]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
mm/vmscan.c: replace printk with pr_err
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
104 };
105
106 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108 #ifdef ARCH_HAS_PREFETCH
109 #define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118 #else
119 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
121
122 #ifdef ARCH_HAS_PREFETCHW
123 #define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132 #else
133 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135
136 /*
137 * From 0 .. 100. Higher means more swappy.
138 */
139 int vm_swappiness = 60;
140 /*
141 * The total number of pages which are beyond the high watermark within all
142 * zones.
143 */
144 unsigned long vm_total_pages;
145
146 static LIST_HEAD(shrinker_list);
147 static DECLARE_RWSEM(shrinker_rwsem);
148
149 #ifdef CONFIG_MEMCG
150 static bool global_reclaim(struct scan_control *sc)
151 {
152 return !sc->target_mem_cgroup;
153 }
154 #else
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 return true;
158 }
159 #endif
160
161 static unsigned long zone_reclaimable_pages(struct zone *zone)
162 {
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173 }
174
175 bool zone_reclaimable(struct zone *zone)
176 {
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
179 }
180
181 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
182 {
183 if (!mem_cgroup_disabled())
184 return mem_cgroup_get_lru_size(lruvec, lru);
185
186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
187 }
188
189 /*
190 * Add a shrinker callback to be called from the vm.
191 */
192 int register_shrinker(struct shrinker *shrinker)
193 {
194 size_t size = sizeof(*shrinker->nr_deferred);
195
196 /*
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
200 */
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 size *= nr_node_ids;
206
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
209 return -ENOMEM;
210
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
214 return 0;
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219 * Remove one
220 */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 kfree(shrinker->nr_deferred);
227 }
228 EXPORT_SYMBOL(unregister_shrinker);
229
230 #define SHRINK_BATCH 128
231
232 static unsigned long
233 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
234 unsigned long nr_pages_scanned, unsigned long lru_pages)
235 {
236 unsigned long freed = 0;
237 unsigned long long delta;
238 long total_scan;
239 long freeable;
240 long nr;
241 long new_nr;
242 int nid = shrinkctl->nid;
243 long batch_size = shrinker->batch ? shrinker->batch
244 : SHRINK_BATCH;
245
246 freeable = shrinker->count_objects(shrinker, shrinkctl);
247 if (freeable == 0)
248 return 0;
249
250 /*
251 * copy the current shrinker scan count into a local variable
252 * and zero it so that other concurrent shrinker invocations
253 * don't also do this scanning work.
254 */
255 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
256
257 total_scan = nr;
258 delta = (4 * nr_pages_scanned) / shrinker->seeks;
259 delta *= freeable;
260 do_div(delta, lru_pages + 1);
261 total_scan += delta;
262 if (total_scan < 0) {
263 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
264 shrinker->scan_objects, total_scan);
265 total_scan = freeable;
266 }
267
268 /*
269 * We need to avoid excessive windup on filesystem shrinkers
270 * due to large numbers of GFP_NOFS allocations causing the
271 * shrinkers to return -1 all the time. This results in a large
272 * nr being built up so when a shrink that can do some work
273 * comes along it empties the entire cache due to nr >>>
274 * freeable. This is bad for sustaining a working set in
275 * memory.
276 *
277 * Hence only allow the shrinker to scan the entire cache when
278 * a large delta change is calculated directly.
279 */
280 if (delta < freeable / 4)
281 total_scan = min(total_scan, freeable / 2);
282
283 /*
284 * Avoid risking looping forever due to too large nr value:
285 * never try to free more than twice the estimate number of
286 * freeable entries.
287 */
288 if (total_scan > freeable * 2)
289 total_scan = freeable * 2;
290
291 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
292 nr_pages_scanned, lru_pages,
293 freeable, delta, total_scan);
294
295 /*
296 * Normally, we should not scan less than batch_size objects in one
297 * pass to avoid too frequent shrinker calls, but if the slab has less
298 * than batch_size objects in total and we are really tight on memory,
299 * we will try to reclaim all available objects, otherwise we can end
300 * up failing allocations although there are plenty of reclaimable
301 * objects spread over several slabs with usage less than the
302 * batch_size.
303 *
304 * We detect the "tight on memory" situations by looking at the total
305 * number of objects we want to scan (total_scan). If it is greater
306 * than the total number of objects on slab (freeable), we must be
307 * scanning at high prio and therefore should try to reclaim as much as
308 * possible.
309 */
310 while (total_scan >= batch_size ||
311 total_scan >= freeable) {
312 unsigned long ret;
313 unsigned long nr_to_scan = min(batch_size, total_scan);
314
315 shrinkctl->nr_to_scan = nr_to_scan;
316 ret = shrinker->scan_objects(shrinker, shrinkctl);
317 if (ret == SHRINK_STOP)
318 break;
319 freed += ret;
320
321 count_vm_events(SLABS_SCANNED, nr_to_scan);
322 total_scan -= nr_to_scan;
323
324 cond_resched();
325 }
326
327 /*
328 * move the unused scan count back into the shrinker in a
329 * manner that handles concurrent updates. If we exhausted the
330 * scan, there is no need to do an update.
331 */
332 if (total_scan > 0)
333 new_nr = atomic_long_add_return(total_scan,
334 &shrinker->nr_deferred[nid]);
335 else
336 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
337
338 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
339 return freed;
340 }
341
342 /*
343 * Call the shrink functions to age shrinkable caches
344 *
345 * Here we assume it costs one seek to replace a lru page and that it also
346 * takes a seek to recreate a cache object. With this in mind we age equal
347 * percentages of the lru and ageable caches. This should balance the seeks
348 * generated by these structures.
349 *
350 * If the vm encountered mapped pages on the LRU it increase the pressure on
351 * slab to avoid swapping.
352 *
353 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
354 *
355 * `lru_pages' represents the number of on-LRU pages in all the zones which
356 * are eligible for the caller's allocation attempt. It is used for balancing
357 * slab reclaim versus page reclaim.
358 *
359 * Returns the number of slab objects which we shrunk.
360 */
361 unsigned long shrink_slab(struct shrink_control *shrinkctl,
362 unsigned long nr_pages_scanned,
363 unsigned long lru_pages)
364 {
365 struct shrinker *shrinker;
366 unsigned long freed = 0;
367
368 if (nr_pages_scanned == 0)
369 nr_pages_scanned = SWAP_CLUSTER_MAX;
370
371 if (!down_read_trylock(&shrinker_rwsem)) {
372 /*
373 * If we would return 0, our callers would understand that we
374 * have nothing else to shrink and give up trying. By returning
375 * 1 we keep it going and assume we'll be able to shrink next
376 * time.
377 */
378 freed = 1;
379 goto out;
380 }
381
382 list_for_each_entry(shrinker, &shrinker_list, list) {
383 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
384 shrinkctl->nid = 0;
385 freed += shrink_slab_node(shrinkctl, shrinker,
386 nr_pages_scanned, lru_pages);
387 continue;
388 }
389
390 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
391 if (node_online(shrinkctl->nid))
392 freed += shrink_slab_node(shrinkctl, shrinker,
393 nr_pages_scanned, lru_pages);
394
395 }
396 }
397 up_read(&shrinker_rwsem);
398 out:
399 cond_resched();
400 return freed;
401 }
402
403 static inline int is_page_cache_freeable(struct page *page)
404 {
405 /*
406 * A freeable page cache page is referenced only by the caller
407 * that isolated the page, the page cache radix tree and
408 * optional buffer heads at page->private.
409 */
410 return page_count(page) - page_has_private(page) == 2;
411 }
412
413 static int may_write_to_queue(struct backing_dev_info *bdi,
414 struct scan_control *sc)
415 {
416 if (current->flags & PF_SWAPWRITE)
417 return 1;
418 if (!bdi_write_congested(bdi))
419 return 1;
420 if (bdi == current->backing_dev_info)
421 return 1;
422 return 0;
423 }
424
425 /*
426 * We detected a synchronous write error writing a page out. Probably
427 * -ENOSPC. We need to propagate that into the address_space for a subsequent
428 * fsync(), msync() or close().
429 *
430 * The tricky part is that after writepage we cannot touch the mapping: nothing
431 * prevents it from being freed up. But we have a ref on the page and once
432 * that page is locked, the mapping is pinned.
433 *
434 * We're allowed to run sleeping lock_page() here because we know the caller has
435 * __GFP_FS.
436 */
437 static void handle_write_error(struct address_space *mapping,
438 struct page *page, int error)
439 {
440 lock_page(page);
441 if (page_mapping(page) == mapping)
442 mapping_set_error(mapping, error);
443 unlock_page(page);
444 }
445
446 /* possible outcome of pageout() */
447 typedef enum {
448 /* failed to write page out, page is locked */
449 PAGE_KEEP,
450 /* move page to the active list, page is locked */
451 PAGE_ACTIVATE,
452 /* page has been sent to the disk successfully, page is unlocked */
453 PAGE_SUCCESS,
454 /* page is clean and locked */
455 PAGE_CLEAN,
456 } pageout_t;
457
458 /*
459 * pageout is called by shrink_page_list() for each dirty page.
460 * Calls ->writepage().
461 */
462 static pageout_t pageout(struct page *page, struct address_space *mapping,
463 struct scan_control *sc)
464 {
465 /*
466 * If the page is dirty, only perform writeback if that write
467 * will be non-blocking. To prevent this allocation from being
468 * stalled by pagecache activity. But note that there may be
469 * stalls if we need to run get_block(). We could test
470 * PagePrivate for that.
471 *
472 * If this process is currently in __generic_file_write_iter() against
473 * this page's queue, we can perform writeback even if that
474 * will block.
475 *
476 * If the page is swapcache, write it back even if that would
477 * block, for some throttling. This happens by accident, because
478 * swap_backing_dev_info is bust: it doesn't reflect the
479 * congestion state of the swapdevs. Easy to fix, if needed.
480 */
481 if (!is_page_cache_freeable(page))
482 return PAGE_KEEP;
483 if (!mapping) {
484 /*
485 * Some data journaling orphaned pages can have
486 * page->mapping == NULL while being dirty with clean buffers.
487 */
488 if (page_has_private(page)) {
489 if (try_to_free_buffers(page)) {
490 ClearPageDirty(page);
491 pr_info("%s: orphaned page\n", __func__);
492 return PAGE_CLEAN;
493 }
494 }
495 return PAGE_KEEP;
496 }
497 if (mapping->a_ops->writepage == NULL)
498 return PAGE_ACTIVATE;
499 if (!may_write_to_queue(mapping->backing_dev_info, sc))
500 return PAGE_KEEP;
501
502 if (clear_page_dirty_for_io(page)) {
503 int res;
504 struct writeback_control wbc = {
505 .sync_mode = WB_SYNC_NONE,
506 .nr_to_write = SWAP_CLUSTER_MAX,
507 .range_start = 0,
508 .range_end = LLONG_MAX,
509 .for_reclaim = 1,
510 };
511
512 SetPageReclaim(page);
513 res = mapping->a_ops->writepage(page, &wbc);
514 if (res < 0)
515 handle_write_error(mapping, page, res);
516 if (res == AOP_WRITEPAGE_ACTIVATE) {
517 ClearPageReclaim(page);
518 return PAGE_ACTIVATE;
519 }
520
521 if (!PageWriteback(page)) {
522 /* synchronous write or broken a_ops? */
523 ClearPageReclaim(page);
524 }
525 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
526 inc_zone_page_state(page, NR_VMSCAN_WRITE);
527 return PAGE_SUCCESS;
528 }
529
530 return PAGE_CLEAN;
531 }
532
533 /*
534 * Same as remove_mapping, but if the page is removed from the mapping, it
535 * gets returned with a refcount of 0.
536 */
537 static int __remove_mapping(struct address_space *mapping, struct page *page,
538 bool reclaimed)
539 {
540 BUG_ON(!PageLocked(page));
541 BUG_ON(mapping != page_mapping(page));
542
543 spin_lock_irq(&mapping->tree_lock);
544 /*
545 * The non racy check for a busy page.
546 *
547 * Must be careful with the order of the tests. When someone has
548 * a ref to the page, it may be possible that they dirty it then
549 * drop the reference. So if PageDirty is tested before page_count
550 * here, then the following race may occur:
551 *
552 * get_user_pages(&page);
553 * [user mapping goes away]
554 * write_to(page);
555 * !PageDirty(page) [good]
556 * SetPageDirty(page);
557 * put_page(page);
558 * !page_count(page) [good, discard it]
559 *
560 * [oops, our write_to data is lost]
561 *
562 * Reversing the order of the tests ensures such a situation cannot
563 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
564 * load is not satisfied before that of page->_count.
565 *
566 * Note that if SetPageDirty is always performed via set_page_dirty,
567 * and thus under tree_lock, then this ordering is not required.
568 */
569 if (!page_freeze_refs(page, 2))
570 goto cannot_free;
571 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
572 if (unlikely(PageDirty(page))) {
573 page_unfreeze_refs(page, 2);
574 goto cannot_free;
575 }
576
577 if (PageSwapCache(page)) {
578 swp_entry_t swap = { .val = page_private(page) };
579 mem_cgroup_swapout(page, swap);
580 __delete_from_swap_cache(page);
581 spin_unlock_irq(&mapping->tree_lock);
582 swapcache_free(swap);
583 } else {
584 void (*freepage)(struct page *);
585 void *shadow = NULL;
586
587 freepage = mapping->a_ops->freepage;
588 /*
589 * Remember a shadow entry for reclaimed file cache in
590 * order to detect refaults, thus thrashing, later on.
591 *
592 * But don't store shadows in an address space that is
593 * already exiting. This is not just an optizimation,
594 * inode reclaim needs to empty out the radix tree or
595 * the nodes are lost. Don't plant shadows behind its
596 * back.
597 */
598 if (reclaimed && page_is_file_cache(page) &&
599 !mapping_exiting(mapping))
600 shadow = workingset_eviction(mapping, page);
601 __delete_from_page_cache(page, shadow);
602 spin_unlock_irq(&mapping->tree_lock);
603
604 if (freepage != NULL)
605 freepage(page);
606 }
607
608 return 1;
609
610 cannot_free:
611 spin_unlock_irq(&mapping->tree_lock);
612 return 0;
613 }
614
615 /*
616 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
617 * someone else has a ref on the page, abort and return 0. If it was
618 * successfully detached, return 1. Assumes the caller has a single ref on
619 * this page.
