4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim
;
66 /* This context's GFP mask */
69 /* Allocation order */
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup
*target_mem_cgroup
;
84 /* Scan (total_size >> priority) pages at once */
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx
;
90 unsigned int may_writepage
:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap
:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap
:1;
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash
:1;
101 unsigned int hibernation_mode
:1;
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready
:1;
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned
;
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed
;
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
130 if ((_page)->lru.prev != _base) { \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
142 * From 0 .. 100. Higher means more swappy.
144 int vm_swappiness
= 60;
146 * The total number of pages which are beyond the high watermark within all
149 unsigned long vm_total_pages
;
151 static LIST_HEAD(shrinker_list
);
152 static DECLARE_RWSEM(shrinker_rwsem
);
155 static bool global_reclaim(struct scan_control
*sc
)
157 return !sc
->target_mem_cgroup
;
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
173 static bool sane_reclaim(struct scan_control
*sc
)
175 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
186 static bool global_reclaim(struct scan_control
*sc
)
191 static bool sane_reclaim(struct scan_control
*sc
)
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
202 unsigned long zone_reclaimable_pages(struct zone
*zone
)
206 nr
= zone_page_state_snapshot(zone
, NR_ZONE_LRU_FILE
);
207 if (get_nr_swap_pages() > 0)
208 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_LRU_ANON
);
213 unsigned long pgdat_reclaimable_pages(struct pglist_data
*pgdat
)
217 nr
= node_page_state_snapshot(pgdat
, NR_ACTIVE_FILE
) +
218 node_page_state_snapshot(pgdat
, NR_INACTIVE_FILE
) +
219 node_page_state_snapshot(pgdat
, NR_ISOLATED_FILE
);
221 if (get_nr_swap_pages() > 0)
222 nr
+= node_page_state_snapshot(pgdat
, NR_ACTIVE_ANON
) +
223 node_page_state_snapshot(pgdat
, NR_INACTIVE_ANON
) +
224 node_page_state_snapshot(pgdat
, NR_ISOLATED_ANON
);
229 bool pgdat_reclaimable(struct pglist_data
*pgdat
)
231 return node_page_state_snapshot(pgdat
, NR_PAGES_SCANNED
) <
232 pgdat_reclaimable_pages(pgdat
) * 6;
235 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
237 if (!mem_cgroup_disabled())
238 return mem_cgroup_get_lru_size(lruvec
, lru
);
240 return node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
244 * Add a shrinker callback to be called from the vm.
246 int register_shrinker(struct shrinker
*shrinker
)
248 size_t size
= sizeof(*shrinker
->nr_deferred
);
250 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
253 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
254 if (!shrinker
->nr_deferred
)
257 down_write(&shrinker_rwsem
);
258 list_add_tail(&shrinker
->list
, &shrinker_list
);
259 up_write(&shrinker_rwsem
);
262 EXPORT_SYMBOL(register_shrinker
);
267 void unregister_shrinker(struct shrinker
*shrinker
)
269 down_write(&shrinker_rwsem
);
270 list_del(&shrinker
->list
);
271 up_write(&shrinker_rwsem
);
272 kfree(shrinker
->nr_deferred
);
274 EXPORT_SYMBOL(unregister_shrinker
);
276 #define SHRINK_BATCH 128
278 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
279 struct shrinker
*shrinker
,
280 unsigned long nr_scanned
,
281 unsigned long nr_eligible
)
283 unsigned long freed
= 0;
284 unsigned long long delta
;
289 int nid
= shrinkctl
->nid
;
290 long batch_size
= shrinker
->batch
? shrinker
->batch
293 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
298 * copy the current shrinker scan count into a local variable
299 * and zero it so that other concurrent shrinker invocations
300 * don't also do this scanning work.
302 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
305 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
307 do_div(delta
, nr_eligible
+ 1);
309 if (total_scan
< 0) {
310 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
311 shrinker
->scan_objects
, total_scan
);
312 total_scan
= freeable
;
316 * We need to avoid excessive windup on filesystem shrinkers
317 * due to large numbers of GFP_NOFS allocations causing the
318 * shrinkers to return -1 all the time. This results in a large
319 * nr being built up so when a shrink that can do some work
320 * comes along it empties the entire cache due to nr >>>
321 * freeable. This is bad for sustaining a working set in
324 * Hence only allow the shrinker to scan the entire cache when
325 * a large delta change is calculated directly.
327 if (delta
< freeable
/ 4)
328 total_scan
= min(total_scan
, freeable
/ 2);
331 * Avoid risking looping forever due to too large nr value:
332 * never try to free more than twice the estimate number of
335 if (total_scan
> freeable
* 2)
336 total_scan
= freeable
* 2;
338 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
339 nr_scanned
, nr_eligible
,
340 freeable
, delta
, total_scan
);
343 * Normally, we should not scan less than batch_size objects in one
344 * pass to avoid too frequent shrinker calls, but if the slab has less
345 * than batch_size objects in total and we are really tight on memory,
346 * we will try to reclaim all available objects, otherwise we can end
347 * up failing allocations although there are plenty of reclaimable
348 * objects spread over several slabs with usage less than the
351 * We detect the "tight on memory" situations by looking at the total
352 * number of objects we want to scan (total_scan). If it is greater
353 * than the total number of objects on slab (freeable), we must be
354 * scanning at high prio and therefore should try to reclaim as much as
357 while (total_scan
>= batch_size
||
358 total_scan
>= freeable
) {
360 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
362 shrinkctl
->nr_to_scan
= nr_to_scan
;
363 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
364 if (ret
== SHRINK_STOP
)
368 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
369 total_scan
-= nr_to_scan
;
375 * move the unused scan count back into the shrinker in a
376 * manner that handles concurrent updates. If we exhausted the
377 * scan, there is no need to do an update.
380 new_nr
= atomic_long_add_return(total_scan
,
381 &shrinker
->nr_deferred
[nid
]);
383 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
385 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
390 * shrink_slab - shrink slab caches
391 * @gfp_mask: allocation context
392 * @nid: node whose slab caches to target
393 * @memcg: memory cgroup whose slab caches to target
394 * @nr_scanned: pressure numerator
395 * @nr_eligible: pressure denominator
397 * Call the shrink functions to age shrinkable caches.
399 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
400 * unaware shrinkers will receive a node id of 0 instead.
402 * @memcg specifies the memory cgroup to target. If it is not NULL,
403 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
404 * objects from the memory cgroup specified. Otherwise, only unaware
405 * shrinkers are called.
407 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
408 * the available objects should be scanned. Page reclaim for example
409 * passes the number of pages scanned and the number of pages on the
410 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
411 * when it encountered mapped pages. The ratio is further biased by
412 * the ->seeks setting of the shrink function, which indicates the
413 * cost to recreate an object relative to that of an LRU page.
415 * Returns the number of reclaimed slab objects.
417 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
418 struct mem_cgroup
*memcg
,
419 unsigned long nr_scanned
,
420 unsigned long nr_eligible
)
422 struct shrinker
*shrinker
;
423 unsigned long freed
= 0;
425 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
429 nr_scanned
= SWAP_CLUSTER_MAX
;
431 if (!down_read_trylock(&shrinker_rwsem
)) {
433 * If we would return 0, our callers would understand that we
434 * have nothing else to shrink and give up trying. By returning
435 * 1 we keep it going and assume we'll be able to shrink next
442 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
443 struct shrink_control sc
= {
444 .gfp_mask
= gfp_mask
,
450 * If kernel memory accounting is disabled, we ignore
451 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
452 * passing NULL for memcg.
454 if (memcg_kmem_enabled() &&
455 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
458 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
461 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
464 up_read(&shrinker_rwsem
);
470 void drop_slab_node(int nid
)
475 struct mem_cgroup
*memcg
= NULL
;
479 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
481 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
482 } while (freed
> 10);
489 for_each_online_node(nid
)
493 static inline int is_page_cache_freeable(struct page
*page
)
496 * A freeable page cache page is referenced only by the caller
497 * that isolated the page, the page cache radix tree and
498 * optional buffer heads at page->private.
500 return page_count(page
) - page_has_private(page
) == 2;
503 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
505 if (current
->flags
& PF_SWAPWRITE
)
507 if (!inode_write_congested(inode
))
509 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
515 * We detected a synchronous write error writing a page out. Probably
516 * -ENOSPC. We need to propagate that into the address_space for a subsequent
517 * fsync(), msync() or close().
519 * The tricky part is that after writepage we cannot touch the mapping: nothing
520 * prevents it from being freed up. But we have a ref on the page and once
521 * that page is locked, the mapping is pinned.
523 * We're allowed to run sleeping lock_page() here because we know the caller has
526 static void handle_write_error(struct address_space
*mapping
,
527 struct page
*page
, int error
)
530 if (page_mapping(page
) == mapping
)
531 mapping_set_error(mapping
, error
);
535 /* possible outcome of pageout() */
537 /* failed to write page out, page is locked */
539 /* move page to the active list, page is locked */
541 /* page has been sent to the disk successfully, page is unlocked */
543 /* page is clean and locked */
548 * pageout is called by shrink_page_list() for each dirty page.
549 * Calls ->writepage().
551 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
552 struct scan_control
*sc
)
555 * If the page is dirty, only perform writeback if that write
556 * will be non-blocking. To prevent this allocation from being
557 * stalled by pagecache activity. But note that there may be
558 * stalls if we need to run get_block(). We could test
559 * PagePrivate for that.
561 * If this process is currently in __generic_file_write_iter() against
562 * this page's queue, we can perform writeback even if that
565 * If the page is swapcache, write it back even if that would
566 * block, for some throttling. This happens by accident, because
567 * swap_backing_dev_info is bust: it doesn't reflect the
568 * congestion state of the swapdevs. Easy to fix, if needed.
570 if (!is_page_cache_freeable(page
))
574 * Some data journaling orphaned pages can have
575 * page->mapping == NULL while being dirty with clean buffers.
577 if (page_has_private(page
)) {
578 if (try_to_free_buffers(page
)) {
579 ClearPageDirty(page
);
580 pr_info("%s: orphaned page\n", __func__
);
586 if (mapping
->a_ops
->writepage
== NULL
)
587 return PAGE_ACTIVATE
;
588 if (!may_write_to_inode(mapping
->host
, sc
))
591 if (clear_page_dirty_for_io(page
)) {
593 struct writeback_control wbc
= {
594 .sync_mode
= WB_SYNC_NONE
,
595 .nr_to_write
= SWAP_CLUSTER_MAX
,
597 .range_end
= LLONG_MAX
,
601 SetPageReclaim(page
);
602 res
= mapping
->a_ops
->writepage(page
, &wbc
);
604 handle_write_error(mapping
, page
, res
);
605 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
606 ClearPageReclaim(page
);
607 return PAGE_ACTIVATE
;
610 if (!PageWriteback(page
)) {
611 /* synchronous write or broken a_ops? */
612 ClearPageReclaim(page
);
614 trace_mm_vmscan_writepage(page
);
615 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
623 * Same as remove_mapping, but if the page is removed from the mapping, it
624 * gets returned with a refcount of 0.
626 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
631 BUG_ON(!PageLocked(page
));
632 BUG_ON(mapping
!= page_mapping(page
));
634 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
636 * The non racy check for a busy page.
