]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmscan.c
Merge tag 'sound-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-hirsute-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /*
83 * Scan pressure balancing between anon and file LRUs
84 */
85 unsigned long anon_cost;
86 unsigned long file_cost;
87
88 /* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
94
95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
97
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
100
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
103
104 /*
105 * Cgroups are not reclaimed below their configured memory.low,
106 * unless we threaten to OOM. If any cgroups are skipped due to
107 * memory.low and nothing was reclaimed, go back for memory.low.
108 */
109 unsigned int memcg_low_reclaim:1;
110 unsigned int memcg_low_skipped:1;
111
112 unsigned int hibernation_mode:1;
113
114 /* One of the zones is ready for compaction */
115 unsigned int compaction_ready:1;
116
117 /* There is easily reclaimable cold cache in the current node */
118 unsigned int cache_trim_mode:1;
119
120 /* The file pages on the current node are dangerously low */
121 unsigned int file_is_tiny:1;
122
123 /* Allocation order */
124 s8 order;
125
126 /* Scan (total_size >> priority) pages at once */
127 s8 priority;
128
129 /* The highest zone to isolate pages for reclaim from */
130 s8 reclaim_idx;
131
132 /* This context's GFP mask */
133 gfp_t gfp_mask;
134
135 /* Incremented by the number of inactive pages that were scanned */
136 unsigned long nr_scanned;
137
138 /* Number of pages freed so far during a call to shrink_zones() */
139 unsigned long nr_reclaimed;
140
141 struct {
142 unsigned int dirty;
143 unsigned int unqueued_dirty;
144 unsigned int congested;
145 unsigned int writeback;
146 unsigned int immediate;
147 unsigned int file_taken;
148 unsigned int taken;
149 } nr;
150
151 /* for recording the reclaimed slab by now */
152 struct reclaim_state reclaim_state;
153 };
154
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field) \
157 do { \
158 if ((_page)->lru.prev != _base) { \
159 struct page *prev; \
160 \
161 prev = lru_to_page(&(_page->lru)); \
162 prefetchw(&prev->_field); \
163 } \
164 } while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168
169 /*
170 * From 0 .. 200. Higher means more swappy.
171 */
172 int vm_swappiness = 60;
173 /*
174 * The total number of pages which are beyond the high watermark within all
175 * zones.
176 */
177 unsigned long vm_total_pages;
178
179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181 {
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189 }
190
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193
194 #ifdef CONFIG_MEMCG
195 /*
196 * We allow subsystems to populate their shrinker-related
197 * LRU lists before register_shrinker_prepared() is called
198 * for the shrinker, since we don't want to impose
199 * restrictions on their internal registration order.
200 * In this case shrink_slab_memcg() may find corresponding
201 * bit is set in the shrinkers map.
202 *
203 * This value is used by the function to detect registering
204 * shrinkers and to skip do_shrink_slab() calls for them.
205 */
206 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
207
208 static DEFINE_IDR(shrinker_idr);
209 static int shrinker_nr_max;
210
211 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
212 {
213 int id, ret = -ENOMEM;
214
215 down_write(&shrinker_rwsem);
216 /* This may call shrinker, so it must use down_read_trylock() */
217 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
218 if (id < 0)
219 goto unlock;
220
221 if (id >= shrinker_nr_max) {
222 if (memcg_expand_shrinker_maps(id)) {
223 idr_remove(&shrinker_idr, id);
224 goto unlock;
225 }
226
227 shrinker_nr_max = id + 1;
228 }
229 shrinker->id = id;
230 ret = 0;
231 unlock:
232 up_write(&shrinker_rwsem);
233 return ret;
234 }
235
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
237 {
238 int id = shrinker->id;
239
240 BUG_ON(id < 0);
241
242 down_write(&shrinker_rwsem);
243 idr_remove(&shrinker_idr, id);
244 up_write(&shrinker_rwsem);
245 }
246
247 static bool cgroup_reclaim(struct scan_control *sc)
248 {
249 return sc->target_mem_cgroup;
250 }
251
252 /**
253 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
254 * @sc: scan_control in question
255 *
256 * The normal page dirty throttling mechanism in balance_dirty_pages() is
257 * completely broken with the legacy memcg and direct stalling in
258 * shrink_page_list() is used for throttling instead, which lacks all the
259 * niceties such as fairness, adaptive pausing, bandwidth proportional
260 * allocation and configurability.
261 *
262 * This function tests whether the vmscan currently in progress can assume
263 * that the normal dirty throttling mechanism is operational.
264 */
265 static bool writeback_throttling_sane(struct scan_control *sc)
266 {
267 if (!cgroup_reclaim(sc))
268 return true;
269 #ifdef CONFIG_CGROUP_WRITEBACK
270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
271 return true;
272 #endif
273 return false;
274 }
275 #else
276 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
277 {
278 return 0;
279 }
280
281 static void unregister_memcg_shrinker(struct shrinker *shrinker)
282 {
283 }
284
285 static bool cgroup_reclaim(struct scan_control *sc)
286 {
287 return false;
288 }
289
290 static bool writeback_throttling_sane(struct scan_control *sc)
291 {
292 return true;
293 }
294 #endif
295
296 /*
297 * This misses isolated pages which are not accounted for to save counters.
298 * As the data only determines if reclaim or compaction continues, it is
299 * not expected that isolated pages will be a dominating factor.
300 */
301 unsigned long zone_reclaimable_pages(struct zone *zone)
302 {
303 unsigned long nr;
304
305 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
306 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
307 if (get_nr_swap_pages() > 0)
308 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
309 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
310
311 return nr;
312 }
313
314 /**
315 * lruvec_lru_size - Returns the number of pages on the given LRU list.
316 * @lruvec: lru vector
317 * @lru: lru to use
318 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
319 */
320 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
321 {
322 unsigned long size = 0;
323 int zid;
324
325 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
326 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
327
328 if (!managed_zone(zone))
329 continue;
330
331 if (!mem_cgroup_disabled())
332 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
333 else
334 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
335 }
336 return size;
337 }
338
339 /*
340 * Add a shrinker callback to be called from the vm.
341 */
342 int prealloc_shrinker(struct shrinker *shrinker)
343 {
344 unsigned int size = sizeof(*shrinker->nr_deferred);
345
346 if (shrinker->flags & SHRINKER_NUMA_AWARE)
347 size *= nr_node_ids;
348
349 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
350 if (!shrinker->nr_deferred)
351 return -ENOMEM;
352
353 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
354 if (prealloc_memcg_shrinker(shrinker))
355 goto free_deferred;
356 }
357
358 return 0;
359
360 free_deferred:
361 kfree(shrinker->nr_deferred);
362 shrinker->nr_deferred = NULL;
363 return -ENOMEM;
364 }
365
366 void free_prealloced_shrinker(struct shrinker *shrinker)
367 {
368 if (!shrinker->nr_deferred)
369 return;
370
371 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
372 unregister_memcg_shrinker(shrinker);
373
374 kfree(shrinker->nr_deferred);
375 shrinker->nr_deferred = NULL;
376 }
377
378 void register_shrinker_prepared(struct shrinker *shrinker)
379 {
380 down_write(&shrinker_rwsem);
381 list_add_tail(&shrinker->list, &shrinker_list);
382 #ifdef CONFIG_MEMCG
383 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
384 idr_replace(&shrinker_idr, shrinker, shrinker->id);
385 #endif
386 up_write(&shrinker_rwsem);
387 }
388
389 int register_shrinker(struct shrinker *shrinker)
390 {
391 int err = prealloc_shrinker(shrinker);
392
393 if (err)
394 return err;
395 register_shrinker_prepared(shrinker);
396 return 0;
397 }
398 EXPORT_SYMBOL(register_shrinker);
399
400 /*
401 * Remove one
402 */
403 void unregister_shrinker(struct shrinker *shrinker)
404 {
405 if (!shrinker->nr_deferred)
406 return;
407 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
408 unregister_memcg_shrinker(shrinker);
409 down_write(&shrinker_rwsem);
410 list_del(&shrinker->list);
411 up_write(&shrinker_rwsem);
412 kfree(shrinker->nr_deferred);
413 shrinker->nr_deferred = NULL;
414 }
415 EXPORT_SYMBOL(unregister_shrinker);
416
417 #define SHRINK_BATCH 128
418
419 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
420 struct shrinker *shrinker, int priority)
421 {
422 unsigned long freed = 0;
423 unsigned long long delta;
424 long total_scan;
425 long freeable;
426 long nr;
427 long new_nr;
428 int nid = shrinkctl->nid;
429 long batch_size = shrinker->batch ? shrinker->batch
430 : SHRINK_BATCH;
431 long scanned = 0, next_deferred;
432
433 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
434 nid = 0;
435
436 freeable = shrinker->count_objects(shrinker, shrinkctl);
437 if (freeable == 0 || freeable == SHRINK_EMPTY)
438 return freeable;
439
440 /*
441 * copy the current shrinker scan count into a local variable
442 * and zero it so that other concurrent shrinker invocations
443 * don't also do this scanning work.
444 */
445 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
446
447 total_scan = nr;
448 if (shrinker->seeks) {
449 delta = freeable >> priority;
450 delta *= 4;
451 do_div(delta, shrinker->seeks);
452 } else {
453 /*
454 * These objects don't require any IO to create. Trim
455 * them aggressively under memory pressure to keep
456 * them from causing refetches in the IO caches.
457 */
458 delta = freeable / 2;
459 }
460
461 total_scan += delta;
462 if (total_scan < 0) {
463 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
464 shrinker->scan_objects, total_scan);
465 total_scan = freeable;
466 next_deferred = nr;
467 } else
468 next_deferred = total_scan;
469
470 /*
471 * We need to avoid excessive windup on filesystem shrinkers
472 * due to large numbers of GFP_NOFS allocations causing the
473 * shrinkers to return -1 all the time. This results in a large
474 * nr being built up so when a shrink that can do some work
475 * comes along it empties the entire cache due to nr >>>
476 * freeable. This is bad for sustaining a working set in
477 * memory.
478 *
479 * Hence only allow the shrinker to scan the entire cache when
480 * a large delta change is calculated directly.
481 */
482 if (delta < freeable / 4)
483 total_scan = min(total_scan, freeable / 2);
484
485 /*
486 * Avoid risking looping forever due to too large nr value:
487 * never try to free more than twice the estimate number of
488 * freeable entries.
489 */
490 if (total_scan > freeable * 2)
491 total_scan = freeable * 2;
492
493 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
494 freeable, delta, total_scan, priority);
495
496 /*
497 * Normally, we should not scan less than batch_size objects in one
498 * pass to avoid too frequent shrinker calls, but if the slab has less
499 * than batch_size objects in total and we are really tight on memory,
500 * we will try to reclaim all available objects, otherwise we can end
501 * up failing allocations although there are plenty of reclaimable
502 * objects spread over several slabs with usage less than the
503 * batch_size.
504 *
505 * We detect the "tight on memory" situations by looking at the total
506 * number of objects we want to scan (total_scan). If it is greater
507 * than the total number of objects on slab (freeable), we must be
508 * scanning at high prio and therefore should try to reclaim as much as
509 * possible.
510 */
511 while (total_scan >= batch_size ||
512 total_scan >= freeable) {
513 unsigned long ret;
514 unsigned long nr_to_scan = min(batch_size, total_scan);
515
516 shrinkctl->nr_to_scan = nr_to_scan;
517 shrinkctl->nr_scanned = nr_to_scan;
518 ret = shrinker->scan_objects(shrinker, shrinkctl);
519 if (ret == SHRINK_STOP)
520 break;
521 freed += ret;
522
523 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
524 total_scan -= shrinkctl->nr_scanned;
525 scanned += shrinkctl->nr_scanned;
526
527 cond_resched();
528 }
529
530 if (next_deferred >= scanned)
531 next_deferred -= scanned;
532 else
533 next_deferred = 0;
534 /*
535 * move the unused scan count back into the shrinker in a
536 * manner that handles concurrent updates. If we exhausted the
537 * scan, there is no need to do an update.
538 */
539 if (next_deferred > 0)
540 new_nr = atomic_long_add_return(next_deferred,
541 &shrinker->nr_deferred[nid]);
542 else
543 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
544
545 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
546 return freed;
547 }
548
549 #ifdef CONFIG_MEMCG
550 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
551 struct mem_cgroup *memcg, int priority)
552 {
553 struct memcg_shrinker_map *map;
554 unsigned long ret, freed = 0;
555 int i;
556
557 if (!mem_cgroup_online(memcg))
558 return 0;
559
560 if (!down_read_trylock(&shrinker_rwsem))
561 return 0;
562
563 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
564 true);
565 if (unlikely(!map))
566 goto unlock;
567
568 for_each_set_bit(i, map->map, shrinker_nr_max) {
569 struct shrink_control sc = {
570 .gfp_mask = gfp_mask,
571 .nid = nid,
572 .memcg = memcg,
573 };
574 struct shrinker *shrinker;
575
576 shrinker = idr_find(&shrinker_idr, i);
577 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
578 if (!shrinker)
579 clear_bit(i, map->map);
580 continue;
581 }
582
583 /* Call non-slab shrinkers even though kmem is disabled */
584 if (!memcg_kmem_enabled() &&
585 !(shrinker->flags & SHRINKER_NONSLAB))
586 continue;
587
588 ret = do_shrink_slab(&sc, shrinker, priority);
589 if (ret == SHRINK_EMPTY) {
590 clear_bit(i, map->map);
591 /*
592 * After the shrinker reported that it had no objects to
593 * free, but before we cleared the corresponding bit in
594 * the memcg shrinker map, a new object might have been
595 * added. To make sure, we have the bit set in this
596 * case, we invoke the shrinker one more time and reset
597 * the bit if it reports that it is not empty anymore.
598 * The memory barrier here pairs with the barrier in
599 * memcg_set_shrinker_bit():
600 *
601 * list_lru_add() shrink_slab_memcg()
602 * list_add_tail() clear_bit()
603 * <MB> <MB>
604 * set_bit() do_shrink_slab()
605 */
606 smp_mb__after_atomic();
607 ret = do_shrink_slab(&sc, shrinker, priority);
608 if (ret == SHRINK_EMPTY)
609 ret = 0;
610 else
611 memcg_set_shrinker_bit(memcg, nid, i);
612 }
613 freed += ret;
614
615 if (rwsem_is_contended(&shrinker_rwsem)) {
616 freed = freed ? : 1;
617 break;
618 }
619 }
620 unlock:
621 up_read(&shrinker_rwsem);
622 return freed;
623 }
624 #else /* CONFIG_MEMCG */
625 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
626 struct mem_cgroup *memcg, int priority)
627 {
628 return 0;
629 }
630 #endif /* CONFIG_MEMCG */
631
632 /**
633 * shrink_slab - shrink slab caches
634 * @gfp_mask: allocation context
635 * @nid: node whose slab caches to target
636 * @memcg: memory cgroup whose slab caches to target
637 * @priority: the reclaim priority
638 *
639 * Call the shrink functions to age shrinkable caches.
640 *
641 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
642 * unaware shrinkers will receive a node id of 0 instead.
643 *
644 * @memcg specifies the memory cgroup to target. Unaware shrinkers
645 * are called only if it is the root cgroup.
646 *
647 * @priority is sc->priority, we take the number of objects and >> by priority
648 * in order to get the scan target.
649 *
650 * Returns the number of reclaimed slab objects.
651 */
652 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
653 struct mem_cgroup *memcg,
654 int priority)
655 {
656 unsigned long ret, freed = 0;
657 struct shrinker *shrinker;
658
659 /*
660 * The root memcg might be allocated even though memcg is disabled
661 * via "cgroup_disable=memory" boot parameter. This could make
662 * mem_cgroup_is_root() return false, then just run memcg slab
663 * shrink, but skip global shrink. This may result in premature
664 * oom.
665 */
666 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
667 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
668
669 if (!down_read_trylock(&shrinker_rwsem))
670 goto out;
671
672 list_for_each_entry(shrinker, &shrinker_list, list) {
673 struct shrink_control sc = {
674 .gfp_mask = gfp_mask,
675 .nid = nid,
676 .memcg = memcg,
677 };
678
679 ret = do_shrink_slab(&sc, shrinker, priority);
680 if (ret == SHRINK_EMPTY)
681 ret = 0;
682 freed += ret;
683 /*
684 * Bail out if someone want to register a new shrinker to
685 * prevent the registration from being stalled for long periods
686 * by parallel ongoing shrinking.