620 */
621 int remove_mapping(struct address_space *mapping, struct page *page)
622 {
623 if (__remove_mapping(mapping, page, false)) {
624 /*
625 * Unfreezing the refcount with 1 rather than 2 effectively
626 * drops the pagecache ref for us without requiring another
627 * atomic operation.
628 */
629 page_unfreeze_refs(page, 1);
630 return 1;
631 }
632 return 0;
633 }
634
635 /**
636 * putback_lru_page - put previously isolated page onto appropriate LRU list
637 * @page: page to be put back to appropriate lru list
638 *
639 * Add previously isolated @page to appropriate LRU list.
640 * Page may still be unevictable for other reasons.
641 *
642 * lru_lock must not be held, interrupts must be enabled.
643 */
644 void putback_lru_page(struct page *page)
645 {
646 bool is_unevictable;
647 int was_unevictable = PageUnevictable(page);
648
649 VM_BUG_ON_PAGE(PageLRU(page), page);
650
651 redo:
652 ClearPageUnevictable(page);
653
654 if (page_evictable(page)) {
655 /*
656 * For evictable pages, we can use the cache.
657 * In event of a race, worst case is we end up with an
658 * unevictable page on [in]active list.
659 * We know how to handle that.
660 */
661 is_unevictable = false;
662 lru_cache_add(page);
663 } else {
664 /*
665 * Put unevictable pages directly on zone's unevictable
666 * list.
667 */
668 is_unevictable = true;
669 add_page_to_unevictable_list(page);
670 /*
671 * When racing with an mlock or AS_UNEVICTABLE clearing
672 * (page is unlocked) make sure that if the other thread
673 * does not observe our setting of PG_lru and fails
674 * isolation/check_move_unevictable_pages,
675 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
676 * the page back to the evictable list.
677 *
678 * The other side is TestClearPageMlocked() or shmem_lock().
679 */
680 smp_mb();
681 }
682
683 /*
684 * page's status can change while we move it among lru. If an evictable
685 * page is on unevictable list, it never be freed. To avoid that,
686 * check after we added it to the list, again.
687 */
688 if (is_unevictable && page_evictable(page)) {
689 if (!isolate_lru_page(page)) {
690 put_page(page);
691 goto redo;
692 }
693 /* This means someone else dropped this page from LRU
694 * So, it will be freed or putback to LRU again. There is
695 * nothing to do here.
696 */
697 }
698
699 if (was_unevictable && !is_unevictable)
700 count_vm_event(UNEVICTABLE_PGRESCUED);
701 else if (!was_unevictable && is_unevictable)
702 count_vm_event(UNEVICTABLE_PGCULLED);
703
704 put_page(page); /* drop ref from isolate */
705 }
706
707 enum page_references {
708 PAGEREF_RECLAIM,
709 PAGEREF_RECLAIM_CLEAN,
710 PAGEREF_KEEP,
711 PAGEREF_ACTIVATE,
712 };
713
714 static enum page_references page_check_references(struct page *page,
715 struct scan_control *sc)
716 {
717 int referenced_ptes, referenced_page;
718 unsigned long vm_flags;
719
720 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
721 &vm_flags);
722 referenced_page = TestClearPageReferenced(page);
723
724 /*
725 * Mlock lost the isolation race with us. Let try_to_unmap()
726 * move the page to the unevictable list.
727 */
728 if (vm_flags & VM_LOCKED)
729 return PAGEREF_RECLAIM;
730
731 if (referenced_ptes) {
732 if (PageSwapBacked(page))
733 return PAGEREF_ACTIVATE;
734 /*
735 * All mapped pages start out with page table
736 * references from the instantiating fault, so we need
737 * to look twice if a mapped file page is used more
738 * than once.
739 *
740 * Mark it and spare it for another trip around the
741 * inactive list. Another page table reference will
742 * lead to its activation.
743 *
744 * Note: the mark is set for activated pages as well
745 * so that recently deactivated but used pages are
746 * quickly recovered.
747 */
748 SetPageReferenced(page);
749
750 if (referenced_page || referenced_ptes > 1)
751 return PAGEREF_ACTIVATE;
752
753 /*
754 * Activate file-backed executable pages after first usage.
755 */
756 if (vm_flags & VM_EXEC)
757 return PAGEREF_ACTIVATE;
758
759 return PAGEREF_KEEP;
760 }
761
762 /* Reclaim if clean, defer dirty pages to writeback */
763 if (referenced_page && !PageSwapBacked(page))
764 return PAGEREF_RECLAIM_CLEAN;
765
766 return PAGEREF_RECLAIM;
767 }
768
769 /* Check if a page is dirty or under writeback */
770 static void page_check_dirty_writeback(struct page *page,
771 bool *dirty, bool *writeback)
772 {
773 struct address_space *mapping;
774
775 /*
776 * Anonymous pages are not handled by flushers and must be written
777 * from reclaim context. Do not stall reclaim based on them
778 */
779 if (!page_is_file_cache(page)) {
780 *dirty = false;
781 *writeback = false;
782 return;
783 }
784
785 /* By default assume that the page flags are accurate */
786 *dirty = PageDirty(page);
787 *writeback = PageWriteback(page);
788
789 /* Verify dirty/writeback state if the filesystem supports it */
790 if (!page_has_private(page))
791 return;
792
793 mapping = page_mapping(page);
794 if (mapping && mapping->a_ops->is_dirty_writeback)
795 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
796 }
797
798 /*
799 * shrink_page_list() returns the number of reclaimed pages
800 */
801 static unsigned long shrink_page_list(struct list_head *page_list,
802 struct zone *zone,
803 struct scan_control *sc,
804 enum ttu_flags ttu_flags,
805 unsigned long *ret_nr_dirty,
806 unsigned long *ret_nr_unqueued_dirty,
807 unsigned long *ret_nr_congested,
808 unsigned long *ret_nr_writeback,
809 unsigned long *ret_nr_immediate,
810 bool force_reclaim)
811 {
812 LIST_HEAD(ret_pages);
813 LIST_HEAD(free_pages);
814 int pgactivate = 0;
815 unsigned long nr_unqueued_dirty = 0;
816 unsigned long nr_dirty = 0;
817 unsigned long nr_congested = 0;
818 unsigned long nr_reclaimed = 0;
819 unsigned long nr_writeback = 0;
820 unsigned long nr_immediate = 0;
821
822 cond_resched();
823
824 while (!list_empty(page_list)) {
825 struct address_space *mapping;
826 struct page *page;
827 int may_enter_fs;
828 enum page_references references = PAGEREF_RECLAIM_CLEAN;
829 bool dirty, writeback;
830
831 cond_resched();
832
833 page = lru_to_page(page_list);
834 list_del(&page->lru);
835
836 if (!trylock_page(page))
837 goto keep;
838
839 VM_BUG_ON_PAGE(PageActive(page), page);
840 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
841
842 sc->nr_scanned++;
843
844 if (unlikely(!page_evictable(page)))
845 goto cull_mlocked;
846
847 if (!sc->may_unmap && page_mapped(page))
848 goto keep_locked;
849
850 /* Double the slab pressure for mapped and swapcache pages */
851 if (page_mapped(page) || PageSwapCache(page))
852 sc->nr_scanned++;
853
854 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
855 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
856
857 /*
858 * The number of dirty pages determines if a zone is marked
859 * reclaim_congested which affects wait_iff_congested. kswapd
860 * will stall and start writing pages if the tail of the LRU
861 * is all dirty unqueued pages.
862 */
863 page_check_dirty_writeback(page, &dirty, &writeback);
864 if (dirty || writeback)
865 nr_dirty++;
866
867 if (dirty && !writeback)
868 nr_unqueued_dirty++;
869
870 /*
871 * Treat this page as congested if the underlying BDI is or if
872 * pages are cycling through the LRU so quickly that the
873 * pages marked for immediate reclaim are making it to the
874 * end of the LRU a second time.
875 */
876 mapping = page_mapping(page);
877 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
878 (writeback && PageReclaim(page)))
879 nr_congested++;
880
881 /*
882 * If a page at the tail of the LRU is under writeback, there
883 * are three cases to consider.
884 *
885 * 1) If reclaim is encountering an excessive number of pages
886 * under writeback and this page is both under writeback and
887 * PageReclaim then it indicates that pages are being queued
888 * for IO but are being recycled through the LRU before the
889 * IO can complete. Waiting on the page itself risks an
890 * indefinite stall if it is impossible to writeback the
891 * page due to IO error or disconnected storage so instead
892 * note that the LRU is being scanned too quickly and the
893 * caller can stall after page list has been processed.
894 *
895 * 2) Global reclaim encounters a page, memcg encounters a
896 * page that is not marked for immediate reclaim or
897 * the caller does not have __GFP_IO. In this case mark
898 * the page for immediate reclaim and continue scanning.
899 *
900 * __GFP_IO is checked because a loop driver thread might
901 * enter reclaim, and deadlock if it waits on a page for
902 * which it is needed to do the write (loop masks off
903 * __GFP_IO|__GFP_FS for this reason); but more thought
904 * would probably show more reasons.
905 *
906 * Don't require __GFP_FS, since we're not going into the
907 * FS, just waiting on its writeback completion. Worryingly,
908 * ext4 gfs2 and xfs allocate pages with
909 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
910 * may_enter_fs here is liable to OOM on them.
911 *
912 * 3) memcg encounters a page that is not already marked
913 * PageReclaim. memcg does not have any dirty pages
914 * throttling so we could easily OOM just because too many
915 * pages are in writeback and there is nothing else to
916 * reclaim. Wait for the writeback to complete.
917 */
918 if (PageWriteback(page)) {
919 /* Case 1 above */
920 if (current_is_kswapd() &&
921 PageReclaim(page) &&
922 test_bit(ZONE_WRITEBACK, &zone->flags)) {
923 nr_immediate++;
924 goto keep_locked;
925
926 /* Case 2 above */
927 } else if (global_reclaim(sc) ||
928 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
929 /*
930 * This is slightly racy - end_page_writeback()
931 * might have just cleared PageReclaim, then
932 * setting PageReclaim here end up interpreted
933 * as PageReadahead - but that does not matter
934 * enough to care. What we do want is for this
935 * page to have PageReclaim set next time memcg
936 * reclaim reaches the tests above, so it will
937 * then wait_on_page_writeback() to avoid OOM;
938 * and it's also appropriate in global reclaim.
939 */
940 SetPageReclaim(page);
941 nr_writeback++;
942
943 goto keep_locked;
944
945 /* Case 3 above */
946 } else {
947 wait_on_page_writeback(page);
948 }
949 }
950
951 if (!force_reclaim)
952 references = page_check_references(page, sc);
953
954 switch (references) {
955 case PAGEREF_ACTIVATE:
956 goto activate_locked;
957 case PAGEREF_KEEP:
958 goto keep_locked;
959 case PAGEREF_RECLAIM:
960 case PAGEREF_RECLAIM_CLEAN:
961 ; /* try to reclaim the page below */
962 }
963
964 /*
965 * Anonymous process memory has backing store?
966 * Try to allocate it some swap space here.
967 */
968 if (PageAnon(page) && !PageSwapCache(page)) {
969 if (!(sc->gfp_mask & __GFP_IO))
970 goto keep_locked;
971 if (!add_to_swap(page, page_list))
972 goto activate_locked;
973 may_enter_fs = 1;
974
975 /* Adding to swap updated mapping */
976 mapping = page_mapping(page);
977 }
978
979 /*
980 * The page is mapped into the page tables of one or more
981 * processes. Try to unmap it here.
982 */
983 if (page_mapped(page) && mapping) {
984 switch (try_to_unmap(page, ttu_flags)) {
985 case SWAP_FAIL:
986 goto activate_locked;
987 case SWAP_AGAIN:
988 goto keep_locked;
989 case SWAP_MLOCK:
990 goto cull_mlocked;
991 case SWAP_SUCCESS:
992 ; /* try to free the page below */
993 }
994 }
995
996 if (PageDirty(page)) {
997 /*
998 * Only kswapd can writeback filesystem pages to
999 * avoid risk of stack overflow but only writeback
1000 * if many dirty pages have been encountered.
1001 */
1002 if (page_is_file_cache(page) &&
1003 (!current_is_kswapd() ||
1004 !test_bit(ZONE_DIRTY, &zone->flags))) {
1005 /*
1006 * Immediately reclaim when written back.
1007 * Similar in principal to deactivate_page()
1008 * except we already have the page isolated
1009 * and know it's dirty
1010 */
1011 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1012 SetPageReclaim(page);
1013
1014 goto keep_locked;
1015 }
1016
1017 if (references == PAGEREF_RECLAIM_CLEAN)
1018 goto keep_locked;
1019 if (!may_enter_fs)
1020 goto keep_locked;
1021 if (!sc->may_writepage)
1022 goto keep_locked;
1023
1024 /* Page is dirty, try to write it out here */
1025 switch (pageout(page, mapping, sc)) {
1026 case PAGE_KEEP:
1027 goto keep_locked;
1028 case PAGE_ACTIVATE:
1029 goto activate_locked;
1030 case PAGE_SUCCESS:
1031 if (PageWriteback(page))
1032 goto keep;
1033 if (PageDirty(page))
1034 goto keep;
1035
1036 /*
1037 * A synchronous write - probably a ramdisk. Go
1038 * ahead and try to reclaim the page.
1039 */
1040 if (!trylock_page(page))
1041 goto keep;
1042 if (PageDirty(page) || PageWriteback(page))
1043 goto keep_locked;
1044 mapping = page_mapping(page);
1045 case PAGE_CLEAN:
1046 ; /* try to free the page below */
1047 }
1048 }
1049
1050 /*
1051 * If the page has buffers, try to free the buffer mappings
1052 * associated with this page. If we succeed we try to free
1053 * the page as well.
1054 *
1055 * We do this even if the page is PageDirty().
1056 * try_to_release_page() does not perform I/O, but it is
1057 * possible for a page to have PageDirty set, but it is actually
1058 * clean (all its buffers are clean). This happens if the
1059 * buffers were written out directly, with submit_bh(). ext3
1060 * will do this, as well as the blockdev mapping.
1061 * try_to_release_page() will discover that cleanness and will
1062 * drop the buffers and mark the page clean - it can be freed.