638 * Must be careful with the order of the tests. When someone has
639 * a ref to the page, it may be possible that they dirty it then
640 * drop the reference. So if PageDirty is tested before page_count
641 * here, then the following race may occur:
643 * get_user_pages(&page);
644 * [user mapping goes away]
646 * !PageDirty(page) [good]
647 * SetPageDirty(page);
649 * !page_count(page) [good, discard it]
651 * [oops, our write_to data is lost]
653 * Reversing the order of the tests ensures such a situation cannot
654 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
655 * load is not satisfied before that of page->_refcount.
657 * Note that if SetPageDirty is always performed via set_page_dirty,
658 * and thus under tree_lock, then this ordering is not required.
660 if (!page_ref_freeze(page
, 2))
662 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
663 if (unlikely(PageDirty(page
))) {
664 page_ref_unfreeze(page
, 2);
668 if (PageSwapCache(page
)) {
669 swp_entry_t swap
= { .val
= page_private(page
) };
670 mem_cgroup_swapout(page
, swap
);
671 __delete_from_swap_cache(page
);
672 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
673 swapcache_free(swap
);
675 void (*freepage
)(struct page
*);
678 freepage
= mapping
->a_ops
->freepage
;
680 * Remember a shadow entry for reclaimed file cache in
681 * order to detect refaults, thus thrashing, later on.
683 * But don't store shadows in an address space that is
684 * already exiting. This is not just an optizimation,
685 * inode reclaim needs to empty out the radix tree or
686 * the nodes are lost. Don't plant shadows behind its
689 * We also don't store shadows for DAX mappings because the
690 * only page cache pages found in these are zero pages
691 * covering holes, and because we don't want to mix DAX
692 * exceptional entries and shadow exceptional entries in the
695 if (reclaimed
&& page_is_file_cache(page
) &&
696 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
697 shadow
= workingset_eviction(mapping
, page
);
698 __delete_from_page_cache(page
, shadow
);
699 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
701 if (freepage
!= NULL
)
708 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
713 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
714 * someone else has a ref on the page, abort and return 0. If it was
715 * successfully detached, return 1. Assumes the caller has a single ref on
718 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
720 if (__remove_mapping(mapping
, page
, false)) {
722 * Unfreezing the refcount with 1 rather than 2 effectively
723 * drops the pagecache ref for us without requiring another
726 page_ref_unfreeze(page
, 1);
733 * putback_lru_page - put previously isolated page onto appropriate LRU list
734 * @page: page to be put back to appropriate lru list
736 * Add previously isolated @page to appropriate LRU list.
737 * Page may still be unevictable for other reasons.
739 * lru_lock must not be held, interrupts must be enabled.
741 void putback_lru_page(struct page
*page
)
744 int was_unevictable
= PageUnevictable(page
);
746 VM_BUG_ON_PAGE(PageLRU(page
), page
);
749 ClearPageUnevictable(page
);
751 if (page_evictable(page
)) {
753 * For evictable pages, we can use the cache.
754 * In event of a race, worst case is we end up with an
755 * unevictable page on [in]active list.
756 * We know how to handle that.
758 is_unevictable
= false;
762 * Put unevictable pages directly on zone's unevictable
765 is_unevictable
= true;
766 add_page_to_unevictable_list(page
);
768 * When racing with an mlock or AS_UNEVICTABLE clearing
769 * (page is unlocked) make sure that if the other thread
770 * does not observe our setting of PG_lru and fails
771 * isolation/check_move_unevictable_pages,
772 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
773 * the page back to the evictable list.
775 * The other side is TestClearPageMlocked() or shmem_lock().
781 * page's status can change while we move it among lru. If an evictable
782 * page is on unevictable list, it never be freed. To avoid that,
783 * check after we added it to the list, again.
785 if (is_unevictable
&& page_evictable(page
)) {
786 if (!isolate_lru_page(page
)) {
790 /* This means someone else dropped this page from LRU
791 * So, it will be freed or putback to LRU again. There is
792 * nothing to do here.
796 if (was_unevictable
&& !is_unevictable
)
797 count_vm_event(UNEVICTABLE_PGRESCUED
);
798 else if (!was_unevictable
&& is_unevictable
)
799 count_vm_event(UNEVICTABLE_PGCULLED
);
801 put_page(page
); /* drop ref from isolate */
804 enum page_references
{
806 PAGEREF_RECLAIM_CLEAN
,
811 static enum page_references
page_check_references(struct page
*page
,
812 struct scan_control
*sc
)
814 int referenced_ptes
, referenced_page
;
815 unsigned long vm_flags
;
817 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
819 referenced_page
= TestClearPageReferenced(page
);
822 * Mlock lost the isolation race with us. Let try_to_unmap()
823 * move the page to the unevictable list.
825 if (vm_flags
& VM_LOCKED
)
826 return PAGEREF_RECLAIM
;
828 if (referenced_ptes
) {
829 if (PageSwapBacked(page
))
830 return PAGEREF_ACTIVATE
;
832 * All mapped pages start out with page table
833 * references from the instantiating fault, so we need
834 * to look twice if a mapped file page is used more
837 * Mark it and spare it for another trip around the
838 * inactive list. Another page table reference will
839 * lead to its activation.
841 * Note: the mark is set for activated pages as well
842 * so that recently deactivated but used pages are
845 SetPageReferenced(page
);
847 if (referenced_page
|| referenced_ptes
> 1)
848 return PAGEREF_ACTIVATE
;
851 * Activate file-backed executable pages after first usage.
853 if (vm_flags
& VM_EXEC
)
854 return PAGEREF_ACTIVATE
;
859 /* Reclaim if clean, defer dirty pages to writeback */
860 if (referenced_page
&& !PageSwapBacked(page
))
861 return PAGEREF_RECLAIM_CLEAN
;
863 return PAGEREF_RECLAIM
;
866 /* Check if a page is dirty or under writeback */
867 static void page_check_dirty_writeback(struct page
*page
,
868 bool *dirty
, bool *writeback
)
870 struct address_space
*mapping
;
873 * Anonymous pages are not handled by flushers and must be written
874 * from reclaim context. Do not stall reclaim based on them
876 if (!page_is_file_cache(page
)) {
882 /* By default assume that the page flags are accurate */
883 *dirty
= PageDirty(page
);
884 *writeback
= PageWriteback(page
);
886 /* Verify dirty/writeback state if the filesystem supports it */
887 if (!page_has_private(page
))
890 mapping
= page_mapping(page
);
891 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
892 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
896 * shrink_page_list() returns the number of reclaimed pages
898 static unsigned long shrink_page_list(struct list_head
*page_list
,
899 struct pglist_data
*pgdat
,
900 struct scan_control
*sc
,
901 enum ttu_flags ttu_flags
,
902 unsigned long *ret_nr_dirty
,
903 unsigned long *ret_nr_unqueued_dirty
,
904 unsigned long *ret_nr_congested
,
905 unsigned long *ret_nr_writeback
,
906 unsigned long *ret_nr_immediate
,
909 LIST_HEAD(ret_pages
);
910 LIST_HEAD(free_pages
);
912 unsigned long nr_unqueued_dirty
= 0;
913 unsigned long nr_dirty
= 0;
914 unsigned long nr_congested
= 0;
915 unsigned long nr_reclaimed
= 0;
916 unsigned long nr_writeback
= 0;
917 unsigned long nr_immediate
= 0;
921 while (!list_empty(page_list
)) {
922 struct address_space
*mapping
;
925 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
926 bool dirty
, writeback
;
927 bool lazyfree
= false;
928 int ret
= SWAP_SUCCESS
;
932 page
= lru_to_page(page_list
);
933 list_del(&page
->lru
);
935 if (!trylock_page(page
))
938 VM_BUG_ON_PAGE(PageActive(page
), page
);
942 if (unlikely(!page_evictable(page
)))
945 if (!sc
->may_unmap
&& page_mapped(page
))
948 /* Double the slab pressure for mapped and swapcache pages */
949 if (page_mapped(page
) || PageSwapCache(page
))
952 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
953 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
956 * The number of dirty pages determines if a zone is marked
957 * reclaim_congested which affects wait_iff_congested. kswapd
958 * will stall and start writing pages if the tail of the LRU
959 * is all dirty unqueued pages.
961 page_check_dirty_writeback(page
, &dirty
, &writeback
);
962 if (dirty
|| writeback
)
965 if (dirty
&& !writeback
)
969 * Treat this page as congested if the underlying BDI is or if
970 * pages are cycling through the LRU so quickly that the
971 * pages marked for immediate reclaim are making it to the
972 * end of the LRU a second time.
974 mapping
= page_mapping(page
);
975 if (((dirty
|| writeback
) && mapping
&&
976 inode_write_congested(mapping
->host
)) ||
977 (writeback
&& PageReclaim(page
)))
981 * If a page at the tail of the LRU is under writeback, there
982 * are three cases to consider.
984 * 1) If reclaim is encountering an excessive number of pages
985 * under writeback and this page is both under writeback and
986 * PageReclaim then it indicates that pages are being queued
987 * for IO but are being recycled through the LRU before the
988 * IO can complete. Waiting on the page itself risks an
989 * indefinite stall if it is impossible to writeback the
990 * page due to IO error or disconnected storage so instead
991 * note that the LRU is being scanned too quickly and the
992 * caller can stall after page list has been processed.
994 * 2) Global or new memcg reclaim encounters a page that is
995 * not marked for immediate reclaim, or the caller does not
996 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
997 * not to fs). In this case mark the page for immediate
998 * reclaim and continue scanning.
1000 * Require may_enter_fs because we would wait on fs, which
1001 * may not have submitted IO yet. And the loop driver might
1002 * enter reclaim, and deadlock if it waits on a page for
1003 * which it is needed to do the write (loop masks off
1004 * __GFP_IO|__GFP_FS for this reason); but more thought
1005 * would probably show more reasons.
1007 * 3) Legacy memcg encounters a page that is already marked
1008 * PageReclaim. memcg does not have any dirty pages
1009 * throttling so we could easily OOM just because too many
1010 * pages are in writeback and there is nothing else to
1011 * reclaim. Wait for the writeback to complete.
1013 if (PageWriteback(page
)) {
1015 if (current_is_kswapd() &&
1016 PageReclaim(page
) &&
1017 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1022 } else if (sane_reclaim(sc
) ||
1023 !PageReclaim(page
) || !may_enter_fs
) {
1025 * This is slightly racy - end_page_writeback()
1026 * might have just cleared PageReclaim, then
1027 * setting PageReclaim here end up interpreted
1028 * as PageReadahead - but that does not matter
1029 * enough to care. What we do want is for this
1030 * page to have PageReclaim set next time memcg
1031 * reclaim reaches the tests above, so it will
1032 * then wait_on_page_writeback() to avoid OOM;
1033 * and it's also appropriate in global reclaim.
1035 SetPageReclaim(page
);
1042 wait_on_page_writeback(page
);
1043 /* then go back and try same page again */
1044 list_add_tail(&page
->lru
, page_list
);
1050 references
= page_check_references(page
, sc
);
1052 switch (references
) {
1053 case PAGEREF_ACTIVATE
:
1054 goto activate_locked
;
1057 case PAGEREF_RECLAIM
:
1058 case PAGEREF_RECLAIM_CLEAN
:
1059 ; /* try to reclaim the page below */
1063 * Anonymous process memory has backing store?
1064 * Try to allocate it some swap space here.
1066 if (PageAnon(page
) && !PageSwapCache(page
)) {
1067 if (!(sc
->gfp_mask
& __GFP_IO
))
1069 if (!add_to_swap(page
, page_list
))
1070 goto activate_locked
;
1074 /* Adding to swap updated mapping */
1075 mapping
= page_mapping(page
);
1076 } else if (unlikely(PageTransHuge(page
))) {
1077 /* Split file THP */
1078 if (split_huge_page_to_list(page
, page_list
))
1082 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
1085 * The page is mapped into the page tables of one or more
1086 * processes. Try to unmap it here.
