
991 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
992 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
993 sc.may_writepage = 1;
994 }
995
996 /* Take a nap, wait for some writeback to complete */
997 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
998 blk_congestion_wait(WRITE, HZ/10);
999 }
1000 out:
1001 for (i = 0; zones[i] != 0; i++) {
1002 struct zone *zone = zones[i];
1003
1004 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1005 continue;
1006
1007 zone->prev_priority = zone->temp_priority;
1008 }
1009 return ret;
1010 }
1011
1012 /*
1013 * For kswapd, balance_pgdat() will work across all this node's zones until
1014 * they are all at pages_high.
1015 *
1016 * If `nr_pages' is non-zero then it is the number of pages which are to be
1017 * reclaimed, regardless of the zone occupancies. This is a software suspend
1018 * special.
1019 *
1020 * Returns the number of pages which were actually freed.
1021 *
1022 * There is special handling here for zones which are full of pinned pages.
1023 * This can happen if the pages are all mlocked, or if they are all used by
1024 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1025 * What we do is to detect the case where all pages in the zone have been
1026 * scanned twice and there has been zero successful reclaim. Mark the zone as
1027 * dead and from now on, only perform a short scan. Basically we're polling
1028 * the zone for when the problem goes away.
1029 *
1030 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1031 * zones which have free_pages > pages_high, but once a zone is found to have
1032 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1033 * of the number of free pages in the lower zones. This interoperates with
1034 * the page allocator fallback scheme to ensure that aging of pages is balanced
1035 * across the zones.
1036 */
1037 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1038 {
1039 int to_free = nr_pages;
1040 int all_zones_ok;
1041 int priority;
1042 int i;
1043 int total_scanned, total_reclaimed;
1044 struct reclaim_state *reclaim_state = current->reclaim_state;
1045 struct scan_control sc;
1046
1047 loop_again:
1048 total_scanned = 0;
1049 total_reclaimed = 0;
1050 sc.gfp_mask = GFP_KERNEL;
1051 sc.may_writepage = 0;
1052 sc.nr_mapped = read_page_state(nr_mapped);
1053
1054 inc_page_state(pageoutrun);
1055
1056 for (i = 0; i < pgdat->nr_zones; i++) {
1057 struct zone *zone = pgdat->node_zones + i;
1058
1059 zone->temp_priority = DEF_PRIORITY;
1060 }
1061
1062 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1063 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1064 unsigned long lru_pages = 0;
1065
1066 /* The swap token gets in the way of swapout... */
1067 if (!priority)
1068 disable_swap_token();
1069
1070 all_zones_ok = 1;
1071
1072 if (nr_pages == 0) {
1073 /*
1074 * Scan in the highmem->dma direction for the highest
1075 * zone which needs scanning
1076 */
1077 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1078 struct zone *zone = pgdat->node_zones + i;
1079
1080 if (zone->present_pages == 0)
1081 continue;
1082
1083 if (zone->all_unreclaimable &&
1084 priority != DEF_PRIORITY)
1085 continue;
1086
1087 if (!zone_watermark_ok(zone, order,
1088 zone->pages_high, 0, 0)) {
1089 end_zone = i;
1090 goto scan;
1091 }
1092 }
1093 goto out;
1094 } else {
1095 end_zone = pgdat->nr_zones - 1;
1096 }
1097 scan:
1098 for (i = 0; i <= end_zone; i++) {
1099 struct zone *zone = pgdat->node_zones + i;
1100
1101 lru_pages += zone->nr_active + zone->nr_inactive;
1102 }
1103
1104 /*
1105 * Now scan the zone in the dma->highmem direction, stopping
1106 * at the last zone which needs scanning.
1107 *
1108 * We do this because the page allocator works in the opposite
1109 * direction. This prevents the page allocator from allocating
1110 * pages behind kswapd's direction of progress, which would
1111 * cause too much scanning of the lower zones.