1063 *
1064 * Rarely, pages can have buffers and no ->mapping. These are
1065 * the pages which were not successfully invalidated in
1066 * truncate_complete_page(). We try to drop those buffers here
1067 * and if that worked, and the page is no longer mapped into
1068 * process address space (page_count == 1) it can be freed.
1069 * Otherwise, leave the page on the LRU so it is swappable.
1070 */
1071 if (page_has_private(page)) {
1072 if (!try_to_release_page(page, sc->gfp_mask))
1073 goto activate_locked;
1074 if (!mapping && page_count(page) == 1) {
1075 unlock_page(page);
1076 if (put_page_testzero(page))
1077 goto free_it;
1078 else {
1079 /*
1080 * rare race with speculative reference.
1081 * the speculative reference will free
1082 * this page shortly, so we may
1083 * increment nr_reclaimed here (and
1084 * leave it off the LRU).
1085 */
1086 nr_reclaimed++;
1087 continue;
1088 }
1089 }
1090 }
1091
1092 if (!mapping || !__remove_mapping(mapping, page, true))
1093 goto keep_locked;
1094
1095 /*
1096 * At this point, we have no other references and there is
1097 * no way to pick any more up (removed from LRU, removed
1098 * from pagecache). Can use non-atomic bitops now (and
1099 * we obviously don't have to worry about waking up a process
1100 * waiting on the page lock, because there are no references.
1101 */
1102 __clear_page_locked(page);
1103 free_it:
1104 nr_reclaimed++;
1105
1106 /*
1107 * Is there need to periodically free_page_list? It would
1108 * appear not as the counts should be low
1109 */
1110 list_add(&page->lru, &free_pages);
1111 continue;
1112
1113 cull_mlocked:
1114 if (PageSwapCache(page))
1115 try_to_free_swap(page);
1116 unlock_page(page);
1117 putback_lru_page(page);
1118 continue;
1119
1120 activate_locked:
1121 /* Not a candidate for swapping, so reclaim swap space. */
1122 if (PageSwapCache(page) && vm_swap_full())
1123 try_to_free_swap(page);
1124 VM_BUG_ON_PAGE(PageActive(page), page);
1125 SetPageActive(page);
1126 pgactivate++;
1127 keep_locked:
1128 unlock_page(page);
1129 keep:
1130 list_add(&page->lru, &ret_pages);
1131 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1132 }
1133
1134 mem_cgroup_uncharge_list(&free_pages);
1135 free_hot_cold_page_list(&free_pages, true);
1136
1137 list_splice(&ret_pages, page_list);
1138 count_vm_events(PGACTIVATE, pgactivate);
1139
1140 *ret_nr_dirty += nr_dirty;
1141 *ret_nr_congested += nr_congested;
1142 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1143 *ret_nr_writeback += nr_writeback;
1144 *ret_nr_immediate += nr_immediate;
1145 return nr_reclaimed;
1146 }
1147
1148 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1149 struct list_head *page_list)
1150 {
1151 struct scan_control sc = {
1152 .gfp_mask = GFP_KERNEL,
1153 .priority = DEF_PRIORITY,
1154 .may_unmap = 1,
1155 };
1156 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1157 struct page *page, *next;
1158 LIST_HEAD(clean_pages);
1159
1160 list_for_each_entry_safe(page, next, page_list, lru) {
1161 if (page_is_file_cache(page) && !PageDirty(page) &&
1162 !isolated_balloon_page(page)) {
1163 ClearPageActive(page);
1164 list_move(&page->lru, &clean_pages);
1165 }
1166 }
1167
1168 ret = shrink_page_list(&clean_pages, zone, &sc,
1169 TTU_UNMAP|TTU_IGNORE_ACCESS,
1170 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1171 list_splice(&clean_pages, page_list);
1172 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1173 return ret;
1174 }
1175
1176 /*
1177 * Attempt to remove the specified page from its LRU. Only take this page
1178 * if it is of the appropriate PageActive status. Pages which are being
1179 * freed elsewhere are also ignored.
1180 *
1181 * page: page to consider
1182 * mode: one of the LRU isolation modes defined above
1183 *
1184 * returns 0 on success, -ve errno on failure.
1185 */
1186 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1187 {
1188 int ret = -EINVAL;
1189
1190 /* Only take pages on the LRU. */
1191 if (!PageLRU(page))
1192 return ret;
1193
1194 /* Compaction should not handle unevictable pages but CMA can do so */
1195 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1196 return ret;
1197
1198 ret = -EBUSY;
1199
1200 /*
1201 * To minimise LRU disruption, the caller can indicate that it only
1202 * wants to isolate pages it will be able to operate on without
1203 * blocking - clean pages for the most part.
1204 *
1205 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1206 * is used by reclaim when it is cannot write to backing storage
1207 *
1208 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1209 * that it is possible to migrate without blocking
1210 */
1211 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1212 /* All the caller can do on PageWriteback is block */
1213 if (PageWriteback(page))
1214 return ret;
1215
1216 if (PageDirty(page)) {
1217 struct address_space *mapping;
1218
1219 /* ISOLATE_CLEAN means only clean pages */
1220 if (mode & ISOLATE_CLEAN)
1221 return ret;
1222
1223 /*
1224 * Only pages without mappings or that have a
1225 * ->migratepage callback are possible to migrate
1226 * without blocking
1227 */
1228 mapping = page_mapping(page);
1229 if (mapping && !mapping->a_ops->migratepage)
1230 return ret;
1231 }
1232 }
1233
1234 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1235 return ret;
1236
1237 if (likely(get_page_unless_zero(page))) {
1238 /*
1239 * Be careful not to clear PageLRU until after we're
1240 * sure the page is not being freed elsewhere -- the
1241 * page release code relies on it.
1242 */
1243 ClearPageLRU(page);
1244 ret = 0;
1245 }
1246
1247 return ret;
1248 }
1249
1250 /*
1251 * zone->lru_lock is heavily contended. Some of the functions that
1252 * shrink the lists perform better by taking out a batch of pages
1253 * and working on them outside the LRU lock.
1254 *
1255 * For pagecache intensive workloads, this function is the hottest
1256 * spot in the kernel (apart from copy_*_user functions).
1257 *
1258 * Appropriate locks must be held before calling this function.
1259 *
1260 * @nr_to_scan: The number of pages to look through on the list.
1261 * @lruvec: The LRU vector to pull pages from.
1262 * @dst: The temp list to put pages on to.
1263 * @nr_scanned: The number of pages that were scanned.
1264 * @sc: The scan_control struct for this reclaim session
1265 * @mode: One of the LRU isolation modes
1266 * @lru: LRU list id for isolating
1267 *
1268 * returns how many pages were moved onto *@dst.
1269 */
1270 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1271 struct lruvec *lruvec, struct list_head *dst,
1272 unsigned long *nr_scanned, struct scan_control *sc,
1273 isolate_mode_t mode, enum lru_list lru)
1274 {
1275 struct list_head *src = &lruvec->lists[lru];
1276 unsigned long nr_taken = 0;
1277 unsigned long scan;
1278
1279 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1280 struct page *page;
1281 int nr_pages;
1282
1283 page = lru_to_page(src);
1284 prefetchw_prev_lru_page(page, src, flags);
1285
1286 VM_BUG_ON_PAGE(!PageLRU(page), page);
1287
1288 switch (__isolate_lru_page(page, mode)) {
1289 case 0:
1290 nr_pages = hpage_nr_pages(page);
1291 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1292 list_move(&page->lru, dst);
1293 nr_taken += nr_pages;
1294 break;
1295
1296 case -EBUSY:
1297 /* else it is being freed elsewhere */
1298 list_move(&page->lru, src);
1299 continue;
1300
1301 default:
1302 BUG();
1303 }
1304 }
1305
1306 *nr_scanned = scan;
1307 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1308 nr_taken, mode, is_file_lru(lru));
1309 return nr_taken;
1310 }
1311
1312 /**
1313 * isolate_lru_page - tries to isolate a page from its LRU list
1314 * @page: page to isolate from its LRU list
1315 *
1316 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1317 * vmstat statistic corresponding to whatever LRU list the page was on.
1318 *
1319 * Returns 0 if the page was removed from an LRU list.
1320 * Returns -EBUSY if the page was not on an LRU list.
1321 *
1322 * The returned page will have PageLRU() cleared. If it was found on
1323 * the active list, it will have PageActive set. If it was found on
1324 * the unevictable list, it will have the PageUnevictable bit set. That flag
1325 * may need to be cleared by the caller before letting the page go.
1326 *
1327 * The vmstat statistic corresponding to the list on which the page was
1328 * found will be decremented.
1329 *
1330 * Restrictions:
1331 * (1) Must be called with an elevated refcount on the page. This is a
1332 * fundamentnal difference from isolate_lru_pages (which is called
1333 * without a stable reference).
1334 * (2) the lru_lock must not be held.
1335 * (3) interrupts must be enabled.
1336 */
1337 int isolate_lru_page(struct page *page)
1338 {
1339 int ret = -EBUSY;
1340
1341 VM_BUG_ON_PAGE(!page_count(page), page);
1342
1343 if (PageLRU(page)) {
1344 struct zone *zone = page_zone(page);
1345 struct lruvec *lruvec;
1346
1347 spin_lock_irq(&zone->lru_lock);
1348 lruvec = mem_cgroup_page_lruvec(page, zone);
1349 if (PageLRU(page)) {
1350 int lru = page_lru(page);
1351 get_page(page);
1352 ClearPageLRU(page);
1353 del_page_from_lru_list(page, lruvec, lru);
1354 ret = 0;
1355 }
1356 spin_unlock_irq(&zone->lru_lock);
1357 }
1358 return ret;
1359 }
1360
1361 /*
1362 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1363 * then get resheduled. When there are massive number of tasks doing page
1364 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1365 * the LRU list will go small and be scanned faster than necessary, leading to
1366 * unnecessary swapping, thrashing and OOM.
1367 */
1368 static int too_many_isolated(struct zone *zone, int file,
1369 struct scan_control *sc)
1370 {
1371 unsigned long inactive, isolated;
1372
1373 if (current_is_kswapd())
1374 return 0;
1375
1376 if (!global_reclaim(sc))
1377 return 0;
1378
1379 if (file) {
1380 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1381 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1382 } else {
1383 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1384 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1385 }
1386
1387 /*
1388 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1389 * won't get blocked by normal direct-reclaimers, forming a circular
1390 * deadlock.
1391 */
1392 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1393 inactive >>= 3;
1394
1395 return isolated > inactive;
1396 }
1397
1398 static noinline_for_stack void
1399 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1400 {
1401 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1402 struct zone *zone = lruvec_zone(lruvec);
1403 LIST_HEAD(pages_to_free);
1404
1405 /*
1406 * Put back any unfreeable pages.
1407 */
1408 while (!list_empty(page_list)) {
1409 struct page *page = lru_to_page(page_list);
1410 int lru;
1411
1412 VM_BUG_ON_PAGE(PageLRU(page), page);
1413 list_del(&page->lru);
1414 if (unlikely(!page_evictable(page))) {
1415 spin_unlock_irq(&zone->lru_lock);
1416 putback_lru_page(page);
1417 spin_lock_irq(&zone->lru_lock);
1418 continue;
1419 }
1420
1421 lruvec = mem_cgroup_page_lruvec(page, zone);
1422
1423 SetPageLRU(page);
1424 lru = page_lru(page);
1425 add_page_to_lru_list(page, lruvec, lru);
1426
1427 if (is_active_lru(lru)) {
1428 int file = is_file_lru(lru);
1429 int numpages = hpage_nr_pages(page);
1430 reclaim_stat->recent_rotated[file] += numpages;
1431 }
1432 if (put_page_testzero(page)) {
1433 __ClearPageLRU(page);
1434 __ClearPageActive(page);
1435 del_page_from_lru_list(page, lruvec, lru);
1436
1437 if (unlikely(PageCompound(page))) {
1438 spin_unlock_irq(&zone->lru_lock);
1439 mem_cgroup_uncharge(page);
1440 (*get_compound_page_dtor(page))(page);
1441 spin_lock_irq(&zone->lru_lock);
1442 } else
1443 list_add(&page->lru, &pages_to_free);
1444 }
1445 }
1446
1447 /*
1448 * To save our caller's stack, now use input list for pages to free.
1449 */
1450 list_splice(&pages_to_free, page_list);
1451 }
1452
1453 /*
1454 * If a kernel thread (such as nfsd for loop-back mounts) services
1455 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1456 * In that case we should only throttle if the backing device it is
1457 * writing to is congested. In other cases it is safe to throttle.
1458 */
1459 static int current_may_throttle(void)
1460 {
1461 return !(current->flags & PF_LESS_THROTTLE) ||
1462 current->backing_dev_info == NULL ||
1463 bdi_write_congested(current->backing_dev_info);
1464 }
1465
1466 /*
1467 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1468 * of reclaimed pages
1469 */
1470 static noinline_for_stack unsigned long
1471 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1472 struct scan_control *sc, enum lru_list lru)
1473 {
1474 LIST_HEAD(page_list);
1475 unsigned long nr_scanned;
1476 unsigned long nr_reclaimed = 0;
1477 unsigned long nr_taken;
1478 unsigned long nr_dirty = 0;
1479 unsigned long nr_congested = 0;
1480 unsigned long nr_unqueued_dirty = 0;
1481 unsigned long nr_writeback = 0;
1482 unsigned long nr_immediate = 0;
1483 isolate_mode_t isolate_mode = 0;
1484 int file = is_file_lru(lru);
1485 struct zone *zone = lruvec_zone(lruvec);
1486 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1487
1488 while (unlikely(too_many_isolated(zone, file, sc))) {
1489 congestion_wait(BLK_RW_ASYNC, HZ/10);
1490
1491 /* We are about to die and free our memory. Return now. */
1492 if (fatal_signal_pending(current))
1493 return SWAP_CLUSTER_MAX;
1494 }
1495
1496 lru_add_drain();
1497
1498 if (!sc->may_unmap)
1499 isolate_mode |= ISOLATE_UNMAPPED;
1500 if (!sc->may_writepage)
1501 isolate_mode |= ISOLATE_CLEAN;
1502
1503 spin_lock_irq(&zone->lru_lock);
1504
1505 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1506 &nr_scanned, sc, isolate_mode, lru);
1507
1508 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1509 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1510
1511 if (global_reclaim(sc)) {
1512 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1513 if (current_is_kswapd())
1514 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1515 else
1516 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1517 }
1518 spin_unlock_irq(&zone->lru_lock);
1519
1520 if (nr_taken == 0)
1521 return 0;
1522
1523 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1524 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1525 &nr_writeback, &nr_immediate,
1526 false);
1527
1528 spin_lock_irq(&zone->lru_lock);
1529
1530 reclaim_stat->recent_scanned[file] += nr_taken;
1531
1532 if (global_reclaim(sc)) {
1533 if (current_is_kswapd())
1534 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1535 nr_reclaimed);
1536 else
1537 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1538 nr_reclaimed);
1539 }
1540
1541 putback_inactive_pages(lruvec, &page_list);
1542
1543 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1544
1545 spin_unlock_irq(&zone->lru_lock);
1546
1547 mem_cgroup_uncharge_list(&page_list);
1548 free_hot_cold_page_list(&page_list, true);
1549
1550 /*
1551 * If reclaim is isolating dirty pages under writeback, it implies
1552 * that the long-lived page allocation rate is exceeding the page
1553 * laundering rate. Either the global limits are not being effective
1554 * at throttling processes due to the page distribution throughout
1555 * zones or there is heavy usage of a slow backing device. The
1556 * only option is to throttle from reclaim context which is not ideal
1557 * as there is no guarantee the dirtying process is throttled in the
1558 * same way balance_dirty_pages() manages.