1088 if (page_mapped(page
) && mapping
) {
1089 switch (ret
= try_to_unmap(page
, lazyfree
?
1090 (ttu_flags
| TTU_BATCH_FLUSH
| TTU_LZFREE
) :
1091 (ttu_flags
| TTU_BATCH_FLUSH
))) {
1093 goto activate_locked
;
1101 ; /* try to free the page below */
1105 if (PageDirty(page
)) {
1107 * Only kswapd can writeback filesystem pages to
1108 * avoid risk of stack overflow but only writeback
1109 * if many dirty pages have been encountered.
1111 if (page_is_file_cache(page
) &&
1112 (!current_is_kswapd() ||
1113 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1115 * Immediately reclaim when written back.
1116 * Similar in principal to deactivate_page()
1117 * except we already have the page isolated
1118 * and know it's dirty
1120 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1121 SetPageReclaim(page
);
1126 if (references
== PAGEREF_RECLAIM_CLEAN
)
1130 if (!sc
->may_writepage
)
1134 * Page is dirty. Flush the TLB if a writable entry
1135 * potentially exists to avoid CPU writes after IO
1136 * starts and then write it out here.
1138 try_to_unmap_flush_dirty();
1139 switch (pageout(page
, mapping
, sc
)) {
1143 goto activate_locked
;
1145 if (PageWriteback(page
))
1147 if (PageDirty(page
))
1151 * A synchronous write - probably a ramdisk. Go
1152 * ahead and try to reclaim the page.
1154 if (!trylock_page(page
))
1156 if (PageDirty(page
) || PageWriteback(page
))
1158 mapping
= page_mapping(page
);
1160 ; /* try to free the page below */
1165 * If the page has buffers, try to free the buffer mappings
1166 * associated with this page. If we succeed we try to free
1169 * We do this even if the page is PageDirty().
1170 * try_to_release_page() does not perform I/O, but it is
1171 * possible for a page to have PageDirty set, but it is actually
1172 * clean (all its buffers are clean). This happens if the
1173 * buffers were written out directly, with submit_bh(). ext3
1174 * will do this, as well as the blockdev mapping.
1175 * try_to_release_page() will discover that cleanness and will
1176 * drop the buffers and mark the page clean - it can be freed.
1178 * Rarely, pages can have buffers and no ->mapping. These are
1179 * the pages which were not successfully invalidated in
1180 * truncate_complete_page(). We try to drop those buffers here
1181 * and if that worked, and the page is no longer mapped into
1182 * process address space (page_count == 1) it can be freed.
1183 * Otherwise, leave the page on the LRU so it is swappable.
1185 if (page_has_private(page
)) {
1186 if (!try_to_release_page(page
, sc
->gfp_mask
))
1187 goto activate_locked
;
1188 if (!mapping
&& page_count(page
) == 1) {
1190 if (put_page_testzero(page
))
1194 * rare race with speculative reference.
1195 * the speculative reference will free
1196 * this page shortly, so we may
1197 * increment nr_reclaimed here (and
1198 * leave it off the LRU).
1207 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1211 * At this point, we have no other references and there is
1212 * no way to pick any more up (removed from LRU, removed
1213 * from pagecache). Can use non-atomic bitops now (and
1214 * we obviously don't have to worry about waking up a process
1215 * waiting on the page lock, because there are no references.
1217 __ClearPageLocked(page
);
1219 if (ret
== SWAP_LZFREE
)
1220 count_vm_event(PGLAZYFREED
);
1225 * Is there need to periodically free_page_list? It would
1226 * appear not as the counts should be low
1228 list_add(&page
->lru
, &free_pages
);
1232 if (PageSwapCache(page
))
1233 try_to_free_swap(page
);
1235 list_add(&page
->lru
, &ret_pages
);
1239 /* Not a candidate for swapping, so reclaim swap space. */
1240 if (PageSwapCache(page
) && mem_cgroup_swap_full(page
))
1241 try_to_free_swap(page
);
1242 VM_BUG_ON_PAGE(PageActive(page
), page
);
1243 SetPageActive(page
);
1248 list_add(&page
->lru
, &ret_pages
);
1249 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1252 mem_cgroup_uncharge_list(&free_pages
);
1253 try_to_unmap_flush();
1254 free_hot_cold_page_list(&free_pages
, true);
1256 list_splice(&ret_pages
, page_list
);
1257 count_vm_events(PGACTIVATE
, pgactivate
);
1259 *ret_nr_dirty
+= nr_dirty
;
1260 *ret_nr_congested
+= nr_congested
;
1261 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1262 *ret_nr_writeback
+= nr_writeback
;
1263 *ret_nr_immediate
+= nr_immediate
;
1264 return nr_reclaimed
;
1267 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1268 struct list_head
*page_list
)
1270 struct scan_control sc
= {
1271 .gfp_mask
= GFP_KERNEL
,
1272 .priority
= DEF_PRIORITY
,
1275 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1276 struct page
*page
, *next
;
1277 LIST_HEAD(clean_pages
);
1279 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1280 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1281 !__PageMovable(page
)) {
1282 ClearPageActive(page
);
1283 list_move(&page
->lru
, &clean_pages
);
1287 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1288 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1289 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1290 list_splice(&clean_pages
, page_list
);
1291 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1296 * Attempt to remove the specified page from its LRU. Only take this page
1297 * if it is of the appropriate PageActive status. Pages which are being
1298 * freed elsewhere are also ignored.
1300 * page: page to consider
1301 * mode: one of the LRU isolation modes defined above
1303 * returns 0 on success, -ve errno on failure.
1305 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1309 /* Only take pages on the LRU. */
1313 /* Compaction should not handle unevictable pages but CMA can do so */
1314 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1320 * To minimise LRU disruption, the caller can indicate that it only
1321 * wants to isolate pages it will be able to operate on without
1322 * blocking - clean pages for the most part.
1324 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1325 * is used by reclaim when it is cannot write to backing storage
1327 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1328 * that it is possible to migrate without blocking
1330 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1331 /* All the caller can do on PageWriteback is block */
1332 if (PageWriteback(page
))
1335 if (PageDirty(page
)) {
1336 struct address_space
*mapping
;
1338 /* ISOLATE_CLEAN means only clean pages */
1339 if (mode
& ISOLATE_CLEAN
)
1343 * Only pages without mappings or that have a
1344 * ->migratepage callback are possible to migrate
1347 mapping
= page_mapping(page
);
1348 if (mapping
&& !mapping
->a_ops
->migratepage
)
1353 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1356 if (likely(get_page_unless_zero(page
))) {
1358 * Be careful not to clear PageLRU until after we're
1359 * sure the page is not being freed elsewhere -- the
1360 * page release code relies on it.
1370 * zone_lru_lock is heavily contended. Some of the functions that
1371 * shrink the lists perform better by taking out a batch of pages
1372 * and working on them outside the LRU lock.
1374 * For pagecache intensive workloads, this function is the hottest
1375 * spot in the kernel (apart from copy_*_user functions).
1377 * Appropriate locks must be held before calling this function.
1379 * @nr_to_scan: The number of pages to look through on the list.
1380 * @lruvec: The LRU vector to pull pages from.
1381 * @dst: The temp list to put pages on to.
1382 * @nr_scanned: The number of pages that were scanned.
1383 * @sc: The scan_control struct for this reclaim session
1384 * @mode: One of the LRU isolation modes
1385 * @lru: LRU list id for isolating
1387 * returns how many pages were moved onto *@dst.
1389 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1390 struct lruvec
*lruvec
, struct list_head
*dst
,
1391 unsigned long *nr_scanned
, struct scan_control
*sc
,
1392 isolate_mode_t mode
, enum lru_list lru
)
1394 struct list_head
*src
= &lruvec
->lists
[lru
];
1395 unsigned long nr_taken
= 0;
1396 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1397 unsigned long scan
, nr_pages
;
1398 LIST_HEAD(pages_skipped
);
1400 for (scan
= 0; scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&&
1401 !list_empty(src
); scan
++) {
1404 page
= lru_to_page(src
);
1405 prefetchw_prev_lru_page(page
, src
, flags
);
1407 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1409 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1410 list_move(&page
->lru
, &pages_skipped
);
1414 switch (__isolate_lru_page(page
, mode
)) {
1416 nr_pages
= hpage_nr_pages(page
);
1417 nr_taken
+= nr_pages
;
1418 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1419 list_move(&page
->lru
, dst
);
1423 /* else it is being freed elsewhere */
1424 list_move(&page
->lru
, src
);
1433 * Splice any skipped pages to the start of the LRU list. Note that
1434 * this disrupts the LRU order when reclaiming for lower zones but
1435 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1436 * scanning would soon rescan the same pages to skip and put the
1437 * system at risk of premature OOM.
1439 if (!list_empty(&pages_skipped
))
1440 list_splice(&pages_skipped
, src
);
1442 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1443 nr_taken
, mode
, is_file_lru(lru
));
1444 for (scan
= 0; scan
< MAX_NR_ZONES
; scan
++) {
1445 nr_pages
= nr_zone_taken
[scan
];
1449 update_lru_size(lruvec
, lru
, scan
, -nr_pages
);
1455 * isolate_lru_page - tries to isolate a page from its LRU list
1456 * @page: page to isolate from its LRU list
1458 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1459 * vmstat statistic corresponding to whatever LRU list the page was on.
1461 * Returns 0 if the page was removed from an LRU list.
1462 * Returns -EBUSY if the page was not on an LRU list.
1464 * The returned page will have PageLRU() cleared. If it was found on
1465 * the active list, it will have PageActive set. If it was found on
1466 * the unevictable list, it will have the PageUnevictable bit set. That flag
1467 * may need to be cleared by the caller before letting the page go.
1469 * The vmstat statistic corresponding to the list on which the page was
1470 * found will be decremented.
1473 * (1) Must be called with an elevated refcount on the page. This is a
1474 * fundamentnal difference from isolate_lru_pages (which is called
1475 * without a stable reference).
1476 * (2) the lru_lock must not be held.
1477 * (3) interrupts must be enabled.
1479 int isolate_lru_page(struct page
*page
)
1483 VM_BUG_ON_PAGE(!page_count(page
), page
);
1484 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1486 if (PageLRU(page
)) {
1487 struct zone
*zone
= page_zone(page
);
1488 struct lruvec
*lruvec
;
1490 spin_lock_irq(zone_lru_lock(zone
));
1491 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1492 if (PageLRU(page
)) {
1493 int lru
= page_lru(page
);
1496 del_page_from_lru_list(page
, lruvec
, lru
);
1499 spin_unlock_irq(zone_lru_lock(zone
));
1505 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1506 * then get resheduled. When there are massive number of tasks doing page
1507 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1508 * the LRU list will go small and be scanned faster than necessary, leading to
1509 * unnecessary swapping, thrashing and OOM.
1511 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1512 struct scan_control
*sc
)
1514 unsigned long inactive
, isolated
;
1516 if (current_is_kswapd())
1519 if (!sane_reclaim(sc
))
1523 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1524 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1526 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1527 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1531 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1532 * won't get blocked by normal direct-reclaimers, forming a circular
1535 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1538 return isolated
> inactive
;
1541 static noinline_for_stack
void
1542 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1544 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1545 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1546 LIST_HEAD(pages_to_free
);
1549 * Put back any unfreeable pages.