1112 */
1113 for (i = 0; i <= end_zone; i++) {
1114 struct zone *zone = pgdat->node_zones + i;
1115 int nr_slab;
1116
1117 if (zone->present_pages == 0)
1118 continue;
1119
1120 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1121 continue;
1122
1123 if (nr_pages == 0) { /* Not software suspend */
1124 if (!zone_watermark_ok(zone, order,
1125 zone->pages_high, end_zone, 0))
1126 all_zones_ok = 0;
1127 }
1128 zone->temp_priority = priority;
1129 if (zone->prev_priority > priority)
1130 zone->prev_priority = priority;
1131 sc.nr_scanned = 0;
1132 sc.nr_reclaimed = 0;
1133 sc.priority = priority;
1134 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1135 atomic_inc(&zone->reclaim_in_progress);
1136 shrink_zone(zone, &sc);
1137 atomic_dec(&zone->reclaim_in_progress);
1138 reclaim_state->reclaimed_slab = 0;
1139 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1140 lru_pages);
1141 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1142 total_reclaimed += sc.nr_reclaimed;
1143 total_scanned += sc.nr_scanned;
1144 if (zone->all_unreclaimable)
1145 continue;
1146 if (nr_slab == 0 && zone->pages_scanned >=
1147 (zone->nr_active + zone->nr_inactive) * 4)
1148 zone->all_unreclaimable = 1;
1149 /*
1150 * If we've done a decent amount of scanning and
1151 * the reclaim ratio is low, start doing writepage
1152 * even in laptop mode
1153 */
1154 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1155 total_scanned > total_reclaimed+total_reclaimed/2)
1156 sc.may_writepage = 1;
1157 }
1158 if (nr_pages && to_free > total_reclaimed)
1159 continue; /* swsusp: need to do more work */
1160 if (all_zones_ok)
1161 break; /* kswapd: all done */
1162 /*
1163 * OK, kswapd is getting into trouble. Take a nap, then take
1164 * another pass across the zones.
1165 */
1166 if (total_scanned && priority < DEF_PRIORITY - 2)
1167 blk_congestion_wait(WRITE, HZ/10);
1168
1169 /*
1170 * We do this so kswapd doesn't build up large priorities for
1171 * example when it is freeing in parallel with allocators. It
1172 * matches the direct reclaim path behaviour in terms of impact
1173 * on zone->*_priority.
1174 */
1175 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1176 break;
1177 }
1178 out:
1179 for (i = 0; i < pgdat->nr_zones; i++) {
1180 struct zone *zone = pgdat->node_zones + i;
1181
1182 zone->prev_priority = zone->temp_priority;
1183 }
1184 if (!all_zones_ok) {
1185 cond_resched();
1186 goto loop_again;
1187 }
1188
1189 return total_reclaimed;
1190 }
1191
1192 /*
1193 * The background pageout daemon, started as a kernel thread
1194 * from the init process.
1195 *
1196 * This basically trickles out pages so that we have _some_
1197 * free memory available even if there is no other activity
1198 * that frees anything up. This is needed for things like routing
1199 * etc, where we otherwise might have all activity going on in
1200 * asynchronous contexts that cannot page things out.
1201 *
1202 * If there are applications that are active memory-allocators
1203 * (most normal use), this basically shouldn't matter.
1204 */
1205 static int kswapd(void *p)
1206 {
1207 unsigned long order;
1208 pg_data_t *pgdat = (pg_data_t*)p;
1209 struct task_struct *tsk = current;
1210 DEFINE_WAIT(wait);
1211 struct reclaim_state reclaim_state = {
1212 .reclaimed_slab = 0,
1213 };
1214 cpumask_t cpumask;
1215
1216 daemonize("kswapd%d", pgdat->node_id);
1217 cpumask = node_to_cpumask(pgdat->node_id);
1218 if (!cpus_empty(cpumask))
1219 set_cpus_allowed(tsk, cpumask);
1220 current->reclaim_state = &reclaim_state;
1221
1222 /*
1223 * Tell the memory management that we're a "memory allocator",
1224 * and that if we need more memory we should get access to it
1225 * regardless (see "__alloc_pages()"). "kswapd" should
1226 * never get caught in the normal page freeing logic.
