]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/vmscan.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
69
70 /*
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
73 */
74 nodemask_t *nodemask;
75
76 /*
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
79 */
80 struct mem_cgroup *target_mem_cgroup;
81
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
84
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
91 /*
92 * Cgroup memory below memory.low is protected as long as we
93 * don't threaten to OOM. If any cgroup is reclaimed at
94 * reduced force or passed over entirely due to its memory.low
95 * setting (memcg_low_skipped), and nothing is reclaimed as a
96 * result, then go back for one more cycle that reclaims the protected
97 * memory (memcg_low_reclaim) to avert OOM.
98 */
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
101
102 unsigned int hibernation_mode:1;
103
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
106
107 /* Allocation order */
108 s8 order;
109
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
112
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
115
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
118
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
121
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
124
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
134
135 /* for recording the reclaimed slab by now */
136 struct reclaim_state reclaim_state;
137 };
138
139 #ifdef ARCH_HAS_PREFETCH
140 #define prefetch_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetch(&prev->_field); \
147 } \
148 } while (0)
149 #else
150 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 #ifdef ARCH_HAS_PREFETCHW
154 #define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163 #else
164 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 #endif
166
167 /*
168 * From 0 .. 100. Higher means more swappy.
169 */
170 int vm_swappiness = 60;
171 /*
172 * The total number of pages which are beyond the high watermark within all
173 * zones.
174 */
175 unsigned long vm_total_pages;
176
177 static void set_task_reclaim_state(struct task_struct *task,
178 struct reclaim_state *rs)
179 {
180 /* Check for an overwrite */
181 WARN_ON_ONCE(rs && task->reclaim_state);
182
183 /* Check for the nulling of an already-nulled member */
184 WARN_ON_ONCE(!rs && !task->reclaim_state);
185
186 task->reclaim_state = rs;
187 }
188
189 static LIST_HEAD(shrinker_list);
190 static DECLARE_RWSEM(shrinker_rwsem);
191
192 #ifdef CONFIG_MEMCG
193 /*
194 * We allow subsystems to populate their shrinker-related
195 * LRU lists before register_shrinker_prepared() is called
196 * for the shrinker, since we don't want to impose
197 * restrictions on their internal registration order.
198 * In this case shrink_slab_memcg() may find corresponding
199 * bit is set in the shrinkers map.
200 *
201 * This value is used by the function to detect registering
202 * shrinkers and to skip do_shrink_slab() calls for them.
203 */
204 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
205
206 static DEFINE_IDR(shrinker_idr);
207 static int shrinker_nr_max;
208
209 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
210 {
211 int id, ret = -ENOMEM;
212
213 down_write(&shrinker_rwsem);
214 /* This may call shrinker, so it must use down_read_trylock() */
215 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
216 if (id < 0)
217 goto unlock;
218
219 if (id >= shrinker_nr_max) {
220 if (memcg_expand_shrinker_maps(id)) {
221 idr_remove(&shrinker_idr, id);
222 goto unlock;
223 }
224
225 shrinker_nr_max = id + 1;
226 }
227 shrinker->id = id;
228 ret = 0;
229 unlock:
230 up_write(&shrinker_rwsem);
231 return ret;
232 }
233
234 static void unregister_memcg_shrinker(struct shrinker *shrinker)
235 {
236 int id = shrinker->id;
237
238 BUG_ON(id < 0);
239
240 down_write(&shrinker_rwsem);
241 idr_remove(&shrinker_idr, id);
242 up_write(&shrinker_rwsem);
243 }
244
245 static bool global_reclaim(struct scan_control *sc)
246 {
247 return !sc->target_mem_cgroup;
248 }
249
250 /**
251 * sane_reclaim - is the usual dirty throttling mechanism operational?
252 * @sc: scan_control in question
253 *
254 * The normal page dirty throttling mechanism in balance_dirty_pages() is
255 * completely broken with the legacy memcg and direct stalling in
256 * shrink_page_list() is used for throttling instead, which lacks all the
257 * niceties such as fairness, adaptive pausing, bandwidth proportional
258 * allocation and configurability.
259 *
260 * This function tests whether the vmscan currently in progress can assume
261 * that the normal dirty throttling mechanism is operational.
262 */
263 static bool sane_reclaim(struct scan_control *sc)
264 {
265 struct mem_cgroup *memcg = sc->target_mem_cgroup;
266
267 if (!memcg)
268 return true;
269 #ifdef CONFIG_CGROUP_WRITEBACK
270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
271 return true;
272 #endif
273 return false;
274 }
275
276 static void set_memcg_congestion(pg_data_t *pgdat,
277 struct mem_cgroup *memcg,
278 bool congested)
279 {
280 struct mem_cgroup_per_node *mn;
281
282 if (!memcg)
283 return;
284
285 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
286 WRITE_ONCE(mn->congested, congested);
287 }
288
289 static bool memcg_congested(pg_data_t *pgdat,
290 struct mem_cgroup *memcg)
291 {
292 struct mem_cgroup_per_node *mn;
293
294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
295 return READ_ONCE(mn->congested);
296
297 }
298 #else
299 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
300 {
301 return 0;
302 }
303
304 static void unregister_memcg_shrinker(struct shrinker *shrinker)
305 {
306 }
307
308 static bool global_reclaim(struct scan_control *sc)
309 {
310 return true;
311 }
312
313 static bool sane_reclaim(struct scan_control *sc)
314 {
315 return true;
316 }
317
318 static inline void set_memcg_congestion(struct pglist_data *pgdat,
319 struct mem_cgroup *memcg, bool congested)
320 {
321 }
322
323 static inline bool memcg_congested(struct pglist_data *pgdat,
324 struct mem_cgroup *memcg)
325 {
326 return false;
327
328 }
329 #endif
330
331 /*
332 * This misses isolated pages which are not accounted for to save counters.
333 * As the data only determines if reclaim or compaction continues, it is
334 * not expected that isolated pages will be a dominating factor.
335 */
336 unsigned long zone_reclaimable_pages(struct zone *zone)
337 {
338 unsigned long nr;
339
340 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
342 if (get_nr_swap_pages() > 0)
343 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
345
346 return nr;
347 }
348
349 /**
350 * lruvec_lru_size - Returns the number of pages on the given LRU list.
351 * @lruvec: lru vector
352 * @lru: lru to use
353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
354 */
355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
356 {
357 unsigned long lru_size = 0;
358 int zid;
359
360 if (!mem_cgroup_disabled()) {
361 for (zid = 0; zid < MAX_NR_ZONES; zid++)
362 lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
363 } else
364 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
365
366 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368 unsigned long size;
369
370 if (!managed_zone(zone))
371 continue;
372
373 if (!mem_cgroup_disabled())
374 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
375 else
376 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
377 NR_ZONE_LRU_BASE + lru);
378 lru_size -= min(size, lru_size);
379 }
380
381 return lru_size;
382
383 }
384
385 /*
386 * Add a shrinker callback to be called from the vm.
387 */
388 int prealloc_shrinker(struct shrinker *shrinker)
389 {
390 unsigned int size = sizeof(*shrinker->nr_deferred);
391
392 if (shrinker->flags & SHRINKER_NUMA_AWARE)
393 size *= nr_node_ids;
394
395 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
396 if (!shrinker->nr_deferred)
397 return -ENOMEM;
398
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
400 if (prealloc_memcg_shrinker(shrinker))
401 goto free_deferred;
402 }
403
404 return 0;
405
406 free_deferred:
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
409 return -ENOMEM;
410 }
411
412 void free_prealloced_shrinker(struct shrinker *shrinker)
413 {
414 if (!shrinker->nr_deferred)
415 return;
416
417 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
418 unregister_memcg_shrinker(shrinker);
419
420 kfree(shrinker->nr_deferred);
421 shrinker->nr_deferred = NULL;
422 }
423
424 void register_shrinker_prepared(struct shrinker *shrinker)
425 {
426 down_write(&shrinker_rwsem);
427 list_add_tail(&shrinker->list, &shrinker_list);
428 #ifdef CONFIG_MEMCG
429 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
430 idr_replace(&shrinker_idr, shrinker, shrinker->id);
431 #endif
432 up_write(&shrinker_rwsem);
433 }
434
435 int register_shrinker(struct shrinker *shrinker)
436 {
437 int err = prealloc_shrinker(shrinker);
438
439 if (err)
440 return err;
441 register_shrinker_prepared(shrinker);
442 return 0;
443 }
444 EXPORT_SYMBOL(register_shrinker);
445
446 /*
447 * Remove one
448 */
449 void unregister_shrinker(struct shrinker *shrinker)
450 {
451 if (!shrinker->nr_deferred)
452 return;
453 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
454 unregister_memcg_shrinker(shrinker);
455 down_write(&shrinker_rwsem);
456 list_del(&shrinker->list);
457 up_write(&shrinker_rwsem);
458 kfree(shrinker->nr_deferred);
459 shrinker->nr_deferred = NULL;
460 }
461 EXPORT_SYMBOL(unregister_shrinker);
462
463 #define SHRINK_BATCH 128
464
465 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
466 struct shrinker *shrinker, int priority)
467 {
468 unsigned long freed = 0;
469 unsigned long long delta;
470 long total_scan;
471 long freeable;
472 long nr;
473 long new_nr;
474 int nid = shrinkctl->nid;
475 long batch_size = shrinker->batch ? shrinker->batch
476 : SHRINK_BATCH;
477 long scanned = 0, next_deferred;
478
479 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
480 nid = 0;
481
482 freeable = shrinker->count_objects(shrinker, shrinkctl);
483 if (freeable == 0 || freeable == SHRINK_EMPTY)
484 return freeable;
485
486 /*
487 * copy the current shrinker scan count into a local variable
488 * and zero it so that other concurrent shrinker invocations
489 * don't also do this scanning work.