687 */
688 if (rwsem_is_contended(&shrinker_rwsem)) {
689 freed = freed ? : 1;
690 break;
691 }
692 }
693
694 up_read(&shrinker_rwsem);
695 out:
696 cond_resched();
697 return freed;
698 }
699
700 void drop_slab_node(int nid)
701 {
702 unsigned long freed;
703
704 do {
705 struct mem_cgroup *memcg = NULL;
706
707 freed = 0;
708 memcg = mem_cgroup_iter(NULL, NULL, NULL);
709 do {
710 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
711 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
712 } while (freed > 10);
713 }
714
715 void drop_slab(void)
716 {
717 int nid;
718
719 for_each_online_node(nid)
720 drop_slab_node(nid);
721 }
722
723 static inline int is_page_cache_freeable(struct page *page)
724 {
725 /*
726 * A freeable page cache page is referenced only by the caller
727 * that isolated the page, the page cache and optional buffer
728 * heads at page->private.
729 */
730 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
731 HPAGE_PMD_NR : 1;
732 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
733 }
734
735 static int may_write_to_inode(struct inode *inode)
736 {
737 if (current->flags & PF_SWAPWRITE)
738 return 1;
739 if (!inode_write_congested(inode))
740 return 1;
741 if (inode_to_bdi(inode) == current->backing_dev_info)
742 return 1;
743 return 0;
744 }
745
746 /*
747 * We detected a synchronous write error writing a page out. Probably
748 * -ENOSPC. We need to propagate that into the address_space for a subsequent
749 * fsync(), msync() or close().
750 *
751 * The tricky part is that after writepage we cannot touch the mapping: nothing
752 * prevents it from being freed up. But we have a ref on the page and once
753 * that page is locked, the mapping is pinned.
754 *
755 * We're allowed to run sleeping lock_page() here because we know the caller has
756 * __GFP_FS.
757 */
758 static void handle_write_error(struct address_space *mapping,
759 struct page *page, int error)
760 {
761 lock_page(page);
762 if (page_mapping(page) == mapping)
763 mapping_set_error(mapping, error);
764 unlock_page(page);
765 }
766
767 /* possible outcome of pageout() */
768 typedef enum {
769 /* failed to write page out, page is locked */
770 PAGE_KEEP,
771 /* move page to the active list, page is locked */
772 PAGE_ACTIVATE,
773 /* page has been sent to the disk successfully, page is unlocked */
774 PAGE_SUCCESS,
775 /* page is clean and locked */
776 PAGE_CLEAN,
777 } pageout_t;
778
779 /*
780 * pageout is called by shrink_page_list() for each dirty page.
781 * Calls ->writepage().
782 */
783 static pageout_t pageout(struct page *page, struct address_space *mapping)
784 {
785 /*
786 * If the page is dirty, only perform writeback if that write
787 * will be non-blocking. To prevent this allocation from being
788 * stalled by pagecache activity. But note that there may be
789 * stalls if we need to run get_block(). We could test
790 * PagePrivate for that.
791 *
792 * If this process is currently in __generic_file_write_iter() against
793 * this page's queue, we can perform writeback even if that
794 * will block.
795 *
796 * If the page is swapcache, write it back even if that would
797 * block, for some throttling. This happens by accident, because
798 * swap_backing_dev_info is bust: it doesn't reflect the
799 * congestion state of the swapdevs. Easy to fix, if needed.
800 */
801 if (!is_page_cache_freeable(page))
802 return PAGE_KEEP;
803 if (!mapping) {
804 /*
805 * Some data journaling orphaned pages can have
806 * page->mapping == NULL while being dirty with clean buffers.
807 */
808 if (page_has_private(page)) {
809 if (try_to_free_buffers(page)) {
810 ClearPageDirty(page);
811 pr_info("%s: orphaned page\n", __func__);
812 return PAGE_CLEAN;
813 }
814 }
815 return PAGE_KEEP;
816 }
817 if (mapping->a_ops->writepage == NULL)
818 return PAGE_ACTIVATE;
819 if (!may_write_to_inode(mapping->host))
820 return PAGE_KEEP;
821
822 if (clear_page_dirty_for_io(page)) {
823 int res;
824 struct writeback_control wbc = {
825 .sync_mode = WB_SYNC_NONE,
826 .nr_to_write = SWAP_CLUSTER_MAX,
827 .range_start = 0,
828 .range_end = LLONG_MAX,
829 .for_reclaim = 1,
830 };
831
832 SetPageReclaim(page);
833 res = mapping->a_ops->writepage(page, &wbc);
834 if (res < 0)
835 handle_write_error(mapping, page, res);
836 if (res == AOP_WRITEPAGE_ACTIVATE) {
837 ClearPageReclaim(page);
838 return PAGE_ACTIVATE;
839 }
840
841 if (!PageWriteback(page)) {
842 /* synchronous write or broken a_ops? */
843 ClearPageReclaim(page);
844 }
845 trace_mm_vmscan_writepage(page);
846 inc_node_page_state(page, NR_VMSCAN_WRITE);
847 return PAGE_SUCCESS;
848 }
849
850 return PAGE_CLEAN;
851 }
852
853 /*
854 * Same as remove_mapping, but if the page is removed from the mapping, it
855 * gets returned with a refcount of 0.
856 */
857 static int __remove_mapping(struct address_space *mapping, struct page *page,
858 bool reclaimed, struct mem_cgroup *target_memcg)
859 {
860 unsigned long flags;
861 int refcount;
862
863 BUG_ON(!PageLocked(page));
864 BUG_ON(mapping != page_mapping(page));
865
866 xa_lock_irqsave(&mapping->i_pages, flags);
867 /*
868 * The non racy check for a busy page.
869 *
870 * Must be careful with the order of the tests. When someone has
871 * a ref to the page, it may be possible that they dirty it then
872 * drop the reference. So if PageDirty is tested before page_count
873 * here, then the following race may occur:
874 *
875 * get_user_pages(&page);
876 * [user mapping goes away]
877 * write_to(page);
878 * !PageDirty(page) [good]
879 * SetPageDirty(page);
880 * put_page(page);
881 * !page_count(page) [good, discard it]
882 *
883 * [oops, our write_to data is lost]
884 *
885 * Reversing the order of the tests ensures such a situation cannot
886 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
887 * load is not satisfied before that of page->_refcount.
888 *
889 * Note that if SetPageDirty is always performed via set_page_dirty,
890 * and thus under the i_pages lock, then this ordering is not required.
891 */
892 refcount = 1 + compound_nr(page);
893 if (!page_ref_freeze(page, refcount))
894 goto cannot_free;
895 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
896 if (unlikely(PageDirty(page))) {
897 page_ref_unfreeze(page, refcount);
898 goto cannot_free;
899 }
900
901 if (PageSwapCache(page)) {
902 swp_entry_t swap = { .val = page_private(page) };
903 mem_cgroup_swapout(page, swap);
904 __delete_from_swap_cache(page, swap);
905 xa_unlock_irqrestore(&mapping->i_pages, flags);
906 put_swap_page(page, swap);
907 workingset_eviction(page, target_memcg);
908 } else {
909 void (*freepage)(struct page *);
910 void *shadow = NULL;
911
912 freepage = mapping->a_ops->freepage;
913 /*
914 * Remember a shadow entry for reclaimed file cache in
915 * order to detect refaults, thus thrashing, later on.
916 *
917 * But don't store shadows in an address space that is
918 * already exiting. This is not just an optizimation,
919 * inode reclaim needs to empty out the radix tree or
920 * the nodes are lost. Don't plant shadows behind its
921 * back.
922 *
923 * We also don't store shadows for DAX mappings because the
924 * only page cache pages found in these are zero pages
925 * covering holes, and because we don't want to mix DAX
926 * exceptional entries and shadow exceptional entries in the
927 * same address_space.
928 */
929 if (reclaimed && page_is_file_lru(page) &&
930 !mapping_exiting(mapping) && !dax_mapping(mapping))
931 shadow = workingset_eviction(page, target_memcg);
932 __delete_from_page_cache(page, shadow);
933 xa_unlock_irqrestore(&mapping->i_pages, flags);
934
935 if (freepage != NULL)
936 freepage(page);
937 }
938
939 return 1;
940
941 cannot_free:
942 xa_unlock_irqrestore(&mapping->i_pages, flags);
943 return 0;
944 }
945
946 /*
947 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
948 * someone else has a ref on the page, abort and return 0. If it was
949 * successfully detached, return 1. Assumes the caller has a single ref on
950 * this page.
951 */
952 int remove_mapping(struct address_space *mapping, struct page *page)
953 {
954 if (__remove_mapping(mapping, page, false, NULL)) {
955 /*
956 * Unfreezing the refcount with 1 rather than 2 effectively
957 * drops the pagecache ref for us without requiring another
958 * atomic operation.
959 */
960 page_ref_unfreeze(page, 1);
961 return 1;
962 }
963 return 0;
964 }
965
966 /**
967 * putback_lru_page - put previously isolated page onto appropriate LRU list
968 * @page: page to be put back to appropriate lru list
969 *
970 * Add previously isolated @page to appropriate LRU list.
971 * Page may still be unevictable for other reasons.
972 *
973 * lru_lock must not be held, interrupts must be enabled.
974 */
975 void putback_lru_page(struct page *page)
976 {
977 lru_cache_add(page);
978 put_page(page); /* drop ref from isolate */
979 }
980
981 enum page_references {
982 PAGEREF_RECLAIM,
983 PAGEREF_RECLAIM_CLEAN,
984 PAGEREF_KEEP,
985 PAGEREF_ACTIVATE,
986 };
987
988 static enum page_references page_check_references(struct page *page,
989 struct scan_control *sc)
990 {
991 int referenced_ptes, referenced_page;
992 unsigned long vm_flags;
993
994 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
995 &vm_flags);
996 referenced_page = TestClearPageReferenced(page);
997
998 /*
999 * Mlock lost the isolation race with us. Let try_to_unmap()
1000 * move the page to the unevictable list.
1001 */
1002 if (vm_flags & VM_LOCKED)
1003 return PAGEREF_RECLAIM;
1004
1005 if (referenced_ptes) {
1006 if (PageSwapBacked(page))
1007 return PAGEREF_ACTIVATE;
1008 /*
1009 * All mapped pages start out with page table
1010 * references from the instantiating fault, so we need
1011 * to look twice if a mapped file page is used more
1012 * than once.
1013 *
1014 * Mark it and spare it for another trip around the
1015 * inactive list. Another page table reference will
1016 * lead to its activation.
1017 *
1018 * Note: the mark is set for activated pages as well
1019 * so that recently deactivated but used pages are
1020 * quickly recovered.
1021 */
1022 SetPageReferenced(page);
1023
1024 if (referenced_page || referenced_ptes > 1)
1025 return PAGEREF_ACTIVATE;
1026
1027 /*
1028 * Activate file-backed executable pages after first usage.
1029 */
1030 if (vm_flags & VM_EXEC)
1031 return PAGEREF_ACTIVATE;
1032
1033 return PAGEREF_KEEP;
1034 }
1035
1036 /* Reclaim if clean, defer dirty pages to writeback */
1037 if (referenced_page && !PageSwapBacked(page))
1038 return PAGEREF_RECLAIM_CLEAN;
1039
1040 return PAGEREF_RECLAIM;
1041 }
1042
1043 /* Check if a page is dirty or under writeback */
1044 static void page_check_dirty_writeback(struct page *page,
1045 bool *dirty, bool *writeback)
1046 {
1047 struct address_space *mapping;
1048
1049 /*
1050 * Anonymous pages are not handled by flushers and must be written
1051 * from reclaim context. Do not stall reclaim based on them
1052 */
1053 if (!page_is_file_lru(page) ||
1054 (PageAnon(page) && !PageSwapBacked(page))) {
1055 *dirty = false;
1056 *writeback = false;
1057 return;
1058 }
1059
1060 /* By default assume that the page flags are accurate */
1061 *dirty = PageDirty(page);
1062 *writeback = PageWriteback(page);
1063
1064 /* Verify dirty/writeback state if the filesystem supports it */
1065 if (!page_has_private(page))
1066 return;
1067
1068 mapping = page_mapping(page);
1069 if (mapping && mapping->a_ops->is_dirty_writeback)
1070 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1071 }
1072
1073 /*
1074 * shrink_page_list() returns the number of reclaimed pages
1075 */
1076 static unsigned int shrink_page_list(struct list_head *page_list,
1077 struct pglist_data *pgdat,
1078 struct scan_control *sc,
1079 enum ttu_flags ttu_flags,
1080 struct reclaim_stat *stat,
1081 bool ignore_references)
1082 {
1083 LIST_HEAD(ret_pages);
1084 LIST_HEAD(free_pages);
1085 unsigned int nr_reclaimed = 0;
1086 unsigned int pgactivate = 0;
1087
1088 memset(stat, 0, sizeof(*stat));
1089 cond_resched();
1090
1091 while (!list_empty(page_list)) {
1092 struct address_space *mapping;
1093 struct page *page;
1094 enum page_references references = PAGEREF_RECLAIM;
1095 bool dirty, writeback, may_enter_fs;
1096 unsigned int nr_pages;
1097
1098 cond_resched();
1099
1100 page = lru_to_page(page_list);
1101 list_del(&page->lru);
1102
1103 if (!trylock_page(page))
1104 goto keep;
1105
1106 VM_BUG_ON_PAGE(PageActive(page), page);
1107
1108 nr_pages = compound_nr(page);
1109
1110 /* Account the number of base pages even though THP */
1111 sc->nr_scanned += nr_pages;
1112
1113 if (unlikely(!page_evictable(page)))
1114 goto activate_locked;
1115
1116 if (!sc->may_unmap && page_mapped(page))
1117 goto keep_locked;
1118
1119 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1120 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1121
1122 /*
1123 * The number of dirty pages determines if a node is marked
1124 * reclaim_congested which affects wait_iff_congested. kswapd
1125 * will stall and start writing pages if the tail of the LRU
1126 * is all dirty unqueued pages.
1127 */
1128 page_check_dirty_writeback(page, &dirty, &writeback);
1129 if (dirty || writeback)
1130 stat->nr_dirty++;
1131
1132 if (dirty && !writeback)
1133 stat->nr_unqueued_dirty++;
1134
1135 /*
1136 * Treat this page as congested if the underlying BDI is or if
1137 * pages are cycling through the LRU so quickly that the
1138 * pages marked for immediate reclaim are making it to the
1139 * end of the LRU a second time.
1140 */
1141 mapping = page_mapping(page);
1142 if (((dirty || writeback) && mapping &&
1143 inode_write_congested(mapping->host)) ||
1144 (writeback && PageReclaim(page)))
1145 stat->nr_congested++;
1146
1147 /*
1148 * If a page at the tail of the LRU is under writeback, there
1149 * are three cases to consider.
1150 *
1151 * 1) If reclaim is encountering an excessive number of pages
1152 * under writeback and this page is both under writeback and
1153 * PageReclaim then it indicates that pages are being queued
1154 * for IO but are being recycled through the LRU before the
1155 * IO can complete. Waiting on the page itself risks an
1156 * indefinite stall if it is impossible to writeback the
1157 * page due to IO error or disconnected storage so instead
1158 * note that the LRU is being scanned too quickly and the
1159 * caller can stall after page list has been processed.
1160 *
1161 * 2) Global or new memcg reclaim encounters a page that is
1162 * not marked for immediate reclaim, or the caller does not
1163 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1164 * not to fs). In this case mark the page for immediate
1165 * reclaim and continue scanning.
1166 *
1167 * Require may_enter_fs because we would wait on fs, which
1168 * may not have submitted IO yet. And the loop driver might
1169 * enter reclaim, and deadlock if it waits on a page for
1170 * which it is needed to do the write (loop masks off
1171 * __GFP_IO|__GFP_FS for this reason); but more thought
1172 * would probably show more reasons.
1173 *
1174 * 3) Legacy memcg encounters a page that is already marked
1175 * PageReclaim. memcg does not have any dirty pages
1176 * throttling so we could easily OOM just because too many
1177 * pages are in writeback and there is nothing else to
1178 * reclaim. Wait for the writeback to complete.