1551 while (!list_empty(page_list
)) {
1552 struct page
*page
= lru_to_page(page_list
);
1555 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1556 list_del(&page
->lru
);
1557 if (unlikely(!page_evictable(page
))) {
1558 spin_unlock_irq(&pgdat
->lru_lock
);
1559 putback_lru_page(page
);
1560 spin_lock_irq(&pgdat
->lru_lock
);
1564 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1567 lru
= page_lru(page
);
1568 add_page_to_lru_list(page
, lruvec
, lru
);
1570 if (is_active_lru(lru
)) {
1571 int file
= is_file_lru(lru
);
1572 int numpages
= hpage_nr_pages(page
);
1573 reclaim_stat
->recent_rotated
[file
] += numpages
;
1575 if (put_page_testzero(page
)) {
1576 __ClearPageLRU(page
);
1577 __ClearPageActive(page
);
1578 del_page_from_lru_list(page
, lruvec
, lru
);
1580 if (unlikely(PageCompound(page
))) {
1581 spin_unlock_irq(&pgdat
->lru_lock
);
1582 mem_cgroup_uncharge(page
);
1583 (*get_compound_page_dtor(page
))(page
);
1584 spin_lock_irq(&pgdat
->lru_lock
);
1586 list_add(&page
->lru
, &pages_to_free
);
1591 * To save our caller's stack, now use input list for pages to free.
1593 list_splice(&pages_to_free
, page_list
);
1597 * If a kernel thread (such as nfsd for loop-back mounts) services
1598 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1599 * In that case we should only throttle if the backing device it is
1600 * writing to is congested. In other cases it is safe to throttle.
1602 static int current_may_throttle(void)
1604 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1605 current
->backing_dev_info
== NULL
||
1606 bdi_write_congested(current
->backing_dev_info
);
1610 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1611 * of reclaimed pages
1613 static noinline_for_stack
unsigned long
1614 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1615 struct scan_control
*sc
, enum lru_list lru
)
1617 LIST_HEAD(page_list
);
1618 unsigned long nr_scanned
;
1619 unsigned long nr_reclaimed
= 0;
1620 unsigned long nr_taken
;
1621 unsigned long nr_dirty
= 0;
1622 unsigned long nr_congested
= 0;
1623 unsigned long nr_unqueued_dirty
= 0;
1624 unsigned long nr_writeback
= 0;
1625 unsigned long nr_immediate
= 0;
1626 isolate_mode_t isolate_mode
= 0;
1627 int file
= is_file_lru(lru
);
1628 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1629 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1631 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1632 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1634 /* We are about to die and free our memory. Return now. */
1635 if (fatal_signal_pending(current
))
1636 return SWAP_CLUSTER_MAX
;
1642 isolate_mode
|= ISOLATE_UNMAPPED
;
1643 if (!sc
->may_writepage
)
1644 isolate_mode
|= ISOLATE_CLEAN
;
1646 spin_lock_irq(&pgdat
->lru_lock
);
1648 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1649 &nr_scanned
, sc
, isolate_mode
, lru
);
1651 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1652 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1654 if (global_reclaim(sc
)) {
1655 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1656 if (current_is_kswapd())
1657 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1659 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1661 spin_unlock_irq(&pgdat
->lru_lock
);
1666 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, TTU_UNMAP
,
1667 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1668 &nr_writeback
, &nr_immediate
,
1671 spin_lock_irq(&pgdat
->lru_lock
);
1673 if (global_reclaim(sc
)) {
1674 if (current_is_kswapd())
1675 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1677 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1680 putback_inactive_pages(lruvec
, &page_list
);
1682 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1684 spin_unlock_irq(&pgdat
->lru_lock
);
1686 mem_cgroup_uncharge_list(&page_list
);
1687 free_hot_cold_page_list(&page_list
, true);
1690 * If reclaim is isolating dirty pages under writeback, it implies
1691 * that the long-lived page allocation rate is exceeding the page
1692 * laundering rate. Either the global limits are not being effective
1693 * at throttling processes due to the page distribution throughout
1694 * zones or there is heavy usage of a slow backing device. The
1695 * only option is to throttle from reclaim context which is not ideal
1696 * as there is no guarantee the dirtying process is throttled in the
1697 * same way balance_dirty_pages() manages.
1699 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1700 * of pages under pages flagged for immediate reclaim and stall if any
1701 * are encountered in the nr_immediate check below.
1703 if (nr_writeback
&& nr_writeback
== nr_taken
)
1704 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1707 * Legacy memcg will stall in page writeback so avoid forcibly
1710 if (sane_reclaim(sc
)) {
1712 * Tag a zone as congested if all the dirty pages scanned were
1713 * backed by a congested BDI and wait_iff_congested will stall.
1715 if (nr_dirty
&& nr_dirty
== nr_congested
)
1716 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1719 * If dirty pages are scanned that are not queued for IO, it
1720 * implies that flushers are not keeping up. In this case, flag
1721 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1724 if (nr_unqueued_dirty
== nr_taken
)
1725 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1728 * If kswapd scans pages marked marked for immediate
1729 * reclaim and under writeback (nr_immediate), it implies
1730 * that pages are cycling through the LRU faster than
1731 * they are written so also forcibly stall.
1733 if (nr_immediate
&& current_may_throttle())
1734 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1738 * Stall direct reclaim for IO completions if underlying BDIs or zone
1739 * is congested. Allow kswapd to continue until it starts encountering
1740 * unqueued dirty pages or cycling through the LRU too quickly.
1742 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1743 current_may_throttle())
1744 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1746 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1747 nr_scanned
, nr_reclaimed
,
1748 sc
->priority
, file
);
1749 return nr_reclaimed
;
1753 * This moves pages from the active list to the inactive list.
1755 * We move them the other way if the page is referenced by one or more
1756 * processes, from rmap.
1758 * If the pages are mostly unmapped, the processing is fast and it is
1759 * appropriate to hold zone_lru_lock across the whole operation. But if
1760 * the pages are mapped, the processing is slow (page_referenced()) so we
1761 * should drop zone_lru_lock around each page. It's impossible to balance
1762 * this, so instead we remove the pages from the LRU while processing them.
1763 * It is safe to rely on PG_active against the non-LRU pages in here because
1764 * nobody will play with that bit on a non-LRU page.
1766 * The downside is that we have to touch page->_refcount against each page.
1767 * But we had to alter page->flags anyway.
1770 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1771 struct list_head
*list
,
1772 struct list_head
*pages_to_free
,
1775 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1776 unsigned long pgmoved
= 0;
1780 while (!list_empty(list
)) {
1781 page
= lru_to_page(list
);
1782 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1784 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1787 nr_pages
= hpage_nr_pages(page
);
1788 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1789 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1790 pgmoved
+= nr_pages
;
1792 if (put_page_testzero(page
)) {
1793 __ClearPageLRU(page
);
1794 __ClearPageActive(page
);
1795 del_page_from_lru_list(page
, lruvec
, lru
);
1797 if (unlikely(PageCompound(page
))) {
1798 spin_unlock_irq(&pgdat
->lru_lock
);
1799 mem_cgroup_uncharge(page
);
1800 (*get_compound_page_dtor(page
))(page
);
1801 spin_lock_irq(&pgdat
->lru_lock
);
1803 list_add(&page
->lru
, pages_to_free
);
1807 if (!is_active_lru(lru
))
1808 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1811 static void shrink_active_list(unsigned long nr_to_scan
,
1812 struct lruvec
*lruvec
,
1813 struct scan_control
*sc
,
1816 unsigned long nr_taken
;
1817 unsigned long nr_scanned
;
1818 unsigned long vm_flags
;
1819 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1820 LIST_HEAD(l_active
);
1821 LIST_HEAD(l_inactive
);
1823 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1824 unsigned long nr_rotated
= 0;
1825 isolate_mode_t isolate_mode
= 0;
1826 int file
= is_file_lru(lru
);
1827 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1832 isolate_mode
|= ISOLATE_UNMAPPED
;
1833 if (!sc
->may_writepage
)
1834 isolate_mode
|= ISOLATE_CLEAN
;
1836 spin_lock_irq(&pgdat
->lru_lock
);
1838 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1839 &nr_scanned
, sc
, isolate_mode
, lru
);
1841 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1842 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1844 if (global_reclaim(sc
))
1845 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1846 __count_vm_events(PGREFILL
, nr_scanned
);
1848 spin_unlock_irq(&pgdat
->lru_lock
);
1850 while (!list_empty(&l_hold
)) {
1852 page
= lru_to_page(&l_hold
);
1853 list_del(&page
->lru
);
1855 if (unlikely(!page_evictable(page
))) {
1856 putback_lru_page(page
);
1860 if (unlikely(buffer_heads_over_limit
)) {
1861 if (page_has_private(page
) && trylock_page(page
)) {
1862 if (page_has_private(page
))
1863 try_to_release_page(page
, 0);
1868 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1870 nr_rotated
+= hpage_nr_pages(page
);
1872 * Identify referenced, file-backed active pages and
1873 * give them one more trip around the active list. So
1874 * that executable code get better chances to stay in
1875 * memory under moderate memory pressure. Anon pages
1876 * are not likely to be evicted by use-once streaming
1877 * IO, plus JVM can create lots of anon VM_EXEC pages,
1878 * so we ignore them here.
1880 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1881 list_add(&page
->lru
, &l_active
);
1886 ClearPageActive(page
); /* we are de-activating */
1887 list_add(&page
->lru
, &l_inactive
);
1891 * Move pages back to the lru list.
1893 spin_lock_irq(&pgdat
->lru_lock
);
1895 * Count referenced pages from currently used mappings as rotated,
1896 * even though only some of them are actually re-activated. This
1897 * helps balance scan pressure between file and anonymous pages in
1900 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1902 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1903 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1904 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1905 spin_unlock_irq(&pgdat
->lru_lock
);
1907 mem_cgroup_uncharge_list(&l_hold
);
1908 free_hot_cold_page_list(&l_hold
, true);
1912 * The inactive anon list should be small enough that the VM never has
1913 * to do too much work.
1915 * The inactive file list should be small enough to leave most memory
1916 * to the established workingset on the scan-resistant active list,
1917 * but large enough to avoid thrashing the aggregate readahead window.
1919 * Both inactive lists should also be large enough that each inactive
1920 * page has a chance to be referenced again before it is reclaimed.
1922 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1923 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1924 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1927 * memory ratio inactive
1928 * -------------------------------------
1937 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
)
1939 unsigned long inactive_ratio
;
1940 unsigned long inactive
;
1941 unsigned long active
;
1945 * If we don't have swap space, anonymous page deactivation
1948 if (!file
&& !total_swap_pages
)
1951 inactive
= lruvec_lru_size(lruvec
, file
* LRU_FILE
);
1952 active
= lruvec_lru_size(lruvec
, file
* LRU_FILE
+ LRU_ACTIVE
);
1954 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1956 inactive_ratio
= int_sqrt(10 * gb
);
1960 return inactive
* inactive_ratio
< active
;
1963 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1964 struct lruvec
*lruvec
, struct scan_control
*sc
)
1966 if (is_active_lru(lru
)) {
1967 if (inactive_list_is_low(lruvec
, is_file_lru(lru
)))
1968 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1972 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1983 * Determine how aggressively the anon and file LRU lists should be
1984 * scanned. The relative value of each set of LRU lists is determined
1985 * by looking at the fraction of the pages scanned we did rotate back
1986 * onto the active list instead of evict.