490 */
491 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
492
493 total_scan = nr;
494 if (shrinker->seeks) {
495 delta = freeable >> priority;
496 delta *= 4;
497 do_div(delta, shrinker->seeks);
498 } else {
499 /*
500 * These objects don't require any IO to create. Trim
501 * them aggressively under memory pressure to keep
502 * them from causing refetches in the IO caches.
503 */
504 delta = freeable / 2;
505 }
506
507 total_scan += delta;
508 if (total_scan < 0) {
509 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
510 shrinker->scan_objects, total_scan);
511 total_scan = freeable;
512 next_deferred = nr;
513 } else
514 next_deferred = total_scan;
515
516 /*
517 * We need to avoid excessive windup on filesystem shrinkers
518 * due to large numbers of GFP_NOFS allocations causing the
519 * shrinkers to return -1 all the time. This results in a large
520 * nr being built up so when a shrink that can do some work
521 * comes along it empties the entire cache due to nr >>>
522 * freeable. This is bad for sustaining a working set in
523 * memory.
524 *
525 * Hence only allow the shrinker to scan the entire cache when
526 * a large delta change is calculated directly.
527 */
528 if (delta < freeable / 4)
529 total_scan = min(total_scan, freeable / 2);
530
531 /*
532 * Avoid risking looping forever due to too large nr value:
533 * never try to free more than twice the estimate number of
534 * freeable entries.
535 */
536 if (total_scan > freeable * 2)
537 total_scan = freeable * 2;
538
539 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
540 freeable, delta, total_scan, priority);
541
542 /*
543 * Normally, we should not scan less than batch_size objects in one
544 * pass to avoid too frequent shrinker calls, but if the slab has less
545 * than batch_size objects in total and we are really tight on memory,
546 * we will try to reclaim all available objects, otherwise we can end
547 * up failing allocations although there are plenty of reclaimable
548 * objects spread over several slabs with usage less than the
549 * batch_size.
550 *
551 * We detect the "tight on memory" situations by looking at the total
552 * number of objects we want to scan (total_scan). If it is greater
553 * than the total number of objects on slab (freeable), we must be
554 * scanning at high prio and therefore should try to reclaim as much as
555 * possible.
556 */
557 while (total_scan >= batch_size ||
558 total_scan >= freeable) {
559 unsigned long ret;
560 unsigned long nr_to_scan = min(batch_size, total_scan);
561
562 shrinkctl->nr_to_scan = nr_to_scan;
563 shrinkctl->nr_scanned = nr_to_scan;
564 ret = shrinker->scan_objects(shrinker, shrinkctl);
565 if (ret == SHRINK_STOP)
566 break;
567 freed += ret;
568
569 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
570 total_scan -= shrinkctl->nr_scanned;
571 scanned += shrinkctl->nr_scanned;
572
573 cond_resched();
574 }
575
576 if (next_deferred >= scanned)
577 next_deferred -= scanned;
578 else
579 next_deferred = 0;
580 /*
581 * move the unused scan count back into the shrinker in a
582 * manner that handles concurrent updates. If we exhausted the
583 * scan, there is no need to do an update.
584 */
585 if (next_deferred > 0)
586 new_nr = atomic_long_add_return(next_deferred,
587 &shrinker->nr_deferred[nid]);
588 else
589 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
590
591 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
592 return freed;
593 }
594
595 #ifdef CONFIG_MEMCG
596 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
597 struct mem_cgroup *memcg, int priority)
598 {
599 struct memcg_shrinker_map *map;
600 unsigned long ret, freed = 0;
601 int i;
602
603 if (!mem_cgroup_online(memcg))
604 return 0;
605
606 if (!down_read_trylock(&shrinker_rwsem))
607 return 0;
608
609 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
610 true);
611 if (unlikely(!map))
612 goto unlock;
613
614 for_each_set_bit(i, map->map, shrinker_nr_max) {
615 struct shrink_control sc = {
616 .gfp_mask = gfp_mask,
617 .nid = nid,
618 .memcg = memcg,
619 };
620 struct shrinker *shrinker;
621
622 shrinker = idr_find(&shrinker_idr, i);
623 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
624 if (!shrinker)
625 clear_bit(i, map->map);
626 continue;
627 }
628
629 /* Call non-slab shrinkers even though kmem is disabled */
630 if (!memcg_kmem_enabled() &&
631 !(shrinker->flags & SHRINKER_NONSLAB))
632 continue;
633
634 ret = do_shrink_slab(&sc, shrinker, priority);
635 if (ret == SHRINK_EMPTY) {
636 clear_bit(i, map->map);
637 /*
638 * After the shrinker reported that it had no objects to
639 * free, but before we cleared the corresponding bit in
640 * the memcg shrinker map, a new object might have been
641 * added. To make sure, we have the bit set in this
642 * case, we invoke the shrinker one more time and reset
643 * the bit if it reports that it is not empty anymore.
644 * The memory barrier here pairs with the barrier in
645 * memcg_set_shrinker_bit():
646 *
647 * list_lru_add() shrink_slab_memcg()
648 * list_add_tail() clear_bit()
649 * <MB> <MB>
650 * set_bit() do_shrink_slab()
651 */
652 smp_mb__after_atomic();
653 ret = do_shrink_slab(&sc, shrinker, priority);
654 if (ret == SHRINK_EMPTY)
655 ret = 0;
656 else
657 memcg_set_shrinker_bit(memcg, nid, i);
658 }
659 freed += ret;
660
661 if (rwsem_is_contended(&shrinker_rwsem)) {
662 freed = freed ? : 1;
663 break;
664 }
665 }
666 unlock:
667 up_read(&shrinker_rwsem);
668 return freed;
669 }
670 #else /* CONFIG_MEMCG */
671 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
672 struct mem_cgroup *memcg, int priority)
673 {
674 return 0;
675 }
676 #endif /* CONFIG_MEMCG */
677
678 /**
679 * shrink_slab - shrink slab caches
680 * @gfp_mask: allocation context
681 * @nid: node whose slab caches to target
682 * @memcg: memory cgroup whose slab caches to target
683 * @priority: the reclaim priority
684 *
685 * Call the shrink functions to age shrinkable caches.
686 *
687 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
688 * unaware shrinkers will receive a node id of 0 instead.
689 *
690 * @memcg specifies the memory cgroup to target. Unaware shrinkers
691 * are called only if it is the root cgroup.
692 *
693 * @priority is sc->priority, we take the number of objects and >> by priority
694 * in order to get the scan target.
695 *
696 * Returns the number of reclaimed slab objects.
697 */
698 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
699 struct mem_cgroup *memcg,
700 int priority)
701 {
702 unsigned long ret, freed = 0;
703 struct shrinker *shrinker;
704
705 /*
706 * The root memcg might be allocated even though memcg is disabled
707 * via "cgroup_disable=memory" boot parameter. This could make
708 * mem_cgroup_is_root() return false, then just run memcg slab
709 * shrink, but skip global shrink. This may result in premature
710 * oom.
711 */
712 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
713 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
714
715 if (!down_read_trylock(&shrinker_rwsem))
716 goto out;
717
718 list_for_each_entry(shrinker, &shrinker_list, list) {
719 struct shrink_control sc = {
720 .gfp_mask = gfp_mask,
721 .nid = nid,
722 .memcg = memcg,
723 };
724
725 ret = do_shrink_slab(&sc, shrinker, priority);
726 if (ret == SHRINK_EMPTY)
727 ret = 0;
728 freed += ret;
729 /*
730 * Bail out if someone want to register a new shrinker to
731 * prevent the regsitration from being stalled for long periods
732 * by parallel ongoing shrinking.
733 */
734 if (rwsem_is_contended(&shrinker_rwsem)) {
735 freed = freed ? : 1;
736 break;
737 }
738 }
739
740 up_read(&shrinker_rwsem);
741 out:
742 cond_resched();
743 return freed;
744 }
745
746 void drop_slab_node(int nid)
747 {
748 unsigned long freed;
749
750 do {
751 struct mem_cgroup *memcg = NULL;
752
753 freed = 0;
754 memcg = mem_cgroup_iter(NULL, NULL, NULL);
755 do {
756 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
757 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
758 } while (freed > 10);
759 }
760
761 void drop_slab(void)
762 {
763 int nid;
764
765 for_each_online_node(nid)
766 drop_slab_node(nid);
767 }
768
769 static inline int is_page_cache_freeable(struct page *page)
770 {
771 /*
772 * A freeable page cache page is referenced only by the caller
773 * that isolated the page, the page cache and optional buffer
774 * heads at page->private.