1559 *
1560 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1561 * of pages under pages flagged for immediate reclaim and stall if any
1562 * are encountered in the nr_immediate check below.
1563 */
1564 if (nr_writeback && nr_writeback == nr_taken)
1565 set_bit(ZONE_WRITEBACK, &zone->flags);
1566
1567 /*
1568 * memcg will stall in page writeback so only consider forcibly
1569 * stalling for global reclaim
1570 */
1571 if (global_reclaim(sc)) {
1572 /*
1573 * Tag a zone as congested if all the dirty pages scanned were
1574 * backed by a congested BDI and wait_iff_congested will stall.
1575 */
1576 if (nr_dirty && nr_dirty == nr_congested)
1577 set_bit(ZONE_CONGESTED, &zone->flags);
1578
1579 /*
1580 * If dirty pages are scanned that are not queued for IO, it
1581 * implies that flushers are not keeping up. In this case, flag
1582 * the zone ZONE_DIRTY and kswapd will start writing pages from
1583 * reclaim context.
1584 */
1585 if (nr_unqueued_dirty == nr_taken)
1586 set_bit(ZONE_DIRTY, &zone->flags);
1587
1588 /*
1589 * If kswapd scans pages marked marked for immediate
1590 * reclaim and under writeback (nr_immediate), it implies
1591 * that pages are cycling through the LRU faster than
1592 * they are written so also forcibly stall.
1593 */
1594 if (nr_immediate && current_may_throttle())
1595 congestion_wait(BLK_RW_ASYNC, HZ/10);
1596 }
1597
1598 /*
1599 * Stall direct reclaim for IO completions if underlying BDIs or zone
1600 * is congested. Allow kswapd to continue until it starts encountering
1601 * unqueued dirty pages or cycling through the LRU too quickly.
1602 */
1603 if (!sc->hibernation_mode && !current_is_kswapd() &&
1604 current_may_throttle())
1605 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1606
1607 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1608 zone_idx(zone),
1609 nr_scanned, nr_reclaimed,
1610 sc->priority,
1611 trace_shrink_flags(file));
1612 return nr_reclaimed;
1613 }
1614
1615 /*
1616 * This moves pages from the active list to the inactive list.
1617 *
1618 * We move them the other way if the page is referenced by one or more
1619 * processes, from rmap.
1620 *
1621 * If the pages are mostly unmapped, the processing is fast and it is
1622 * appropriate to hold zone->lru_lock across the whole operation. But if
1623 * the pages are mapped, the processing is slow (page_referenced()) so we
1624 * should drop zone->lru_lock around each page. It's impossible to balance
1625 * this, so instead we remove the pages from the LRU while processing them.
1626 * It is safe to rely on PG_active against the non-LRU pages in here because
1627 * nobody will play with that bit on a non-LRU page.
1628 *
1629 * The downside is that we have to touch page->_count against each page.
1630 * But we had to alter page->flags anyway.
1631 */
1632
1633 static void move_active_pages_to_lru(struct lruvec *lruvec,
1634 struct list_head *list,
1635 struct list_head *pages_to_free,
1636 enum lru_list lru)
1637 {
1638 struct zone *zone = lruvec_zone(lruvec);
1639 unsigned long pgmoved = 0;
1640 struct page *page;
1641 int nr_pages;
1642
1643 while (!list_empty(list)) {
1644 page = lru_to_page(list);
1645 lruvec = mem_cgroup_page_lruvec(page, zone);
1646
1647 VM_BUG_ON_PAGE(PageLRU(page), page);
1648 SetPageLRU(page);
1649
1650 nr_pages = hpage_nr_pages(page);
1651 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1652 list_move(&page->lru, &lruvec->lists[lru]);
1653 pgmoved += nr_pages;
1654
1655 if (put_page_testzero(page)) {
1656 __ClearPageLRU(page);
1657 __ClearPageActive(page);
1658 del_page_from_lru_list(page, lruvec, lru);
1659
1660 if (unlikely(PageCompound(page))) {
1661 spin_unlock_irq(&zone->lru_lock);
1662 mem_cgroup_uncharge(page);
1663 (*get_compound_page_dtor(page))(page);
1664 spin_lock_irq(&zone->lru_lock);
1665 } else
1666 list_add(&page->lru, pages_to_free);
1667 }
1668 }
1669 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1670 if (!is_active_lru(lru))
1671 __count_vm_events(PGDEACTIVATE, pgmoved);
1672 }
1673
1674 static void shrink_active_list(unsigned long nr_to_scan,
1675 struct lruvec *lruvec,
1676 struct scan_control *sc,
1677 enum lru_list lru)
1678 {
1679 unsigned long nr_taken;
1680 unsigned long nr_scanned;
1681 unsigned long vm_flags;
1682 LIST_HEAD(l_hold); /* The pages which were snipped off */
1683 LIST_HEAD(l_active);
1684 LIST_HEAD(l_inactive);
1685 struct page *page;
1686 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1687 unsigned long nr_rotated = 0;
1688 isolate_mode_t isolate_mode = 0;
1689 int file = is_file_lru(lru);
1690 struct zone *zone = lruvec_zone(lruvec);
1691
1692 lru_add_drain();
1693
1694 if (!sc->may_unmap)
1695 isolate_mode |= ISOLATE_UNMAPPED;
1696 if (!sc->may_writepage)
1697 isolate_mode |= ISOLATE_CLEAN;
1698
1699 spin_lock_irq(&zone->lru_lock);
1700
1701 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1702 &nr_scanned, sc, isolate_mode, lru);
1703 if (global_reclaim(sc))
1704 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1705
1706 reclaim_stat->recent_scanned[file] += nr_taken;
1707
1708 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1709 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1710 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1711 spin_unlock_irq(&zone->lru_lock);
1712
1713 while (!list_empty(&l_hold)) {
1714 cond_resched();
1715 page = lru_to_page(&l_hold);
1716 list_del(&page->lru);
1717
1718 if (unlikely(!page_evictable(page))) {
1719 putback_lru_page(page);
1720 continue;
1721 }
1722
1723 if (unlikely(buffer_heads_over_limit)) {
1724 if (page_has_private(page) && trylock_page(page)) {
1725 if (page_has_private(page))
1726 try_to_release_page(page, 0);
1727 unlock_page(page);
1728 }
1729 }
1730
1731 if (page_referenced(page, 0, sc->target_mem_cgroup,
1732 &vm_flags)) {
1733 nr_rotated += hpage_nr_pages(page);
1734 /*
1735 * Identify referenced, file-backed active pages and
1736 * give them one more trip around the active list. So
1737 * that executable code get better chances to stay in
1738 * memory under moderate memory pressure. Anon pages
1739 * are not likely to be evicted by use-once streaming
1740 * IO, plus JVM can create lots of anon VM_EXEC pages,
1741 * so we ignore them here.
1742 */
1743 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1744 list_add(&page->lru, &l_active);
1745 continue;
1746 }
1747 }
1748
1749 ClearPageActive(page); /* we are de-activating */
1750 list_add(&page->lru, &l_inactive);
1751 }
1752
1753 /*
1754 * Move pages back to the lru list.
1755 */
1756 spin_lock_irq(&zone->lru_lock);
1757 /*
1758 * Count referenced pages from currently used mappings as rotated,
1759 * even though only some of them are actually re-activated. This
1760 * helps balance scan pressure between file and anonymous pages in
1761 * get_scan_count.
1762 */
1763 reclaim_stat->recent_rotated[file] += nr_rotated;
1764
1765 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1766 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1767 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1768 spin_unlock_irq(&zone->lru_lock);
1769
1770 mem_cgroup_uncharge_list(&l_hold);
1771 free_hot_cold_page_list(&l_hold, true);
1772 }
1773
1774 #ifdef CONFIG_SWAP
1775 static int inactive_anon_is_low_global(struct zone *zone)
1776 {
1777 unsigned long active, inactive;
1778
1779 active = zone_page_state(zone, NR_ACTIVE_ANON);
1780 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1781
1782 if (inactive * zone->inactive_ratio < active)
1783 return 1;
1784
1785 return 0;
1786 }
1787
1788 /**
1789 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1790 * @lruvec: LRU vector to check
1791 *
1792 * Returns true if the zone does not have enough inactive anon pages,
1793 * meaning some active anon pages need to be deactivated.
1794 */
1795 static int inactive_anon_is_low(struct lruvec *lruvec)
1796 {
1797 /*
1798 * If we don't have swap space, anonymous page deactivation
1799 * is pointless.
1800 */
1801 if (!total_swap_pages)
1802 return 0;
1803
1804 if (!mem_cgroup_disabled())
1805 return mem_cgroup_inactive_anon_is_low(lruvec);
1806
1807 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1808 }
1809 #else
1810 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1811 {
1812 return 0;
1813 }
1814 #endif
1815
1816 /**
1817 * inactive_file_is_low - check if file pages need to be deactivated
1818 * @lruvec: LRU vector to check
1819 *
1820 * When the system is doing streaming IO, memory pressure here
1821 * ensures that active file pages get deactivated, until more
1822 * than half of the file pages are on the inactive list.
1823 *
1824 * Once we get to that situation, protect the system's working
1825 * set from being evicted by disabling active file page aging.
1826 *
1827 * This uses a different ratio than the anonymous pages, because
1828 * the page cache uses a use-once replacement algorithm.
1829 */
1830 static int inactive_file_is_low(struct lruvec *lruvec)
1831 {
1832 unsigned long inactive;
1833 unsigned long active;
1834
1835 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1836 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1837
1838 return active > inactive;
1839 }
1840
1841 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1842 {
1843 if (is_file_lru(lru))
1844 return inactive_file_is_low(lruvec);
1845 else
1846 return inactive_anon_is_low(lruvec);
1847 }
1848
1849 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1850 struct lruvec *lruvec, struct scan_control *sc)
1851 {
1852 if (is_active_lru(lru)) {
1853 if (inactive_list_is_low(lruvec, lru))
1854 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1855 return 0;
1856 }
1857
1858 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1859 }
1860
1861 enum scan_balance {
1862 SCAN_EQUAL,
1863 SCAN_FRACT,
1864 SCAN_ANON,
1865 SCAN_FILE,
1866 };
1867
1868 /*
1869 * Determine how aggressively the anon and file LRU lists should be
1870 * scanned. The relative value of each set of LRU lists is determined
1871 * by looking at the fraction of the pages scanned we did rotate back
1872 * onto the active list instead of evict.
1873 *
1874 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1875 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1876 */
1877 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1878 struct scan_control *sc, unsigned long *nr)
1879 {
1880 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1881 u64 fraction[2];
1882 u64 denominator = 0; /* gcc */
1883 struct zone *zone = lruvec_zone(lruvec);
1884 unsigned long anon_prio, file_prio;
1885 enum scan_balance scan_balance;
1886 unsigned long anon, file;
1887 bool force_scan = false;
1888 unsigned long ap, fp;
1889 enum lru_list lru;
1890 bool some_scanned;
1891 int pass;
1892
1893 /*
1894 * If the zone or memcg is small, nr[l] can be 0. This
1895 * results in no scanning on this priority and a potential
1896 * priority drop. Global direct reclaim can go to the next
1897 * zone and tends to have no problems. Global kswapd is for
1898 * zone balancing and it needs to scan a minimum amount. When
1899 * reclaiming for a memcg, a priority drop can cause high
1900 * latencies, so it's better to scan a minimum amount there as
1901 * well.
1902 */
1903 if (current_is_kswapd() && !zone_reclaimable(zone))
1904 force_scan = true;
1905 if (!global_reclaim(sc))
1906 force_scan = true;
1907
1908 /* If we have no swap space, do not bother scanning anon pages. */
1909 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1910 scan_balance = SCAN_FILE;
1911 goto out;
1912 }
1913
1914 /*
1915 * Global reclaim will swap to prevent OOM even with no
1916 * swappiness, but memcg users want to use this knob to
1917 * disable swapping for individual groups completely when
1918 * using the memory controller's swap limit feature would be
1919 * too expensive.
1920 */
1921 if (!global_reclaim(sc) && !swappiness) {
1922 scan_balance = SCAN_FILE;
1923 goto out;
1924 }
1925
1926 /*
1927 * Do not apply any pressure balancing cleverness when the
1928 * system is close to OOM, scan both anon and file equally
1929 * (unless the swappiness setting disagrees with swapping).
1930 */
1931 if (!sc->priority && swappiness) {
1932 scan_balance = SCAN_EQUAL;
1933 goto out;
1934 }
1935
1936 /*
1937 * Prevent the reclaimer from falling into the cache trap: as
1938 * cache pages start out inactive, every cache fault will tip
1939 * the scan balance towards the file LRU. And as the file LRU
1940 * shrinks, so does the window for rotation from references.
1941 * This means we have a runaway feedback loop where a tiny
1942 * thrashing file LRU becomes infinitely more attractive than
1943 * anon pages. Try to detect this based on file LRU size.