1988 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1989 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1991 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
1992 struct scan_control
*sc
, unsigned long *nr
,
1993 unsigned long *lru_pages
)
1995 int swappiness
= mem_cgroup_swappiness(memcg
);
1996 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1998 u64 denominator
= 0; /* gcc */
1999 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2000 unsigned long anon_prio
, file_prio
;
2001 enum scan_balance scan_balance
;
2002 unsigned long anon
, file
;
2003 bool force_scan
= false;
2004 unsigned long ap
, fp
;
2010 * If the zone or memcg is small, nr[l] can be 0. This
2011 * results in no scanning on this priority and a potential
2012 * priority drop. Global direct reclaim can go to the next
2013 * zone and tends to have no problems. Global kswapd is for
2014 * zone balancing and it needs to scan a minimum amount. When
2015 * reclaiming for a memcg, a priority drop can cause high
2016 * latencies, so it's better to scan a minimum amount there as
2019 if (current_is_kswapd()) {
2020 if (!pgdat_reclaimable(pgdat
))
2022 if (!mem_cgroup_online(memcg
))
2025 if (!global_reclaim(sc
))
2028 /* If we have no swap space, do not bother scanning anon pages. */
2029 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2030 scan_balance
= SCAN_FILE
;
2035 * Global reclaim will swap to prevent OOM even with no
2036 * swappiness, but memcg users want to use this knob to
2037 * disable swapping for individual groups completely when
2038 * using the memory controller's swap limit feature would be
2041 if (!global_reclaim(sc
) && !swappiness
) {
2042 scan_balance
= SCAN_FILE
;
2047 * Do not apply any pressure balancing cleverness when the
2048 * system is close to OOM, scan both anon and file equally
2049 * (unless the swappiness setting disagrees with swapping).
2051 if (!sc
->priority
&& swappiness
) {
2052 scan_balance
= SCAN_EQUAL
;
2057 * Prevent the reclaimer from falling into the cache trap: as
2058 * cache pages start out inactive, every cache fault will tip
2059 * the scan balance towards the file LRU. And as the file LRU
2060 * shrinks, so does the window for rotation from references.
2061 * This means we have a runaway feedback loop where a tiny
2062 * thrashing file LRU becomes infinitely more attractive than
2063 * anon pages. Try to detect this based on file LRU size.
2065 if (global_reclaim(sc
)) {
2066 unsigned long pgdatfile
;
2067 unsigned long pgdatfree
;
2069 unsigned long total_high_wmark
= 0;
2071 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2072 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2073 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2075 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2076 struct zone
*zone
= &pgdat
->node_zones
[z
];
2077 if (!populated_zone(zone
))
2080 total_high_wmark
+= high_wmark_pages(zone
);
2083 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2084 scan_balance
= SCAN_ANON
;
2090 * If there is enough inactive page cache, i.e. if the size of the
2091 * inactive list is greater than that of the active list *and* the
2092 * inactive list actually has some pages to scan on this priority, we
2093 * do not reclaim anything from the anonymous working set right now.
2094 * Without the second condition we could end up never scanning an
2095 * lruvec even if it has plenty of old anonymous pages unless the
2096 * system is under heavy pressure.
2098 if (!inactive_list_is_low(lruvec
, true) &&
2099 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
) >> sc
->priority
) {
2100 scan_balance
= SCAN_FILE
;
2104 scan_balance
= SCAN_FRACT
;
2107 * With swappiness at 100, anonymous and file have the same priority.
2108 * This scanning priority is essentially the inverse of IO cost.
2110 anon_prio
= swappiness
;
2111 file_prio
= 200 - anon_prio
;
2114 * OK, so we have swap space and a fair amount of page cache
2115 * pages. We use the recently rotated / recently scanned
2116 * ratios to determine how valuable each cache is.
2118 * Because workloads change over time (and to avoid overflow)
2119 * we keep these statistics as a floating average, which ends
2120 * up weighing recent references more than old ones.
2122 * anon in [0], file in [1]
2125 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
2126 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
);
2127 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
2128 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
);
2130 spin_lock_irq(&pgdat
->lru_lock
);
2131 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2132 reclaim_stat
->recent_scanned
[0] /= 2;
2133 reclaim_stat
->recent_rotated
[0] /= 2;
2136 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2137 reclaim_stat
->recent_scanned
[1] /= 2;
2138 reclaim_stat
->recent_rotated
[1] /= 2;
2142 * The amount of pressure on anon vs file pages is inversely
2143 * proportional to the fraction of recently scanned pages on
2144 * each list that were recently referenced and in active use.
2146 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2147 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2149 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2150 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2151 spin_unlock_irq(&pgdat
->lru_lock
);
2155 denominator
= ap
+ fp
+ 1;
2157 some_scanned
= false;
2158 /* Only use force_scan on second pass. */
2159 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2161 for_each_evictable_lru(lru
) {
2162 int file
= is_file_lru(lru
);
2166 size
= lruvec_lru_size(lruvec
, lru
);
2167 scan
= size
>> sc
->priority
;
2169 if (!scan
&& pass
&& force_scan
)
2170 scan
= min(size
, SWAP_CLUSTER_MAX
);
2172 switch (scan_balance
) {
2174 /* Scan lists relative to size */
2178 * Scan types proportional to swappiness and
2179 * their relative recent reclaim efficiency.
2181 scan
= div64_u64(scan
* fraction
[file
],
2186 /* Scan one type exclusively */
2187 if ((scan_balance
== SCAN_FILE
) != file
) {
2193 /* Look ma, no brain */
2201 * Skip the second pass and don't force_scan,
2202 * if we found something to scan.
2204 some_scanned
|= !!scan
;
2209 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2210 static void init_tlb_ubc(void)
2213 * This deliberately does not clear the cpumask as it's expensive
2214 * and unnecessary. If there happens to be data in there then the
2215 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2216 * then will be cleared.
2218 current
->tlb_ubc
.flush_required
= false;
2221 static inline void init_tlb_ubc(void)
2224 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2227 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2229 static void shrink_zone_memcg(struct zone
*zone
, struct mem_cgroup
*memcg
,
2230 struct scan_control
*sc
, unsigned long *lru_pages
)
2232 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2233 unsigned long nr
[NR_LRU_LISTS
];
2234 unsigned long targets
[NR_LRU_LISTS
];
2235 unsigned long nr_to_scan
;
2237 unsigned long nr_reclaimed
= 0;
2238 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2239 struct blk_plug plug
;
2242 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2244 /* Record the original scan target for proportional adjustments later */
2245 memcpy(targets
, nr
, sizeof(nr
));
2248 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2249 * event that can occur when there is little memory pressure e.g.
2250 * multiple streaming readers/writers. Hence, we do not abort scanning
2251 * when the requested number of pages are reclaimed when scanning at
2252 * DEF_PRIORITY on the assumption that the fact we are direct
2253 * reclaiming implies that kswapd is not keeping up and it is best to
2254 * do a batch of work at once. For memcg reclaim one check is made to
2255 * abort proportional reclaim if either the file or anon lru has already
2256 * dropped to zero at the first pass.
2258 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2259 sc
->priority
== DEF_PRIORITY
);
2263 blk_start_plug(&plug
);
2264 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2265 nr
[LRU_INACTIVE_FILE
]) {
2266 unsigned long nr_anon
, nr_file
, percentage
;
2267 unsigned long nr_scanned
;
2269 for_each_evictable_lru(lru
) {
2271 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2272 nr
[lru
] -= nr_to_scan
;
2274 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2279 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2283 * For kswapd and memcg, reclaim at least the number of pages
2284 * requested. Ensure that the anon and file LRUs are scanned
2285 * proportionally what was requested by get_scan_count(). We
2286 * stop reclaiming one LRU and reduce the amount scanning
2287 * proportional to the original scan target.
2289 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2290 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2293 * It's just vindictive to attack the larger once the smaller
2294 * has gone to zero. And given the way we stop scanning the
2295 * smaller below, this makes sure that we only make one nudge
2296 * towards proportionality once we've got nr_to_reclaim.
2298 if (!nr_file
|| !nr_anon
)
2301 if (nr_file
> nr_anon
) {
2302 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2303 targets
[LRU_ACTIVE_ANON
] + 1;
2305 percentage
= nr_anon
* 100 / scan_target
;
2307 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2308 targets
[LRU_ACTIVE_FILE
] + 1;
2310 percentage
= nr_file
* 100 / scan_target
;
2313 /* Stop scanning the smaller of the LRU */
2315 nr
[lru
+ LRU_ACTIVE
] = 0;
2318 * Recalculate the other LRU scan count based on its original
2319 * scan target and the percentage scanning already complete
2321 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2322 nr_scanned
= targets
[lru
] - nr
[lru
];
2323 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2324 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2327 nr_scanned
= targets
[lru
] - nr
[lru
];
2328 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2329 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2331 scan_adjusted
= true;
2333 blk_finish_plug(&plug
);
2334 sc
->nr_reclaimed
+= nr_reclaimed
;
2337 * Even if we did not try to evict anon pages at all, we want to
2338 * rebalance the anon lru active/inactive ratio.
2340 if (inactive_list_is_low(lruvec
, false))
2341 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2342 sc
, LRU_ACTIVE_ANON
);
2344 throttle_vm_writeout(sc
->gfp_mask
);
2347 /* Use reclaim/compaction for costly allocs or under memory pressure */
2348 static bool in_reclaim_compaction(struct scan_control
*sc
)
2350 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2351 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2352 sc
->priority
< DEF_PRIORITY
- 2))
2359 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2360 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2361 * true if more pages should be reclaimed such that when the page allocator
2362 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2363 * It will give up earlier than that if there is difficulty reclaiming pages.