775 */
776 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
777 HPAGE_PMD_NR : 1;
778 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
779 }
780
781 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
782 {
783 if (current->flags & PF_SWAPWRITE)
784 return 1;
785 if (!inode_write_congested(inode))
786 return 1;
787 if (inode_to_bdi(inode) == current->backing_dev_info)
788 return 1;
789 return 0;
790 }
791
792 /*
793 * We detected a synchronous write error writing a page out. Probably
794 * -ENOSPC. We need to propagate that into the address_space for a subsequent
795 * fsync(), msync() or close().
796 *
797 * The tricky part is that after writepage we cannot touch the mapping: nothing
798 * prevents it from being freed up. But we have a ref on the page and once
799 * that page is locked, the mapping is pinned.
800 *
801 * We're allowed to run sleeping lock_page() here because we know the caller has
802 * __GFP_FS.
803 */
804 static void handle_write_error(struct address_space *mapping,
805 struct page *page, int error)
806 {
807 lock_page(page);
808 if (page_mapping(page) == mapping)
809 mapping_set_error(mapping, error);
810 unlock_page(page);
811 }
812
813 /* possible outcome of pageout() */
814 typedef enum {
815 /* failed to write page out, page is locked */
816 PAGE_KEEP,
817 /* move page to the active list, page is locked */
818 PAGE_ACTIVATE,
819 /* page has been sent to the disk successfully, page is unlocked */
820 PAGE_SUCCESS,
821 /* page is clean and locked */
822 PAGE_CLEAN,
823 } pageout_t;
824
825 /*
826 * pageout is called by shrink_page_list() for each dirty page.
827 * Calls ->writepage().
828 */
829 static pageout_t pageout(struct page *page, struct address_space *mapping,
830 struct scan_control *sc)
831 {
832 /*
833 * If the page is dirty, only perform writeback if that write
834 * will be non-blocking. To prevent this allocation from being
835 * stalled by pagecache activity. But note that there may be
836 * stalls if we need to run get_block(). We could test
837 * PagePrivate for that.
838 *
839 * If this process is currently in __generic_file_write_iter() against
840 * this page's queue, we can perform writeback even if that
841 * will block.
842 *
843 * If the page is swapcache, write it back even if that would
844 * block, for some throttling. This happens by accident, because
845 * swap_backing_dev_info is bust: it doesn't reflect the
846 * congestion state of the swapdevs. Easy to fix, if needed.
847 */
848 if (!is_page_cache_freeable(page))
849 return PAGE_KEEP;
850 if (!mapping) {
851 /*
852 * Some data journaling orphaned pages can have
853 * page->mapping == NULL while being dirty with clean buffers.
854 */
855 if (page_has_private(page)) {
856 if (try_to_free_buffers(page)) {
857 ClearPageDirty(page);
858 pr_info("%s: orphaned page\n", __func__);
859 return PAGE_CLEAN;
860 }
861 }
862 return PAGE_KEEP;
863 }
864 if (mapping->a_ops->writepage == NULL)
865 return PAGE_ACTIVATE;
866 if (!may_write_to_inode(mapping->host, sc))
867 return PAGE_KEEP;
868
869 if (clear_page_dirty_for_io(page)) {
870 int res;
871 struct writeback_control wbc = {
872 .sync_mode = WB_SYNC_NONE,
873 .nr_to_write = SWAP_CLUSTER_MAX,
874 .range_start = 0,
875 .range_end = LLONG_MAX,
876 .for_reclaim = 1,
877 };
878
879 SetPageReclaim(page);
880 res = mapping->a_ops->writepage(page, &wbc);
881 if (res < 0)
882 handle_write_error(mapping, page, res);
883 if (res == AOP_WRITEPAGE_ACTIVATE) {
884 ClearPageReclaim(page);
885 return PAGE_ACTIVATE;
886 }
887
888 if (!PageWriteback(page)) {
889 /* synchronous write or broken a_ops? */
890 ClearPageReclaim(page);
891 }
892 trace_mm_vmscan_writepage(page);
893 inc_node_page_state(page, NR_VMSCAN_WRITE);
894 return PAGE_SUCCESS;
895 }
896
897 return PAGE_CLEAN;
898 }
899
900 /*
901 * Same as remove_mapping, but if the page is removed from the mapping, it
902 * gets returned with a refcount of 0.
903 */
904 static int __remove_mapping(struct address_space *mapping, struct page *page,
905 bool reclaimed)
906 {
907 unsigned long flags;
908 int refcount;
909
910 BUG_ON(!PageLocked(page));
911 BUG_ON(mapping != page_mapping(page));
912
913 xa_lock_irqsave(&mapping->i_pages, flags);
914 /*
915 * The non racy check for a busy page.
916 *
917 * Must be careful with the order of the tests. When someone has
918 * a ref to the page, it may be possible that they dirty it then
919 * drop the reference. So if PageDirty is tested before page_count
920 * here, then the following race may occur:
921 *
922 * get_user_pages(&page);
923 * [user mapping goes away]
924 * write_to(page);
925 * !PageDirty(page) [good]
926 * SetPageDirty(page);
927 * put_page(page);
928 * !page_count(page) [good, discard it]
929 *
930 * [oops, our write_to data is lost]
931 *
932 * Reversing the order of the tests ensures such a situation cannot
933 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
934 * load is not satisfied before that of page->_refcount.
935 *
936 * Note that if SetPageDirty is always performed via set_page_dirty,
937 * and thus under the i_pages lock, then this ordering is not required.
938 */
939 refcount = 1 + compound_nr(page);
940 if (!page_ref_freeze(page, refcount))
941 goto cannot_free;
942 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
943 if (unlikely(PageDirty(page))) {
944 page_ref_unfreeze(page, refcount);
945 goto cannot_free;
946 }
947
948 if (PageSwapCache(page)) {
949 swp_entry_t swap = { .val = page_private(page) };
950 mem_cgroup_swapout(page, swap);
951 __delete_from_swap_cache(page, swap);
952 xa_unlock_irqrestore(&mapping->i_pages, flags);
953 put_swap_page(page, swap);
954 } else {
955 void (*freepage)(struct page *);
956 void *shadow = NULL;
957
958 freepage = mapping->a_ops->freepage;
959 /*
960 * Remember a shadow entry for reclaimed file cache in
961 * order to detect refaults, thus thrashing, later on.
962 *
963 * But don't store shadows in an address space that is
964 * already exiting. This is not just an optizimation,
965 * inode reclaim needs to empty out the radix tree or
966 * the nodes are lost. Don't plant shadows behind its
967 * back.
968 *
969 * We also don't store shadows for DAX mappings because the
970 * only page cache pages found in these are zero pages
971 * covering holes, and because we don't want to mix DAX
972 * exceptional entries and shadow exceptional entries in the
973 * same address_space.
974 */
975 if (reclaimed && page_is_file_cache(page) &&
976 !mapping_exiting(mapping) && !dax_mapping(mapping))
977 shadow = workingset_eviction(page);
978 __delete_from_page_cache(page, shadow);
979 xa_unlock_irqrestore(&mapping->i_pages, flags);
980
981 if (freepage != NULL)
982 freepage(page);
983 }
984
985 return 1;
986
987 cannot_free:
988 xa_unlock_irqrestore(&mapping->i_pages, flags);
989 return 0;
990 }
991
992 /*
993 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
994 * someone else has a ref on the page, abort and return 0. If it was
995 * successfully detached, return 1. Assumes the caller has a single ref on
996 * this page.
997 */
998 int remove_mapping(struct address_space *mapping, struct page *page)
999 {
1000 if (__remove_mapping(mapping, page, false)) {
1001 /*
1002 * Unfreezing the refcount with 1 rather than 2 effectively
1003 * drops the pagecache ref for us without requiring another
1004 * atomic operation.
1005 */
1006 page_ref_unfreeze(page, 1);
1007 return 1;
1008 }
1009 return 0;
1010 }
1011
1012 /**
1013 * putback_lru_page - put previously isolated page onto appropriate LRU list
1014 * @page: page to be put back to appropriate lru list
1015 *
1016 * Add previously isolated @page to appropriate LRU list.
1017 * Page may still be unevictable for other reasons.
1018 *
1019 * lru_lock must not be held, interrupts must be enabled.
1020 */
1021 void putback_lru_page(struct page *page)
1022 {
1023 lru_cache_add(page);
1024 put_page(page); /* drop ref from isolate */
1025 }
1026
1027 enum page_references {
1028 PAGEREF_RECLAIM,
1029 PAGEREF_RECLAIM_CLEAN,
1030 PAGEREF_KEEP,
1031 PAGEREF_ACTIVATE,
1032 };
1033
1034 static enum page_references page_check_references(struct page *page,
1035 struct scan_control *sc)
1036 {
1037 int referenced_ptes, referenced_page;
1038 unsigned long vm_flags;
1039
1040 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1041 &vm_flags);
1042 referenced_page = TestClearPageReferenced(page);
1043
1044 /*
1045 * Mlock lost the isolation race with us. Let try_to_unmap()
1046 * move the page to the unevictable list.
1047 */
1048 if (vm_flags & VM_LOCKED)
1049 return PAGEREF_RECLAIM;
1050
1051 if (referenced_ptes) {
1052 if (PageSwapBacked(page))
1053 return PAGEREF_ACTIVATE;
1054 /*
1055 * All mapped pages start out with page table
1056 * references from the instantiating fault, so we need
1057 * to look twice if a mapped file page is used more
1058 * than once.