1944 */
1945 if (global_reclaim(sc)) {
1946 unsigned long zonefile;
1947 unsigned long zonefree;
1948
1949 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1950 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1951 zone_page_state(zone, NR_INACTIVE_FILE);
1952
1953 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
1954 scan_balance = SCAN_ANON;
1955 goto out;
1956 }
1957 }
1958
1959 /*
1960 * There is enough inactive page cache, do not reclaim
1961 * anything from the anonymous working set right now.
1962 */
1963 if (!inactive_file_is_low(lruvec)) {
1964 scan_balance = SCAN_FILE;
1965 goto out;
1966 }
1967
1968 scan_balance = SCAN_FRACT;
1969
1970 /*
1971 * With swappiness at 100, anonymous and file have the same priority.
1972 * This scanning priority is essentially the inverse of IO cost.
1973 */
1974 anon_prio = swappiness;
1975 file_prio = 200 - anon_prio;
1976
1977 /*
1978 * OK, so we have swap space and a fair amount of page cache
1979 * pages. We use the recently rotated / recently scanned
1980 * ratios to determine how valuable each cache is.
1981 *
1982 * Because workloads change over time (and to avoid overflow)
1983 * we keep these statistics as a floating average, which ends
1984 * up weighing recent references more than old ones.
1985 *
1986 * anon in [0], file in [1]
1987 */
1988
1989 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1990 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1991 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1992 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1993
1994 spin_lock_irq(&zone->lru_lock);
1995 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1996 reclaim_stat->recent_scanned[0] /= 2;
1997 reclaim_stat->recent_rotated[0] /= 2;
1998 }
1999
2000 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2001 reclaim_stat->recent_scanned[1] /= 2;
2002 reclaim_stat->recent_rotated[1] /= 2;
2003 }
2004
2005 /*
2006 * The amount of pressure on anon vs file pages is inversely
2007 * proportional to the fraction of recently scanned pages on
2008 * each list that were recently referenced and in active use.
2009 */
2010 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2011 ap /= reclaim_stat->recent_rotated[0] + 1;
2012
2013 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2014 fp /= reclaim_stat->recent_rotated[1] + 1;
2015 spin_unlock_irq(&zone->lru_lock);
2016
2017 fraction[0] = ap;
2018 fraction[1] = fp;
2019 denominator = ap + fp + 1;
2020 out:
2021 some_scanned = false;
2022 /* Only use force_scan on second pass. */
2023 for (pass = 0; !some_scanned && pass < 2; pass++) {
2024 for_each_evictable_lru(lru) {
2025 int file = is_file_lru(lru);
2026 unsigned long size;
2027 unsigned long scan;
2028
2029 size = get_lru_size(lruvec, lru);
2030 scan = size >> sc->priority;
2031
2032 if (!scan && pass && force_scan)
2033 scan = min(size, SWAP_CLUSTER_MAX);
2034
2035 switch (scan_balance) {
2036 case SCAN_EQUAL:
2037 /* Scan lists relative to size */
2038 break;
2039 case SCAN_FRACT:
2040 /*
2041 * Scan types proportional to swappiness and
2042 * their relative recent reclaim efficiency.
2043 */
2044 scan = div64_u64(scan * fraction[file],
2045 denominator);
2046 break;
2047 case SCAN_FILE:
2048 case SCAN_ANON:
2049 /* Scan one type exclusively */
2050 if ((scan_balance == SCAN_FILE) != file)
2051 scan = 0;
2052 break;
2053 default:
2054 /* Look ma, no brain */
2055 BUG();
2056 }
2057 nr[lru] = scan;
2058 /*
2059 * Skip the second pass and don't force_scan,
2060 * if we found something to scan.
2061 */
2062 some_scanned |= !!scan;
2063 }
2064 }
2065 }
2066
2067 /*
2068 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2069 */
2070 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2071 struct scan_control *sc)
2072 {
2073 unsigned long nr[NR_LRU_LISTS];
2074 unsigned long targets[NR_LRU_LISTS];
2075 unsigned long nr_to_scan;
2076 enum lru_list lru;
2077 unsigned long nr_reclaimed = 0;
2078 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2079 struct blk_plug plug;
2080 bool scan_adjusted;
2081
2082 get_scan_count(lruvec, swappiness, sc, nr);
2083
2084 /* Record the original scan target for proportional adjustments later */
2085 memcpy(targets, nr, sizeof(nr));
2086
2087 /*
2088 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2089 * event that can occur when there is little memory pressure e.g.
2090 * multiple streaming readers/writers. Hence, we do not abort scanning
2091 * when the requested number of pages are reclaimed when scanning at
2092 * DEF_PRIORITY on the assumption that the fact we are direct
2093 * reclaiming implies that kswapd is not keeping up and it is best to
2094 * do a batch of work at once. For memcg reclaim one check is made to
2095 * abort proportional reclaim if either the file or anon lru has already
2096 * dropped to zero at the first pass.
2097 */
2098 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2099 sc->priority == DEF_PRIORITY);
2100
2101 blk_start_plug(&plug);
2102 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2103 nr[LRU_INACTIVE_FILE]) {
2104 unsigned long nr_anon, nr_file, percentage;
2105 unsigned long nr_scanned;
2106
2107 for_each_evictable_lru(lru) {
2108 if (nr[lru]) {
2109 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2110 nr[lru] -= nr_to_scan;
2111
2112 nr_reclaimed += shrink_list(lru, nr_to_scan,
2113 lruvec, sc);
2114 }
2115 }
2116
2117 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2118 continue;
2119
2120 /*
2121 * For kswapd and memcg, reclaim at least the number of pages
2122 * requested. Ensure that the anon and file LRUs are scanned
2123 * proportionally what was requested by get_scan_count(). We
2124 * stop reclaiming one LRU and reduce the amount scanning
2125 * proportional to the original scan target.
2126 */
2127 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2128 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2129
2130 /*
2131 * It's just vindictive to attack the larger once the smaller
2132 * has gone to zero. And given the way we stop scanning the
2133 * smaller below, this makes sure that we only make one nudge
2134 * towards proportionality once we've got nr_to_reclaim.
2135 */
2136 if (!nr_file || !nr_anon)
2137 break;
2138
2139 if (nr_file > nr_anon) {
2140 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2141 targets[LRU_ACTIVE_ANON] + 1;
2142 lru = LRU_BASE;
2143 percentage = nr_anon * 100 / scan_target;
2144 } else {
2145 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2146 targets[LRU_ACTIVE_FILE] + 1;
2147 lru = LRU_FILE;
2148 percentage = nr_file * 100 / scan_target;
2149 }
2150
2151 /* Stop scanning the smaller of the LRU */
2152 nr[lru] = 0;
2153 nr[lru + LRU_ACTIVE] = 0;
2154
2155 /*
2156 * Recalculate the other LRU scan count based on its original
2157 * scan target and the percentage scanning already complete
2158 */
2159 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2160 nr_scanned = targets[lru] - nr[lru];
2161 nr[lru] = targets[lru] * (100 - percentage) / 100;
2162 nr[lru] -= min(nr[lru], nr_scanned);
2163
2164 lru += LRU_ACTIVE;
2165 nr_scanned = targets[lru] - nr[lru];
2166 nr[lru] = targets[lru] * (100 - percentage) / 100;
2167 nr[lru] -= min(nr[lru], nr_scanned);
2168
2169 scan_adjusted = true;
2170 }
2171 blk_finish_plug(&plug);
2172 sc->nr_reclaimed += nr_reclaimed;
2173
2174 /*
2175 * Even if we did not try to evict anon pages at all, we want to
2176 * rebalance the anon lru active/inactive ratio.
2177 */
2178 if (inactive_anon_is_low(lruvec))
2179 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2180 sc, LRU_ACTIVE_ANON);
2181
2182 throttle_vm_writeout(sc->gfp_mask);
2183 }
2184
2185 /* Use reclaim/compaction for costly allocs or under memory pressure */
2186 static bool in_reclaim_compaction(struct scan_control *sc)
2187 {
2188 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2189 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2190 sc->priority < DEF_PRIORITY - 2))
2191 return true;
2192
2193 return false;
2194 }
2195
2196 /*
2197 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2198 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2199 * true if more pages should be reclaimed such that when the page allocator
2200 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2201 * It will give up earlier than that if there is difficulty reclaiming pages.
2202 */
2203 static inline bool should_continue_reclaim(struct zone *zone,
2204 unsigned long nr_reclaimed,
2205 unsigned long nr_scanned,
2206 struct scan_control *sc)
2207 {
2208 unsigned long pages_for_compaction;
2209 unsigned long inactive_lru_pages;
2210
2211 /* If not in reclaim/compaction mode, stop */
2212 if (!in_reclaim_compaction(sc))
2213 return false;
2214
2215 /* Consider stopping depending on scan and reclaim activity */
2216 if (sc->gfp_mask & __GFP_REPEAT) {
2217 /*
2218 * For __GFP_REPEAT allocations, stop reclaiming if the
2219 * full LRU list has been scanned and we are still failing
2220 * to reclaim pages. This full LRU scan is potentially
2221 * expensive but a __GFP_REPEAT caller really wants to succeed
2222 */
2223 if (!nr_reclaimed && !nr_scanned)
2224 return false;
2225 } else {
2226 /*
2227 * For non-__GFP_REPEAT allocations which can presumably
2228 * fail without consequence, stop if we failed to reclaim
2229 * any pages from the last SWAP_CLUSTER_MAX number of
2230 * pages that were scanned. This will return to the
2231 * caller faster at the risk reclaim/compaction and
2232 * the resulting allocation attempt fails
2233 */
2234 if (!nr_reclaimed)
2235 return false;
2236 }
2237
2238 /*
2239 * If we have not reclaimed enough pages for compaction and the
2240 * inactive lists are large enough, continue reclaiming
2241 */
2242 pages_for_compaction = (2UL << sc->order);
2243 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2244 if (get_nr_swap_pages() > 0)
2245 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2246 if (sc->nr_reclaimed < pages_for_compaction &&
2247 inactive_lru_pages > pages_for_compaction)
2248 return true;
2249
2250 /* If compaction would go ahead or the allocation would succeed, stop */
2251 switch (compaction_suitable(zone, sc->order)) {
2252 case COMPACT_PARTIAL:
2253 case COMPACT_CONTINUE:
2254 return false;
2255 default:
2256 return true;
2257 }
2258 }
2259
2260 static bool shrink_zone(struct zone *zone, struct scan_control *sc)
2261 {
2262 unsigned long nr_reclaimed, nr_scanned;
2263 bool reclaimable = false;
2264
2265 do {
2266 struct mem_cgroup *root = sc->target_mem_cgroup;
2267 struct mem_cgroup_reclaim_cookie reclaim = {
2268 .zone = zone,
2269 .priority = sc->priority,
2270 };
2271 struct mem_cgroup *memcg;
2272
2273 nr_reclaimed = sc->nr_reclaimed;
2274 nr_scanned = sc->nr_scanned;
2275
2276 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2277 do {
2278 struct lruvec *lruvec;
2279 int swappiness;
2280
2281 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2282 swappiness = mem_cgroup_swappiness(memcg);
2283
2284 shrink_lruvec(lruvec, swappiness, sc);
2285
2286 /*
2287 * Direct reclaim and kswapd have to scan all memory
2288 * cgroups to fulfill the overall scan target for the
2289 * zone.
2290 *
2291 * Limit reclaim, on the other hand, only cares about
2292 * nr_to_reclaim pages to be reclaimed and it will
2293 * retry with decreasing priority if one round over the
2294 * whole hierarchy is not sufficient.
2295 */
2296 if (!global_reclaim(sc) &&
2297 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2298 mem_cgroup_iter_break(root, memcg);
2299 break;
2300 }
2301 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2302 } while (memcg);
2303
2304 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2305 sc->nr_scanned - nr_scanned,
2306 sc->nr_reclaimed - nr_reclaimed);
2307
2308 if (sc->nr_reclaimed - nr_reclaimed)
2309 reclaimable = true;
2310
2311 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2312 sc->nr_scanned - nr_scanned, sc));
2313
2314 return reclaimable;
2315 }
2316
2317 /*
2318 * Returns true if compaction should go ahead for a high-order request, or
2319 * the high-order allocation would succeed without compaction.
2320 */
2321 static inline bool compaction_ready(struct zone *zone, int order)
2322 {
2323 unsigned long balance_gap, watermark;
2324 bool watermark_ok;
2325
2326 /*
2327 * Compaction takes time to run and there are potentially other
2328 * callers using the pages just freed. Continue reclaiming until
2329 * there is a buffer of free pages available to give compaction
2330 * a reasonable chance of completing and allocating the page
2331 */
2332 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2333 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2334 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2335 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2336
2337 /*
2338 * If compaction is deferred, reclaim up to a point where
2339 * compaction will have a chance of success when re-enabled
2340 */
2341 if (compaction_deferred(zone, order))
2342 return watermark_ok;
2343
2344 /*
2345 * If compaction is not ready to start and allocation is not likely
2346 * to succeed without it, then keep reclaiming.
2347 */
2348 if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2349 return false;
2350
2351 return watermark_ok;
2352 }
2353
2354 /*
2355 * This is the direct reclaim path, for page-allocating processes. We only
2356 * try to reclaim pages from zones which will satisfy the caller's allocation
2357 * request.
2358 *
2359 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2360 * Because:
2361 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2362 * allocation or
2363 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2364 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2365 * zone defense algorithm.
2366 *
2367 * If a zone is deemed to be full of pinned pages then just give it a light
2368 * scan then give up on it.
2369 *
2370 * Returns true if a zone was reclaimable.
2371 */
2372 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2373 {
2374 struct zoneref *z;
2375 struct zone *zone;
2376 unsigned long nr_soft_reclaimed;
2377 unsigned long nr_soft_scanned;
2378 unsigned long lru_pages = 0;
2379 struct reclaim_state *reclaim_state = current->reclaim_state;
2380 gfp_t orig_mask;
2381 struct shrink_control shrink = {
2382 .gfp_mask = sc->gfp_mask,
2383 };
2384 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2385 bool reclaimable = false;
2386
2387 /*
2388 * If the number of buffer_heads in the machine exceeds the maximum
2389 * allowed level, force direct reclaim to scan the highmem zone as
2390 * highmem pages could be pinning lowmem pages storing buffer_heads
2391 */
2392 orig_mask = sc->gfp_mask;
2393 if (buffer_heads_over_limit)
2394 sc->gfp_mask |= __GFP_HIGHMEM;
2395
2396 nodes_clear(shrink.nodes_to_scan);
2397
2398 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2399 gfp_zone(sc->gfp_mask), sc->nodemask) {
2400 if (!populated_zone(zone))
2401 continue;
2402 /*
2403 * Take care memory controller reclaiming has small influence
2404 * to global LRU.