2365 static inline bool should_continue_reclaim(struct zone
*zone
,
2366 unsigned long nr_reclaimed
,
2367 unsigned long nr_scanned
,
2368 struct scan_control
*sc
)
2370 unsigned long pages_for_compaction
;
2371 unsigned long inactive_lru_pages
;
2373 /* If not in reclaim/compaction mode, stop */
2374 if (!in_reclaim_compaction(sc
))
2377 /* Consider stopping depending on scan and reclaim activity */
2378 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2380 * For __GFP_REPEAT allocations, stop reclaiming if the
2381 * full LRU list has been scanned and we are still failing
2382 * to reclaim pages. This full LRU scan is potentially
2383 * expensive but a __GFP_REPEAT caller really wants to succeed
2385 if (!nr_reclaimed
&& !nr_scanned
)
2389 * For non-__GFP_REPEAT allocations which can presumably
2390 * fail without consequence, stop if we failed to reclaim
2391 * any pages from the last SWAP_CLUSTER_MAX number of
2392 * pages that were scanned. This will return to the
2393 * caller faster at the risk reclaim/compaction and
2394 * the resulting allocation attempt fails
2401 * If we have not reclaimed enough pages for compaction and the
2402 * inactive lists are large enough, continue reclaiming
2404 pages_for_compaction
= (2UL << sc
->order
);
2405 inactive_lru_pages
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
);
2406 if (get_nr_swap_pages() > 0)
2407 inactive_lru_pages
+= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_ANON
);
2408 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2409 inactive_lru_pages
> pages_for_compaction
)
2412 /* If compaction would go ahead or the allocation would succeed, stop */
2413 switch (compaction_suitable(zone
, sc
->order
, 0, 0)) {
2414 case COMPACT_PARTIAL
:
2415 case COMPACT_CONTINUE
:
2422 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
,
2423 enum zone_type classzone_idx
)
2425 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2426 unsigned long nr_reclaimed
, nr_scanned
;
2427 bool reclaimable
= false;
2428 struct zone
*zone
= &pgdat
->node_zones
[classzone_idx
];
2431 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2432 struct mem_cgroup_reclaim_cookie reclaim
= {
2434 .priority
= sc
->priority
,
2436 unsigned long zone_lru_pages
= 0;
2437 struct mem_cgroup
*memcg
;
2439 nr_reclaimed
= sc
->nr_reclaimed
;
2440 nr_scanned
= sc
->nr_scanned
;
2442 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2444 unsigned long lru_pages
;
2445 unsigned long reclaimed
;
2446 unsigned long scanned
;
2448 if (mem_cgroup_low(root
, memcg
)) {
2449 if (!sc
->may_thrash
)
2451 mem_cgroup_events(memcg
, MEMCG_LOW
, 1);
2454 reclaimed
= sc
->nr_reclaimed
;
2455 scanned
= sc
->nr_scanned
;
2457 shrink_zone_memcg(zone
, memcg
, sc
, &lru_pages
);
2458 zone_lru_pages
+= lru_pages
;
2460 if (!global_reclaim(sc
))
2461 shrink_slab(sc
->gfp_mask
, zone_to_nid(zone
),
2462 memcg
, sc
->nr_scanned
- scanned
,
2465 /* Record the group's reclaim efficiency */
2466 vmpressure(sc
->gfp_mask
, memcg
, false,
2467 sc
->nr_scanned
- scanned
,
2468 sc
->nr_reclaimed
- reclaimed
);
2471 * Direct reclaim and kswapd have to scan all memory
2472 * cgroups to fulfill the overall scan target for the
2475 * Limit reclaim, on the other hand, only cares about
2476 * nr_to_reclaim pages to be reclaimed and it will
2477 * retry with decreasing priority if one round over the
2478 * whole hierarchy is not sufficient.
2480 if (!global_reclaim(sc
) &&
2481 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2482 mem_cgroup_iter_break(root
, memcg
);
2485 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2488 * Shrink the slab caches in the same proportion that
2489 * the eligible LRU pages were scanned.
2491 if (global_reclaim(sc
))
2492 shrink_slab(sc
->gfp_mask
, zone_to_nid(zone
), NULL
,
2493 sc
->nr_scanned
- nr_scanned
,
2496 if (reclaim_state
) {
2497 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2498 reclaim_state
->reclaimed_slab
= 0;
2501 /* Record the subtree's reclaim efficiency */
2502 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2503 sc
->nr_scanned
- nr_scanned
,
2504 sc
->nr_reclaimed
- nr_reclaimed
);
2506 if (sc
->nr_reclaimed
- nr_reclaimed
)
2509 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
2510 sc
->nr_scanned
- nr_scanned
, sc
));
2516 * Returns true if compaction should go ahead for a high-order request, or
2517 * the high-order allocation would succeed without compaction.
2519 static inline bool compaction_ready(struct zone
*zone
, int order
, int classzone_idx
)
2521 unsigned long watermark
;
2525 * Compaction takes time to run and there are potentially other
2526 * callers using the pages just freed. Continue reclaiming until
2527 * there is a buffer of free pages available to give compaction
2528 * a reasonable chance of completing and allocating the page
2530 watermark
= high_wmark_pages(zone
) + (2UL << order
);
2531 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, classzone_idx
);
2534 * If compaction is deferred, reclaim up to a point where
2535 * compaction will have a chance of success when re-enabled
2537 if (compaction_deferred(zone
, order
))
2538 return watermark_ok
;
2541 * If compaction is not ready to start and allocation is not likely
2542 * to succeed without it, then keep reclaiming.
2544 if (compaction_suitable(zone
, order
, 0, classzone_idx
) == COMPACT_SKIPPED
)
2547 return watermark_ok
;
2551 * This is the direct reclaim path, for page-allocating processes. We only
2552 * try to reclaim pages from zones which will satisfy the caller's allocation
2555 * If a zone is deemed to be full of pinned pages then just give it a light
2556 * scan then give up on it.
2558 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2562 unsigned long nr_soft_reclaimed
;
2563 unsigned long nr_soft_scanned
;
2565 enum zone_type classzone_idx
;
2566 pg_data_t
*last_pgdat
= NULL
;
2569 * If the number of buffer_heads in the machine exceeds the maximum
2570 * allowed level, force direct reclaim to scan the highmem zone as
2571 * highmem pages could be pinning lowmem pages storing buffer_heads
2573 orig_mask
= sc
->gfp_mask
;
2574 if (buffer_heads_over_limit
) {
2575 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2576 sc
->reclaim_idx
= classzone_idx
= gfp_zone(sc
->gfp_mask
);
2579 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2580 sc
->reclaim_idx
, sc
->nodemask
) {
2581 if (!populated_zone(zone
))
2585 * Note that reclaim_idx does not change as it is the highest
2586 * zone reclaimed from which for empty zones is a no-op but
2587 * classzone_idx is used by shrink_node to test if the slabs
2588 * should be shrunk on a given node.
2590 classzone_idx
= sc
->reclaim_idx
;
2591 while (!populated_zone(zone
->zone_pgdat
->node_zones
+
2596 * Take care memory controller reclaiming has small influence
2599 if (global_reclaim(sc
)) {
2600 if (!cpuset_zone_allowed(zone
,
2601 GFP_KERNEL
| __GFP_HARDWALL
))
2604 if (sc
->priority
!= DEF_PRIORITY
&&
2605 !pgdat_reclaimable(zone
->zone_pgdat
))
2606 continue; /* Let kswapd poll it */
2609 * If we already have plenty of memory free for
2610 * compaction in this zone, don't free any more.
2611 * Even though compaction is invoked for any
2612 * non-zero order, only frequent costly order
2613 * reclamation is disruptive enough to become a
2614 * noticeable problem, like transparent huge
2617 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2618 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2619 zonelist_zone_idx(z
) <= classzone_idx
&&
2620 compaction_ready(zone
, sc
->order
, classzone_idx
)) {
2621 sc
->compaction_ready
= true;
2626 * Shrink each node in the zonelist once. If the
2627 * zonelist is ordered by zone (not the default) then a
2628 * node may be shrunk multiple times but in that case
2629 * the user prefers lower zones being preserved.
2631 if (zone
->zone_pgdat
== last_pgdat
)
2635 * This steals pages from memory cgroups over softlimit
2636 * and returns the number of reclaimed pages and
2637 * scanned pages. This works for global memory pressure
2638 * and balancing, not for a memcg's limit.
2640 nr_soft_scanned
= 0;
2641 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2642 sc
->order
, sc
->gfp_mask
,
2644 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2645 sc
->nr_scanned
+= nr_soft_scanned
;
2646 /* need some check for avoid more shrink_zone() */
2649 /* See comment about same check for global reclaim above */
2650 if (zone
->zone_pgdat
== last_pgdat
)
2652 last_pgdat
= zone
->zone_pgdat
;
2653 shrink_node(zone
->zone_pgdat
, sc
, classzone_idx
);
2657 * Restore to original mask to avoid the impact on the caller if we
2658 * promoted it to __GFP_HIGHMEM.
2660 sc
->gfp_mask
= orig_mask
;
2664 * This is the main entry point to direct page reclaim.
2666 * If a full scan of the inactive list fails to free enough memory then we
2667 * are "out of memory" and something needs to be killed.
2669 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2670 * high - the zone may be full of dirty or under-writeback pages, which this
2671 * caller can't do much about. We kick the writeback threads and take explicit
2672 * naps in the hope that some of these pages can be written. But if the
2673 * allocating task holds filesystem locks which prevent writeout this might not
2674 * work, and the allocation attempt will fail.
2676 * returns: 0, if no pages reclaimed
2677 * else, the number of pages reclaimed
2679 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2680 struct scan_control
*sc
)
2682 int initial_priority
= sc
->priority
;
2683 unsigned long total_scanned
= 0;
2684 unsigned long writeback_threshold
;
2686 delayacct_freepages_start();
2688 if (global_reclaim(sc
))
2689 count_vm_event(ALLOCSTALL
);
2692 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2695 shrink_zones(zonelist
, sc
);
2697 total_scanned
+= sc
->nr_scanned
;
2698 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2701 if (sc
->compaction_ready
)
2705 * If we're getting trouble reclaiming, start doing
2706 * writepage even in laptop mode.
2708 if (sc
->priority
< DEF_PRIORITY
- 2)
2709 sc
->may_writepage
= 1;
2712 * Try to write back as many pages as we just scanned. This
2713 * tends to cause slow streaming writers to write data to the
2714 * disk smoothly, at the dirtying rate, which is nice. But
2715 * that's undesirable in laptop mode, where we *want* lumpy
2716 * writeout. So in laptop mode, write out the whole world.
2718 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2719 if (total_scanned
> writeback_threshold
) {
2720 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2721 WB_REASON_TRY_TO_FREE_PAGES
);
2722 sc
->may_writepage
= 1;
2724 } while (--sc
->priority
>= 0);
2726 delayacct_freepages_end();
2728 if (sc
->nr_reclaimed
)
2729 return sc
->nr_reclaimed
;
2731 /* Aborted reclaim to try compaction? don't OOM, then */
2732 if (sc
->compaction_ready
)
2735 /* Untapped cgroup reserves? Don't OOM, retry. */
2736 if (!sc
->may_thrash
) {
2737 sc
->priority
= initial_priority
;
2745 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2748 unsigned long pfmemalloc_reserve
= 0;
2749 unsigned long free_pages
= 0;
2753 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2754 zone
= &pgdat
->node_zones
[i
];
2755 if (!populated_zone(zone
) ||
2756 pgdat_reclaimable_pages(pgdat
) == 0)
2759 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2760 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2763 /* If there are no reserves (unexpected config) then do not throttle */
2764 if (!pfmemalloc_reserve
)
2767 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2769 /* kswapd must be awake if processes are being throttled */
2770 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2771 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2772 (enum zone_type
)ZONE_NORMAL
);
2773 wake_up_interruptible(&pgdat
->kswapd_wait
);
2780 * Throttle direct reclaimers if backing storage is backed by the network
2781 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2782 * depleted. kswapd will continue to make progress and wake the processes
2783 * when the low watermark is reached.
2785 * Returns true if a fatal signal was delivered during throttling. If this
2786 * happens, the page allocator should not consider triggering the OOM killer.
2788 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2789 nodemask_t
*nodemask
)
2793 pg_data_t
*pgdat
= NULL
;
2796 * Kernel threads should not be throttled as they may be indirectly
2797 * responsible for cleaning pages necessary for reclaim to make forward
2798 * progress. kjournald for example may enter direct reclaim while
2799 * committing a transaction where throttling it could forcing other
2800 * processes to block on log_wait_commit().
2802 if (current
->flags
& PF_KTHREAD
)
2806 * If a fatal signal is pending, this process should not throttle.
2807 * It should return quickly so it can exit and free its memory
2809 if (fatal_signal_pending(current
))
2813 * Check if the pfmemalloc reserves are ok by finding the first node
2814 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2815 * GFP_KERNEL will be required for allocating network buffers when
2816 * swapping over the network so ZONE_HIGHMEM is unusable.
2818 * Throttling is based on the first usable node and throttled processes
2819 * wait on a queue until kswapd makes progress and wakes them. There
2820 * is an affinity then between processes waking up and where reclaim
2821 * progress has been made assuming the process wakes on the same node.