1059 *
1060 * Mark it and spare it for another trip around the
1061 * inactive list. Another page table reference will
1062 * lead to its activation.
1063 *
1064 * Note: the mark is set for activated pages as well
1065 * so that recently deactivated but used pages are
1066 * quickly recovered.
1067 */
1068 SetPageReferenced(page);
1069
1070 if (referenced_page || referenced_ptes > 1)
1071 return PAGEREF_ACTIVATE;
1072
1073 /*
1074 * Activate file-backed executable pages after first usage.
1075 */
1076 if (vm_flags & VM_EXEC)
1077 return PAGEREF_ACTIVATE;
1078
1079 return PAGEREF_KEEP;
1080 }
1081
1082 /* Reclaim if clean, defer dirty pages to writeback */
1083 if (referenced_page && !PageSwapBacked(page))
1084 return PAGEREF_RECLAIM_CLEAN;
1085
1086 return PAGEREF_RECLAIM;
1087 }
1088
1089 /* Check if a page is dirty or under writeback */
1090 static void page_check_dirty_writeback(struct page *page,
1091 bool *dirty, bool *writeback)
1092 {
1093 struct address_space *mapping;
1094
1095 /*
1096 * Anonymous pages are not handled by flushers and must be written
1097 * from reclaim context. Do not stall reclaim based on them
1098 */
1099 if (!page_is_file_cache(page) ||
1100 (PageAnon(page) && !PageSwapBacked(page))) {
1101 *dirty = false;
1102 *writeback = false;
1103 return;
1104 }
1105
1106 /* By default assume that the page flags are accurate */
1107 *dirty = PageDirty(page);
1108 *writeback = PageWriteback(page);
1109
1110 /* Verify dirty/writeback state if the filesystem supports it */
1111 if (!page_has_private(page))
1112 return;
1113
1114 mapping = page_mapping(page);
1115 if (mapping && mapping->a_ops->is_dirty_writeback)
1116 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1117 }
1118
1119 /*
1120 * shrink_page_list() returns the number of reclaimed pages
1121 */
1122 static unsigned long shrink_page_list(struct list_head *page_list,
1123 struct pglist_data *pgdat,
1124 struct scan_control *sc,
1125 enum ttu_flags ttu_flags,
1126 struct reclaim_stat *stat,
1127 bool ignore_references)
1128 {
1129 LIST_HEAD(ret_pages);
1130 LIST_HEAD(free_pages);
1131 unsigned nr_reclaimed = 0;
1132 unsigned pgactivate = 0;
1133
1134 memset(stat, 0, sizeof(*stat));
1135 cond_resched();
1136
1137 while (!list_empty(page_list)) {
1138 struct address_space *mapping;
1139 struct page *page;
1140 int may_enter_fs;
1141 enum page_references references = PAGEREF_RECLAIM;
1142 bool dirty, writeback;
1143 unsigned int nr_pages;
1144
1145 cond_resched();
1146
1147 page = lru_to_page(page_list);
1148 list_del(&page->lru);
1149
1150 if (!trylock_page(page))
1151 goto keep;
1152
1153 VM_BUG_ON_PAGE(PageActive(page), page);
1154
1155 nr_pages = compound_nr(page);
1156
1157 /* Account the number of base pages even though THP */
1158 sc->nr_scanned += nr_pages;
1159
1160 if (unlikely(!page_evictable(page)))
1161 goto activate_locked;
1162
1163 if (!sc->may_unmap && page_mapped(page))
1164 goto keep_locked;
1165
1166 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1167 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1168
1169 /*
1170 * The number of dirty pages determines if a node is marked
1171 * reclaim_congested which affects wait_iff_congested. kswapd
1172 * will stall and start writing pages if the tail of the LRU
1173 * is all dirty unqueued pages.
1174 */
1175 page_check_dirty_writeback(page, &dirty, &writeback);
1176 if (dirty || writeback)
1177 stat->nr_dirty++;
1178
1179 if (dirty && !writeback)
1180 stat->nr_unqueued_dirty++;
1181
1182 /*
1183 * Treat this page as congested if the underlying BDI is or if
1184 * pages are cycling through the LRU so quickly that the
1185 * pages marked for immediate reclaim are making it to the
1186 * end of the LRU a second time.
1187 */
1188 mapping = page_mapping(page);
1189 if (((dirty || writeback) && mapping &&
1190 inode_write_congested(mapping->host)) ||
1191 (writeback && PageReclaim(page)))
1192 stat->nr_congested++;
1193
1194 /*
1195 * If a page at the tail of the LRU is under writeback, there
1196 * are three cases to consider.
1197 *
1198 * 1) If reclaim is encountering an excessive number of pages
1199 * under writeback and this page is both under writeback and
1200 * PageReclaim then it indicates that pages are being queued
1201 * for IO but are being recycled through the LRU before the
1202 * IO can complete. Waiting on the page itself risks an
1203 * indefinite stall if it is impossible to writeback the
1204 * page due to IO error or disconnected storage so instead
1205 * note that the LRU is being scanned too quickly and the
1206 * caller can stall after page list has been processed.
1207 *
1208 * 2) Global or new memcg reclaim encounters a page that is
1209 * not marked for immediate reclaim, or the caller does not
1210 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1211 * not to fs). In this case mark the page for immediate
1212 * reclaim and continue scanning.
1213 *
1214 * Require may_enter_fs because we would wait on fs, which
1215 * may not have submitted IO yet. And the loop driver might
1216 * enter reclaim, and deadlock if it waits on a page for
1217 * which it is needed to do the write (loop masks off
1218 * __GFP_IO|__GFP_FS for this reason); but more thought
1219 * would probably show more reasons.
1220 *
1221 * 3) Legacy memcg encounters a page that is already marked
1222 * PageReclaim. memcg does not have any dirty pages
1223 * throttling so we could easily OOM just because too many
1224 * pages are in writeback and there is nothing else to
1225 * reclaim. Wait for the writeback to complete.
1226 *
1227 * In cases 1) and 2) we activate the pages to get them out of
1228 * the way while we continue scanning for clean pages on the
1229 * inactive list and refilling from the active list. The
1230 * observation here is that waiting for disk writes is more
1231 * expensive than potentially causing reloads down the line.
1232 * Since they're marked for immediate reclaim, they won't put
1233 * memory pressure on the cache working set any longer than it
1234 * takes to write them to disk.
1235 */
1236 if (PageWriteback(page)) {
1237 /* Case 1 above */
1238 if (current_is_kswapd() &&
1239 PageReclaim(page) &&
1240 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1241 stat->nr_immediate++;
1242 goto activate_locked;
1243
1244 /* Case 2 above */
1245 } else if (sane_reclaim(sc) ||
1246 !PageReclaim(page) || !may_enter_fs) {
1247 /*
1248 * This is slightly racy - end_page_writeback()
1249 * might have just cleared PageReclaim, then
1250 * setting PageReclaim here end up interpreted
1251 * as PageReadahead - but that does not matter
1252 * enough to care. What we do want is for this
1253 * page to have PageReclaim set next time memcg
1254 * reclaim reaches the tests above, so it will
1255 * then wait_on_page_writeback() to avoid OOM;
1256 * and it's also appropriate in global reclaim.
1257 */
1258 SetPageReclaim(page);
1259 stat->nr_writeback++;
1260 goto activate_locked;
1261
1262 /* Case 3 above */
1263 } else {
1264 unlock_page(page);
1265 wait_on_page_writeback(page);
1266 /* then go back and try same page again */
1267 list_add_tail(&page->lru, page_list);
1268 continue;
1269 }
1270 }
1271
1272 if (!ignore_references)
1273 references = page_check_references(page, sc);
1274
1275 switch (references) {
1276 case PAGEREF_ACTIVATE:
1277 goto activate_locked;
1278 case PAGEREF_KEEP:
1279 stat->nr_ref_keep += nr_pages;
1280 goto keep_locked;
1281 case PAGEREF_RECLAIM:
1282 case PAGEREF_RECLAIM_CLEAN:
1283 ; /* try to reclaim the page below */
1284 }
1285
1286 /*
1287 * Anonymous process memory has backing store?
1288 * Try to allocate it some swap space here.
1289 * Lazyfree page could be freed directly
1290 */
1291 if (PageAnon(page) && PageSwapBacked(page)) {
1292 if (!PageSwapCache(page)) {
1293 if (!(sc->gfp_mask & __GFP_IO))
1294 goto keep_locked;
1295 if (PageTransHuge(page)) {
1296 /* cannot split THP, skip it */
1297 if (!can_split_huge_page(page, NULL))
1298 goto activate_locked;
1299 /*
1300 * Split pages without a PMD map right
1301 * away. Chances are some or all of the
1302 * tail pages can be freed without IO.