2405 */
2406 if (global_reclaim(sc)) {
2407 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2408 continue;
2409
2410 lru_pages += zone_reclaimable_pages(zone);
2411 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2412
2413 if (sc->priority != DEF_PRIORITY &&
2414 !zone_reclaimable(zone))
2415 continue; /* Let kswapd poll it */
2416
2417 /*
2418 * If we already have plenty of memory free for
2419 * compaction in this zone, don't free any more.
2420 * Even though compaction is invoked for any
2421 * non-zero order, only frequent costly order
2422 * reclamation is disruptive enough to become a
2423 * noticeable problem, like transparent huge
2424 * page allocations.
2425 */
2426 if (IS_ENABLED(CONFIG_COMPACTION) &&
2427 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2428 zonelist_zone_idx(z) <= requested_highidx &&
2429 compaction_ready(zone, sc->order)) {
2430 sc->compaction_ready = true;
2431 continue;
2432 }
2433
2434 /*
2435 * This steals pages from memory cgroups over softlimit
2436 * and returns the number of reclaimed pages and
2437 * scanned pages. This works for global memory pressure
2438 * and balancing, not for a memcg's limit.
2439 */
2440 nr_soft_scanned = 0;
2441 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2442 sc->order, sc->gfp_mask,
2443 &nr_soft_scanned);
2444 sc->nr_reclaimed += nr_soft_reclaimed;
2445 sc->nr_scanned += nr_soft_scanned;
2446 if (nr_soft_reclaimed)
2447 reclaimable = true;
2448 /* need some check for avoid more shrink_zone() */
2449 }
2450
2451 if (shrink_zone(zone, sc))
2452 reclaimable = true;
2453
2454 if (global_reclaim(sc) &&
2455 !reclaimable && zone_reclaimable(zone))
2456 reclaimable = true;
2457 }
2458
2459 /*
2460 * Don't shrink slabs when reclaiming memory from over limit cgroups
2461 * but do shrink slab at least once when aborting reclaim for
2462 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2463 * pages.
2464 */
2465 if (global_reclaim(sc)) {
2466 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2467 if (reclaim_state) {
2468 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2469 reclaim_state->reclaimed_slab = 0;
2470 }
2471 }
2472
2473 /*
2474 * Restore to original mask to avoid the impact on the caller if we
2475 * promoted it to __GFP_HIGHMEM.
2476 */
2477 sc->gfp_mask = orig_mask;
2478
2479 return reclaimable;
2480 }
2481
2482 /*
2483 * This is the main entry point to direct page reclaim.
2484 *
2485 * If a full scan of the inactive list fails to free enough memory then we
2486 * are "out of memory" and something needs to be killed.
2487 *
2488 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2489 * high - the zone may be full of dirty or under-writeback pages, which this
2490 * caller can't do much about. We kick the writeback threads and take explicit
2491 * naps in the hope that some of these pages can be written. But if the
2492 * allocating task holds filesystem locks which prevent writeout this might not
2493 * work, and the allocation attempt will fail.
2494 *
2495 * returns: 0, if no pages reclaimed
2496 * else, the number of pages reclaimed
2497 */
2498 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2499 struct scan_control *sc)
2500 {
2501 unsigned long total_scanned = 0;
2502 unsigned long writeback_threshold;
2503 bool zones_reclaimable;
2504
2505 delayacct_freepages_start();
2506
2507 if (global_reclaim(sc))
2508 count_vm_event(ALLOCSTALL);
2509
2510 do {
2511 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2512 sc->priority);
2513 sc->nr_scanned = 0;
2514 zones_reclaimable = shrink_zones(zonelist, sc);
2515
2516 total_scanned += sc->nr_scanned;
2517 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2518 break;
2519
2520 if (sc->compaction_ready)
2521 break;
2522
2523 /*
2524 * If we're getting trouble reclaiming, start doing
2525 * writepage even in laptop mode.
2526 */
2527 if (sc->priority < DEF_PRIORITY - 2)
2528 sc->may_writepage = 1;
2529
2530 /*
2531 * Try to write back as many pages as we just scanned. This
2532 * tends to cause slow streaming writers to write data to the
2533 * disk smoothly, at the dirtying rate, which is nice. But
2534 * that's undesirable in laptop mode, where we *want* lumpy
2535 * writeout. So in laptop mode, write out the whole world.
2536 */
2537 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2538 if (total_scanned > writeback_threshold) {
2539 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2540 WB_REASON_TRY_TO_FREE_PAGES);
2541 sc->may_writepage = 1;
2542 }
2543 } while (--sc->priority >= 0);
2544
2545 delayacct_freepages_end();
2546
2547 if (sc->nr_reclaimed)
2548 return sc->nr_reclaimed;
2549
2550 /* Aborted reclaim to try compaction? don't OOM, then */
2551 if (sc->compaction_ready)
2552 return 1;
2553
2554 /* Any of the zones still reclaimable? Don't OOM. */
2555 if (zones_reclaimable)
2556 return 1;
2557
2558 return 0;
2559 }
2560
2561 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2562 {
2563 struct zone *zone;
2564 unsigned long pfmemalloc_reserve = 0;
2565 unsigned long free_pages = 0;
2566 int i;
2567 bool wmark_ok;
2568
2569 for (i = 0; i <= ZONE_NORMAL; i++) {
2570 zone = &pgdat->node_zones[i];
2571 if (!populated_zone(zone))
2572 continue;
2573
2574 pfmemalloc_reserve += min_wmark_pages(zone);
2575 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2576 }
2577
2578 /* If there are no reserves (unexpected config) then do not throttle */
2579 if (!pfmemalloc_reserve)
2580 return true;
2581
2582 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2583
2584 /* kswapd must be awake if processes are being throttled */
2585 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2586 pgdat->classzone_idx = min(pgdat->classzone_idx,
2587 (enum zone_type)ZONE_NORMAL);
2588 wake_up_interruptible(&pgdat->kswapd_wait);
2589 }
2590
2591 return wmark_ok;
2592 }
2593
2594 /*
2595 * Throttle direct reclaimers if backing storage is backed by the network
2596 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2597 * depleted. kswapd will continue to make progress and wake the processes
2598 * when the low watermark is reached.
2599 *
2600 * Returns true if a fatal signal was delivered during throttling. If this
2601 * happens, the page allocator should not consider triggering the OOM killer.
2602 */
2603 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2604 nodemask_t *nodemask)
2605 {
2606 struct zoneref *z;
2607 struct zone *zone;
2608 pg_data_t *pgdat = NULL;
2609
2610 /*
2611 * Kernel threads should not be throttled as they may be indirectly
2612 * responsible for cleaning pages necessary for reclaim to make forward
2613 * progress. kjournald for example may enter direct reclaim while
2614 * committing a transaction where throttling it could forcing other
2615 * processes to block on log_wait_commit().
2616 */
2617 if (current->flags & PF_KTHREAD)
2618 goto out;
2619
2620 /*
2621 * If a fatal signal is pending, this process should not throttle.
2622 * It should return quickly so it can exit and free its memory
2623 */
2624 if (fatal_signal_pending(current))
2625 goto out;
2626
2627 /*
2628 * Check if the pfmemalloc reserves are ok by finding the first node
2629 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2630 * GFP_KERNEL will be required for allocating network buffers when
2631 * swapping over the network so ZONE_HIGHMEM is unusable.
2632 *
2633 * Throttling is based on the first usable node and throttled processes
2634 * wait on a queue until kswapd makes progress and wakes them. There
2635 * is an affinity then between processes waking up and where reclaim
2636 * progress has been made assuming the process wakes on the same node.
2637 * More importantly, processes running on remote nodes will not compete
2638 * for remote pfmemalloc reserves and processes on different nodes
2639 * should make reasonable progress.
2640 */
2641 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2642 gfp_mask, nodemask) {
2643 if (zone_idx(zone) > ZONE_NORMAL)
2644 continue;
2645
2646 /* Throttle based on the first usable node */
2647 pgdat = zone->zone_pgdat;
2648 if (pfmemalloc_watermark_ok(pgdat))
2649 goto out;
2650 break;
2651 }
2652
2653 /* If no zone was usable by the allocation flags then do not throttle */
2654 if (!pgdat)
2655 goto out;
2656
2657 /* Account for the throttling */
2658 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2659
2660 /*
2661 * If the caller cannot enter the filesystem, it's possible that it
2662 * is due to the caller holding an FS lock or performing a journal
2663 * transaction in the case of a filesystem like ext[3|4]. In this case,
2664 * it is not safe to block on pfmemalloc_wait as kswapd could be
2665 * blocked waiting on the same lock. Instead, throttle for up to a
2666 * second before continuing.
2667 */
2668 if (!(gfp_mask & __GFP_FS)) {
2669 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2670 pfmemalloc_watermark_ok(pgdat), HZ);
2671
2672 goto check_pending;
2673 }
2674
2675 /* Throttle until kswapd wakes the process */
2676 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2677 pfmemalloc_watermark_ok(pgdat));
2678
2679 check_pending:
2680 if (fatal_signal_pending(current))
2681 return true;
2682
2683 out:
2684 return false;
2685 }
2686
2687 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2688 gfp_t gfp_mask, nodemask_t *nodemask)
2689 {
2690 unsigned long nr_reclaimed;
2691 struct scan_control sc = {
2692 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2693 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2694 .order = order,
2695 .nodemask = nodemask,
2696 .priority = DEF_PRIORITY,
2697 .may_writepage = !laptop_mode,
2698 .may_unmap = 1,
2699 .may_swap = 1,
2700 };
2701
2702 /*
2703 * Do not enter reclaim if fatal signal was delivered while throttled.
2704 * 1 is returned so that the page allocator does not OOM kill at this
2705 * point.
2706 */
2707 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2708 return 1;
2709
2710 trace_mm_vmscan_direct_reclaim_begin(order,
2711 sc.may_writepage,
2712 gfp_mask);
2713
2714 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2715
2716 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2717
2718 return nr_reclaimed;
2719 }
2720
2721 #ifdef CONFIG_MEMCG
2722
2723 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2724 gfp_t gfp_mask, bool noswap,
2725 struct zone *zone,
2726 unsigned long *nr_scanned)
2727 {
2728 struct scan_control sc = {
2729 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2730 .target_mem_cgroup = memcg,
2731 .may_writepage = !laptop_mode,
2732 .may_unmap = 1,
2733 .may_swap = !noswap,
2734 };
2735 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2736 int swappiness = mem_cgroup_swappiness(memcg);
2737
2738 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2739 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2740
2741 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2742 sc.may_writepage,
2743 sc.gfp_mask);
2744
2745 /*
2746 * NOTE: Although we can get the priority field, using it
2747 * here is not a good idea, since it limits the pages we can scan.
2748 * if we don't reclaim here, the shrink_zone from balance_pgdat
2749 * will pick up pages from other mem cgroup's as well. We hack
2750 * the priority and make it zero.
2751 */
2752 shrink_lruvec(lruvec, swappiness, &sc);
2753
2754 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2755
2756 *nr_scanned = sc.nr_scanned;
2757 return sc.nr_reclaimed;
2758 }
2759
2760 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2761 unsigned long nr_pages,
2762 gfp_t gfp_mask,
2763 bool may_swap)
2764 {
2765 struct zonelist *zonelist;
2766 unsigned long nr_reclaimed;
2767 int nid;
2768 struct scan_control sc = {
2769 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2770 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2771 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2772 .target_mem_cgroup = memcg,
2773 .priority = DEF_PRIORITY,
2774 .may_writepage = !laptop_mode,
2775 .may_unmap = 1,
2776 .may_swap = may_swap,
2777 };
2778
2779 /*
2780 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2781 * take care of from where we get pages. So the node where we start the
2782 * scan does not need to be the current node.
2783 */
2784 nid = mem_cgroup_select_victim_node(memcg);
2785
2786 zonelist = NODE_DATA(nid)->node_zonelists;
2787
2788 trace_mm_vmscan_memcg_reclaim_begin(0,
2789 sc.may_writepage,
2790 sc.gfp_mask);
2791
2792 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2793
2794 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2795
2796 return nr_reclaimed;
2797 }
2798 #endif
2799
2800 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2801 {
2802 struct mem_cgroup *memcg;
2803
2804 if (!total_swap_pages)
2805 return;
2806
2807 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2808 do {
2809 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2810
2811 if (inactive_anon_is_low(lruvec))
2812 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2813 sc, LRU_ACTIVE_ANON);
2814
2815 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2816 } while (memcg);
2817 }
2818
2819 static bool zone_balanced(struct zone *zone, int order,
2820 unsigned long balance_gap, int classzone_idx)
2821 {
2822 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2823 balance_gap, classzone_idx, 0))
2824 return false;
2825
2826 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2827 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2828 return false;
2829
2830 return true;
2831 }
2832
2833 /*
2834 * pgdat_balanced() is used when checking if a node is balanced.
2835 *
2836 * For order-0, all zones must be balanced!
2837 *
2838 * For high-order allocations only zones that meet watermarks and are in a
2839 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2840 * total of balanced pages must be at least 25% of the zones allowed by
2841 * classzone_idx for the node to be considered balanced. Forcing all zones to
2842 * be balanced for high orders can cause excessive reclaim when there are
2843 * imbalanced zones.
2844 * The choice of 25% is due to
2845 * o a 16M DMA zone that is balanced will not balance a zone on any
2846 * reasonable sized machine
2847 * o On all other machines, the top zone must be at least a reasonable
2848 * percentage of the middle zones. For example, on 32-bit x86, highmem
2849 * would need to be at least 256M for it to be balance a whole node.
2850 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2851 * to balance a node on its own. These seemed like reasonable ratios.
2852 */
2853 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2854 {
2855 unsigned long managed_pages = 0;
2856 unsigned long balanced_pages = 0;
2857 int i;
2858
2859 /* Check the watermark levels */
2860 for (i = 0; i <= classzone_idx; i++) {
2861 struct zone *zone = pgdat->node_zones + i;
2862
2863 if (!populated_zone(zone))
2864 continue;
2865
2866 managed_pages += zone->managed_pages;
2867
2868 /*
2869 * A special case here:
2870 *
2871 * balance_pgdat() skips over all_unreclaimable after
2872 * DEF_PRIORITY. Effectively, it considers them balanced so
2873 * they must be considered balanced here as well!