1227 *
1228 * (Kswapd normally doesn't need memory anyway, but sometimes
1229 * you need a small amount of memory in order to be able to
1230 * page out something else, and this flag essentially protects
1231 * us from recursively trying to free more memory as we're
1232 * trying to free the first piece of memory in the first place).
1233 */
1234 tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1235
1236 order = 0;
1237 for ( ; ; ) {
1238 unsigned long new_order;
1239
1240 try_to_freeze();
1241
1242 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1243 new_order = pgdat->kswapd_max_order;
1244 pgdat->kswapd_max_order = 0;
1245 if (order < new_order) {
1246 /*
1247 * Don't sleep if someone wants a larger 'order'
1248 * allocation
1249 */
1250 order = new_order;
1251 } else {
1252 schedule();
1253 order = pgdat->kswapd_max_order;
1254 }
1255 finish_wait(&pgdat->kswapd_wait, &wait);
1256
1257 balance_pgdat(pgdat, 0, order);
1258 }
1259 return 0;
1260 }
1261
1262 /*
1263 * A zone is low on free memory, so wake its kswapd task to service it.
1264 */
1265 void wakeup_kswapd(struct zone *zone, int order)
1266 {
1267 pg_data_t *pgdat;
1268
1269 if (zone->present_pages == 0)
1270 return;
1271
1272 pgdat = zone->zone_pgdat;
1273 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1274 return;
1275 if (pgdat->kswapd_max_order < order)
1276 pgdat->kswapd_max_order = order;
1277 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1278 return;
1279 if (!waitqueue_active(&pgdat->kswapd_wait))
1280 return;
1281 wake_up_interruptible(&pgdat->kswapd_wait);
1282 }
1283
1284 #ifdef CONFIG_PM
1285 /*
1286 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1287 * pages.
1288 */
1289 int shrink_all_memory(int nr_pages)
1290 {
1291 pg_data_t *pgdat;
1292 int nr_to_free = nr_pages;
1293 int ret = 0;
1294 struct reclaim_state reclaim_state = {
1295 .reclaimed_slab = 0,
1296 };
1297
1298 current->reclaim_state = &reclaim_state;
1299 for_each_pgdat(pgdat) {
1300 int freed;
1301 freed = balance_pgdat(pgdat, nr_to_free, 0);
1302 ret += freed;
1303 nr_to_free -= freed;
1304 if (nr_to_free <= 0)
1305 break;
1306 }
1307 current->reclaim_state = NULL;
1308 return ret;
1309 }
1310 #endif
1311
1312 #ifdef CONFIG_HOTPLUG_CPU
1313 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1314 not required for correctness. So if the last cpu in a node goes
1315 away, we get changed to run anywhere: as the first one comes back,
1316 restore their cpu bindings. */
1317 static int __devinit cpu_callback(struct notifier_block *nfb,
1318 unsigned long action,
1319 void *hcpu)
1320 {
1321 pg_data_t *pgdat;
1322 cpumask_t mask;
1323
1324 if (action == CPU_ONLINE) {
1325 for_each_pgdat(pgdat) {
1326 mask = node_to_cpumask(pgdat->node_id);
1327 if (any_online_cpu(mask) != NR_CPUS)
1328 /* One of our CPUs online: restore mask */
1329 set_cpus_allowed(pgdat->kswapd, mask);
1330 }
1331 }
1332 return NOTIFY_OK;
1333 }
1334 #endif /* CONFIG_HOTPLUG_CPU */
1335
1336 static int __init kswapd_init(void)
1337 {
1338 pg_data_t *pgdat;
1339 swap_setup();
1340 for_each_pgdat(pgdat)
1341 pgdat->kswapd
1342 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1343 total_memory = nr_free_pagecache_pages();
1344 hotcpu_notifier(cpu_callback, 0);
1345 return 0;
1346 }
1347
1348 module_init(kswapd_init)