1303 */
1304 if (!compound_mapcount(page) &&
1305 split_huge_page_to_list(page,
1306 page_list))
1307 goto activate_locked;
1308 }
1309 if (!add_to_swap(page)) {
1310 if (!PageTransHuge(page))
1311 goto activate_locked_split;
1312 /* Fallback to swap normal pages */
1313 if (split_huge_page_to_list(page,
1314 page_list))
1315 goto activate_locked;
1316 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1317 count_vm_event(THP_SWPOUT_FALLBACK);
1318 #endif
1319 if (!add_to_swap(page))
1320 goto activate_locked_split;
1321 }
1322
1323 may_enter_fs = 1;
1324
1325 /* Adding to swap updated mapping */
1326 mapping = page_mapping(page);
1327 }
1328 } else if (unlikely(PageTransHuge(page))) {
1329 /* Split file THP */
1330 if (split_huge_page_to_list(page, page_list))
1331 goto keep_locked;
1332 }
1333
1334 /*
1335 * THP may get split above, need minus tail pages and update
1336 * nr_pages to avoid accounting tail pages twice.
1337 *
1338 * The tail pages that are added into swap cache successfully
1339 * reach here.
1340 */
1341 if ((nr_pages > 1) && !PageTransHuge(page)) {
1342 sc->nr_scanned -= (nr_pages - 1);
1343 nr_pages = 1;
1344 }
1345
1346 /*
1347 * The page is mapped into the page tables of one or more
1348 * processes. Try to unmap it here.
1349 */
1350 if (page_mapped(page)) {
1351 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1352
1353 if (unlikely(PageTransHuge(page)))
1354 flags |= TTU_SPLIT_HUGE_PMD;
1355 if (!try_to_unmap(page, flags)) {
1356 stat->nr_unmap_fail += nr_pages;
1357 goto activate_locked;
1358 }
1359 }
1360
1361 if (PageDirty(page)) {
1362 /*
1363 * Only kswapd can writeback filesystem pages
1364 * to avoid risk of stack overflow. But avoid
1365 * injecting inefficient single-page IO into
1366 * flusher writeback as much as possible: only
1367 * write pages when we've encountered many
1368 * dirty pages, and when we've already scanned
1369 * the rest of the LRU for clean pages and see
1370 * the same dirty pages again (PageReclaim).
1371 */
1372 if (page_is_file_cache(page) &&
1373 (!current_is_kswapd() || !PageReclaim(page) ||
1374 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1375 /*
1376 * Immediately reclaim when written back.
1377 * Similar in principal to deactivate_page()
1378 * except we already have the page isolated
1379 * and know it's dirty
1380 */
1381 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1382 SetPageReclaim(page);
1383
1384 goto activate_locked;
1385 }
1386
1387 if (references == PAGEREF_RECLAIM_CLEAN)
1388 goto keep_locked;
1389 if (!may_enter_fs)
1390 goto keep_locked;
1391 if (!sc->may_writepage)
1392 goto keep_locked;
1393
1394 /*
1395 * Page is dirty. Flush the TLB if a writable entry
1396 * potentially exists to avoid CPU writes after IO
1397 * starts and then write it out here.
1398 */
1399 try_to_unmap_flush_dirty();
1400 switch (pageout(page, mapping, sc)) {
1401 case PAGE_KEEP:
1402 goto keep_locked;
1403 case PAGE_ACTIVATE:
1404 goto activate_locked;
1405 case PAGE_SUCCESS:
1406 if (PageWriteback(page))
1407 goto keep;
1408 if (PageDirty(page))
1409 goto keep;
1410
1411 /*
1412 * A synchronous write - probably a ramdisk. Go
1413 * ahead and try to reclaim the page.
1414 */
1415 if (!trylock_page(page))
1416 goto keep;
1417 if (PageDirty(page) || PageWriteback(page))
1418 goto keep_locked;
1419 mapping = page_mapping(page);
1420 case PAGE_CLEAN:
1421 ; /* try to free the page below */
1422 }
1423 }
1424
1425 /*
1426 * If the page has buffers, try to free the buffer mappings
1427 * associated with this page. If we succeed we try to free
1428 * the page as well.
1429 *
1430 * We do this even if the page is PageDirty().
1431 * try_to_release_page() does not perform I/O, but it is
1432 * possible for a page to have PageDirty set, but it is actually
1433 * clean (all its buffers are clean). This happens if the
1434 * buffers were written out directly, with submit_bh(). ext3
1435 * will do this, as well as the blockdev mapping.
1436 * try_to_release_page() will discover that cleanness and will
1437 * drop the buffers and mark the page clean - it can be freed.
1438 *
1439 * Rarely, pages can have buffers and no ->mapping. These are
1440 * the pages which were not successfully invalidated in
1441 * truncate_complete_page(). We try to drop those buffers here
1442 * and if that worked, and the page is no longer mapped into
1443 * process address space (page_count == 1) it can be freed.
1444 * Otherwise, leave the page on the LRU so it is swappable.
1445 */
1446 if (page_has_private(page)) {
1447 if (!try_to_release_page(page, sc->gfp_mask))
1448 goto activate_locked;
1449 if (!mapping && page_count(page) == 1) {
1450 unlock_page(page);
1451 if (put_page_testzero(page))
1452 goto free_it;
1453 else {
1454 /*
1455 * rare race with speculative reference.
1456 * the speculative reference will free
1457 * this page shortly, so we may
1458 * increment nr_reclaimed here (and
1459 * leave it off the LRU).
1460 */
1461 nr_reclaimed++;
1462 continue;
1463 }
1464 }
1465 }
1466
1467 if (PageAnon(page) && !PageSwapBacked(page)) {
1468 /* follow __remove_mapping for reference */
1469 if (!page_ref_freeze(page, 1))
1470 goto keep_locked;
1471 if (PageDirty(page)) {
1472 page_ref_unfreeze(page, 1);
1473 goto keep_locked;
1474 }
1475
1476 count_vm_event(PGLAZYFREED);
1477 count_memcg_page_event(page, PGLAZYFREED);
1478 } else if (!mapping || !__remove_mapping(mapping, page, true))
1479 goto keep_locked;
1480
1481 unlock_page(page);
1482 free_it:
1483 /*
1484 * THP may get swapped out in a whole, need account
1485 * all base pages.
1486 */
1487 nr_reclaimed += nr_pages;
1488
1489 /*
1490 * Is there need to periodically free_page_list? It would
1491 * appear not as the counts should be low
1492 */
1493 if (unlikely(PageTransHuge(page)))
1494 (*get_compound_page_dtor(page))(page);
1495 else
1496 list_add(&page->lru, &free_pages);
1497 continue;
1498
1499 activate_locked_split:
1500 /*
1501 * The tail pages that are failed to add into swap cache
1502 * reach here. Fixup nr_scanned and nr_pages.
1503 */
1504 if (nr_pages > 1) {
1505 sc->nr_scanned -= (nr_pages - 1);
1506 nr_pages = 1;
1507 }
1508 activate_locked:
1509 /* Not a candidate for swapping, so reclaim swap space. */
1510 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1511 PageMlocked(page)))
1512 try_to_free_swap(page);
1513 VM_BUG_ON_PAGE(PageActive(page), page);
1514 if (!PageMlocked(page)) {
1515 int type = page_is_file_cache(page);
1516 SetPageActive(page);
1517 stat->nr_activate[type] += nr_pages;
1518 count_memcg_page_event(page, PGACTIVATE);
1519 }
1520 keep_locked:
1521 unlock_page(page);
1522 keep:
1523 list_add(&page->lru, &ret_pages);
1524 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1525 }
1526
1527 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1528
1529 mem_cgroup_uncharge_list(&free_pages);
1530 try_to_unmap_flush();
1531 free_unref_page_list(&free_pages);
1532
1533 list_splice(&ret_pages, page_list);
1534 count_vm_events(PGACTIVATE, pgactivate);
1535
1536 return nr_reclaimed;
1537 }
1538
1539 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1540 struct list_head *page_list)
1541 {
1542 struct scan_control sc = {
1543 .gfp_mask = GFP_KERNEL,
1544 .priority = DEF_PRIORITY,
1545 .may_unmap = 1,
1546 };
1547 struct reclaim_stat dummy_stat;
1548 unsigned long ret;
1549 struct page *page, *next;
1550 LIST_HEAD(clean_pages);
1551
1552 list_for_each_entry_safe(page, next, page_list, lru) {
1553 if (page_is_file_cache(page) && !PageDirty(page) &&
1554 !__PageMovable(page) && !PageUnevictable(page)) {
1555 ClearPageActive(page);
1556 list_move(&page->lru, &clean_pages);
1557 }
1558 }
1559
1560 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1561 TTU_IGNORE_ACCESS, &dummy_stat, true);
1562 list_splice(&clean_pages, page_list);
1563 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1564 return ret;
1565 }
1566
1567 /*
1568 * Attempt to remove the specified page from its LRU. Only take this page
1569 * if it is of the appropriate PageActive status. Pages which are being
1570 * freed elsewhere are also ignored.
1571 *
1572 * page: page to consider
1573 * mode: one of the LRU isolation modes defined above
1574 *
1575 * returns 0 on success, -ve errno on failure.
1576 */
1577 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1578 {
1579 int ret = -EINVAL;
1580
1581 /* Only take pages on the LRU. */
1582 if (!PageLRU(page))
1583 return ret;
1584
1585 /* Compaction should not handle unevictable pages but CMA can do so */
1586 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1587 return ret;
1588
1589 ret = -EBUSY;
1590
1591 /*
1592 * To minimise LRU disruption, the caller can indicate that it only
1593 * wants to isolate pages it will be able to operate on without
1594 * blocking - clean pages for the most part.