2874 */
2875 if (!zone_reclaimable(zone)) {
2876 balanced_pages += zone->managed_pages;
2877 continue;
2878 }
2879
2880 if (zone_balanced(zone, order, 0, i))
2881 balanced_pages += zone->managed_pages;
2882 else if (!order)
2883 return false;
2884 }
2885
2886 if (order)
2887 return balanced_pages >= (managed_pages >> 2);
2888 else
2889 return true;
2890 }
2891
2892 /*
2893 * Prepare kswapd for sleeping. This verifies that there are no processes
2894 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2895 *
2896 * Returns true if kswapd is ready to sleep
2897 */
2898 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2899 int classzone_idx)
2900 {
2901 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2902 if (remaining)
2903 return false;
2904
2905 /*
2906 * There is a potential race between when kswapd checks its watermarks
2907 * and a process gets throttled. There is also a potential race if
2908 * processes get throttled, kswapd wakes, a large process exits therby
2909 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2910 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2911 * so wake them now if necessary. If necessary, processes will wake
2912 * kswapd and get throttled again
2913 */
2914 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2915 wake_up(&pgdat->pfmemalloc_wait);
2916 return false;
2917 }
2918
2919 return pgdat_balanced(pgdat, order, classzone_idx);
2920 }
2921
2922 /*
2923 * kswapd shrinks the zone by the number of pages required to reach
2924 * the high watermark.
2925 *
2926 * Returns true if kswapd scanned at least the requested number of pages to
2927 * reclaim or if the lack of progress was due to pages under writeback.
2928 * This is used to determine if the scanning priority needs to be raised.
2929 */
2930 static bool kswapd_shrink_zone(struct zone *zone,
2931 int classzone_idx,
2932 struct scan_control *sc,
2933 unsigned long lru_pages,
2934 unsigned long *nr_attempted)
2935 {
2936 int testorder = sc->order;
2937 unsigned long balance_gap;
2938 struct reclaim_state *reclaim_state = current->reclaim_state;
2939 struct shrink_control shrink = {
2940 .gfp_mask = sc->gfp_mask,
2941 };
2942 bool lowmem_pressure;
2943
2944 /* Reclaim above the high watermark. */
2945 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2946
2947 /*
2948 * Kswapd reclaims only single pages with compaction enabled. Trying
2949 * too hard to reclaim until contiguous free pages have become
2950 * available can hurt performance by evicting too much useful data
2951 * from memory. Do not reclaim more than needed for compaction.
2952 */
2953 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2954 compaction_suitable(zone, sc->order) !=
2955 COMPACT_SKIPPED)
2956 testorder = 0;
2957
2958 /*
2959 * We put equal pressure on every zone, unless one zone has way too
2960 * many pages free already. The "too many pages" is defined as the
2961 * high wmark plus a "gap" where the gap is either the low
2962 * watermark or 1% of the zone, whichever is smaller.
2963 */
2964 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2965 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2966
2967 /*
2968 * If there is no low memory pressure or the zone is balanced then no
2969 * reclaim is necessary
2970 */
2971 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2972 if (!lowmem_pressure && zone_balanced(zone, testorder,
2973 balance_gap, classzone_idx))
2974 return true;
2975
2976 shrink_zone(zone, sc);
2977 nodes_clear(shrink.nodes_to_scan);
2978 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2979
2980 reclaim_state->reclaimed_slab = 0;
2981 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2982 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2983
2984 /* Account for the number of pages attempted to reclaim */
2985 *nr_attempted += sc->nr_to_reclaim;
2986
2987 clear_bit(ZONE_WRITEBACK, &zone->flags);
2988
2989 /*
2990 * If a zone reaches its high watermark, consider it to be no longer
2991 * congested. It's possible there are dirty pages backed by congested
2992 * BDIs but as pressure is relieved, speculatively avoid congestion
2993 * waits.
2994 */
2995 if (zone_reclaimable(zone) &&
2996 zone_balanced(zone, testorder, 0, classzone_idx)) {
2997 clear_bit(ZONE_CONGESTED, &zone->flags);
2998 clear_bit(ZONE_DIRTY, &zone->flags);
2999 }
3000
3001 return sc->nr_scanned >= sc->nr_to_reclaim;
3002 }
3003
3004 /*
3005 * For kswapd, balance_pgdat() will work across all this node's zones until
3006 * they are all at high_wmark_pages(zone).
3007 *
3008 * Returns the final order kswapd was reclaiming at
3009 *
3010 * There is special handling here for zones which are full of pinned pages.
3011 * This can happen if the pages are all mlocked, or if they are all used by
3012 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3013 * What we do is to detect the case where all pages in the zone have been
3014 * scanned twice and there has been zero successful reclaim. Mark the zone as
3015 * dead and from now on, only perform a short scan. Basically we're polling
3016 * the zone for when the problem goes away.
3017 *
3018 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3019 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3020 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3021 * lower zones regardless of the number of free pages in the lower zones. This
3022 * interoperates with the page allocator fallback scheme to ensure that aging
3023 * of pages is balanced across the zones.
3024 */
3025 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3026 int *classzone_idx)
3027 {
3028 int i;
3029 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3030 unsigned long nr_soft_reclaimed;
3031 unsigned long nr_soft_scanned;
3032 struct scan_control sc = {
3033 .gfp_mask = GFP_KERNEL,
3034 .order = order,
3035 .priority = DEF_PRIORITY,
3036 .may_writepage = !laptop_mode,
3037 .may_unmap = 1,
3038 .may_swap = 1,
3039 };
3040 count_vm_event(PAGEOUTRUN);
3041
3042 do {
3043 unsigned long lru_pages = 0;
3044 unsigned long nr_attempted = 0;
3045 bool raise_priority = true;
3046 bool pgdat_needs_compaction = (order > 0);
3047
3048 sc.nr_reclaimed = 0;
3049
3050 /*
3051 * Scan in the highmem->dma direction for the highest
3052 * zone which needs scanning
3053 */
3054 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3055 struct zone *zone = pgdat->node_zones + i;
3056
3057 if (!populated_zone(zone))
3058 continue;
3059
3060 if (sc.priority != DEF_PRIORITY &&
3061 !zone_reclaimable(zone))
3062 continue;
3063
3064 /*
3065 * Do some background aging of the anon list, to give
3066 * pages a chance to be referenced before reclaiming.
3067 */
3068 age_active_anon(zone, &sc);
3069
3070 /*
3071 * If the number of buffer_heads in the machine
3072 * exceeds the maximum allowed level and this node
3073 * has a highmem zone, force kswapd to reclaim from
3074 * it to relieve lowmem pressure.
3075 */
3076 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3077 end_zone = i;
3078 break;
3079 }
3080
3081 if (!zone_balanced(zone, order, 0, 0)) {
3082 end_zone = i;
3083 break;
3084 } else {
3085 /*
3086 * If balanced, clear the dirty and congested
3087 * flags
3088 */
3089 clear_bit(ZONE_CONGESTED, &zone->flags);
3090 clear_bit(ZONE_DIRTY, &zone->flags);
3091 }
3092 }
3093
3094 if (i < 0)
3095 goto out;
3096
3097 for (i = 0; i <= end_zone; i++) {
3098 struct zone *zone = pgdat->node_zones + i;
3099
3100 if (!populated_zone(zone))
3101 continue;
3102
3103 lru_pages += zone_reclaimable_pages(zone);
3104
3105 /*
3106 * If any zone is currently balanced then kswapd will
3107 * not call compaction as it is expected that the
3108 * necessary pages are already available.
3109 */
3110 if (pgdat_needs_compaction &&
3111 zone_watermark_ok(zone, order,
3112 low_wmark_pages(zone),
3113 *classzone_idx, 0))
3114 pgdat_needs_compaction = false;
3115 }
3116
3117 /*
3118 * If we're getting trouble reclaiming, start doing writepage
3119 * even in laptop mode.
3120 */
3121 if (sc.priority < DEF_PRIORITY - 2)
3122 sc.may_writepage = 1;
3123
3124 /*
3125 * Now scan the zone in the dma->highmem direction, stopping
3126 * at the last zone which needs scanning.
3127 *
3128 * We do this because the page allocator works in the opposite
3129 * direction. This prevents the page allocator from allocating
3130 * pages behind kswapd's direction of progress, which would
3131 * cause too much scanning of the lower zones.
3132 */
3133 for (i = 0; i <= end_zone; i++) {
3134 struct zone *zone = pgdat->node_zones + i;
3135
3136 if (!populated_zone(zone))
3137 continue;
3138
3139 if (sc.priority != DEF_PRIORITY &&
3140 !zone_reclaimable(zone))
3141 continue;
3142
3143 sc.nr_scanned = 0;
3144
3145 nr_soft_scanned = 0;
3146 /*
3147 * Call soft limit reclaim before calling shrink_zone.
3148 */
3149 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3150 order, sc.gfp_mask,
3151 &nr_soft_scanned);
3152 sc.nr_reclaimed += nr_soft_reclaimed;
3153
3154 /*
3155 * There should be no need to raise the scanning
3156 * priority if enough pages are already being scanned
3157 * that that high watermark would be met at 100%
3158 * efficiency.
3159 */
3160 if (kswapd_shrink_zone(zone, end_zone, &sc,
3161 lru_pages, &nr_attempted))
3162 raise_priority = false;
3163 }
3164
3165 /*
3166 * If the low watermark is met there is no need for processes
3167 * to be throttled on pfmemalloc_wait as they should not be
3168 * able to safely make forward progress. Wake them
3169 */
3170 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3171 pfmemalloc_watermark_ok(pgdat))
3172 wake_up(&pgdat->pfmemalloc_wait);
3173
3174 /*
3175 * Fragmentation may mean that the system cannot be rebalanced
3176 * for high-order allocations in all zones. If twice the
3177 * allocation size has been reclaimed and the zones are still
3178 * not balanced then recheck the watermarks at order-0 to
3179 * prevent kswapd reclaiming excessively. Assume that a
3180 * process requested a high-order can direct reclaim/compact.
3181 */
3182 if (order && sc.nr_reclaimed >= 2UL << order)
3183 order = sc.order = 0;
3184
3185 /* Check if kswapd should be suspending */
3186 if (try_to_freeze() || kthread_should_stop())
3187 break;
3188
3189 /*
3190 * Compact if necessary and kswapd is reclaiming at least the
3191 * high watermark number of pages as requsted
3192 */
3193 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3194 compact_pgdat(pgdat, order);
3195
3196 /*
3197 * Raise priority if scanning rate is too low or there was no
3198 * progress in reclaiming pages
3199 */
3200 if (raise_priority || !sc.nr_reclaimed)
3201 sc.priority--;
3202 } while (sc.priority >= 1 &&
3203 !pgdat_balanced(pgdat, order, *classzone_idx));
3204
3205 out:
3206 /*
3207 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3208 * makes a decision on the order we were last reclaiming at. However,
3209 * if another caller entered the allocator slow path while kswapd
3210 * was awake, order will remain at the higher level
3211 */
3212 *classzone_idx = end_zone;
3213 return order;
3214 }
3215
3216 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3217 {
3218 long remaining = 0;
3219 DEFINE_WAIT(wait);
3220
3221 if (freezing(current) || kthread_should_stop())
3222 return;
3223
3224 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3225
3226 /* Try to sleep for a short interval */
3227 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3228 remaining = schedule_timeout(HZ/10);
3229 finish_wait(&pgdat->kswapd_wait, &wait);
3230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3231 }
3232
3233 /*
3234 * After a short sleep, check if it was a premature sleep. If not, then
3235 * go fully to sleep until explicitly woken up.
3236 */
3237 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3238 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3239
3240 /*
3241 * vmstat counters are not perfectly accurate and the estimated
3242 * value for counters such as NR_FREE_PAGES can deviate from the
3243 * true value by nr_online_cpus * threshold. To avoid the zone
3244 * watermarks being breached while under pressure, we reduce the
3245 * per-cpu vmstat threshold while kswapd is awake and restore
3246 * them before going back to sleep.
3247 */
3248 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3249
3250 /*
3251 * Compaction records what page blocks it recently failed to
3252 * isolate pages from and skips them in the future scanning.
3253 * When kswapd is going to sleep, it is reasonable to assume
3254 * that pages and compaction may succeed so reset the cache.
3255 */
3256 reset_isolation_suitable(pgdat);
3257
3258 if (!kthread_should_stop())
3259 schedule();
3260
3261 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3262 } else {
3263 if (remaining)
3264 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3265 else
3266 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3267 }
3268 finish_wait(&pgdat->kswapd_wait, &wait);
3269 }
3270
3271 /*
3272 * The background pageout daemon, started as a kernel thread
3273 * from the init process.
3274 *
3275 * This basically trickles out pages so that we have _some_
3276 * free memory available even if there is no other activity
3277 * that frees anything up. This is needed for things like routing
3278 * etc, where we otherwise might have all activity going on in
3279 * asynchronous contexts that cannot page things out.
3280 *
3281 * If there are applications that are active memory-allocators
3282 * (most normal use), this basically shouldn't matter.
3283 */
3284 static int kswapd(void *p)
3285 {
3286 unsigned long order, new_order;
3287 unsigned balanced_order;
3288 int classzone_idx, new_classzone_idx;
3289 int balanced_classzone_idx;
3290 pg_data_t *pgdat = (pg_data_t*)p;
3291 struct task_struct *tsk = current;
3292
3293 struct reclaim_state reclaim_state = {
3294 .reclaimed_slab = 0,
3295 };
3296 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3297
3298 lockdep_set_current_reclaim_state(GFP_KERNEL);
3299
3300 if (!cpumask_empty(cpumask))
3301 set_cpus_allowed_ptr(tsk, cpumask);
3302 current->reclaim_state = &reclaim_state;
3303
3304 /*
3305 * Tell the memory management that we're a "memory allocator",
3306 * and that if we need more memory we should get access to it
3307 * regardless (see "__alloc_pages()"). "kswapd" should
3308 * never get caught in the normal page freeing logic.
3309 *
3310 * (Kswapd normally doesn't need memory anyway, but sometimes
3311 * you need a small amount of memory in order to be able to
3312 * page out something else, and this flag essentially protects
3313 * us from recursively trying to free more memory as we're
3314 * trying to free the first piece of memory in the first place).