1179 *
1180 * In cases 1) and 2) we activate the pages to get them out of
1181 * the way while we continue scanning for clean pages on the
1182 * inactive list and refilling from the active list. The
1183 * observation here is that waiting for disk writes is more
1184 * expensive than potentially causing reloads down the line.
1185 * Since they're marked for immediate reclaim, they won't put
1186 * memory pressure on the cache working set any longer than it
1187 * takes to write them to disk.
1188 */
1189 if (PageWriteback(page)) {
1190 /* Case 1 above */
1191 if (current_is_kswapd() &&
1192 PageReclaim(page) &&
1193 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1194 stat->nr_immediate++;
1195 goto activate_locked;
1196
1197 /* Case 2 above */
1198 } else if (writeback_throttling_sane(sc) ||
1199 !PageReclaim(page) || !may_enter_fs) {
1200 /*
1201 * This is slightly racy - end_page_writeback()
1202 * might have just cleared PageReclaim, then
1203 * setting PageReclaim here end up interpreted
1204 * as PageReadahead - but that does not matter
1205 * enough to care. What we do want is for this
1206 * page to have PageReclaim set next time memcg
1207 * reclaim reaches the tests above, so it will
1208 * then wait_on_page_writeback() to avoid OOM;
1209 * and it's also appropriate in global reclaim.
1210 */
1211 SetPageReclaim(page);
1212 stat->nr_writeback++;
1213 goto activate_locked;
1214
1215 /* Case 3 above */
1216 } else {
1217 unlock_page(page);
1218 wait_on_page_writeback(page);
1219 /* then go back and try same page again */
1220 list_add_tail(&page->lru, page_list);
1221 continue;
1222 }
1223 }
1224
1225 if (!ignore_references)
1226 references = page_check_references(page, sc);
1227
1228 switch (references) {
1229 case PAGEREF_ACTIVATE:
1230 goto activate_locked;
1231 case PAGEREF_KEEP:
1232 stat->nr_ref_keep += nr_pages;
1233 goto keep_locked;
1234 case PAGEREF_RECLAIM:
1235 case PAGEREF_RECLAIM_CLEAN:
1236 ; /* try to reclaim the page below */
1237 }
1238
1239 /*
1240 * Anonymous process memory has backing store?
1241 * Try to allocate it some swap space here.
1242 * Lazyfree page could be freed directly
1243 */
1244 if (PageAnon(page) && PageSwapBacked(page)) {
1245 if (!PageSwapCache(page)) {
1246 if (!(sc->gfp_mask & __GFP_IO))
1247 goto keep_locked;
1248 if (PageTransHuge(page)) {
1249 /* cannot split THP, skip it */
1250 if (!can_split_huge_page(page, NULL))
1251 goto activate_locked;
1252 /*
1253 * Split pages without a PMD map right
1254 * away. Chances are some or all of the
1255 * tail pages can be freed without IO.
1256 */
1257 if (!compound_mapcount(page) &&
1258 split_huge_page_to_list(page,
1259 page_list))
1260 goto activate_locked;
1261 }
1262 if (!add_to_swap(page)) {
1263 if (!PageTransHuge(page))
1264 goto activate_locked_split;
1265 /* Fallback to swap normal pages */
1266 if (split_huge_page_to_list(page,
1267 page_list))
1268 goto activate_locked;
1269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1270 count_vm_event(THP_SWPOUT_FALLBACK);
1271 #endif
1272 if (!add_to_swap(page))
1273 goto activate_locked_split;
1274 }
1275
1276 may_enter_fs = true;
1277
1278 /* Adding to swap updated mapping */
1279 mapping = page_mapping(page);
1280 }
1281 } else if (unlikely(PageTransHuge(page))) {
1282 /* Split file THP */
1283 if (split_huge_page_to_list(page, page_list))
1284 goto keep_locked;
1285 }
1286
1287 /*
1288 * THP may get split above, need minus tail pages and update
1289 * nr_pages to avoid accounting tail pages twice.
1290 *
1291 * The tail pages that are added into swap cache successfully
1292 * reach here.
1293 */
1294 if ((nr_pages > 1) && !PageTransHuge(page)) {
1295 sc->nr_scanned -= (nr_pages - 1);
1296 nr_pages = 1;
1297 }
1298
1299 /*
1300 * The page is mapped into the page tables of one or more
1301 * processes. Try to unmap it here.
1302 */
1303 if (page_mapped(page)) {
1304 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1305 bool was_swapbacked = PageSwapBacked(page);
1306
1307 if (unlikely(PageTransHuge(page)))
1308 flags |= TTU_SPLIT_HUGE_PMD;
1309
1310 if (!try_to_unmap(page, flags)) {
1311 stat->nr_unmap_fail += nr_pages;
1312 if (!was_swapbacked && PageSwapBacked(page))
1313 stat->nr_lazyfree_fail += nr_pages;
1314 goto activate_locked;
1315 }
1316 }
1317
1318 if (PageDirty(page)) {
1319 /*
1320 * Only kswapd can writeback filesystem pages
1321 * to avoid risk of stack overflow. But avoid
1322 * injecting inefficient single-page IO into
1323 * flusher writeback as much as possible: only
1324 * write pages when we've encountered many
1325 * dirty pages, and when we've already scanned
1326 * the rest of the LRU for clean pages and see
1327 * the same dirty pages again (PageReclaim).
1328 */
1329 if (page_is_file_lru(page) &&
1330 (!current_is_kswapd() || !PageReclaim(page) ||
1331 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1332 /*
1333 * Immediately reclaim when written back.
1334 * Similar in principal to deactivate_page()
1335 * except we already have the page isolated
1336 * and know it's dirty
1337 */
1338 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1339 SetPageReclaim(page);
1340
1341 goto activate_locked;
1342 }
1343
1344 if (references == PAGEREF_RECLAIM_CLEAN)
1345 goto keep_locked;
1346 if (!may_enter_fs)
1347 goto keep_locked;
1348 if (!sc->may_writepage)
1349 goto keep_locked;
1350
1351 /*
1352 * Page is dirty. Flush the TLB if a writable entry
1353 * potentially exists to avoid CPU writes after IO
1354 * starts and then write it out here.
1355 */
1356 try_to_unmap_flush_dirty();
1357 switch (pageout(page, mapping)) {
1358 case PAGE_KEEP:
1359 goto keep_locked;
1360 case PAGE_ACTIVATE:
1361 goto activate_locked;
1362 case PAGE_SUCCESS:
1363 stat->nr_pageout += hpage_nr_pages(page);
1364
1365 if (PageWriteback(page))
1366 goto keep;
1367 if (PageDirty(page))
1368 goto keep;
1369
1370 /*
1371 * A synchronous write - probably a ramdisk. Go
1372 * ahead and try to reclaim the page.
1373 */
1374 if (!trylock_page(page))
1375 goto keep;
1376 if (PageDirty(page) || PageWriteback(page))
1377 goto keep_locked;
1378 mapping = page_mapping(page);
1379 case PAGE_CLEAN:
1380 ; /* try to free the page below */
1381 }
1382 }
1383
1384 /*
1385 * If the page has buffers, try to free the buffer mappings
1386 * associated with this page. If we succeed we try to free
1387 * the page as well.
1388 *
1389 * We do this even if the page is PageDirty().
1390 * try_to_release_page() does not perform I/O, but it is
1391 * possible for a page to have PageDirty set, but it is actually
1392 * clean (all its buffers are clean). This happens if the
1393 * buffers were written out directly, with submit_bh(). ext3
1394 * will do this, as well as the blockdev mapping.
1395 * try_to_release_page() will discover that cleanness and will
1396 * drop the buffers and mark the page clean - it can be freed.
1397 *
1398 * Rarely, pages can have buffers and no ->mapping. These are
1399 * the pages which were not successfully invalidated in
1400 * truncate_complete_page(). We try to drop those buffers here
1401 * and if that worked, and the page is no longer mapped into
1402 * process address space (page_count == 1) it can be freed.
1403 * Otherwise, leave the page on the LRU so it is swappable.
1404 */
1405 if (page_has_private(page)) {
1406 if (!try_to_release_page(page, sc->gfp_mask))
1407 goto activate_locked;
1408 if (!mapping && page_count(page) == 1) {
1409 unlock_page(page);
1410 if (put_page_testzero(page))
1411 goto free_it;
1412 else {
1413 /*
1414 * rare race with speculative reference.
1415 * the speculative reference will free
1416 * this page shortly, so we may
1417 * increment nr_reclaimed here (and
1418 * leave it off the LRU).
1419 */
1420 nr_reclaimed++;
1421 continue;
1422 }
1423 }
1424 }
1425
1426 if (PageAnon(page) && !PageSwapBacked(page)) {
1427 /* follow __remove_mapping for reference */
1428 if (!page_ref_freeze(page, 1))
1429 goto keep_locked;
1430 if (PageDirty(page)) {
1431 page_ref_unfreeze(page, 1);
1432 goto keep_locked;
1433 }
1434
1435 count_vm_event(PGLAZYFREED);
1436 count_memcg_page_event(page, PGLAZYFREED);
1437 } else if (!mapping || !__remove_mapping(mapping, page, true,
1438 sc->target_mem_cgroup))
1439 goto keep_locked;
1440
1441 unlock_page(page);
1442 free_it:
1443 /*
1444 * THP may get swapped out in a whole, need account
1445 * all base pages.
1446 */
1447 nr_reclaimed += nr_pages;
1448
1449 /*
1450 * Is there need to periodically free_page_list? It would
1451 * appear not as the counts should be low
1452 */
1453 if (unlikely(PageTransHuge(page)))
1454 destroy_compound_page(page);
1455 else
1456 list_add(&page->lru, &free_pages);
1457 continue;
1458
1459 activate_locked_split:
1460 /*
1461 * The tail pages that are failed to add into swap cache
1462 * reach here. Fixup nr_scanned and nr_pages.
1463 */
1464 if (nr_pages > 1) {
1465 sc->nr_scanned -= (nr_pages - 1);
1466 nr_pages = 1;
1467 }
1468 activate_locked:
1469 /* Not a candidate for swapping, so reclaim swap space. */
1470 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1471 PageMlocked(page)))
1472 try_to_free_swap(page);
1473 VM_BUG_ON_PAGE(PageActive(page), page);
1474 if (!PageMlocked(page)) {
1475 int type = page_is_file_lru(page);
1476 SetPageActive(page);
1477 stat->nr_activate[type] += nr_pages;
1478 count_memcg_page_event(page, PGACTIVATE);
1479 }
1480 keep_locked:
1481 unlock_page(page);
1482 keep:
1483 list_add(&page->lru, &ret_pages);
1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1485 }
1486
1487 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1488
1489 mem_cgroup_uncharge_list(&free_pages);
1490 try_to_unmap_flush();
1491 free_unref_page_list(&free_pages);
1492
1493 list_splice(&ret_pages, page_list);
1494 count_vm_events(PGACTIVATE, pgactivate);
1495
1496 return nr_reclaimed;
1497 }
1498
1499 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1500 struct list_head *page_list)
1501 {
1502 struct scan_control sc = {
1503 .gfp_mask = GFP_KERNEL,
1504 .priority = DEF_PRIORITY,
1505 .may_unmap = 1,
1506 };
1507 struct reclaim_stat stat;
1508 unsigned int nr_reclaimed;
1509 struct page *page, *next;
1510 LIST_HEAD(clean_pages);
1511
1512 list_for_each_entry_safe(page, next, page_list, lru) {
1513 if (page_is_file_lru(page) && !PageDirty(page) &&
1514 !__PageMovable(page) && !PageUnevictable(page)) {
1515 ClearPageActive(page);
1516 list_move(&page->lru, &clean_pages);
1517 }
1518 }
1519
1520 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1521 TTU_IGNORE_ACCESS, &stat, true);
1522 list_splice(&clean_pages, page_list);
1523 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -nr_reclaimed);
1524 /*
1525 * Since lazyfree pages are isolated from file LRU from the beginning,
1526 * they will rotate back to anonymous LRU in the end if it failed to
1527 * discard so isolated count will be mismatched.
1528 * Compensate the isolated count for both LRU lists.
1529 */
1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1531 stat.nr_lazyfree_fail);
1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1533 -stat.nr_lazyfree_fail);
1534 return nr_reclaimed;
1535 }
1536
1537 /*
1538 * Attempt to remove the specified page from its LRU. Only take this page
1539 * if it is of the appropriate PageActive status. Pages which are being
1540 * freed elsewhere are also ignored.
1541 *
1542 * page: page to consider
1543 * mode: one of the LRU isolation modes defined above
1544 *
1545 * returns 0 on success, -ve errno on failure.
1546 */
1547 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1548 {
1549 int ret = -EINVAL;
1550
1551 /* Only take pages on the LRU. */
1552 if (!PageLRU(page))
1553 return ret;
1554
1555 /* Compaction should not handle unevictable pages but CMA can do so */
1556 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1557 return ret;
1558
1559 ret = -EBUSY;
1560
1561 /*
1562 * To minimise LRU disruption, the caller can indicate that it only
1563 * wants to isolate pages it will be able to operate on without
1564 * blocking - clean pages for the most part.
1565 *
1566 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1567 * that it is possible to migrate without blocking
1568 */
1569 if (mode & ISOLATE_ASYNC_MIGRATE) {
1570 /* All the caller can do on PageWriteback is block */
1571 if (PageWriteback(page))
1572 return ret;
1573
1574 if (PageDirty(page)) {
1575 struct address_space *mapping;
1576 bool migrate_dirty;
1577
1578 /*
1579 * Only pages without mappings or that have a
1580 * ->migratepage callback are possible to migrate
1581 * without blocking. However, we can be racing with
1582 * truncation so it's necessary to lock the page
1583 * to stabilise the mapping as truncation holds
1584 * the page lock until after the page is removed
1585 * from the page cache.
1586 */
1587 if (!trylock_page(page))
1588 return ret;
1589
1590 mapping = page_mapping(page);
1591 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1592 unlock_page(page);
1593 if (!migrate_dirty)
1594 return ret;
1595 }
1596 }
1597
1598 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1599 return ret;
1600
1601 if (likely(get_page_unless_zero(page))) {
1602 /*
1603 * Be careful not to clear PageLRU until after we're
1604 * sure the page is not being freed elsewhere -- the
1605 * page release code relies on it.
1606 */
1607 ClearPageLRU(page);
1608 ret = 0;
1609 }
1610
1611 return ret;
1612 }
1613
1614
1615 /*
1616 * Update LRU sizes after isolating pages. The LRU size updates must
1617 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1618 */
1619 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1620 enum lru_list lru, unsigned long *nr_zone_taken)
1621 {
1622 int zid;
1623
1624 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1625 if (!nr_zone_taken[zid])
1626 continue;
1627
1628 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1629 }
1630
1631 }
1632
1633 /**
1634 * pgdat->lru_lock is heavily contended. Some of the functions that
1635 * shrink the lists perform better by taking out a batch of pages
1636 * and working on them outside the LRU lock.
1637 *
1638 * For pagecache intensive workloads, this function is the hottest
1639 * spot in the kernel (apart from copy_*_user functions).
1640 *
1641 * Appropriate locks must be held before calling this function.
1642 *
1643 * @nr_to_scan: The number of eligible pages to look through on the list.
1644 * @lruvec: The LRU vector to pull pages from.
1645 * @dst: The temp list to put pages on to.
1646 * @nr_scanned: The number of pages that were scanned.
1647 * @sc: The scan_control struct for this reclaim session
1648 * @lru: LRU list id for isolating
1649 *
1650 * returns how many pages were moved onto *@dst.
1651 */
1652 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1653 struct lruvec *lruvec, struct list_head *dst,
1654 unsigned long *nr_scanned, struct scan_control *sc,
1655 enum lru_list lru)
1656 {
1657 struct list_head *src = &lruvec->lists[lru];
1658 unsigned long nr_taken = 0;
1659 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1660 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1661 unsigned long skipped = 0;
1662 unsigned long scan, total_scan, nr_pages;
1663 LIST_HEAD(pages_skipped);
1664 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1665
1666 total_scan = 0;
1667 scan = 0;
1668 while (scan < nr_to_scan && !list_empty(src)) {
1669 struct page *page;
1670
1671 page = lru_to_page(src);
1672 prefetchw_prev_lru_page(page, src, flags);
1673
1674 VM_BUG_ON_PAGE(!PageLRU(page), page);
1675
1676 nr_pages = compound_nr(page);
1677 total_scan += nr_pages;
1678
1679 if (page_zonenum(page) > sc->reclaim_idx) {
1680 list_move(&page->lru, &pages_skipped);
1681 nr_skipped[page_zonenum(page)] += nr_pages;
1682 continue;
1683 }
1684
1685 /*
1686 * Do not count skipped pages because that makes the function
1687 * return with no isolated pages if the LRU mostly contains
1688 * ineligible pages. This causes the VM to not reclaim any
1689 * pages, triggering a premature OOM.