2822 * More importantly, processes running on remote nodes will not compete
2823 * for remote pfmemalloc reserves and processes on different nodes
2824 * should make reasonable progress.
2826 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2827 gfp_zone(gfp_mask
), nodemask
) {
2828 if (zone_idx(zone
) > ZONE_NORMAL
)
2831 /* Throttle based on the first usable node */
2832 pgdat
= zone
->zone_pgdat
;
2833 if (pfmemalloc_watermark_ok(pgdat
))
2838 /* If no zone was usable by the allocation flags then do not throttle */
2842 /* Account for the throttling */
2843 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2846 * If the caller cannot enter the filesystem, it's possible that it
2847 * is due to the caller holding an FS lock or performing a journal
2848 * transaction in the case of a filesystem like ext[3|4]. In this case,
2849 * it is not safe to block on pfmemalloc_wait as kswapd could be
2850 * blocked waiting on the same lock. Instead, throttle for up to a
2851 * second before continuing.
2853 if (!(gfp_mask
& __GFP_FS
)) {
2854 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2855 pfmemalloc_watermark_ok(pgdat
), HZ
);
2860 /* Throttle until kswapd wakes the process */
2861 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2862 pfmemalloc_watermark_ok(pgdat
));
2865 if (fatal_signal_pending(current
))
2872 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2873 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2875 unsigned long nr_reclaimed
;
2876 struct scan_control sc
= {
2877 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2878 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2879 .reclaim_idx
= gfp_zone(gfp_mask
),
2881 .nodemask
= nodemask
,
2882 .priority
= DEF_PRIORITY
,
2883 .may_writepage
= !laptop_mode
,
2889 * Do not enter reclaim if fatal signal was delivered while throttled.
2890 * 1 is returned so that the page allocator does not OOM kill at this
2893 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2896 trace_mm_vmscan_direct_reclaim_begin(order
,
2900 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2902 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2904 return nr_reclaimed
;
2909 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2910 gfp_t gfp_mask
, bool noswap
,
2912 unsigned long *nr_scanned
)
2914 struct scan_control sc
= {
2915 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2916 .target_mem_cgroup
= memcg
,
2917 .may_writepage
= !laptop_mode
,
2919 .reclaim_idx
= MAX_NR_ZONES
- 1,
2920 .may_swap
= !noswap
,
2922 unsigned long lru_pages
;
2924 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2925 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2927 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2932 * NOTE: Although we can get the priority field, using it
2933 * here is not a good idea, since it limits the pages we can scan.
2934 * if we don't reclaim here, the shrink_zone from balance_pgdat
2935 * will pick up pages from other mem cgroup's as well. We hack
2936 * the priority and make it zero.
2938 shrink_zone_memcg(zone
, memcg
, &sc
, &lru_pages
);
2940 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2942 *nr_scanned
= sc
.nr_scanned
;
2943 return sc
.nr_reclaimed
;
2946 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2947 unsigned long nr_pages
,
2951 struct zonelist
*zonelist
;
2952 unsigned long nr_reclaimed
;
2954 struct scan_control sc
= {
2955 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
2956 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2957 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2958 .reclaim_idx
= MAX_NR_ZONES
- 1,
2959 .target_mem_cgroup
= memcg
,
2960 .priority
= DEF_PRIORITY
,
2961 .may_writepage
= !laptop_mode
,
2963 .may_swap
= may_swap
,
2967 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2968 * take care of from where we get pages. So the node where we start the
2969 * scan does not need to be the current node.
2971 nid
= mem_cgroup_select_victim_node(memcg
);
2973 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2975 trace_mm_vmscan_memcg_reclaim_begin(0,
2979 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2981 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2983 return nr_reclaimed
;
2987 static void age_active_anon(struct pglist_data
*pgdat
,
2988 struct zone
*zone
, struct scan_control
*sc
)
2990 struct mem_cgroup
*memcg
;
2992 if (!total_swap_pages
)
2995 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2997 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2999 if (inactive_list_is_low(lruvec
, false))
3000 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3001 sc
, LRU_ACTIVE_ANON
);
3003 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3007 static bool zone_balanced(struct zone
*zone
, int order
, int classzone_idx
)
3009 unsigned long mark
= high_wmark_pages(zone
);
3011 return zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
);
3015 * Prepare kswapd for sleeping. This verifies that there are no processes
3016 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3018 * Returns true if kswapd is ready to sleep
3020 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
3025 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3030 * The throttled processes are normally woken up in balance_pgdat() as
3031 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3032 * race between when kswapd checks the watermarks and a process gets
3033 * throttled. There is also a potential race if processes get
3034 * throttled, kswapd wakes, a large process exits thereby balancing the
3035 * zones, which causes kswapd to exit balance_pgdat() before reaching
3036 * the wake up checks. If kswapd is going to sleep, no process should
3037 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3038 * the wake up is premature, processes will wake kswapd and get
3039 * throttled again. The difference from wake ups in balance_pgdat() is
3040 * that here we are under prepare_to_wait().
3042 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3043 wake_up_all(&pgdat
->pfmemalloc_wait
);
3045 for (i
= 0; i
<= classzone_idx
; i
++) {
3046 struct zone
*zone
= pgdat
->node_zones
+ i
;
3048 if (!populated_zone(zone
))
3051 if (!zone_balanced(zone
, order
, classzone_idx
))
3059 * kswapd shrinks a node of pages that are at or below the highest usable
3060 * zone that is currently unbalanced.
3062 * Returns true if kswapd scanned at least the requested number of pages to
3063 * reclaim or if the lack of progress was due to pages under writeback.
3064 * This is used to determine if the scanning priority needs to be raised.
3066 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3068 struct scan_control
*sc
)
3073 /* Reclaim a number of pages proportional to the number of zones */
3074 sc
->nr_to_reclaim
= 0;
3075 for (z
= 0; z
<= classzone_idx
; z
++) {
3076 zone
= pgdat
->node_zones
+ z
;
3077 if (!populated_zone(zone
))
3080 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3084 * Historically care was taken to put equal pressure on all zones but
3085 * now pressure is applied based on node LRU order.
3087 shrink_node(pgdat
, sc
, classzone_idx
);
3090 * Fragmentation may mean that the system cannot be rebalanced for
3091 * high-order allocations. If twice the allocation size has been
3092 * reclaimed then recheck watermarks only at order-0 to prevent
3093 * excessive reclaim. Assume that a process requested a high-order
3094 * can direct reclaim/compact.
3096 if (sc
->order
&& sc
->nr_reclaimed
>= 2UL << sc
->order
)
3099 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3103 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3104 * that are eligible for use by the caller until at least one zone is
3107 * Returns the order kswapd finished reclaiming at.
3109 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3110 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3111 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3112 * or lower is eligible for reclaim until at least one usable zone is
3115 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3118 unsigned long nr_soft_reclaimed
;
3119 unsigned long nr_soft_scanned
;
3121 struct scan_control sc
= {
3122 .gfp_mask
= GFP_KERNEL
,
3124 .priority
= DEF_PRIORITY
,
3125 .may_writepage
= !laptop_mode
,
3128 .reclaim_idx
= classzone_idx
,
3130 count_vm_event(PAGEOUTRUN
);
3133 bool raise_priority
= true;
3135 sc
.nr_reclaimed
= 0;
3137 /* Scan from the highest requested zone to dma */
3138 for (i
= classzone_idx
; i
>= 0; i
--) {
3139 zone
= pgdat
->node_zones
+ i
;
3140 if (!populated_zone(zone
))
3144 * If the number of buffer_heads in the machine
3145 * exceeds the maximum allowed level and this node
3146 * has a highmem zone, force kswapd to reclaim from
3147 * it to relieve lowmem pressure.
3149 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
3154 if (!zone_balanced(zone
, order
, 0)) {
3159 * If any eligible zone is balanced then the
3160 * node is not considered congested or dirty.
3162 clear_bit(PGDAT_CONGESTED
, &zone
->zone_pgdat
->flags
);
3163 clear_bit(PGDAT_DIRTY
, &zone
->zone_pgdat
->flags
);
3171 * Do some background aging of the anon list, to give
3172 * pages a chance to be referenced before reclaiming. All
3173 * pages are rotated regardless of classzone as this is
3174 * about consistent aging.
3176 age_active_anon(pgdat
, &pgdat
->node_zones
[MAX_NR_ZONES
- 1], &sc
);
3179 * If we're getting trouble reclaiming, start doing writepage
3180 * even in laptop mode.
3182 if (sc
.priority
< DEF_PRIORITY
- 2 || !pgdat_reclaimable(pgdat
))
3183 sc
.may_writepage
= 1;
3185 /* Call soft limit reclaim before calling shrink_node. */
3187 nr_soft_scanned
= 0;
3188 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
, sc
.order
,
3189 sc
.gfp_mask
, &nr_soft_scanned
);
3190 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3193 * There should be no need to raise the scanning priority if
3194 * enough pages are already being scanned that that high
3195 * watermark would be met at 100% efficiency.
3197 if (kswapd_shrink_node(pgdat
, classzone_idx
, &sc
))
3198 raise_priority
= false;
3201 * If the low watermark is met there is no need for processes
3202 * to be throttled on pfmemalloc_wait as they should not be
3203 * able to safely make forward progress. Wake them
3205 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3206 pfmemalloc_watermark_ok(pgdat
))
3207 wake_up_all(&pgdat
->pfmemalloc_wait
);
3209 /* Check if kswapd should be suspending */
3210 if (try_to_freeze() || kthread_should_stop())
3214 * Stop reclaiming if any eligible zone is balanced and clear
3215 * node writeback or congested.
3217 for (i
= 0; i
<= classzone_idx
; i
++) {
3218 zone
= pgdat
->node_zones
+ i
;
3219 if (!populated_zone(zone
))
3222 if (zone_balanced(zone
, sc
.order
, classzone_idx
)) {
3223 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3224 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3230 * Raise priority if scanning rate is too low or there was no
3231 * progress in reclaiming pages
3233 if (raise_priority
|| !sc
.nr_reclaimed
)
3235 } while (sc
.priority
>= 1);
3239 * Return the order kswapd stopped reclaiming at as
3240 * prepare_kswapd_sleep() takes it into account. If another caller
3241 * entered the allocator slow path while kswapd was awake, order will
3242 * remain at the higher level.
3247 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3248 unsigned int classzone_idx
)
3253 if (freezing(current
) || kthread_should_stop())
3256 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3258 /* Try to sleep for a short interval */
3259 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, remaining
, classzone_idx
)) {
3261 * Compaction records what page blocks it recently failed to
3262 * isolate pages from and skips them in the future scanning.
3263 * When kswapd is going to sleep, it is reasonable to assume
3264 * that pages and compaction may succeed so reset the cache.
3266 reset_isolation_suitable(pgdat
);
3269 * We have freed the memory, now we should compact it to make
3270 * allocation of the requested order possible.
3272 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3274 remaining
= schedule_timeout(HZ
/10);
3277 * If woken prematurely then reset kswapd_classzone_idx and
3278 * order. The values will either be from a wakeup request or
3279 * the previous request that slept prematurely.
3282 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3283 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3286 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3287 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3291 * After a short sleep, check if it was a premature sleep. If not, then
3292 * go fully to sleep until explicitly woken up.
3294 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, remaining
, classzone_idx
)) {
3295 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3298 * vmstat counters are not perfectly accurate and the estimated
3299 * value for counters such as NR_FREE_PAGES can deviate from the
3300 * true value by nr_online_cpus * threshold. To avoid the zone
3301 * watermarks being breached while under pressure, we reduce the
3302 * per-cpu vmstat threshold while kswapd is awake and restore
3303 * them before going back to sleep.