3315 */
3316 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3317 set_freezable();
3318
3319 order = new_order = 0;
3320 balanced_order = 0;
3321 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3322 balanced_classzone_idx = classzone_idx;
3323 for ( ; ; ) {
3324 bool ret;
3325
3326 /*
3327 * If the last balance_pgdat was unsuccessful it's unlikely a
3328 * new request of a similar or harder type will succeed soon
3329 * so consider going to sleep on the basis we reclaimed at
3330 */
3331 if (balanced_classzone_idx >= new_classzone_idx &&
3332 balanced_order == new_order) {
3333 new_order = pgdat->kswapd_max_order;
3334 new_classzone_idx = pgdat->classzone_idx;
3335 pgdat->kswapd_max_order = 0;
3336 pgdat->classzone_idx = pgdat->nr_zones - 1;
3337 }
3338
3339 if (order < new_order || classzone_idx > new_classzone_idx) {
3340 /*
3341 * Don't sleep if someone wants a larger 'order'
3342 * allocation or has tigher zone constraints
3343 */
3344 order = new_order;
3345 classzone_idx = new_classzone_idx;
3346 } else {
3347 kswapd_try_to_sleep(pgdat, balanced_order,
3348 balanced_classzone_idx);
3349 order = pgdat->kswapd_max_order;
3350 classzone_idx = pgdat->classzone_idx;
3351 new_order = order;
3352 new_classzone_idx = classzone_idx;
3353 pgdat->kswapd_max_order = 0;
3354 pgdat->classzone_idx = pgdat->nr_zones - 1;
3355 }
3356
3357 ret = try_to_freeze();
3358 if (kthread_should_stop())
3359 break;
3360
3361 /*
3362 * We can speed up thawing tasks if we don't call balance_pgdat
3363 * after returning from the refrigerator
3364 */
3365 if (!ret) {
3366 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3367 balanced_classzone_idx = classzone_idx;
3368 balanced_order = balance_pgdat(pgdat, order,
3369 &balanced_classzone_idx);
3370 }
3371 }
3372
3373 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3374 current->reclaim_state = NULL;
3375 lockdep_clear_current_reclaim_state();
3376
3377 return 0;
3378 }
3379
3380 /*
3381 * A zone is low on free memory, so wake its kswapd task to service it.
3382 */
3383 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3384 {
3385 pg_data_t *pgdat;
3386
3387 if (!populated_zone(zone))
3388 return;
3389
3390 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3391 return;
3392 pgdat = zone->zone_pgdat;
3393 if (pgdat->kswapd_max_order < order) {
3394 pgdat->kswapd_max_order = order;
3395 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3396 }
3397 if (!waitqueue_active(&pgdat->kswapd_wait))
3398 return;
3399 if (zone_balanced(zone, order, 0, 0))
3400 return;
3401
3402 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3403 wake_up_interruptible(&pgdat->kswapd_wait);
3404 }
3405
3406 #ifdef CONFIG_HIBERNATION
3407 /*
3408 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3409 * freed pages.
3410 *
3411 * Rather than trying to age LRUs the aim is to preserve the overall
3412 * LRU order by reclaiming preferentially
3413 * inactive > active > active referenced > active mapped
3414 */
3415 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3416 {
3417 struct reclaim_state reclaim_state;
3418 struct scan_control sc = {
3419 .nr_to_reclaim = nr_to_reclaim,
3420 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3421 .priority = DEF_PRIORITY,
3422 .may_writepage = 1,
3423 .may_unmap = 1,
3424 .may_swap = 1,
3425 .hibernation_mode = 1,
3426 };
3427 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3428 struct task_struct *p = current;
3429 unsigned long nr_reclaimed;
3430
3431 p->flags |= PF_MEMALLOC;
3432 lockdep_set_current_reclaim_state(sc.gfp_mask);
3433 reclaim_state.reclaimed_slab = 0;
3434 p->reclaim_state = &reclaim_state;
3435
3436 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3437
3438 p->reclaim_state = NULL;
3439 lockdep_clear_current_reclaim_state();
3440 p->flags &= ~PF_MEMALLOC;
3441
3442 return nr_reclaimed;
3443 }
3444 #endif /* CONFIG_HIBERNATION */
3445
3446 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3447 not required for correctness. So if the last cpu in a node goes
3448 away, we get changed to run anywhere: as the first one comes back,
3449 restore their cpu bindings. */
3450 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3451 void *hcpu)
3452 {
3453 int nid;
3454
3455 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3456 for_each_node_state(nid, N_MEMORY) {
3457 pg_data_t *pgdat = NODE_DATA(nid);
3458 const struct cpumask *mask;
3459
3460 mask = cpumask_of_node(pgdat->node_id);
3461
3462 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3463 /* One of our CPUs online: restore mask */
3464 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3465 }
3466 }
3467 return NOTIFY_OK;
3468 }
3469
3470 /*
3471 * This kswapd start function will be called by init and node-hot-add.
3472 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3473 */
3474 int kswapd_run(int nid)
3475 {
3476 pg_data_t *pgdat = NODE_DATA(nid);
3477 int ret = 0;
3478
3479 if (pgdat->kswapd)
3480 return 0;
3481
3482 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3483 if (IS_ERR(pgdat->kswapd)) {
3484 /* failure at boot is fatal */
3485 BUG_ON(system_state == SYSTEM_BOOTING);
3486 pr_err("Failed to start kswapd on node %d\n", nid);
3487 ret = PTR_ERR(pgdat->kswapd);
3488 pgdat->kswapd = NULL;
3489 }
3490 return ret;
3491 }
3492
3493 /*
3494 * Called by memory hotplug when all memory in a node is offlined. Caller must
3495 * hold mem_hotplug_begin/end().
3496 */
3497 void kswapd_stop(int nid)
3498 {
3499 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3500
3501 if (kswapd) {
3502 kthread_stop(kswapd);
3503 NODE_DATA(nid)->kswapd = NULL;
3504 }
3505 }
3506
3507 static int __init kswapd_init(void)
3508 {
3509 int nid;
3510
3511 swap_setup();
3512 for_each_node_state(nid, N_MEMORY)
3513 kswapd_run(nid);
3514 hotcpu_notifier(cpu_callback, 0);
3515 return 0;
3516 }
3517
3518 module_init(kswapd_init)
3519
3520 #ifdef CONFIG_NUMA
3521 /*
3522 * Zone reclaim mode
3523 *
3524 * If non-zero call zone_reclaim when the number of free pages falls below
3525 * the watermarks.
3526 */
3527 int zone_reclaim_mode __read_mostly;
3528
3529 #define RECLAIM_OFF 0
3530 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3531 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3532 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3533
3534 /*
3535 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3536 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3537 * a zone.
3538 */
3539 #define ZONE_RECLAIM_PRIORITY 4
3540
3541 /*
3542 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3543 * occur.
3544 */
3545 int sysctl_min_unmapped_ratio = 1;
3546
3547 /*
3548 * If the number of slab pages in a zone grows beyond this percentage then
3549 * slab reclaim needs to occur.
3550 */
3551 int sysctl_min_slab_ratio = 5;
3552
3553 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3554 {
3555 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3556 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3557 zone_page_state(zone, NR_ACTIVE_FILE);
3558
3559 /*
3560 * It's possible for there to be more file mapped pages than
3561 * accounted for by the pages on the file LRU lists because
3562 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3563 */
3564 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3565 }
3566
3567 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3568 static long zone_pagecache_reclaimable(struct zone *zone)
3569 {
3570 long nr_pagecache_reclaimable;
3571 long delta = 0;
3572
3573 /*
3574 * If RECLAIM_SWAP is set, then all file pages are considered
3575 * potentially reclaimable. Otherwise, we have to worry about
3576 * pages like swapcache and zone_unmapped_file_pages() provides
3577 * a better estimate
3578 */
3579 if (zone_reclaim_mode & RECLAIM_SWAP)
3580 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3581 else
3582 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3583
3584 /* If we can't clean pages, remove dirty pages from consideration */
3585 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3586 delta += zone_page_state(zone, NR_FILE_DIRTY);
3587
3588 /* Watch for any possible underflows due to delta */
3589 if (unlikely(delta > nr_pagecache_reclaimable))
3590 delta = nr_pagecache_reclaimable;
3591
3592 return nr_pagecache_reclaimable - delta;
3593 }
3594
3595 /*
3596 * Try to free up some pages from this zone through reclaim.
3597 */
3598 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3599 {
3600 /* Minimum pages needed in order to stay on node */
3601 const unsigned long nr_pages = 1 << order;
3602 struct task_struct *p = current;
3603 struct reclaim_state reclaim_state;
3604 struct scan_control sc = {
3605 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3606 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3607 .order = order,
3608 .priority = ZONE_RECLAIM_PRIORITY,
3609 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3610 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3611 .may_swap = 1,
3612 };
3613 struct shrink_control shrink = {
3614 .gfp_mask = sc.gfp_mask,
3615 };
3616 unsigned long nr_slab_pages0, nr_slab_pages1;
3617
3618 cond_resched();
3619 /*
3620 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3621 * and we also need to be able to write out pages for RECLAIM_WRITE
3622 * and RECLAIM_SWAP.
3623 */
3624 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3625 lockdep_set_current_reclaim_state(gfp_mask);
3626 reclaim_state.reclaimed_slab = 0;
3627 p->reclaim_state = &reclaim_state;
3628
3629 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3630 /*
3631 * Free memory by calling shrink zone with increasing
3632 * priorities until we have enough memory freed.
3633 */
3634 do {
3635 shrink_zone(zone, &sc);
3636 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3637 }
3638
3639 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3640 if (nr_slab_pages0 > zone->min_slab_pages) {
3641 /*
3642 * shrink_slab() does not currently allow us to determine how
3643 * many pages were freed in this zone. So we take the current
3644 * number of slab pages and shake the slab until it is reduced
3645 * by the same nr_pages that we used for reclaiming unmapped
3646 * pages.
3647 */
3648 nodes_clear(shrink.nodes_to_scan);
3649 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3650 for (;;) {
3651 unsigned long lru_pages = zone_reclaimable_pages(zone);
3652
3653 /* No reclaimable slab or very low memory pressure */
3654 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3655 break;
3656
3657 /* Freed enough memory */
3658 nr_slab_pages1 = zone_page_state(zone,
3659 NR_SLAB_RECLAIMABLE);
3660 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3661 break;
3662 }
3663
3664 /*
3665 * Update nr_reclaimed by the number of slab pages we
3666 * reclaimed from this zone.
3667 */
3668 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3669 if (nr_slab_pages1 < nr_slab_pages0)
3670 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3671 }
3672
3673 p->reclaim_state = NULL;
3674 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3675 lockdep_clear_current_reclaim_state();
3676 return sc.nr_reclaimed >= nr_pages;
3677 }
3678
3679 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3680 {
3681 int node_id;
3682 int ret;
3683
3684 /*
3685 * Zone reclaim reclaims unmapped file backed pages and
3686 * slab pages if we are over the defined limits.
3687 *
3688 * A small portion of unmapped file backed pages is needed for
3689 * file I/O otherwise pages read by file I/O will be immediately
3690 * thrown out if the zone is overallocated. So we do not reclaim
3691 * if less than a specified percentage of the zone is used by
3692 * unmapped file backed pages.
3693 */
3694 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3695 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3696 return ZONE_RECLAIM_FULL;
3697
3698 if (!zone_reclaimable(zone))
3699 return ZONE_RECLAIM_FULL;
3700
3701 /*
3702 * Do not scan if the allocation should not be delayed.
3703 */
3704 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3705 return ZONE_RECLAIM_NOSCAN;
3706
3707 /*
3708 * Only run zone reclaim on the local zone or on zones that do not
3709 * have associated processors. This will favor the local processor
3710 * over remote processors and spread off node memory allocations
3711 * as wide as possible.
3712 */
3713 node_id = zone_to_nid(zone);
3714 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3715 return ZONE_RECLAIM_NOSCAN;
3716
3717 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3718 return ZONE_RECLAIM_NOSCAN;
3719
3720 ret = __zone_reclaim(zone, gfp_mask, order);
3721 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3722
3723 if (!ret)
3724 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3725
3726 return ret;
3727 }
3728 #endif
3729
3730 /*
3731 * page_evictable - test whether a page is evictable
3732 * @page: the page to test
3733 *
3734 * Test whether page is evictable--i.e., should be placed on active/inactive
3735 * lists vs unevictable list.
3736 *
3737 * Reasons page might not be evictable:
3738 * (1) page's mapping marked unevictable
3739 * (2) page is part of an mlocked VMA
3740 *
3741 */
3742 int page_evictable(struct page *page)
3743 {
3744 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3745 }
3746
3747 #ifdef CONFIG_SHMEM
3748 /**
3749 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3750 * @pages: array of pages to check
3751 * @nr_pages: number of pages to check
3752 *
3753 * Checks pages for evictability and moves them to the appropriate lru list.
3754 *
3755 * This function is only used for SysV IPC SHM_UNLOCK.
3756 */
3757 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3758 {
3759 struct lruvec *lruvec;
3760 struct zone *zone = NULL;
3761 int pgscanned = 0;
3762 int pgrescued = 0;
3763 int i;
3764
3765 for (i = 0; i < nr_pages; i++) {
3766 struct page *page = pages[i];
3767 struct zone *pagezone;
3768
3769 pgscanned++;
3770 pagezone = page_zone(page);
3771 if (pagezone != zone) {
3772 if (zone)
3773 spin_unlock_irq(&zone->lru_lock);
3774 zone = pagezone;
3775 spin_lock_irq(&zone->lru_lock);
3776 }
3777 lruvec = mem_cgroup_page_lruvec(page, zone);
3778
3779 if (!PageLRU(page) || !PageUnevictable(page))
3780 continue;
3781
3782 if (page_evictable(page)) {
3783 enum lru_list lru = page_lru_base_type(page);
3784
3785 VM_BUG_ON_PAGE(PageActive(page), page);
3786 ClearPageUnevictable(page);
3787 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3788 add_page_to_lru_list(page, lruvec, lru);
3789 pgrescued++;
3790 }
3791 }
3792
3793 if (zone) {
3794 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3795 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3796 spin_unlock_irq(&zone->lru_lock);
3797 }
3798 }
3799 #endif /* CONFIG_SHMEM */