1690 *
1691 * Account all tail pages of THP. This would not cause
1692 * premature OOM since __isolate_lru_page() returns -EBUSY
1693 * only when the page is being freed somewhere else.
1694 */
1695 scan += nr_pages;
1696 switch (__isolate_lru_page(page, mode)) {
1697 case 0:
1698 nr_taken += nr_pages;
1699 nr_zone_taken[page_zonenum(page)] += nr_pages;
1700 list_move(&page->lru, dst);
1701 break;
1702
1703 case -EBUSY:
1704 /* else it is being freed elsewhere */
1705 list_move(&page->lru, src);
1706 continue;
1707
1708 default:
1709 BUG();
1710 }
1711 }
1712
1713 /*
1714 * Splice any skipped pages to the start of the LRU list. Note that
1715 * this disrupts the LRU order when reclaiming for lower zones but
1716 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1717 * scanning would soon rescan the same pages to skip and put the
1718 * system at risk of premature OOM.
1719 */
1720 if (!list_empty(&pages_skipped)) {
1721 int zid;
1722
1723 list_splice(&pages_skipped, src);
1724 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1725 if (!nr_skipped[zid])
1726 continue;
1727
1728 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1729 skipped += nr_skipped[zid];
1730 }
1731 }
1732 *nr_scanned = total_scan;
1733 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1734 total_scan, skipped, nr_taken, mode, lru);
1735 update_lru_sizes(lruvec, lru, nr_zone_taken);
1736 return nr_taken;
1737 }
1738
1739 /**
1740 * isolate_lru_page - tries to isolate a page from its LRU list
1741 * @page: page to isolate from its LRU list
1742 *
1743 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1744 * vmstat statistic corresponding to whatever LRU list the page was on.
1745 *
1746 * Returns 0 if the page was removed from an LRU list.
1747 * Returns -EBUSY if the page was not on an LRU list.
1748 *
1749 * The returned page will have PageLRU() cleared. If it was found on
1750 * the active list, it will have PageActive set. If it was found on
1751 * the unevictable list, it will have the PageUnevictable bit set. That flag
1752 * may need to be cleared by the caller before letting the page go.
1753 *
1754 * The vmstat statistic corresponding to the list on which the page was
1755 * found will be decremented.
1756 *
1757 * Restrictions:
1758 *
1759 * (1) Must be called with an elevated refcount on the page. This is a
1760 * fundamentnal difference from isolate_lru_pages (which is called
1761 * without a stable reference).
1762 * (2) the lru_lock must not be held.
1763 * (3) interrupts must be enabled.
1764 */
1765 int isolate_lru_page(struct page *page)
1766 {
1767 int ret = -EBUSY;
1768
1769 VM_BUG_ON_PAGE(!page_count(page), page);
1770 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1771
1772 if (PageLRU(page)) {
1773 pg_data_t *pgdat = page_pgdat(page);
1774 struct lruvec *lruvec;
1775
1776 spin_lock_irq(&pgdat->lru_lock);
1777 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1778 if (PageLRU(page)) {
1779 int lru = page_lru(page);
1780 get_page(page);
1781 ClearPageLRU(page);
1782 del_page_from_lru_list(page, lruvec, lru);
1783 ret = 0;
1784 }
1785 spin_unlock_irq(&pgdat->lru_lock);
1786 }
1787 return ret;
1788 }
1789
1790 /*
1791 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1792 * then get rescheduled. When there are massive number of tasks doing page
1793 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1794 * the LRU list will go small and be scanned faster than necessary, leading to
1795 * unnecessary swapping, thrashing and OOM.
1796 */
1797 static int too_many_isolated(struct pglist_data *pgdat, int file,
1798 struct scan_control *sc)
1799 {
1800 unsigned long inactive, isolated;
1801
1802 if (current_is_kswapd())
1803 return 0;
1804
1805 if (!writeback_throttling_sane(sc))
1806 return 0;
1807
1808 if (file) {
1809 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1810 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1811 } else {
1812 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1813 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1814 }
1815
1816 /*
1817 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1818 * won't get blocked by normal direct-reclaimers, forming a circular
1819 * deadlock.
1820 */
1821 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1822 inactive >>= 3;
1823
1824 return isolated > inactive;
1825 }
1826
1827 /*
1828 * This moves pages from @list to corresponding LRU list.
1829 *
1830 * We move them the other way if the page is referenced by one or more
1831 * processes, from rmap.
1832 *
1833 * If the pages are mostly unmapped, the processing is fast and it is
1834 * appropriate to hold zone_lru_lock across the whole operation. But if
1835 * the pages are mapped, the processing is slow (page_referenced()) so we
1836 * should drop zone_lru_lock around each page. It's impossible to balance
1837 * this, so instead we remove the pages from the LRU while processing them.
1838 * It is safe to rely on PG_active against the non-LRU pages in here because
1839 * nobody will play with that bit on a non-LRU page.
1840 *
1841 * The downside is that we have to touch page->_refcount against each page.
1842 * But we had to alter page->flags anyway.
1843 *
1844 * Returns the number of pages moved to the given lruvec.
1845 */
1846
1847 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1848 struct list_head *list)
1849 {
1850 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1851 int nr_pages, nr_moved = 0;
1852 LIST_HEAD(pages_to_free);
1853 struct page *page;
1854 enum lru_list lru;
1855
1856 while (!list_empty(list)) {
1857 page = lru_to_page(list);
1858 VM_BUG_ON_PAGE(PageLRU(page), page);
1859 if (unlikely(!page_evictable(page))) {
1860 list_del(&page->lru);
1861 spin_unlock_irq(&pgdat->lru_lock);
1862 putback_lru_page(page);
1863 spin_lock_irq(&pgdat->lru_lock);
1864 continue;
1865 }
1866 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1867
1868 SetPageLRU(page);
1869 lru = page_lru(page);
1870
1871 nr_pages = hpage_nr_pages(page);
1872 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1873 list_move(&page->lru, &lruvec->lists[lru]);
1874
1875 if (put_page_testzero(page)) {
1876 __ClearPageLRU(page);
1877 __ClearPageActive(page);
1878 del_page_from_lru_list(page, lruvec, lru);
1879
1880 if (unlikely(PageCompound(page))) {
1881 spin_unlock_irq(&pgdat->lru_lock);
1882 destroy_compound_page(page);
1883 spin_lock_irq(&pgdat->lru_lock);
1884 } else
1885 list_add(&page->lru, &pages_to_free);
1886 } else {
1887 nr_moved += nr_pages;
1888 if (PageActive(page))
1889 workingset_age_nonresident(lruvec, nr_pages);
1890 }
1891 }
1892
1893 /*
1894 * To save our caller's stack, now use input list for pages to free.
1895 */
1896 list_splice(&pages_to_free, list);
1897
1898 return nr_moved;
1899 }
1900
1901 /*
1902 * If a kernel thread (such as nfsd for loop-back mounts) services
1903 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1904 * In that case we should only throttle if the backing device it is
1905 * writing to is congested. In other cases it is safe to throttle.
1906 */
1907 static int current_may_throttle(void)
1908 {
1909 return !(current->flags & PF_LOCAL_THROTTLE) ||
1910 current->backing_dev_info == NULL ||
1911 bdi_write_congested(current->backing_dev_info);
1912 }
1913
1914 /*
1915 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1916 * of reclaimed pages
1917 */
1918 static noinline_for_stack unsigned long
1919 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1920 struct scan_control *sc, enum lru_list lru)
1921 {
1922 LIST_HEAD(page_list);
1923 unsigned long nr_scanned;
1924 unsigned int nr_reclaimed = 0;
1925 unsigned long nr_taken;
1926 struct reclaim_stat stat;
1927 bool file = is_file_lru(lru);
1928 enum vm_event_item item;
1929 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1930 bool stalled = false;
1931
1932 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1933 if (stalled)
1934 return 0;
1935
1936 /* wait a bit for the reclaimer. */
1937 msleep(100);
1938 stalled = true;
1939
1940 /* We are about to die and free our memory. Return now. */
1941 if (fatal_signal_pending(current))
1942 return SWAP_CLUSTER_MAX;
1943 }
1944
1945 lru_add_drain();
1946
1947 spin_lock_irq(&pgdat->lru_lock);
1948
1949 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1950 &nr_scanned, sc, lru);
1951
1952 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1953 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1954 if (!cgroup_reclaim(sc))
1955 __count_vm_events(item, nr_scanned);
1956 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1957 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1958
1959 spin_unlock_irq(&pgdat->lru_lock);
1960
1961 if (nr_taken == 0)
1962 return 0;
1963
1964 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1965 &stat, false);
1966
1967 spin_lock_irq(&pgdat->lru_lock);
1968
1969 move_pages_to_lru(lruvec, &page_list);
1970
1971 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1972 lru_note_cost(lruvec, file, stat.nr_pageout);
1973 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1974 if (!cgroup_reclaim(sc))
1975 __count_vm_events(item, nr_reclaimed);
1976 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1977 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1978
1979 spin_unlock_irq(&pgdat->lru_lock);
1980
1981 mem_cgroup_uncharge_list(&page_list);
1982 free_unref_page_list(&page_list);
1983
1984 /*
1985 * If dirty pages are scanned that are not queued for IO, it
1986 * implies that flushers are not doing their job. This can
1987 * happen when memory pressure pushes dirty pages to the end of
1988 * the LRU before the dirty limits are breached and the dirty
1989 * data has expired. It can also happen when the proportion of
1990 * dirty pages grows not through writes but through memory
1991 * pressure reclaiming all the clean cache. And in some cases,
1992 * the flushers simply cannot keep up with the allocation
1993 * rate. Nudge the flusher threads in case they are asleep.
1994 */
1995 if (stat.nr_unqueued_dirty == nr_taken)
1996 wakeup_flusher_threads(WB_REASON_VMSCAN);
1997
1998 sc->nr.dirty += stat.nr_dirty;
1999 sc->nr.congested += stat.nr_congested;
2000 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2001 sc->nr.writeback += stat.nr_writeback;
2002 sc->nr.immediate += stat.nr_immediate;
2003 sc->nr.taken += nr_taken;
2004 if (file)
2005 sc->nr.file_taken += nr_taken;
2006
2007 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2008 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2009 return nr_reclaimed;
2010 }
2011
2012 static void shrink_active_list(unsigned long nr_to_scan,
2013 struct lruvec *lruvec,
2014 struct scan_control *sc,
2015 enum lru_list lru)
2016 {
2017 unsigned long nr_taken;
2018 unsigned long nr_scanned;
2019 unsigned long vm_flags;
2020 LIST_HEAD(l_hold); /* The pages which were snipped off */
2021 LIST_HEAD(l_active);
2022 LIST_HEAD(l_inactive);
2023 struct page *page;
2024 unsigned nr_deactivate, nr_activate;
2025 unsigned nr_rotated = 0;
2026 int file = is_file_lru(lru);
2027 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2028
2029 lru_add_drain();
2030
2031 spin_lock_irq(&pgdat->lru_lock);
2032
2033 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2034 &nr_scanned, sc, lru);
2035
2036 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2037
2038 __count_vm_events(PGREFILL, nr_scanned);
2039 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2040
2041 spin_unlock_irq(&pgdat->lru_lock);
2042
2043 while (!list_empty(&l_hold)) {
2044 cond_resched();
2045 page = lru_to_page(&l_hold);
2046 list_del(&page->lru);
2047
2048 if (unlikely(!page_evictable(page))) {
2049 putback_lru_page(page);
2050 continue;
2051 }
2052
2053 if (unlikely(buffer_heads_over_limit)) {
2054 if (page_has_private(page) && trylock_page(page)) {
2055 if (page_has_private(page))
2056 try_to_release_page(page, 0);
2057 unlock_page(page);
2058 }
2059 }
2060
2061 if (page_referenced(page, 0, sc->target_mem_cgroup,
2062 &vm_flags)) {
2063 /*
2064 * Identify referenced, file-backed active pages and
2065 * give them one more trip around the active list. So
2066 * that executable code get better chances to stay in
2067 * memory under moderate memory pressure. Anon pages
2068 * are not likely to be evicted by use-once streaming
2069 * IO, plus JVM can create lots of anon VM_EXEC pages,
2070 * so we ignore them here.
2071 */
2072 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2073 nr_rotated += hpage_nr_pages(page);
2074 list_add(&page->lru, &l_active);
2075 continue;
2076 }
2077 }
2078
2079 ClearPageActive(page); /* we are de-activating */
2080 SetPageWorkingset(page);
2081 list_add(&page->lru, &l_inactive);
2082 }
2083
2084 /*
2085 * Move pages back to the lru list.
2086 */
2087 spin_lock_irq(&pgdat->lru_lock);
2088
2089 nr_activate = move_pages_to_lru(lruvec, &l_active);
2090 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2091 /* Keep all free pages in l_active list */
2092 list_splice(&l_inactive, &l_active);
2093
2094 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2095 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2096
2097 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2098 spin_unlock_irq(&pgdat->lru_lock);
2099
2100 mem_cgroup_uncharge_list(&l_active);
2101 free_unref_page_list(&l_active);
2102 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2103 nr_deactivate, nr_rotated, sc->priority, file);
2104 }
2105
2106 unsigned long reclaim_pages(struct list_head *page_list)
2107 {
2108 int nid = NUMA_NO_NODE;
2109 unsigned int nr_reclaimed = 0;
2110 LIST_HEAD(node_page_list);
2111 struct reclaim_stat dummy_stat;
2112 struct page *page;
2113 struct scan_control sc = {
2114 .gfp_mask = GFP_KERNEL,
2115 .priority = DEF_PRIORITY,
2116 .may_writepage = 1,
2117 .may_unmap = 1,
2118 .may_swap = 1,
2119 };
2120
2121 while (!list_empty(page_list)) {
2122 page = lru_to_page(page_list);
2123 if (nid == NUMA_NO_NODE) {
2124 nid = page_to_nid(page);
2125 INIT_LIST_HEAD(&node_page_list);
2126 }
2127
2128 if (nid == page_to_nid(page)) {
2129 ClearPageActive(page);
2130 list_move(&page->lru, &node_page_list);
2131 continue;
2132 }
2133
2134 nr_reclaimed += shrink_page_list(&node_page_list,
2135 NODE_DATA(nid),
2136 &sc, 0,
2137 &dummy_stat, false);
2138 while (!list_empty(&node_page_list)) {
2139 page = lru_to_page(&node_page_list);
2140 list_del(&page->lru);
2141 putback_lru_page(page);
2142 }
2143
2144 nid = NUMA_NO_NODE;
2145 }
2146
2147 if (!list_empty(&node_page_list)) {
2148 nr_reclaimed += shrink_page_list(&node_page_list,
2149 NODE_DATA(nid),
2150 &sc, 0,
2151 &dummy_stat, false);
2152 while (!list_empty(&node_page_list)) {
2153 page = lru_to_page(&node_page_list);
2154 list_del(&page->lru);
2155 putback_lru_page(page);
2156 }
2157 }
2158
2159 return nr_reclaimed;
2160 }
2161
2162 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2163 struct lruvec *lruvec, struct scan_control *sc)
2164 {
2165 if (is_active_lru(lru)) {
2166 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2167 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2168 else
2169 sc->skipped_deactivate = 1;
2170 return 0;
2171 }
2172
2173 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2174 }
2175
2176 /*
2177 * The inactive anon list should be small enough that the VM never has
2178 * to do too much work.
2179 *
2180 * The inactive file list should be small enough to leave most memory
2181 * to the established workingset on the scan-resistant active list,
2182 * but large enough to avoid thrashing the aggregate readahead window.
2183 *
2184 * Both inactive lists should also be large enough that each inactive
2185 * page has a chance to be referenced again before it is reclaimed.
2186 *
2187 * If that fails and refaulting is observed, the inactive list grows.