1595 *
1596 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1597 * that it is possible to migrate without blocking
1598 */
1599 if (mode & ISOLATE_ASYNC_MIGRATE) {
1600 /* All the caller can do on PageWriteback is block */
1601 if (PageWriteback(page))
1602 return ret;
1603
1604 if (PageDirty(page)) {
1605 struct address_space *mapping;
1606 bool migrate_dirty;
1607
1608 /*
1609 * Only pages without mappings or that have a
1610 * ->migratepage callback are possible to migrate
1611 * without blocking. However, we can be racing with
1612 * truncation so it's necessary to lock the page
1613 * to stabilise the mapping as truncation holds
1614 * the page lock until after the page is removed
1615 * from the page cache.
1616 */
1617 if (!trylock_page(page))
1618 return ret;
1619
1620 mapping = page_mapping(page);
1621 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1622 unlock_page(page);
1623 if (!migrate_dirty)
1624 return ret;
1625 }
1626 }
1627
1628 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1629 return ret;
1630
1631 if (likely(get_page_unless_zero(page))) {
1632 /*
1633 * Be careful not to clear PageLRU until after we're
1634 * sure the page is not being freed elsewhere -- the
1635 * page release code relies on it.
1636 */
1637 ClearPageLRU(page);
1638 ret = 0;
1639 }
1640
1641 return ret;
1642 }
1643
1644
1645 /*
1646 * Update LRU sizes after isolating pages. The LRU size updates must
1647 * be complete before mem_cgroup_update_lru_size due to a santity check.
1648 */
1649 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1650 enum lru_list lru, unsigned long *nr_zone_taken)
1651 {
1652 int zid;
1653
1654 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1655 if (!nr_zone_taken[zid])
1656 continue;
1657
1658 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1659 #ifdef CONFIG_MEMCG
1660 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1661 #endif
1662 }
1663
1664 }
1665
1666 /**
1667 * pgdat->lru_lock is heavily contended. Some of the functions that
1668 * shrink the lists perform better by taking out a batch of pages
1669 * and working on them outside the LRU lock.
1670 *
1671 * For pagecache intensive workloads, this function is the hottest
1672 * spot in the kernel (apart from copy_*_user functions).
1673 *
1674 * Appropriate locks must be held before calling this function.
1675 *
1676 * @nr_to_scan: The number of eligible pages to look through on the list.
1677 * @lruvec: The LRU vector to pull pages from.
1678 * @dst: The temp list to put pages on to.
1679 * @nr_scanned: The number of pages that were scanned.
1680 * @sc: The scan_control struct for this reclaim session
1681 * @mode: One of the LRU isolation modes
1682 * @lru: LRU list id for isolating
1683 *
1684 * returns how many pages were moved onto *@dst.
1685 */
1686 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1687 struct lruvec *lruvec, struct list_head *dst,
1688 unsigned long *nr_scanned, struct scan_control *sc,
1689 enum lru_list lru)
1690 {
1691 struct list_head *src = &lruvec->lists[lru];
1692 unsigned long nr_taken = 0;
1693 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1694 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1695 unsigned long skipped = 0;
1696 unsigned long scan, total_scan, nr_pages;
1697 LIST_HEAD(pages_skipped);
1698 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1699
1700 total_scan = 0;
1701 scan = 0;
1702 while (scan < nr_to_scan && !list_empty(src)) {
1703 struct page *page;
1704
1705 page = lru_to_page(src);
1706 prefetchw_prev_lru_page(page, src, flags);
1707
1708 VM_BUG_ON_PAGE(!PageLRU(page), page);
1709
1710 nr_pages = compound_nr(page);
1711 total_scan += nr_pages;
1712
1713 if (page_zonenum(page) > sc->reclaim_idx) {
1714 list_move(&page->lru, &pages_skipped);
1715 nr_skipped[page_zonenum(page)] += nr_pages;
1716 continue;
1717 }
1718
1719 /*
1720 * Do not count skipped pages because that makes the function
1721 * return with no isolated pages if the LRU mostly contains
1722 * ineligible pages. This causes the VM to not reclaim any
1723 * pages, triggering a premature OOM.
1724 *
1725 * Account all tail pages of THP. This would not cause
1726 * premature OOM since __isolate_lru_page() returns -EBUSY
1727 * only when the page is being freed somewhere else.
1728 */
1729 scan += nr_pages;
1730 switch (__isolate_lru_page(page, mode)) {
1731 case 0:
1732 nr_taken += nr_pages;
1733 nr_zone_taken[page_zonenum(page)] += nr_pages;
1734 list_move(&page->lru, dst);
1735 break;
1736
1737 case -EBUSY:
1738 /* else it is being freed elsewhere */
1739 list_move(&page->lru, src);
1740 continue;
1741
1742 default:
1743 BUG();
1744 }
1745 }
1746
1747 /*
1748 * Splice any skipped pages to the start of the LRU list. Note that
1749 * this disrupts the LRU order when reclaiming for lower zones but
1750 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1751 * scanning would soon rescan the same pages to skip and put the
1752 * system at risk of premature OOM.
1753 */
1754 if (!list_empty(&pages_skipped)) {
1755 int zid;
1756
1757 list_splice(&pages_skipped, src);
1758 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1759 if (!nr_skipped[zid])
1760 continue;
1761
1762 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1763 skipped += nr_skipped[zid];
1764 }
1765 }
1766 *nr_scanned = total_scan;
1767 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1768 total_scan, skipped, nr_taken, mode, lru);
1769 update_lru_sizes(lruvec, lru, nr_zone_taken);
1770 return nr_taken;
1771 }
1772
1773 /**
1774 * isolate_lru_page - tries to isolate a page from its LRU list
1775 * @page: page to isolate from its LRU list
1776 *
1777 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1778 * vmstat statistic corresponding to whatever LRU list the page was on.
1779 *
1780 * Returns 0 if the page was removed from an LRU list.
1781 * Returns -EBUSY if the page was not on an LRU list.
1782 *
1783 * The returned page will have PageLRU() cleared. If it was found on
1784 * the active list, it will have PageActive set. If it was found on
1785 * the unevictable list, it will have the PageUnevictable bit set. That flag
1786 * may need to be cleared by the caller before letting the page go.
1787 *
1788 * The vmstat statistic corresponding to the list on which the page was
1789 * found will be decremented.
1790 *
1791 * Restrictions:
1792 *
1793 * (1) Must be called with an elevated refcount on the page. This is a
1794 * fundamentnal difference from isolate_lru_pages (which is called
1795 * without a stable reference).
1796 * (2) the lru_lock must not be held.
1797 * (3) interrupts must be enabled.
1798 */
1799 int isolate_lru_page(struct page *page)
1800 {
1801 int ret = -EBUSY;
1802
1803 VM_BUG_ON_PAGE(!page_count(page), page);
1804 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1805
1806 if (PageLRU(page)) {
1807 pg_data_t *pgdat = page_pgdat(page);
1808 struct lruvec *lruvec;
1809
1810 spin_lock_irq(&pgdat->lru_lock);
1811 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1812 if (PageLRU(page)) {
1813 int lru = page_lru(page);
1814 get_page(page);
1815 ClearPageLRU(page);
1816 del_page_from_lru_list(page, lruvec, lru);
1817 ret = 0;
1818 }
1819 spin_unlock_irq(&pgdat->lru_lock);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1826 * then get resheduled. When there are massive number of tasks doing page
1827 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1828 * the LRU list will go small and be scanned faster than necessary, leading to
1829 * unnecessary swapping, thrashing and OOM.
1830 */
1831 static int too_many_isolated(struct pglist_data *pgdat, int file,
1832 struct scan_control *sc)
1833 {
1834 unsigned long inactive, isolated;
1835
1836 if (current_is_kswapd())
1837 return 0;
1838
1839 if (!sane_reclaim(sc))
1840 return 0;
1841
1842 if (file) {
1843 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1844 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1845 } else {
1846 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1847 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1848 }
1849
1850 /*
1851 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1852 * won't get blocked by normal direct-reclaimers, forming a circular
1853 * deadlock.
1854 */
1855 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1856 inactive >>= 3;
1857
1858 return isolated > inactive;
1859 }
1860
1861 /*
1862 * This moves pages from @list to corresponding LRU list.
1863 *
1864 * We move them the other way if the page is referenced by one or more
1865 * processes, from rmap.
1866 *
1867 * If the pages are mostly unmapped, the processing is fast and it is
1868 * appropriate to hold zone_lru_lock across the whole operation. But if
1869 * the pages are mapped, the processing is slow (page_referenced()) so we
1870 * should drop zone_lru_lock around each page. It's impossible to balance
1871 * this, so instead we remove the pages from the LRU while processing them.
1872 * It is safe to rely on PG_active against the non-LRU pages in here because
1873 * nobody will play with that bit on a non-LRU page.
1874 *
1875 * The downside is that we have to touch page->_refcount against each page.
1876 * But we had to alter page->flags anyway.
1877 *
1878 * Returns the number of pages moved to the given lruvec.