3305 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3307 if (!kthread_should_stop())
3310 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3313 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3315 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3317 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3321 * The background pageout daemon, started as a kernel thread
3322 * from the init process.
3324 * This basically trickles out pages so that we have _some_
3325 * free memory available even if there is no other activity
3326 * that frees anything up. This is needed for things like routing
3327 * etc, where we otherwise might have all activity going on in
3328 * asynchronous contexts that cannot page things out.
3330 * If there are applications that are active memory-allocators
3331 * (most normal use), this basically shouldn't matter.
3333 static int kswapd(void *p
)
3335 unsigned int alloc_order
, reclaim_order
, classzone_idx
;
3336 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3337 struct task_struct
*tsk
= current
;
3339 struct reclaim_state reclaim_state
= {
3340 .reclaimed_slab
= 0,
3342 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3344 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3346 if (!cpumask_empty(cpumask
))
3347 set_cpus_allowed_ptr(tsk
, cpumask
);
3348 current
->reclaim_state
= &reclaim_state
;
3351 * Tell the memory management that we're a "memory allocator",
3352 * and that if we need more memory we should get access to it
3353 * regardless (see "__alloc_pages()"). "kswapd" should
3354 * never get caught in the normal page freeing logic.
3356 * (Kswapd normally doesn't need memory anyway, but sometimes
3357 * you need a small amount of memory in order to be able to
3358 * page out something else, and this flag essentially protects
3359 * us from recursively trying to free more memory as we're
3360 * trying to free the first piece of memory in the first place).
3362 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3365 pgdat
->kswapd_order
= alloc_order
= reclaim_order
= 0;
3366 pgdat
->kswapd_classzone_idx
= classzone_idx
= 0;
3371 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3374 /* Read the new order and classzone_idx */
3375 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3376 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3377 pgdat
->kswapd_order
= 0;
3378 pgdat
->kswapd_classzone_idx
= 0;
3380 ret
= try_to_freeze();
3381 if (kthread_should_stop())
3385 * We can speed up thawing tasks if we don't call balance_pgdat
3386 * after returning from the refrigerator
3392 * Reclaim begins at the requested order but if a high-order
3393 * reclaim fails then kswapd falls back to reclaiming for
3394 * order-0. If that happens, kswapd will consider sleeping
3395 * for the order it finished reclaiming at (reclaim_order)
3396 * but kcompactd is woken to compact for the original
3397 * request (alloc_order).
3399 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, alloc_order
);
3400 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3401 if (reclaim_order
< alloc_order
)
3402 goto kswapd_try_sleep
;
3404 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3405 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3408 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3409 current
->reclaim_state
= NULL
;
3410 lockdep_clear_current_reclaim_state();
3416 * A zone is low on free memory, so wake its kswapd task to service it.
3418 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3422 if (!populated_zone(zone
))
3425 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3427 pgdat
= zone
->zone_pgdat
;
3428 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3429 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3430 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3432 if (zone_balanced(zone
, order
, 0))
3435 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3436 wake_up_interruptible(&pgdat
->kswapd_wait
);
3439 #ifdef CONFIG_HIBERNATION
3441 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3444 * Rather than trying to age LRUs the aim is to preserve the overall
3445 * LRU order by reclaiming preferentially
3446 * inactive > active > active referenced > active mapped
3448 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3450 struct reclaim_state reclaim_state
;
3451 struct scan_control sc
= {
3452 .nr_to_reclaim
= nr_to_reclaim
,
3453 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3454 .reclaim_idx
= MAX_NR_ZONES
- 1,
3455 .priority
= DEF_PRIORITY
,
3459 .hibernation_mode
= 1,
3461 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3462 struct task_struct
*p
= current
;
3463 unsigned long nr_reclaimed
;
3465 p
->flags
|= PF_MEMALLOC
;
3466 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3467 reclaim_state
.reclaimed_slab
= 0;
3468 p
->reclaim_state
= &reclaim_state
;
3470 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3472 p
->reclaim_state
= NULL
;
3473 lockdep_clear_current_reclaim_state();
3474 p
->flags
&= ~PF_MEMALLOC
;
3476 return nr_reclaimed
;
3478 #endif /* CONFIG_HIBERNATION */
3480 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3481 not required for correctness. So if the last cpu in a node goes
3482 away, we get changed to run anywhere: as the first one comes back,
3483 restore their cpu bindings. */
3484 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3489 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3490 for_each_node_state(nid
, N_MEMORY
) {
3491 pg_data_t
*pgdat
= NODE_DATA(nid
);
3492 const struct cpumask
*mask
;
3494 mask
= cpumask_of_node(pgdat
->node_id
);
3496 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3497 /* One of our CPUs online: restore mask */
3498 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3505 * This kswapd start function will be called by init and node-hot-add.
3506 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3508 int kswapd_run(int nid
)
3510 pg_data_t
*pgdat
= NODE_DATA(nid
);
3516 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3517 if (IS_ERR(pgdat
->kswapd
)) {
3518 /* failure at boot is fatal */
3519 BUG_ON(system_state
== SYSTEM_BOOTING
);
3520 pr_err("Failed to start kswapd on node %d\n", nid
);
3521 ret
= PTR_ERR(pgdat
->kswapd
);
3522 pgdat
->kswapd
= NULL
;
3528 * Called by memory hotplug when all memory in a node is offlined. Caller must
3529 * hold mem_hotplug_begin/end().
3531 void kswapd_stop(int nid
)
3533 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3536 kthread_stop(kswapd
);
3537 NODE_DATA(nid
)->kswapd
= NULL
;
3541 static int __init
kswapd_init(void)
3546 for_each_node_state(nid
, N_MEMORY
)
3548 hotcpu_notifier(cpu_callback
, 0);
3552 module_init(kswapd_init
)
3558 * If non-zero call zone_reclaim when the number of free pages falls below
3561 int zone_reclaim_mode __read_mostly
;
3563 #define RECLAIM_OFF 0
3564 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3565 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3566 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3569 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3570 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3573 #define ZONE_RECLAIM_PRIORITY 4
3576 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3579 int sysctl_min_unmapped_ratio
= 1;
3582 * If the number of slab pages in a zone grows beyond this percentage then
3583 * slab reclaim needs to occur.
3585 int sysctl_min_slab_ratio
= 5;
3587 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3589 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3590 unsigned long file_lru
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
) +
3591 node_page_state(zone
->zone_pgdat
, NR_ACTIVE_FILE
);
3594 * It's possible for there to be more file mapped pages than
3595 * accounted for by the pages on the file LRU lists because
3596 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3598 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3601 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3602 static unsigned long zone_pagecache_reclaimable(struct zone
*zone
)
3604 unsigned long nr_pagecache_reclaimable
;
3605 unsigned long delta
= 0;
3608 * If RECLAIM_UNMAP is set, then all file pages are considered
3609 * potentially reclaimable. Otherwise, we have to worry about
3610 * pages like swapcache and zone_unmapped_file_pages() provides
3613 if (zone_reclaim_mode
& RECLAIM_UNMAP
)
3614 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3616 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3618 /* If we can't clean pages, remove dirty pages from consideration */
3619 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3620 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3622 /* Watch for any possible underflows due to delta */
3623 if (unlikely(delta
> nr_pagecache_reclaimable
))
3624 delta
= nr_pagecache_reclaimable
;
3626 return nr_pagecache_reclaimable
- delta
;
3630 * Try to free up some pages from this zone through reclaim.
3632 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3634 /* Minimum pages needed in order to stay on node */
3635 const unsigned long nr_pages
= 1 << order
;
3636 struct task_struct
*p
= current
;
3637 struct reclaim_state reclaim_state
;
3638 struct scan_control sc
= {
3639 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3640 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3642 .priority
= ZONE_RECLAIM_PRIORITY
,
3643 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3644 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_UNMAP
),
3646 .reclaim_idx
= zone_idx(zone
),
3651 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3652 * and we also need to be able to write out pages for RECLAIM_WRITE
3653 * and RECLAIM_UNMAP.
3655 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3656 lockdep_set_current_reclaim_state(gfp_mask
);
3657 reclaim_state
.reclaimed_slab
= 0;
3658 p
->reclaim_state
= &reclaim_state
;
3660 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3662 * Free memory by calling shrink zone with increasing
3663 * priorities until we have enough memory freed.
3666 shrink_node(zone
->zone_pgdat
, &sc
, zone_idx(zone
));
3667 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3670 p
->reclaim_state
= NULL
;
3671 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3672 lockdep_clear_current_reclaim_state();
3673 return sc
.nr_reclaimed
>= nr_pages
;
3676 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3682 * Zone reclaim reclaims unmapped file backed pages and
3683 * slab pages if we are over the defined limits.
3685 * A small portion of unmapped file backed pages is needed for
3686 * file I/O otherwise pages read by file I/O will be immediately
3687 * thrown out if the zone is overallocated. So we do not reclaim
3688 * if less than a specified percentage of the zone is used by
3689 * unmapped file backed pages.
3691 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3692 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3693 return ZONE_RECLAIM_FULL
;
3695 if (!pgdat_reclaimable(zone
->zone_pgdat
))
3696 return ZONE_RECLAIM_FULL
;
3699 * Do not scan if the allocation should not be delayed.
3701 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3702 return ZONE_RECLAIM_NOSCAN
;
3705 * Only run zone reclaim on the local zone or on zones that do not
3706 * have associated processors. This will favor the local processor
3707 * over remote processors and spread off node memory allocations
3708 * as wide as possible.
3710 node_id
= zone_to_nid(zone
);
3711 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3712 return ZONE_RECLAIM_NOSCAN
;
3714 if (test_and_set_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
))
3715 return ZONE_RECLAIM_NOSCAN
;
3717 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3718 clear_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
3721 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3728 * page_evictable - test whether a page is evictable
3729 * @page: the page to test
3731 * Test whether page is evictable--i.e., should be placed on active/inactive
3732 * lists vs unevictable list.
3734 * Reasons page might not be evictable:
3735 * (1) page's mapping marked unevictable
3736 * (2) page is part of an mlocked VMA
3739 int page_evictable(struct page
*page
)
3741 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3746 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3747 * @pages: array of pages to check
3748 * @nr_pages: number of pages to check
3750 * Checks pages for evictability and moves them to the appropriate lru list.
3752 * This function is only used for SysV IPC SHM_UNLOCK.
3754 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3756 struct lruvec
*lruvec
;
3757 struct zone
*zone
= NULL
;
3762 for (i
= 0; i
< nr_pages
; i
++) {
3763 struct page
*page
= pages
[i
];
3764 struct zone
*pagezone
;
3767 pagezone
= page_zone(page
);
3768 if (pagezone
!= zone
) {
3770 spin_unlock_irq(zone_lru_lock(zone
));
3772 spin_lock_irq(zone_lru_lock(zone
));
3774 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
3776 if (!PageLRU(page
) || !PageUnevictable(page
))
3779 if (page_evictable(page
)) {
3780 enum lru_list lru
= page_lru_base_type(page
);
3782 VM_BUG_ON_PAGE(PageActive(page
), page
);
3783 ClearPageUnevictable(page
);
3784 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3785 add_page_to_lru_list(page
, lruvec
, lru
);
3791 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3792 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3793 spin_unlock_irq(zone_lru_lock(zone
));
3796 #endif /* CONFIG_SHMEM */