2188 *
2189 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2190 * on this LRU, maintained by the pageout code. An inactive_ratio
2191 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2192 *
2193 * total target max
2194 * memory ratio inactive
2195 * -------------------------------------
2196 * 10MB 1 5MB
2197 * 100MB 1 50MB
2198 * 1GB 3 250MB
2199 * 10GB 10 0.9GB
2200 * 100GB 31 3GB
2201 * 1TB 101 10GB
2202 * 10TB 320 32GB
2203 */
2204 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2205 {
2206 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2207 unsigned long inactive, active;
2208 unsigned long inactive_ratio;
2209 unsigned long gb;
2210
2211 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2212 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2213
2214 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2215 if (gb)
2216 inactive_ratio = int_sqrt(10 * gb);
2217 else
2218 inactive_ratio = 1;
2219
2220 return inactive * inactive_ratio < active;
2221 }
2222
2223 enum scan_balance {
2224 SCAN_EQUAL,
2225 SCAN_FRACT,
2226 SCAN_ANON,
2227 SCAN_FILE,
2228 };
2229
2230 /*
2231 * Determine how aggressively the anon and file LRU lists should be
2232 * scanned. The relative value of each set of LRU lists is determined
2233 * by looking at the fraction of the pages scanned we did rotate back
2234 * onto the active list instead of evict.
2235 *
2236 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2237 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2238 */
2239 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2240 unsigned long *nr)
2241 {
2242 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2243 unsigned long anon_cost, file_cost, total_cost;
2244 int swappiness = mem_cgroup_swappiness(memcg);
2245 u64 fraction[2];
2246 u64 denominator = 0; /* gcc */
2247 enum scan_balance scan_balance;
2248 unsigned long ap, fp;
2249 enum lru_list lru;
2250
2251 /* If we have no swap space, do not bother scanning anon pages. */
2252 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2253 scan_balance = SCAN_FILE;
2254 goto out;
2255 }
2256
2257 /*
2258 * Global reclaim will swap to prevent OOM even with no
2259 * swappiness, but memcg users want to use this knob to
2260 * disable swapping for individual groups completely when
2261 * using the memory controller's swap limit feature would be
2262 * too expensive.
2263 */
2264 if (cgroup_reclaim(sc) && !swappiness) {
2265 scan_balance = SCAN_FILE;
2266 goto out;
2267 }
2268
2269 /*
2270 * Do not apply any pressure balancing cleverness when the
2271 * system is close to OOM, scan both anon and file equally
2272 * (unless the swappiness setting disagrees with swapping).
2273 */
2274 if (!sc->priority && swappiness) {
2275 scan_balance = SCAN_EQUAL;
2276 goto out;
2277 }
2278
2279 /*
2280 * If the system is almost out of file pages, force-scan anon.
2281 */
2282 if (sc->file_is_tiny) {
2283 scan_balance = SCAN_ANON;
2284 goto out;
2285 }
2286
2287 /*
2288 * If there is enough inactive page cache, we do not reclaim
2289 * anything from the anonymous working right now.
2290 */
2291 if (sc->cache_trim_mode) {
2292 scan_balance = SCAN_FILE;
2293 goto out;
2294 }
2295
2296 scan_balance = SCAN_FRACT;
2297 /*
2298 * Calculate the pressure balance between anon and file pages.
2299 *
2300 * The amount of pressure we put on each LRU is inversely
2301 * proportional to the cost of reclaiming each list, as
2302 * determined by the share of pages that are refaulting, times
2303 * the relative IO cost of bringing back a swapped out
2304 * anonymous page vs reloading a filesystem page (swappiness).
2305 *
2306 * Although we limit that influence to ensure no list gets
2307 * left behind completely: at least a third of the pressure is
2308 * applied, before swappiness.
2309 *
2310 * With swappiness at 100, anon and file have equal IO cost.
2311 */
2312 total_cost = sc->anon_cost + sc->file_cost;
2313 anon_cost = total_cost + sc->anon_cost;
2314 file_cost = total_cost + sc->file_cost;
2315 total_cost = anon_cost + file_cost;
2316
2317 ap = swappiness * (total_cost + 1);
2318 ap /= anon_cost + 1;
2319
2320 fp = (200 - swappiness) * (total_cost + 1);
2321 fp /= file_cost + 1;
2322
2323 fraction[0] = ap;
2324 fraction[1] = fp;
2325 denominator = ap + fp;
2326 out:
2327 for_each_evictable_lru(lru) {
2328 int file = is_file_lru(lru);
2329 unsigned long lruvec_size;
2330 unsigned long scan;
2331 unsigned long protection;
2332
2333 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2334 protection = mem_cgroup_protection(memcg,
2335 sc->memcg_low_reclaim);
2336
2337 if (protection) {
2338 /*
2339 * Scale a cgroup's reclaim pressure by proportioning
2340 * its current usage to its memory.low or memory.min
2341 * setting.
2342 *
2343 * This is important, as otherwise scanning aggression
2344 * becomes extremely binary -- from nothing as we
2345 * approach the memory protection threshold, to totally
2346 * nominal as we exceed it. This results in requiring
2347 * setting extremely liberal protection thresholds. It
2348 * also means we simply get no protection at all if we
2349 * set it too low, which is not ideal.
2350 *
2351 * If there is any protection in place, we reduce scan
2352 * pressure by how much of the total memory used is
2353 * within protection thresholds.
2354 *
2355 * There is one special case: in the first reclaim pass,
2356 * we skip over all groups that are within their low
2357 * protection. If that fails to reclaim enough pages to
2358 * satisfy the reclaim goal, we come back and override
2359 * the best-effort low protection. However, we still
2360 * ideally want to honor how well-behaved groups are in
2361 * that case instead of simply punishing them all
2362 * equally. As such, we reclaim them based on how much
2363 * memory they are using, reducing the scan pressure
2364 * again by how much of the total memory used is under
2365 * hard protection.
2366 */
2367 unsigned long cgroup_size = mem_cgroup_size(memcg);
2368
2369 /* Avoid TOCTOU with earlier protection check */
2370 cgroup_size = max(cgroup_size, protection);
2371
2372 scan = lruvec_size - lruvec_size * protection /
2373 cgroup_size;
2374
2375 /*
2376 * Minimally target SWAP_CLUSTER_MAX pages to keep
2377 * reclaim moving forwards, avoiding decrementing
2378 * sc->priority further than desirable.
2379 */
2380 scan = max(scan, SWAP_CLUSTER_MAX);
2381 } else {
2382 scan = lruvec_size;
2383 }
2384
2385 scan >>= sc->priority;
2386
2387 /*
2388 * If the cgroup's already been deleted, make sure to
2389 * scrape out the remaining cache.
2390 */
2391 if (!scan && !mem_cgroup_online(memcg))
2392 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2393
2394 switch (scan_balance) {
2395 case SCAN_EQUAL:
2396 /* Scan lists relative to size */
2397 break;
2398 case SCAN_FRACT:
2399 /*
2400 * Scan types proportional to swappiness and
2401 * their relative recent reclaim efficiency.
2402 * Make sure we don't miss the last page on
2403 * the offlined memory cgroups because of a
2404 * round-off error.
2405 */
2406 scan = mem_cgroup_online(memcg) ?
2407 div64_u64(scan * fraction[file], denominator) :
2408 DIV64_U64_ROUND_UP(scan * fraction[file],
2409 denominator);
2410 break;
2411 case SCAN_FILE:
2412 case SCAN_ANON:
2413 /* Scan one type exclusively */
2414 if ((scan_balance == SCAN_FILE) != file)
2415 scan = 0;
2416 break;
2417 default:
2418 /* Look ma, no brain */
2419 BUG();
2420 }
2421
2422 nr[lru] = scan;
2423 }
2424 }
2425
2426 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2427 {
2428 unsigned long nr[NR_LRU_LISTS];
2429 unsigned long targets[NR_LRU_LISTS];
2430 unsigned long nr_to_scan;
2431 enum lru_list lru;
2432 unsigned long nr_reclaimed = 0;
2433 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2434 struct blk_plug plug;
2435 bool scan_adjusted;
2436
2437 get_scan_count(lruvec, sc, nr);
2438
2439 /* Record the original scan target for proportional adjustments later */
2440 memcpy(targets, nr, sizeof(nr));
2441
2442 /*
2443 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2444 * event that can occur when there is little memory pressure e.g.
2445 * multiple streaming readers/writers. Hence, we do not abort scanning
2446 * when the requested number of pages are reclaimed when scanning at
2447 * DEF_PRIORITY on the assumption that the fact we are direct
2448 * reclaiming implies that kswapd is not keeping up and it is best to
2449 * do a batch of work at once. For memcg reclaim one check is made to
2450 * abort proportional reclaim if either the file or anon lru has already
2451 * dropped to zero at the first pass.
2452 */
2453 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2454 sc->priority == DEF_PRIORITY);
2455
2456 blk_start_plug(&plug);
2457 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2458 nr[LRU_INACTIVE_FILE]) {
2459 unsigned long nr_anon, nr_file, percentage;
2460 unsigned long nr_scanned;
2461
2462 for_each_evictable_lru(lru) {
2463 if (nr[lru]) {
2464 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2465 nr[lru] -= nr_to_scan;
2466
2467 nr_reclaimed += shrink_list(lru, nr_to_scan,
2468 lruvec, sc);
2469 }
2470 }
2471
2472 cond_resched();
2473
2474 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2475 continue;
2476
2477 /*
2478 * For kswapd and memcg, reclaim at least the number of pages
2479 * requested. Ensure that the anon and file LRUs are scanned
2480 * proportionally what was requested by get_scan_count(). We
2481 * stop reclaiming one LRU and reduce the amount scanning
2482 * proportional to the original scan target.
2483 */
2484 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2485 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2486
2487 /*
2488 * It's just vindictive to attack the larger once the smaller
2489 * has gone to zero. And given the way we stop scanning the
2490 * smaller below, this makes sure that we only make one nudge
2491 * towards proportionality once we've got nr_to_reclaim.
2492 */
2493 if (!nr_file || !nr_anon)
2494 break;
2495
2496 if (nr_file > nr_anon) {
2497 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2498 targets[LRU_ACTIVE_ANON] + 1;
2499 lru = LRU_BASE;
2500 percentage = nr_anon * 100 / scan_target;
2501 } else {
2502 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2503 targets[LRU_ACTIVE_FILE] + 1;
2504 lru = LRU_FILE;
2505 percentage = nr_file * 100 / scan_target;
2506 }
2507
2508 /* Stop scanning the smaller of the LRU */
2509 nr[lru] = 0;
2510 nr[lru + LRU_ACTIVE] = 0;
2511
2512 /*
2513 * Recalculate the other LRU scan count based on its original
2514 * scan target and the percentage scanning already complete
2515 */
2516 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2517 nr_scanned = targets[lru] - nr[lru];
2518 nr[lru] = targets[lru] * (100 - percentage) / 100;
2519 nr[lru] -= min(nr[lru], nr_scanned);
2520
2521 lru += LRU_ACTIVE;
2522 nr_scanned = targets[lru] - nr[lru];
2523 nr[lru] = targets[lru] * (100 - percentage) / 100;
2524 nr[lru] -= min(nr[lru], nr_scanned);
2525
2526 scan_adjusted = true;
2527 }
2528 blk_finish_plug(&plug);
2529 sc->nr_reclaimed += nr_reclaimed;
2530
2531 /*
2532 * Even if we did not try to evict anon pages at all, we want to
2533 * rebalance the anon lru active/inactive ratio.
2534 */
2535 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2536 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2537 sc, LRU_ACTIVE_ANON);
2538 }
2539
2540 /* Use reclaim/compaction for costly allocs or under memory pressure */
2541 static bool in_reclaim_compaction(struct scan_control *sc)
2542 {
2543 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2544 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2545 sc->priority < DEF_PRIORITY - 2))
2546 return true;
2547
2548 return false;
2549 }
2550
2551 /*
2552 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2553 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2554 * true if more pages should be reclaimed such that when the page allocator
2555 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2556 * It will give up earlier than that if there is difficulty reclaiming pages.
2557 */
2558 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2559 unsigned long nr_reclaimed,
2560 struct scan_control *sc)
2561 {
2562 unsigned long pages_for_compaction;
2563 unsigned long inactive_lru_pages;
2564 int z;
2565
2566 /* If not in reclaim/compaction mode, stop */
2567 if (!in_reclaim_compaction(sc))
2568 return false;
2569
2570 /*
2571 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2572 * number of pages that were scanned. This will return to the caller
2573 * with the risk reclaim/compaction and the resulting allocation attempt
2574 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2575 * allocations through requiring that the full LRU list has been scanned
2576 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2577 * scan, but that approximation was wrong, and there were corner cases
2578 * where always a non-zero amount of pages were scanned.
2579 */
2580 if (!nr_reclaimed)
2581 return false;
2582
2583 /* If compaction would go ahead or the allocation would succeed, stop */
2584 for (z = 0; z <= sc->reclaim_idx; z++) {
2585 struct zone *zone = &pgdat->node_zones[z];
2586 if (!managed_zone(zone))
2587 continue;
2588
2589 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2590 case COMPACT_SUCCESS:
2591 case COMPACT_CONTINUE:
2592 return false;
2593 default:
2594 /* check next zone */
2595 ;
2596 }
2597 }
2598
2599 /*
2600 * If we have not reclaimed enough pages for compaction and the
2601 * inactive lists are large enough, continue reclaiming
2602 */
2603 pages_for_compaction = compact_gap(sc->order);
2604 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2605 if (get_nr_swap_pages() > 0)
2606 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2607
2608 return inactive_lru_pages > pages_for_compaction;
2609 }
2610
2611 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2612 {
2613 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2614 struct mem_cgroup *memcg;
2615
2616 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2617 do {
2618 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2619 unsigned long reclaimed;
2620 unsigned long scanned;
2621
2622 switch (mem_cgroup_protected(target_memcg, memcg)) {
2623 case MEMCG_PROT_MIN:
2624 /*
2625 * Hard protection.
2626 * If there is no reclaimable memory, OOM.
2627 */
2628 continue;
2629 case MEMCG_PROT_LOW:
2630 /*
2631 * Soft protection.
2632 * Respect the protection only as long as
2633 * there is an unprotected supply
2634 * of reclaimable memory from other cgroups.
2635 */
2636 if (!sc->memcg_low_reclaim) {
2637 sc->memcg_low_skipped = 1;
2638 continue;
2639 }
2640 memcg_memory_event(memcg, MEMCG_LOW);
2641 break;
2642 case MEMCG_PROT_NONE:
2643 /*
2644 * All protection thresholds breached. We may
2645 * still choose to vary the scan pressure
2646 * applied based on by how much the cgroup in
2647 * question has exceeded its protection
2648 * thresholds (see get_scan_count).
2649 */
2650 break;
2651 }
2652
2653 reclaimed = sc->nr_reclaimed;
2654 scanned = sc->nr_scanned;
2655
2656 shrink_lruvec(lruvec, sc);
2657
2658 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2659 sc->priority);
2660
2661 /* Record the group's reclaim efficiency */
2662 vmpressure(sc->gfp_mask, memcg, false,
2663 sc->nr_scanned - scanned,
2664 sc->nr_reclaimed - reclaimed);
2665
2666 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2667 }
2668
2669 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2670 {
2671 struct reclaim_state *reclaim_state = current->reclaim_state;
2672 unsigned long nr_reclaimed, nr_scanned;
2673 struct lruvec *target_lruvec;
2674 bool reclaimable = false;
2675 unsigned long file;
2676
2677 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2678
2679 again:
2680 memset(&sc->nr, 0, sizeof(sc->nr));
2681
2682 nr_reclaimed = sc->nr_reclaimed;
2683 nr_scanned = sc->nr_scanned;
2684
2685 /*
2686 * Determine the scan balance between anon and file LRUs.
2687 */
2688 spin_lock_irq(&pgdat->lru_lock);
2689 sc->anon_cost = target_lruvec->anon_cost;
2690 sc->file_cost = target_lruvec->file_cost;
2691 spin_unlock_irq(&pgdat->lru_lock);
2692
2693 /*
2694 * Target desirable inactive:active list ratios for the anon
2695 * and file LRU lists.
2696 */
2697 if (!sc->force_deactivate) {
2698 unsigned long refaults;
2699
2700 if (inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2701 sc->may_deactivate |= DEACTIVATE_ANON;
2702 else
2703 sc->may_deactivate &= ~DEACTIVATE_ANON;
2704
2705 /*
2706 * When refaults are being observed, it means a new
2707 * workingset is being established. Deactivate to get
2708 * rid of any stale active pages quickly.