1879 */
1880
1881 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1882 struct list_head *list)
1883 {
1884 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1885 int nr_pages, nr_moved = 0;
1886 LIST_HEAD(pages_to_free);
1887 struct page *page;
1888 enum lru_list lru;
1889
1890 while (!list_empty(list)) {
1891 page = lru_to_page(list);
1892 VM_BUG_ON_PAGE(PageLRU(page), page);
1893 if (unlikely(!page_evictable(page))) {
1894 list_del(&page->lru);
1895 spin_unlock_irq(&pgdat->lru_lock);
1896 putback_lru_page(page);
1897 spin_lock_irq(&pgdat->lru_lock);
1898 continue;
1899 }
1900 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1901
1902 SetPageLRU(page);
1903 lru = page_lru(page);
1904
1905 nr_pages = hpage_nr_pages(page);
1906 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1907 list_move(&page->lru, &lruvec->lists[lru]);
1908
1909 if (put_page_testzero(page)) {
1910 __ClearPageLRU(page);
1911 __ClearPageActive(page);
1912 del_page_from_lru_list(page, lruvec, lru);
1913
1914 if (unlikely(PageCompound(page))) {
1915 spin_unlock_irq(&pgdat->lru_lock);
1916 (*get_compound_page_dtor(page))(page);
1917 spin_lock_irq(&pgdat->lru_lock);
1918 } else
1919 list_add(&page->lru, &pages_to_free);
1920 } else {
1921 nr_moved += nr_pages;
1922 }
1923 }
1924
1925 /*
1926 * To save our caller's stack, now use input list for pages to free.
1927 */
1928 list_splice(&pages_to_free, list);
1929
1930 return nr_moved;
1931 }
1932
1933 /*
1934 * If a kernel thread (such as nfsd for loop-back mounts) services
1935 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1936 * In that case we should only throttle if the backing device it is
1937 * writing to is congested. In other cases it is safe to throttle.
1938 */
1939 static int current_may_throttle(void)
1940 {
1941 return !(current->flags & PF_LESS_THROTTLE) ||
1942 current->backing_dev_info == NULL ||
1943 bdi_write_congested(current->backing_dev_info);
1944 }
1945
1946 /*
1947 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1948 * of reclaimed pages
1949 */
1950 static noinline_for_stack unsigned long
1951 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1952 struct scan_control *sc, enum lru_list lru)
1953 {
1954 LIST_HEAD(page_list);
1955 unsigned long nr_scanned;
1956 unsigned long nr_reclaimed = 0;
1957 unsigned long nr_taken;
1958 struct reclaim_stat stat;
1959 int file = is_file_lru(lru);
1960 enum vm_event_item item;
1961 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1962 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1963 bool stalled = false;
1964
1965 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1966 if (stalled)
1967 return 0;
1968
1969 /* wait a bit for the reclaimer. */
1970 msleep(100);
1971 stalled = true;
1972
1973 /* We are about to die and free our memory. Return now. */
1974 if (fatal_signal_pending(current))
1975 return SWAP_CLUSTER_MAX;
1976 }
1977
1978 lru_add_drain();
1979
1980 spin_lock_irq(&pgdat->lru_lock);
1981
1982 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1983 &nr_scanned, sc, lru);
1984
1985 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1986 reclaim_stat->recent_scanned[file] += nr_taken;
1987
1988 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1989 if (global_reclaim(sc))
1990 __count_vm_events(item, nr_scanned);
1991 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1992 spin_unlock_irq(&pgdat->lru_lock);
1993
1994 if (nr_taken == 0)
1995 return 0;
1996
1997 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1998 &stat, false);
1999
2000 spin_lock_irq(&pgdat->lru_lock);
2001
2002 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2003 if (global_reclaim(sc))
2004 __count_vm_events(item, nr_reclaimed);
2005 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2006 reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2007 reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2008
2009 move_pages_to_lru(lruvec, &page_list);
2010
2011 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2012
2013 spin_unlock_irq(&pgdat->lru_lock);
2014
2015 mem_cgroup_uncharge_list(&page_list);
2016 free_unref_page_list(&page_list);
2017
2018 /*
2019 * If dirty pages are scanned that are not queued for IO, it
2020 * implies that flushers are not doing their job. This can
2021 * happen when memory pressure pushes dirty pages to the end of
2022 * the LRU before the dirty limits are breached and the dirty
2023 * data has expired. It can also happen when the proportion of
2024 * dirty pages grows not through writes but through memory
2025 * pressure reclaiming all the clean cache. And in some cases,
2026 * the flushers simply cannot keep up with the allocation
2027 * rate. Nudge the flusher threads in case they are asleep.
2028 */
2029 if (stat.nr_unqueued_dirty == nr_taken)
2030 wakeup_flusher_threads(WB_REASON_VMSCAN);
2031
2032 sc->nr.dirty += stat.nr_dirty;
2033 sc->nr.congested += stat.nr_congested;
2034 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2035 sc->nr.writeback += stat.nr_writeback;
2036 sc->nr.immediate += stat.nr_immediate;
2037 sc->nr.taken += nr_taken;
2038 if (file)
2039 sc->nr.file_taken += nr_taken;
2040
2041 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2042 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2043 return nr_reclaimed;
2044 }
2045
2046 static void shrink_active_list(unsigned long nr_to_scan,
2047 struct lruvec *lruvec,
2048 struct scan_control *sc,
2049 enum lru_list lru)
2050 {
2051 unsigned long nr_taken;
2052 unsigned long nr_scanned;
2053 unsigned long vm_flags;
2054 LIST_HEAD(l_hold); /* The pages which were snipped off */
2055 LIST_HEAD(l_active);
2056 LIST_HEAD(l_inactive);
2057 struct page *page;
2058 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2059 unsigned nr_deactivate, nr_activate;
2060 unsigned nr_rotated = 0;
2061 int file = is_file_lru(lru);
2062 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2063
2064 lru_add_drain();
2065
2066 spin_lock_irq(&pgdat->lru_lock);
2067
2068 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2069 &nr_scanned, sc, lru);
2070
2071 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2072 reclaim_stat->recent_scanned[file] += nr_taken;
2073
2074 __count_vm_events(PGREFILL, nr_scanned);
2075 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2076
2077 spin_unlock_irq(&pgdat->lru_lock);
2078
2079 while (!list_empty(&l_hold)) {
2080 cond_resched();
2081 page = lru_to_page(&l_hold);
2082 list_del(&page->lru);
2083
2084 if (unlikely(!page_evictable(page))) {
2085 putback_lru_page(page);
2086 continue;
2087 }
2088
2089 if (unlikely(buffer_heads_over_limit)) {
2090 if (page_has_private(page) && trylock_page(page)) {
2091 if (page_has_private(page))
2092 try_to_release_page(page, 0);
2093 unlock_page(page);
2094 }
2095 }
2096
2097 if (page_referenced(page, 0, sc->target_mem_cgroup,
2098 &vm_flags)) {
2099 nr_rotated += hpage_nr_pages(page);
2100 /*
2101 * Identify referenced, file-backed active pages and
2102 * give them one more trip around the active list. So
2103 * that executable code get better chances to stay in
2104 * memory under moderate memory pressure. Anon pages
2105 * are not likely to be evicted by use-once streaming
2106 * IO, plus JVM can create lots of anon VM_EXEC pages,
2107 * so we ignore them here.
2108 */
2109 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2110 list_add(&page->lru, &l_active);
2111 continue;
2112 }
2113 }
2114
2115 ClearPageActive(page); /* we are de-activating */
2116 SetPageWorkingset(page);
2117 list_add(&page->lru, &l_inactive);
2118 }
2119
2120 /*
2121 * Move pages back to the lru list.
2122 */
2123 spin_lock_irq(&pgdat->lru_lock);
2124 /*
2125 * Count referenced pages from currently used mappings as rotated,
2126 * even though only some of them are actually re-activated. This
2127 * helps balance scan pressure between file and anonymous pages in
2128 * get_scan_count.
2129 */
2130 reclaim_stat->recent_rotated[file] += nr_rotated;
2131
2132 nr_activate = move_pages_to_lru(lruvec, &l_active);
2133 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2134 /* Keep all free pages in l_active list */
2135 list_splice(&l_inactive, &l_active);
2136
2137 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2138 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2139
2140 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2141 spin_unlock_irq(&pgdat->lru_lock);
2142
2143 mem_cgroup_uncharge_list(&l_active);
2144 free_unref_page_list(&l_active);
2145 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2146 nr_deactivate, nr_rotated, sc->priority, file);
2147 }
2148
2149 unsigned long reclaim_pages(struct list_head *page_list)
2150 {
2151 int nid = -1;
2152 unsigned long nr_reclaimed = 0;
2153 LIST_HEAD(node_page_list);
2154 struct reclaim_stat dummy_stat;
2155 struct page *page;
2156 struct scan_control sc = {
2157 .gfp_mask = GFP_KERNEL,
2158 .priority = DEF_PRIORITY,
2159 .may_writepage = 1,
2160 .may_unmap = 1,
2161 .may_swap = 1,
2162 };
2163
2164 while (!list_empty(page_list)) {
2165 page = lru_to_page(page_list);
2166 if (nid == -1) {
2167 nid = page_to_nid(page);
2168 INIT_LIST_HEAD(&node_page_list);
2169 }
2170
2171 if (nid == page_to_nid(page)) {
2172 ClearPageActive(page);
2173 list_move(&page->lru, &node_page_list);
2174 continue;
2175 }
2176
2177 nr_reclaimed += shrink_page_list(&node_page_list,
2178 NODE_DATA(nid),
2179 &sc, 0,
2180 &dummy_stat, false);
2181 while (!list_empty(&node_page_list)) {
2182 page = lru_to_page(&node_page_list);
2183 list_del(&page->lru);
2184 putback_lru_page(page);
2185 }
2186
2187 nid = -1;
2188 }
2189
2190 if (!list_empty(&node_page_list)) {
2191 nr_reclaimed += shrink_page_list(&node_page_list,
2192 NODE_DATA(nid),
2193 &sc, 0,
2194 &dummy_stat, false);
2195 while (!list_empty(&node_page_list)) {
2196 page = lru_to_page(&node_page_list);
2197 list_del(&page->lru);
2198 putback_lru_page(page);
2199 }
2200 }
2201
2202 return nr_reclaimed;
2203 }
2204
2205 /*
2206 * The inactive anon list should be small enough that the VM never has
2207 * to do too much work.