2709 */
2710 refaults = lruvec_page_state(target_lruvec,
2711 WORKINGSET_ACTIVATE);
2712 if (refaults != target_lruvec->refaults ||
2713 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2714 sc->may_deactivate |= DEACTIVATE_FILE;
2715 else
2716 sc->may_deactivate &= ~DEACTIVATE_FILE;
2717 } else
2718 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2719
2720 /*
2721 * If we have plenty of inactive file pages that aren't
2722 * thrashing, try to reclaim those first before touching
2723 * anonymous pages.
2724 */
2725 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2726 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2727 sc->cache_trim_mode = 1;
2728 else
2729 sc->cache_trim_mode = 0;
2730
2731 /*
2732 * Prevent the reclaimer from falling into the cache trap: as
2733 * cache pages start out inactive, every cache fault will tip
2734 * the scan balance towards the file LRU. And as the file LRU
2735 * shrinks, so does the window for rotation from references.
2736 * This means we have a runaway feedback loop where a tiny
2737 * thrashing file LRU becomes infinitely more attractive than
2738 * anon pages. Try to detect this based on file LRU size.
2739 */
2740 if (!cgroup_reclaim(sc)) {
2741 unsigned long total_high_wmark = 0;
2742 unsigned long free, anon;
2743 int z;
2744
2745 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2746 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2747 node_page_state(pgdat, NR_INACTIVE_FILE);
2748
2749 for (z = 0; z < MAX_NR_ZONES; z++) {
2750 struct zone *zone = &pgdat->node_zones[z];
2751 if (!managed_zone(zone))
2752 continue;
2753
2754 total_high_wmark += high_wmark_pages(zone);
2755 }
2756
2757 /*
2758 * Consider anon: if that's low too, this isn't a
2759 * runaway file reclaim problem, but rather just
2760 * extreme pressure. Reclaim as per usual then.
2761 */
2762 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2763
2764 sc->file_is_tiny =
2765 file + free <= total_high_wmark &&
2766 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2767 anon >> sc->priority;
2768 }
2769
2770 shrink_node_memcgs(pgdat, sc);
2771
2772 if (reclaim_state) {
2773 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2774 reclaim_state->reclaimed_slab = 0;
2775 }
2776
2777 /* Record the subtree's reclaim efficiency */
2778 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2779 sc->nr_scanned - nr_scanned,
2780 sc->nr_reclaimed - nr_reclaimed);
2781
2782 if (sc->nr_reclaimed - nr_reclaimed)
2783 reclaimable = true;
2784
2785 if (current_is_kswapd()) {
2786 /*
2787 * If reclaim is isolating dirty pages under writeback,
2788 * it implies that the long-lived page allocation rate
2789 * is exceeding the page laundering rate. Either the
2790 * global limits are not being effective at throttling
2791 * processes due to the page distribution throughout
2792 * zones or there is heavy usage of a slow backing
2793 * device. The only option is to throttle from reclaim
2794 * context which is not ideal as there is no guarantee
2795 * the dirtying process is throttled in the same way
2796 * balance_dirty_pages() manages.
2797 *
2798 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2799 * count the number of pages under pages flagged for
2800 * immediate reclaim and stall if any are encountered
2801 * in the nr_immediate check below.
2802 */
2803 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2804 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2805
2806 /* Allow kswapd to start writing pages during reclaim.*/
2807 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2808 set_bit(PGDAT_DIRTY, &pgdat->flags);
2809
2810 /*
2811 * If kswapd scans pages marked marked for immediate
2812 * reclaim and under writeback (nr_immediate), it
2813 * implies that pages are cycling through the LRU
2814 * faster than they are written so also forcibly stall.
2815 */
2816 if (sc->nr.immediate)
2817 congestion_wait(BLK_RW_ASYNC, HZ/10);
2818 }
2819
2820 /*
2821 * Tag a node/memcg as congested if all the dirty pages
2822 * scanned were backed by a congested BDI and
2823 * wait_iff_congested will stall.
2824 *
2825 * Legacy memcg will stall in page writeback so avoid forcibly
2826 * stalling in wait_iff_congested().
2827 */
2828 if ((current_is_kswapd() ||
2829 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2830 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2831 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2832
2833 /*
2834 * Stall direct reclaim for IO completions if underlying BDIs
2835 * and node is congested. Allow kswapd to continue until it
2836 * starts encountering unqueued dirty pages or cycling through
2837 * the LRU too quickly.
2838 */
2839 if (!current_is_kswapd() && current_may_throttle() &&
2840 !sc->hibernation_mode &&
2841 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2842 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2843
2844 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2845 sc))
2846 goto again;
2847
2848 /*
2849 * Kswapd gives up on balancing particular nodes after too
2850 * many failures to reclaim anything from them and goes to
2851 * sleep. On reclaim progress, reset the failure counter. A
2852 * successful direct reclaim run will revive a dormant kswapd.
2853 */
2854 if (reclaimable)
2855 pgdat->kswapd_failures = 0;
2856 }
2857
2858 /*
2859 * Returns true if compaction should go ahead for a costly-order request, or
2860 * the allocation would already succeed without compaction. Return false if we
2861 * should reclaim first.
2862 */
2863 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2864 {
2865 unsigned long watermark;
2866 enum compact_result suitable;
2867
2868 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2869 if (suitable == COMPACT_SUCCESS)
2870 /* Allocation should succeed already. Don't reclaim. */
2871 return true;
2872 if (suitable == COMPACT_SKIPPED)
2873 /* Compaction cannot yet proceed. Do reclaim. */
2874 return false;
2875
2876 /*
2877 * Compaction is already possible, but it takes time to run and there
2878 * are potentially other callers using the pages just freed. So proceed
2879 * with reclaim to make a buffer of free pages available to give
2880 * compaction a reasonable chance of completing and allocating the page.
2881 * Note that we won't actually reclaim the whole buffer in one attempt
2882 * as the target watermark in should_continue_reclaim() is lower. But if
2883 * we are already above the high+gap watermark, don't reclaim at all.
2884 */
2885 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2886
2887 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2888 }
2889
2890 /*
2891 * This is the direct reclaim path, for page-allocating processes. We only
2892 * try to reclaim pages from zones which will satisfy the caller's allocation
2893 * request.
2894 *
2895 * If a zone is deemed to be full of pinned pages then just give it a light
2896 * scan then give up on it.
2897 */
2898 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2899 {
2900 struct zoneref *z;
2901 struct zone *zone;
2902 unsigned long nr_soft_reclaimed;
2903 unsigned long nr_soft_scanned;
2904 gfp_t orig_mask;
2905 pg_data_t *last_pgdat = NULL;
2906
2907 /*
2908 * If the number of buffer_heads in the machine exceeds the maximum
2909 * allowed level, force direct reclaim to scan the highmem zone as
2910 * highmem pages could be pinning lowmem pages storing buffer_heads
2911 */
2912 orig_mask = sc->gfp_mask;
2913 if (buffer_heads_over_limit) {
2914 sc->gfp_mask |= __GFP_HIGHMEM;
2915 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2916 }
2917
2918 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2919 sc->reclaim_idx, sc->nodemask) {
2920 /*
2921 * Take care memory controller reclaiming has small influence
2922 * to global LRU.
2923 */
2924 if (!cgroup_reclaim(sc)) {
2925 if (!cpuset_zone_allowed(zone,
2926 GFP_KERNEL | __GFP_HARDWALL))
2927 continue;
2928
2929 /*
2930 * If we already have plenty of memory free for
2931 * compaction in this zone, don't free any more.
2932 * Even though compaction is invoked for any
2933 * non-zero order, only frequent costly order
2934 * reclamation is disruptive enough to become a
2935 * noticeable problem, like transparent huge
2936 * page allocations.
2937 */
2938 if (IS_ENABLED(CONFIG_COMPACTION) &&
2939 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2940 compaction_ready(zone, sc)) {
2941 sc->compaction_ready = true;
2942 continue;
2943 }
2944
2945 /*
2946 * Shrink each node in the zonelist once. If the
2947 * zonelist is ordered by zone (not the default) then a
2948 * node may be shrunk multiple times but in that case
2949 * the user prefers lower zones being preserved.
2950 */
2951 if (zone->zone_pgdat == last_pgdat)
2952 continue;
2953
2954 /*
2955 * This steals pages from memory cgroups over softlimit
2956 * and returns the number of reclaimed pages and
2957 * scanned pages. This works for global memory pressure
2958 * and balancing, not for a memcg's limit.
2959 */
2960 nr_soft_scanned = 0;
2961 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2962 sc->order, sc->gfp_mask,
2963 &nr_soft_scanned);
2964 sc->nr_reclaimed += nr_soft_reclaimed;
2965 sc->nr_scanned += nr_soft_scanned;
2966 /* need some check for avoid more shrink_zone() */
2967 }
2968
2969 /* See comment about same check for global reclaim above */
2970 if (zone->zone_pgdat == last_pgdat)
2971 continue;
2972 last_pgdat = zone->zone_pgdat;
2973 shrink_node(zone->zone_pgdat, sc);
2974 }
2975
2976 /*
2977 * Restore to original mask to avoid the impact on the caller if we
2978 * promoted it to __GFP_HIGHMEM.
2979 */
2980 sc->gfp_mask = orig_mask;
2981 }
2982
2983 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2984 {
2985 struct lruvec *target_lruvec;
2986 unsigned long refaults;
2987
2988 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2989 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE);
2990 target_lruvec->refaults = refaults;
2991 }
2992
2993 /*
2994 * This is the main entry point to direct page reclaim.
2995 *
2996 * If a full scan of the inactive list fails to free enough memory then we
2997 * are "out of memory" and something needs to be killed.
2998 *
2999 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3000 * high - the zone may be full of dirty or under-writeback pages, which this
3001 * caller can't do much about. We kick the writeback threads and take explicit
3002 * naps in the hope that some of these pages can be written. But if the
3003 * allocating task holds filesystem locks which prevent writeout this might not
3004 * work, and the allocation attempt will fail.
3005 *
3006 * returns: 0, if no pages reclaimed
3007 * else, the number of pages reclaimed
3008 */
3009 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3010 struct scan_control *sc)
3011 {
3012 int initial_priority = sc->priority;
3013 pg_data_t *last_pgdat;
3014 struct zoneref *z;
3015 struct zone *zone;
3016 retry:
3017 delayacct_freepages_start();
3018
3019 if (!cgroup_reclaim(sc))
3020 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3021
3022 do {
3023 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3024 sc->priority);
3025 sc->nr_scanned = 0;
3026 shrink_zones(zonelist, sc);
3027
3028 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3029 break;
3030
3031 if (sc->compaction_ready)
3032 break;
3033
3034 /*
3035 * If we're getting trouble reclaiming, start doing
3036 * writepage even in laptop mode.
3037 */
3038 if (sc->priority < DEF_PRIORITY - 2)
3039 sc->may_writepage = 1;
3040 } while (--sc->priority >= 0);
3041
3042 last_pgdat = NULL;
3043 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3044 sc->nodemask) {
3045 if (zone->zone_pgdat == last_pgdat)
3046 continue;
3047 last_pgdat = zone->zone_pgdat;
3048
3049 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3050
3051 if (cgroup_reclaim(sc)) {
3052 struct lruvec *lruvec;
3053
3054 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3055 zone->zone_pgdat);
3056 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3057 }
3058 }
3059
3060 delayacct_freepages_end();
3061
3062 if (sc->nr_reclaimed)
3063 return sc->nr_reclaimed;
3064
3065 /* Aborted reclaim to try compaction? don't OOM, then */
3066 if (sc->compaction_ready)
3067 return 1;
3068
3069 /*
3070 * We make inactive:active ratio decisions based on the node's
3071 * composition of memory, but a restrictive reclaim_idx or a
3072 * memory.low cgroup setting can exempt large amounts of
3073 * memory from reclaim. Neither of which are very common, so
3074 * instead of doing costly eligibility calculations of the
3075 * entire cgroup subtree up front, we assume the estimates are
3076 * good, and retry with forcible deactivation if that fails.
3077 */
3078 if (sc->skipped_deactivate) {
3079 sc->priority = initial_priority;
3080 sc->force_deactivate = 1;
3081 sc->skipped_deactivate = 0;
3082 goto retry;
3083 }
3084
3085 /* Untapped cgroup reserves? Don't OOM, retry. */
3086 if (sc->memcg_low_skipped) {
3087 sc->priority = initial_priority;
3088 sc->force_deactivate = 0;
3089 sc->memcg_low_reclaim = 1;
3090 sc->memcg_low_skipped = 0;
3091 goto retry;
3092 }
3093
3094 return 0;
3095 }
3096
3097 static bool allow_direct_reclaim(pg_data_t *pgdat)
3098 {
3099 struct zone *zone;
3100 unsigned long pfmemalloc_reserve = 0;
3101 unsigned long free_pages = 0;
3102 int i;
3103 bool wmark_ok;
3104
3105 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3106 return true;
3107
3108 for (i = 0; i <= ZONE_NORMAL; i++) {
3109 zone = &pgdat->node_zones[i];
3110 if (!managed_zone(zone))
3111 continue;
3112
3113 if (!zone_reclaimable_pages(zone))
3114 continue;
3115
3116 pfmemalloc_reserve += min_wmark_pages(zone);
3117 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3118 }
3119
3120 /* If there are no reserves (unexpected config) then do not throttle */
3121 if (!pfmemalloc_reserve)
3122 return true;
3123
3124 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3125
3126 /* kswapd must be awake if processes are being throttled */
3127 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3128 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3129 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3130
3131 wake_up_interruptible(&pgdat->kswapd_wait);
3132 }
3133
3134 return wmark_ok;
3135 }
3136
3137 /*
3138 * Throttle direct reclaimers if backing storage is backed by the network
3139 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3140 * depleted. kswapd will continue to make progress and wake the processes
3141 * when the low watermark is reached.
3142 *
3143 * Returns true if a fatal signal was delivered during throttling. If this
3144 * happens, the page allocator should not consider triggering the OOM killer.
3145 */
3146 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3147 nodemask_t *nodemask)
3148 {
3149 struct zoneref *z;
3150 struct zone *zone;
3151 pg_data_t *pgdat = NULL;
3152
3153 /*
3154 * Kernel threads should not be throttled as they may be indirectly
3155 * responsible for cleaning pages necessary for reclaim to make forward
3156 * progress. kjournald for example may enter direct reclaim while
3157 * committing a transaction where throttling it could forcing other
3158 * processes to block on log_wait_commit().
3159 */
3160 if (current->flags & PF_KTHREAD)
3161 goto out;
3162
3163 /*
3164 * If a fatal signal is pending, this process should not throttle.
3165 * It should return quickly so it can exit and free its memory
3166 */
3167 if (fatal_signal_pending(current))
3168 goto out;
3169
3170 /*
3171 * Check if the pfmemalloc reserves are ok by finding the first node
3172 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3173 * GFP_KERNEL will be required for allocating network buffers when
3174 * swapping over the network so ZONE_HIGHMEM is unusable.
3175 *
3176 * Throttling is based on the first usable node and throttled processes
3177 * wait on a queue until kswapd makes progress and wakes them. There
3178 * is an affinity then between processes waking up and where reclaim
3179 * progress has been made assuming the process wakes on the same node.
3180 * More importantly, processes running on remote nodes will not compete
3181 * for remote pfmemalloc reserves and processes on different nodes
3182 * should make reasonable progress.
3183 */
3184 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3185 gfp_zone(gfp_mask), nodemask) {
3186 if (zone_idx(zone) > ZONE_NORMAL)
3187 continue;
3188
3189 /* Throttle based on the first usable node */
3190 pgdat = zone->zone_pgdat;
3191 if (allow_direct_reclaim(pgdat))
3192 goto out;
3193 break;
3194 }
3195
3196 /* If no zone was usable by the allocation flags then do not throttle */
3197 if (!pgdat)
3198 goto out;
3199
3200 /* Account for the throttling */
3201 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3202
3203 /*
3204 * If the caller cannot enter the filesystem, it's possible that it
3205 * is due to the caller holding an FS lock or performing a journal
3206 * transaction in the case of a filesystem like ext[3|4]. In this case,
3207 * it is not safe to block on pfmemalloc_wait as kswapd could be
3208 * blocked waiting on the same lock. Instead, throttle for up to a
3209 * second before continuing.
3210 */
3211 if (!(gfp_mask & __GFP_FS)) {
3212 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3213 allow_direct_reclaim(pgdat), HZ);
3214
3215 goto check_pending;
3216 }
3217
3218 /* Throttle until kswapd wakes the process */
3219 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3220 allow_direct_reclaim(pgdat));
3221
3222 check_pending:
3223 if (fatal_signal_pending(current))
3224 return true;
3225
3226 out:
3227 return false;
3228 }
3229
3230 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3231 gfp_t gfp_mask, nodemask_t *nodemask)
3232 {
3233 unsigned long nr_reclaimed;
3234 struct scan_control sc = {
3235 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3236 .gfp_mask = current_gfp_context(gfp_mask),
3237 .reclaim_idx = gfp_zone(gfp_mask),
3238 .order = order,
3239 .nodemask = nodemask,
3240 .priority = DEF_PRIORITY,
3241 .may_writepage = !laptop_mode,
3242 .may_unmap = 1,
3243 .may_swap = 1,
3244 };
3245
3246 /*
3247 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3248 * Confirm they are large enough for max values.
3249 */
3250 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3251 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3252 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3253
3254 /*
3255 * Do not enter reclaim if fatal signal was delivered while throttled.
3256 * 1 is returned so that the page allocator does not OOM kill at this
3257 * point.
3258 */
3259 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3260 return 1;
3261
3262 set_task_reclaim_state(current, &sc.reclaim_state);
3263 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3264
3265 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3266
3267 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3268 set_task_reclaim_state(current, NULL);
3269
3270 return nr_reclaimed;
3271 }
3272
3273 #ifdef CONFIG_MEMCG
3274
3275 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3276 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3277 gfp_t gfp_mask, bool noswap,
3278 pg_data_t *pgdat,
3279 unsigned long *nr_scanned)
3280 {
3281 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3282 struct scan_control sc = {
3283 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3284 .target_mem_cgroup = memcg,
3285 .may_writepage = !laptop_mode,
3286 .may_unmap = 1,
3287 .reclaim_idx = MAX_NR_ZONES - 1,
3288 .may_swap = !noswap,
3289 };
3290
3291 WARN_ON_ONCE(!current->reclaim_state);
3292
3293 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3294 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3295
3296 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3297 sc.gfp_mask);
3298
3299 /*
3300 * NOTE: Although we can get the priority field, using it
3301 * here is not a good idea, since it limits the pages we can scan.
3302 * if we don't reclaim here, the shrink_node from balance_pgdat
3303 * will pick up pages from other mem cgroup's as well. We hack
3304 * the priority and make it zero.
3305 */
3306 shrink_lruvec(lruvec, &sc);
3307
3308 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3309
3310 *nr_scanned = sc.nr_scanned;
3311
3312 return sc.nr_reclaimed;
3313 }
3314
3315 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3316 unsigned long nr_pages,
3317 gfp_t gfp_mask,
3318 bool may_swap)
3319 {
3320 unsigned long nr_reclaimed;
3321 unsigned long pflags;
3322 unsigned int noreclaim_flag;
3323 struct scan_control sc = {
3324 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3325 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3326 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3327 .reclaim_idx = MAX_NR_ZONES - 1,
3328 .target_mem_cgroup = memcg,
3329 .priority = DEF_PRIORITY,
3330 .may_writepage = !laptop_mode,
3331 .may_unmap = 1,
3332 .may_swap = may_swap,
3333 };
3334 /*
3335 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3336 * equal pressure on all the nodes. This is based on the assumption that
3337 * the reclaim does not bail out early.
3338 */
3339 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3340
3341 set_task_reclaim_state(current, &sc.reclaim_state);
3342
3343 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3344
3345 psi_memstall_enter(&pflags);
3346 noreclaim_flag = memalloc_noreclaim_save();
3347
3348 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3349
3350 memalloc_noreclaim_restore(noreclaim_flag);
3351 psi_memstall_leave(&pflags);
3352
3353 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3354 set_task_reclaim_state(current, NULL);
3355
3356 return nr_reclaimed;
3357 }
3358 #endif
3359
3360 static void age_active_anon(struct pglist_data *pgdat,
3361 struct scan_control *sc)
3362 {
3363 struct mem_cgroup *memcg;
3364 struct lruvec *lruvec;
3365
3366 if (!total_swap_pages)
3367 return;
3368
3369 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3370 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3371 return;
3372
3373 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3374 do {
3375 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3376 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3377 sc, LRU_ACTIVE_ANON);
3378 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3379 } while (memcg);
3380 }
3381
3382 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3383 {
3384 int i;
3385 struct zone *zone;
3386
3387 /*
3388 * Check for watermark boosts top-down as the higher zones
3389 * are more likely to be boosted. Both watermarks and boosts
3390 * should not be checked at the time time as reclaim would
3391 * start prematurely when there is no boosting and a lower
3392 * zone is balanced.
3393 */
3394 for (i = highest_zoneidx; i >= 0; i--) {
3395 zone = pgdat->node_zones + i;
3396 if (!managed_zone(zone))
3397 continue;
3398
3399 if (zone->watermark_boost)
3400 return true;
3401 }
3402
3403 return false;
3404 }
3405
3406 /*
3407 * Returns true if there is an eligible zone balanced for the request order
3408 * and highest_zoneidx
3409 */
3410 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3411 {
3412 int i;
3413 unsigned long mark = -1;
3414 struct zone *zone;
3415
3416 /*
3417 * Check watermarks bottom-up as lower zones are more likely to
3418 * meet watermarks.
3419 */
3420 for (i = 0; i <= highest_zoneidx; i++) {
3421 zone = pgdat->node_zones + i;
3422
3423 if (!managed_zone(zone))
3424 continue;
3425
3426 mark = high_wmark_pages(zone);
3427 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3428 return true;
3429 }
3430
3431 /*
3432 * If a node has no populated zone within highest_zoneidx, it does not
3433 * need balancing by definition. This can happen if a zone-restricted
3434 * allocation tries to wake a remote kswapd.
3435 */
3436 if (mark == -1)
3437 return true;
3438
3439 return false;
3440 }
3441
3442 /* Clear pgdat state for congested, dirty or under writeback. */
3443 static void clear_pgdat_congested(pg_data_t *pgdat)
3444 {
3445 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3446
3447 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3448 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3449 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3450 }
3451
3452 /*
3453 * Prepare kswapd for sleeping. This verifies that there are no processes
3454 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3455 *
3456 * Returns true if kswapd is ready to sleep
3457 */
3458 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3459 int highest_zoneidx)
3460 {
3461 /*
3462 * The throttled processes are normally woken up in balance_pgdat() as
3463 * soon as allow_direct_reclaim() is true. But there is a potential
3464 * race between when kswapd checks the watermarks and a process gets
3465 * throttled. There is also a potential race if processes get
3466 * throttled, kswapd wakes, a large process exits thereby balancing the
3467 * zones, which causes kswapd to exit balance_pgdat() before reaching
3468 * the wake up checks. If kswapd is going to sleep, no process should
3469 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3470 * the wake up is premature, processes will wake kswapd and get
3471 * throttled again. The difference from wake ups in balance_pgdat() is
3472 * that here we are under prepare_to_wait().
3473 */
3474 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3475 wake_up_all(&pgdat->pfmemalloc_wait);
3476
3477 /* Hopeless node, leave it to direct reclaim */
3478 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3479 return true;
3480
3481 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3482 clear_pgdat_congested(pgdat);
3483 return true;
3484 }
3485
3486 return false;
3487 }
3488
3489 /*
3490 * kswapd shrinks a node of pages that are at or below the highest usable
3491 * zone that is currently unbalanced.
3492 *
3493 * Returns true if kswapd scanned at least the requested number of pages to
3494 * reclaim or if the lack of progress was due to pages under writeback.
3495 * This is used to determine if the scanning priority needs to be raised.
3496 */
3497 static bool kswapd_shrink_node(pg_data_t *pgdat,
3498 struct scan_control *sc)
3499 {
3500 struct zone *zone;
3501 int z;
3502
3503 /* Reclaim a number of pages proportional to the number of zones */
3504 sc->nr_to_reclaim = 0;
3505 for (z = 0; z <= sc->reclaim_idx; z++) {
3506 zone = pgdat->node_zones + z;
3507 if (!managed_zone(zone))
3508 continue;
3509
3510 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3511 }
3512
3513 /*
3514 * Historically care was taken to put equal pressure on all zones but
3515 * now pressure is applied based on node LRU order.
3516 */
3517 shrink_node(pgdat, sc);
3518
3519 /*
3520 * Fragmentation may mean that the system cannot be rebalanced for
3521 * high-order allocations. If twice the allocation size has been
3522 * reclaimed then recheck watermarks only at order-0 to prevent
3523 * excessive reclaim. Assume that a process requested a high-order
3524 * can direct reclaim/compact.
3525 */
3526 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3527 sc->order = 0;
3528
3529 return sc->nr_scanned >= sc->nr_to_reclaim;
3530 }
3531
3532 /*
3533 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3534 * that are eligible for use by the caller until at least one zone is
3535 * balanced.
3536 *
3537 * Returns the order kswapd finished reclaiming at.
3538 *
3539 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3540 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3541 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3542 * or lower is eligible for reclaim until at least one usable zone is
3543 * balanced.
3544 */
3545 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3546 {
3547 int i;
3548 unsigned long nr_soft_reclaimed;
3549 unsigned long nr_soft_scanned;
3550 unsigned long pflags;
3551 unsigned long nr_boost_reclaim;
3552 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3553 bool boosted;
3554 struct zone *zone;
3555 struct scan_control sc = {
3556 .gfp_mask = GFP_KERNEL,
3557 .order = order,
3558 .may_unmap = 1,
3559 };
3560
3561 set_task_reclaim_state(current, &sc.reclaim_state);
3562 psi_memstall_enter(&pflags);
3563 __fs_reclaim_acquire();
3564
3565 count_vm_event(PAGEOUTRUN);
3566
3567 /*
3568 * Account for the reclaim boost. Note that the zone boost is left in
3569 * place so that parallel allocations that are near the watermark will
3570 * stall or direct reclaim until kswapd is finished.
3571 */
3572 nr_boost_reclaim = 0;
3573 for (i = 0; i <= highest_zoneidx; i++) {
3574 zone = pgdat->node_zones + i;
3575 if (!managed_zone(zone))
3576 continue;
3577
3578 nr_boost_reclaim += zone->watermark_boost;
3579 zone_boosts[i] = zone->watermark_boost;
3580 }
3581 boosted = nr_boost_reclaim;
3582
3583 restart:
3584 sc.priority = DEF_PRIORITY;
3585 do {
3586 unsigned long nr_reclaimed = sc.nr_reclaimed;
3587 bool raise_priority = true;
3588 bool balanced;
3589 bool ret;
3590
3591 sc.reclaim_idx = highest_zoneidx;
3592
3593 /*
3594 * If the number of buffer_heads exceeds the maximum allowed
3595 * then consider reclaiming from all zones. This has a dual
3596 * purpose -- on 64-bit systems it is expected that
3597 * buffer_heads are stripped during active rotation. On 32-bit
3598 * systems, highmem pages can pin lowmem memory and shrinking
3599 * buffers can relieve lowmem pressure. Reclaim may still not
3600 * go ahead if all eligible zones for the original allocation
3601 * request are balanced to avoid excessive reclaim from kswapd.
3602 */
3603 if (buffer_heads_over_limit) {
3604 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3605 zone = pgdat->node_zones + i;
3606 if (!managed_zone(zone))
3607 continue;
3608
3609 sc.reclaim_idx = i;
3610 break;
3611 }
3612 }
3613
3614 /*
3615 * If the pgdat is imbalanced then ignore boosting and preserve
3616 * the watermarks for a later time and restart. Note that the
3617 * zone watermarks will be still reset at the end of balancing
3618 * on the grounds that the normal reclaim should be enough to
3619 * re-evaluate if boosting is required when kswapd next wakes.
3620 */
3621 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3622 if (!balanced && nr_boost_reclaim) {
3623 nr_boost_reclaim = 0;
3624 goto restart;
3625 }
3626
3627 /*
3628 * If boosting is not active then only reclaim if there are no
3629 * eligible zones. Note that sc.reclaim_idx is not used as
3630 * buffer_heads_over_limit may have adjusted it.
3631 */
3632 if (!nr_boost_reclaim && balanced)
3633 goto out;
3634
3635 /* Limit the priority of boosting to avoid reclaim writeback */
3636 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3637 raise_priority = false;
3638
3639 /*
3640 * Do not writeback or swap pages for boosted reclaim. The
3641 * intent is to relieve pressure not issue sub-optimal IO
3642 * from reclaim context. If no pages are reclaimed, the
3643 * reclaim will be aborted.
3644 */
3645 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3646 sc.may_swap = !nr_boost_reclaim;
3647
3648 /*
3649 * Do some background aging of the anon list, to give
3650 * pages a chance to be referenced before reclaiming. All
3651 * pages are rotated regardless of classzone as this is
3652 * about consistent aging.
3653 */
3654 age_active_anon(pgdat, &sc);
3655
3656 /*
3657 * If we're getting trouble reclaiming, start doing writepage
3658 * even in laptop mode.
3659 */
3660 if (sc.priority < DEF_PRIORITY - 2)
3661 sc.may_writepage = 1;
3662
3663 /* Call soft limit reclaim before calling shrink_node. */
3664 sc.nr_scanned = 0;
3665 nr_soft_scanned = 0;
3666 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3667 sc.gfp_mask, &nr_soft_scanned);
3668 sc.nr_reclaimed += nr_soft_reclaimed;
3669
3670 /*
3671 * There should be no need to raise the scanning priority if
3672 * enough pages are already being scanned that that high
3673 * watermark would be met at 100% efficiency.
3674 */
3675 if (kswapd_shrink_node(pgdat, &sc))
3676 raise_priority = false;
3677
3678 /*
3679 * If the low watermark is met there is no need for processes
3680 * to be throttled on pfmemalloc_wait as they should not be
3681 * able to safely make forward progress. Wake them
3682 */
3683 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3684 allow_direct_reclaim(pgdat))
3685 wake_up_all(&pgdat->pfmemalloc_wait);
3686
3687 /* Check if kswapd should be suspending */
3688 __fs_reclaim_release();
3689 ret = try_to_freeze();
3690 __fs_reclaim_acquire();
3691 if (ret || kthread_should_stop())
3692 break;
3693
3694 /*
3695 * Raise priority if scanning rate is too low or there was no
3696 * progress in reclaiming pages
3697 */
3698 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3699 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3700
3701 /*
3702 * If reclaim made no progress for a boost, stop reclaim as
3703 * IO cannot be queued and it could be an infinite loop in
3704 * extreme circumstances.
3705 */
3706 if (nr_boost_reclaim && !nr_reclaimed)
3707 break;
3708
3709 if (raise_priority || !nr_reclaimed)
3710 sc.priority--;
3711 } while (sc.priority >= 1);
3712
3713 if (!sc.nr_reclaimed)
3714 pgdat->kswapd_failures++;
3715
3716 out:
3717 /* If reclaim was boosted, account for the reclaim done in this pass */
3718 if (boosted) {
3719 unsigned long flags;
3720
3721 for (i = 0; i <= highest_zoneidx; i++) {
3722 if (!zone_boosts[i])
3723 continue;
3724
3725 /* Increments are under the zone lock */
3726 zone = pgdat->node_zones + i;
3727 spin_lock_irqsave(&zone->lock, flags);
3728 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3729 spin_unlock_irqrestore(&zone->lock, flags);
3730 }
3731
3732 /*
3733 * As there is now likely space, wakeup kcompact to defragment
3734 * pageblocks.
3735 */
3736 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3737 }
3738
3739 snapshot_refaults(NULL, pgdat);
3740 __fs_reclaim_release();
3741 psi_memstall_leave(&pflags);
3742 set_task_reclaim_state(current, NULL);
3743
3744 /*
3745 * Return the order kswapd stopped reclaiming at as
3746 * prepare_kswapd_sleep() takes it into account. If another caller
3747 * entered the allocator slow path while kswapd was awake, order will
3748 * remain at the higher level.
3749 */
3750 return sc.order;
3751 }
3752
3753 /*
3754 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3755 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3756 * not a valid index then either kswapd runs for first time or kswapd couldn't
3757 * sleep after previous reclaim attempt (node is still unbalanced). In that
3758 * case return the zone index of the previous kswapd reclaim cycle.
3759 */
3760 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3761 enum zone_type prev_highest_zoneidx)
3762 {
3763 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3764
3765 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3766 }
3767
3768 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3769 unsigned int highest_zoneidx)
3770 {
3771 long remaining = 0;
3772 DEFINE_WAIT(wait);
3773
3774 if (freezing(current) || kthread_should_stop())
3775 return;
3776
3777 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3778
3779 /*
3780 * Try to sleep for a short interval. Note that kcompactd will only be
3781 * woken if it is possible to sleep for a short interval. This is
3782 * deliberate on the assumption that if reclaim cannot keep an
3783 * eligible zone balanced that it's also unlikely that compaction will
3784 * succeed.
3785 */
3786 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3787 /*
3788 * Compaction records what page blocks it recently failed to
3789 * isolate pages from and skips them in the future scanning.
3790 * When kswapd is going to sleep, it is reasonable to assume
3791 * that pages and compaction may succeed so reset the cache.
3792 */
3793 reset_isolation_suitable(pgdat);
3794
3795 /*
3796 * We have freed the memory, now we should compact it to make
3797 * allocation of the requested order possible.
3798 */
3799 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3800
3801 remaining = schedule_timeout(HZ/10);
3802
3803 /*
3804 * If woken prematurely then reset kswapd_highest_zoneidx and
3805 * order. The values will either be from a wakeup request or
3806 * the previous request that slept prematurely.
3807 */
3808 if (remaining) {
3809 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3810 kswapd_highest_zoneidx(pgdat,
3811 highest_zoneidx));
3812
3813 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3814 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3815 }
3816
3817 finish_wait(&pgdat->kswapd_wait, &wait);
3818 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3819 }
3820
3821 /*
3822 * After a short sleep, check if it was a premature sleep. If not, then
3823 * go fully to sleep until explicitly woken up.
3824 */
3825 if (!remaining &&
3826 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3827 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3828
3829 /*
3830 * vmstat counters are not perfectly accurate and the estimated
3831 * value for counters such as NR_FREE_PAGES can deviate from the
3832 * true value by nr_online_cpus * threshold. To avoid the zone
3833 * watermarks being breached while under pressure, we reduce the
3834 * per-cpu vmstat threshold while kswapd is awake and restore
3835 * them before going back to sleep.
3836 */
3837 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3838
3839 if (!kthread_should_stop())
3840 schedule();
3841
3842 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3843 } else {
3844 if (remaining)
3845 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3846 else
3847 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3848 }
3849 finish_wait(&pgdat->kswapd_wait, &wait);
3850 }
3851
3852 /*
3853 * The background pageout daemon, started as a kernel thread
3854 * from the init process.
3855 *
3856 * This basically trickles out pages so that we have _some_
3857 * free memory available even if there is no other activity
3858 * that frees anything up. This is needed for things like routing
3859 * etc, where we otherwise might have all activity going on in
3860 * asynchronous contexts that cannot page things out.
3861 *
3862 * If there are applications that are active memory-allocators
3863 * (most normal use), this basically shouldn't matter.
3864 */
3865 static int kswapd(void *p)
3866 {
3867 unsigned int alloc_order, reclaim_order;
3868 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3869 pg_data_t *pgdat = (pg_data_t*)p;
3870 struct task_struct *tsk = current;
3871 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3872
3873 if (!cpumask_empty(cpumask))
3874 set_cpus_allowed_ptr(tsk, cpumask);
3875
3876 /*
3877 * Tell the memory management that we're a "memory allocator",
3878 * and that if we need more memory we should get access to it
3879 * regardless (see "__alloc_pages()"). "kswapd" should
3880 * never get caught in the normal page freeing logic.
3881 *
3882 * (Kswapd normally doesn't need memory anyway, but sometimes
3883 * you need a small amount of memory in order to be able to
3884 * page out something else, and this flag essentially protects
3885 * us from recursively trying to free more memory as we're
3886 * trying to free the first piece of memory in the first place).
3887 */
3888 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3889 set_freezable();
3890
3891 WRITE_ONCE(pgdat->kswapd_order, 0);
3892 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3893 for ( ; ; ) {
3894 bool ret;
3895
3896 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3897 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3898 highest_zoneidx);
3899
3900 kswapd_try_sleep:
3901 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3902 highest_zoneidx);
3903
3904 /* Read the new order and highest_zoneidx */
3905 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3906 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3907 highest_zoneidx);
3908 WRITE_ONCE(pgdat->kswapd_order, 0);
3909 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3910
3911 ret = try_to_freeze();
3912 if (kthread_should_stop())
3913 break;
3914
3915 /*
3916 * We can speed up thawing tasks if we don't call balance_pgdat
3917 * after returning from the refrigerator
3918 */
3919 if (ret)
3920 continue;
3921
3922 /*
3923 * Reclaim begins at the requested order but if a high-order
3924 * reclaim fails then kswapd falls back to reclaiming for
3925 * order-0. If that happens, kswapd will consider sleeping
3926 * for the order it finished reclaiming at (reclaim_order)
3927 * but kcompactd is woken to compact for the original
3928 * request (alloc_order).
3929 */
3930 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3931 alloc_order);
3932 reclaim_order = balance_pgdat(pgdat, alloc_order,
3933 highest_zoneidx);
3934 if (reclaim_order < alloc_order)
3935 goto kswapd_try_sleep;
3936 }
3937
3938 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3939
3940 return 0;
3941 }
3942
3943 /*
3944 * A zone is low on free memory or too fragmented for high-order memory. If
3945 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3946 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3947 * has failed or is not needed, still wake up kcompactd if only compaction is
3948 * needed.
3949 */
3950 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3951 enum zone_type highest_zoneidx)
3952 {
3953 pg_data_t *pgdat;
3954 enum zone_type curr_idx;
3955
3956 if (!managed_zone(zone))
3957 return;
3958
3959 if (!cpuset_zone_allowed(zone, gfp_flags))
3960 return;
3961
3962 pgdat = zone->zone_pgdat;
3963 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3964
3965 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3966 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3967
3968 if (READ_ONCE(pgdat->kswapd_order) < order)
3969 WRITE_ONCE(pgdat->kswapd_order, order);
3970
3971 if (!waitqueue_active(&pgdat->kswapd_wait))
3972 return;
3973
3974 /* Hopeless node, leave it to direct reclaim if possible */
3975 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3976 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3977 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3978 /*
3979 * There may be plenty of free memory available, but it's too
3980 * fragmented for high-order allocations. Wake up kcompactd
3981 * and rely on compaction_suitable() to determine if it's
3982 * needed. If it fails, it will defer subsequent attempts to
3983 * ratelimit its work.
3984 */
3985 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3986 wakeup_kcompactd(pgdat, order, highest_zoneidx);
3987 return;
3988 }
3989
3990 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3991 gfp_flags);
3992 wake_up_interruptible(&pgdat->kswapd_wait);
3993 }
3994
3995 #ifdef CONFIG_HIBERNATION
3996 /*
3997 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3998 * freed pages.
3999 *
4000 * Rather than trying to age LRUs the aim is to preserve the overall
4001 * LRU order by reclaiming preferentially
4002 * inactive > active > active referenced > active mapped
4003 */
4004 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4005 {
4006 struct scan_control sc = {
4007 .nr_to_reclaim = nr_to_reclaim,
4008 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4009 .reclaim_idx = MAX_NR_ZONES - 1,
4010 .priority = DEF_PRIORITY,
4011 .may_writepage = 1,
4012 .may_unmap = 1,
4013 .may_swap = 1,
4014 .hibernation_mode = 1,
4015 };
4016 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4017 unsigned long nr_reclaimed;
4018 unsigned int noreclaim_flag;
4019
4020 fs_reclaim_acquire(sc.gfp_mask);
4021 noreclaim_flag = memalloc_noreclaim_save();
4022 set_task_reclaim_state(current, &sc.reclaim_state);
4023
4024 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4025
4026 set_task_reclaim_state(current, NULL);
4027 memalloc_noreclaim_restore(noreclaim_flag);
4028 fs_reclaim_release(sc.gfp_mask);
4029
4030 return nr_reclaimed;
4031 }
4032 #endif /* CONFIG_HIBERNATION */
4033
4034 /*
4035 * This kswapd start function will be called by init and node-hot-add.
4036 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4037 */
4038 int kswapd_run(int nid)
4039 {
4040 pg_data_t *pgdat = NODE_DATA(nid);
4041 int ret = 0;
4042
4043 if (pgdat->kswapd)
4044 return 0;
4045
4046 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4047 if (IS_ERR(pgdat->kswapd)) {
4048 /* failure at boot is fatal */
4049 BUG_ON(system_state < SYSTEM_RUNNING);
4050 pr_err("Failed to start kswapd on node %d\n", nid);
4051 ret = PTR_ERR(pgdat->kswapd);
4052 pgdat->kswapd = NULL;
4053 }
4054 return ret;
4055 }
4056
4057 /*
4058 * Called by memory hotplug when all memory in a node is offlined. Caller must
4059 * hold mem_hotplug_begin/end().
4060 */
4061 void kswapd_stop(int nid)
4062 {
4063 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4064
4065 if (kswapd) {
4066 kthread_stop(kswapd);
4067 NODE_DATA(nid)->kswapd = NULL;
4068 }
4069 }
4070
4071 static int __init kswapd_init(void)
4072 {
4073 int nid;
4074
4075 swap_setup();
4076 for_each_node_state(nid, N_MEMORY)
4077 kswapd_run(nid);
4078 return 0;
4079 }
4080
4081 module_init(kswapd_init)
4082
4083 #ifdef CONFIG_NUMA
4084 /*
4085 * Node reclaim mode
4086 *
4087 * If non-zero call node_reclaim when the number of free pages falls below
4088 * the watermarks.
4089 */
4090 int node_reclaim_mode __read_mostly;
4091
4092 #define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4093 #define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
4094
4095 /*
4096 * Priority for NODE_RECLAIM. This determines the fraction of pages
4097 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4098 * a zone.
4099 */
4100 #define NODE_RECLAIM_PRIORITY 4
4101
4102 /*
4103 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4104 * occur.
4105 */
4106 int sysctl_min_unmapped_ratio = 1;
4107
4108 /*
4109 * If the number of slab pages in a zone grows beyond this percentage then
4110 * slab reclaim needs to occur.
4111 */
4112 int sysctl_min_slab_ratio = 5;
4113
4114 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4115 {
4116 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4117 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4118 node_page_state(pgdat, NR_ACTIVE_FILE);
4119
4120 /*
4121 * It's possible for there to be more file mapped pages than
4122 * accounted for by the pages on the file LRU lists because
4123 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4124 */
4125 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4126 }
4127
4128 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4129 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4130 {
4131 unsigned long nr_pagecache_reclaimable;
4132 unsigned long delta = 0;
4133
4134 /*
4135 * If RECLAIM_UNMAP is set, then all file pages are considered
4136 * potentially reclaimable. Otherwise, we have to worry about
4137 * pages like swapcache and node_unmapped_file_pages() provides
4138 * a better estimate
4139 */
4140 if (node_reclaim_mode & RECLAIM_UNMAP)
4141 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4142 else
4143 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4144
4145 /* If we can't clean pages, remove dirty pages from consideration */
4146 if (!(node_reclaim_mode & RECLAIM_WRITE))
4147 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4148
4149 /* Watch for any possible underflows due to delta */
4150 if (unlikely(delta > nr_pagecache_reclaimable))
4151 delta = nr_pagecache_reclaimable;
4152
4153 return nr_pagecache_reclaimable - delta;
4154 }
4155
4156 /*
4157 * Try to free up some pages from this node through reclaim.
4158 */
4159 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4160 {
4161 /* Minimum pages needed in order to stay on node */
4162 const unsigned long nr_pages = 1 << order;
4163 struct task_struct *p = current;
4164 unsigned int noreclaim_flag;
4165 struct scan_control sc = {
4166 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4167 .gfp_mask = current_gfp_context(gfp_mask),
4168 .order = order,
4169 .priority = NODE_RECLAIM_PRIORITY,
4170 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4171 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4172 .may_swap = 1,
4173 .reclaim_idx = gfp_zone(gfp_mask),
4174 };
4175
4176 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4177 sc.gfp_mask);
4178
4179 cond_resched();
4180 fs_reclaim_acquire(sc.gfp_mask);
4181 /*
4182 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4183 * and we also need to be able to write out pages for RECLAIM_WRITE
4184 * and RECLAIM_UNMAP.
4185 */
4186 noreclaim_flag = memalloc_noreclaim_save();
4187 p->flags |= PF_SWAPWRITE;
4188 set_task_reclaim_state(p, &sc.reclaim_state);
4189
4190 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4191 /*
4192 * Free memory by calling shrink node with increasing
4193 * priorities until we have enough memory freed.
4194 */
4195 do {
4196 shrink_node(pgdat, &sc);
4197 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4198 }
4199
4200 set_task_reclaim_state(p, NULL);
4201 current->flags &= ~PF_SWAPWRITE;
4202 memalloc_noreclaim_restore(noreclaim_flag);
4203 fs_reclaim_release(sc.gfp_mask);
4204
4205 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4206
4207 return sc.nr_reclaimed >= nr_pages;
4208 }
4209
4210 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4211 {
4212 int ret;
4213
4214 /*
4215 * Node reclaim reclaims unmapped file backed pages and
4216 * slab pages if we are over the defined limits.
4217 *
4218 * A small portion of unmapped file backed pages is needed for
4219 * file I/O otherwise pages read by file I/O will be immediately
4220 * thrown out if the node is overallocated. So we do not reclaim
4221 * if less than a specified percentage of the node is used by
4222 * unmapped file backed pages.
4223 */
4224 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4225 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4226 return NODE_RECLAIM_FULL;
4227
4228 /*
4229 * Do not scan if the allocation should not be delayed.
4230 */
4231 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4232 return NODE_RECLAIM_NOSCAN;
4233
4234 /*
4235 * Only run node reclaim on the local node or on nodes that do not
4236 * have associated processors. This will favor the local processor
4237 * over remote processors and spread off node memory allocations
4238 * as wide as possible.
4239 */
4240 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4241 return NODE_RECLAIM_NOSCAN;
4242
4243 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4244 return NODE_RECLAIM_NOSCAN;
4245
4246 ret = __node_reclaim(pgdat, gfp_mask, order);
4247 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4248
4249 if (!ret)
4250 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4251
4252 return ret;
4253 }
4254 #endif
4255
4256 /**
4257 * check_move_unevictable_pages - check pages for evictability and move to
4258 * appropriate zone lru list
4259 * @pvec: pagevec with lru pages to check
4260 *
4261 * Checks pages for evictability, if an evictable page is in the unevictable
4262 * lru list, moves it to the appropriate evictable lru list. This function
4263 * should be only used for lru pages.
4264 */
4265 void check_move_unevictable_pages(struct pagevec *pvec)
4266 {
4267 struct lruvec *lruvec;
4268 struct pglist_data *pgdat = NULL;
4269 int pgscanned = 0;
4270 int pgrescued = 0;
4271 int i;
4272
4273 for (i = 0; i < pvec->nr; i++) {
4274 struct page *page = pvec->pages[i];
4275 struct pglist_data *pagepgdat = page_pgdat(page);
4276
4277 pgscanned++;
4278 if (pagepgdat != pgdat) {
4279 if (pgdat)
4280 spin_unlock_irq(&pgdat->lru_lock);
4281 pgdat = pagepgdat;
4282 spin_lock_irq(&pgdat->lru_lock);
4283 }
4284 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4285
4286 if (!PageLRU(page) || !PageUnevictable(page))
4287 continue;
4288
4289 if (page_evictable(page)) {
4290 enum lru_list lru = page_lru_base_type(page);
4291
4292 VM_BUG_ON_PAGE(PageActive(page), page);
4293 ClearPageUnevictable(page);
4294 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4295 add_page_to_lru_list(page, lruvec, lru);
4296 pgrescued++;
4297 }
4298 }
4299
4300 if (pgdat) {
4301 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4302 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4303 spin_unlock_irq(&pgdat->lru_lock);
4304 }
4305 }
4306 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);