2208 *
2209 * The inactive file list should be small enough to leave most memory
2210 * to the established workingset on the scan-resistant active list,
2211 * but large enough to avoid thrashing the aggregate readahead window.
2212 *
2213 * Both inactive lists should also be large enough that each inactive
2214 * page has a chance to be referenced again before it is reclaimed.
2215 *
2216 * If that fails and refaulting is observed, the inactive list grows.
2217 *
2218 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2219 * on this LRU, maintained by the pageout code. An inactive_ratio
2220 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2221 *
2222 * total target max
2223 * memory ratio inactive
2224 * -------------------------------------
2225 * 10MB 1 5MB
2226 * 100MB 1 50MB
2227 * 1GB 3 250MB
2228 * 10GB 10 0.9GB
2229 * 100GB 31 3GB
2230 * 1TB 101 10GB
2231 * 10TB 320 32GB
2232 */
2233 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2234 struct scan_control *sc, bool trace)
2235 {
2236 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2237 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2238 enum lru_list inactive_lru = file * LRU_FILE;
2239 unsigned long inactive, active;
2240 unsigned long inactive_ratio;
2241 unsigned long refaults;
2242 unsigned long gb;
2243
2244 /*
2245 * If we don't have swap space, anonymous page deactivation
2246 * is pointless.
2247 */
2248 if (!file && !total_swap_pages)
2249 return false;
2250
2251 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2252 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2253
2254 /*
2255 * When refaults are being observed, it means a new workingset
2256 * is being established. Disable active list protection to get
2257 * rid of the stale workingset quickly.
2258 */
2259 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2260 if (file && lruvec->refaults != refaults) {
2261 inactive_ratio = 0;
2262 } else {
2263 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2264 if (gb)
2265 inactive_ratio = int_sqrt(10 * gb);
2266 else
2267 inactive_ratio = 1;
2268 }
2269
2270 if (trace)
2271 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2272 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2273 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2274 inactive_ratio, file);
2275
2276 return inactive * inactive_ratio < active;
2277 }
2278
2279 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2280 struct lruvec *lruvec, struct scan_control *sc)
2281 {
2282 if (is_active_lru(lru)) {
2283 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2284 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2285 return 0;
2286 }
2287
2288 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2289 }
2290
2291 enum scan_balance {
2292 SCAN_EQUAL,
2293 SCAN_FRACT,
2294 SCAN_ANON,
2295 SCAN_FILE,
2296 };
2297
2298 /*
2299 * Determine how aggressively the anon and file LRU lists should be
2300 * scanned. The relative value of each set of LRU lists is determined
2301 * by looking at the fraction of the pages scanned we did rotate back
2302 * onto the active list instead of evict.
2303 *
2304 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2305 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2306 */
2307 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2308 struct scan_control *sc, unsigned long *nr,
2309 unsigned long *lru_pages)
2310 {
2311 int swappiness = mem_cgroup_swappiness(memcg);
2312 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2313 u64 fraction[2];
2314 u64 denominator = 0; /* gcc */
2315 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2316 unsigned long anon_prio, file_prio;
2317 enum scan_balance scan_balance;
2318 unsigned long anon, file;
2319 unsigned long ap, fp;
2320 enum lru_list lru;
2321
2322 /* If we have no swap space, do not bother scanning anon pages. */
2323 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2324 scan_balance = SCAN_FILE;
2325 goto out;
2326 }
2327
2328 /*
2329 * Global reclaim will swap to prevent OOM even with no
2330 * swappiness, but memcg users want to use this knob to
2331 * disable swapping for individual groups completely when
2332 * using the memory controller's swap limit feature would be
2333 * too expensive.
2334 */
2335 if (!global_reclaim(sc) && !swappiness) {
2336 scan_balance = SCAN_FILE;
2337 goto out;
2338 }
2339
2340 /*
2341 * Do not apply any pressure balancing cleverness when the
2342 * system is close to OOM, scan both anon and file equally
2343 * (unless the swappiness setting disagrees with swapping).
2344 */
2345 if (!sc->priority && swappiness) {
2346 scan_balance = SCAN_EQUAL;
2347 goto out;
2348 }
2349
2350 /*
2351 * Prevent the reclaimer from falling into the cache trap: as
2352 * cache pages start out inactive, every cache fault will tip
2353 * the scan balance towards the file LRU. And as the file LRU
2354 * shrinks, so does the window for rotation from references.
2355 * This means we have a runaway feedback loop where a tiny
2356 * thrashing file LRU becomes infinitely more attractive than
2357 * anon pages. Try to detect this based on file LRU size.
2358 */
2359 if (global_reclaim(sc)) {
2360 unsigned long pgdatfile;
2361 unsigned long pgdatfree;
2362 int z;
2363 unsigned long total_high_wmark = 0;
2364
2365 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2366 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2367 node_page_state(pgdat, NR_INACTIVE_FILE);
2368
2369 for (z = 0; z < MAX_NR_ZONES; z++) {
2370 struct zone *zone = &pgdat->node_zones[z];
2371 if (!managed_zone(zone))
2372 continue;
2373
2374 total_high_wmark += high_wmark_pages(zone);
2375 }
2376
2377 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2378 /*
2379 * Force SCAN_ANON if there are enough inactive
2380 * anonymous pages on the LRU in eligible zones.
2381 * Otherwise, the small LRU gets thrashed.
2382 */
2383 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2384 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2385 >> sc->priority) {
2386 scan_balance = SCAN_ANON;
2387 goto out;
2388 }
2389 }
2390 }
2391
2392 /*
2393 * If there is enough inactive page cache, i.e. if the size of the
2394 * inactive list is greater than that of the active list *and* the
2395 * inactive list actually has some pages to scan on this priority, we
2396 * do not reclaim anything from the anonymous working set right now.
2397 * Without the second condition we could end up never scanning an
2398 * lruvec even if it has plenty of old anonymous pages unless the
2399 * system is under heavy pressure.
2400 */
2401 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2402 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2403 scan_balance = SCAN_FILE;
2404 goto out;
2405 }
2406
2407 scan_balance = SCAN_FRACT;
2408
2409 /*
2410 * With swappiness at 100, anonymous and file have the same priority.
2411 * This scanning priority is essentially the inverse of IO cost.
2412 */
2413 anon_prio = swappiness;
2414 file_prio = 200 - anon_prio;
2415
2416 /*
2417 * OK, so we have swap space and a fair amount of page cache
2418 * pages. We use the recently rotated / recently scanned
2419 * ratios to determine how valuable each cache is.
2420 *
2421 * Because workloads change over time (and to avoid overflow)
2422 * we keep these statistics as a floating average, which ends
2423 * up weighing recent references more than old ones.
2424 *
2425 * anon in [0], file in [1]
2426 */
2427
2428 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2429 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2430 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2431 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2432
2433 spin_lock_irq(&pgdat->lru_lock);
2434 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2435 reclaim_stat->recent_scanned[0] /= 2;
2436 reclaim_stat->recent_rotated[0] /= 2;
2437 }
2438
2439 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2440 reclaim_stat->recent_scanned[1] /= 2;
2441 reclaim_stat->recent_rotated[1] /= 2;
2442 }
2443
2444 /*
2445 * The amount of pressure on anon vs file pages is inversely
2446 * proportional to the fraction of recently scanned pages on
2447 * each list that were recently referenced and in active use.
2448 */
2449 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2450 ap /= reclaim_stat->recent_rotated[0] + 1;
2451
2452 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2453 fp /= reclaim_stat->recent_rotated[1] + 1;
2454 spin_unlock_irq(&pgdat->lru_lock);
2455
2456 fraction[0] = ap;
2457 fraction[1] = fp;
2458 denominator = ap + fp + 1;
2459 out:
2460 *lru_pages = 0;
2461 for_each_evictable_lru(lru) {
2462 int file = is_file_lru(lru);
2463 unsigned long lruvec_size;
2464 unsigned long low, min;
2465 unsigned long scan;
2466
2467 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2468 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2469 &min, &low);
2470
2471 if (min || low) {
2472 /*
2473 * Scale a cgroup's reclaim pressure by proportioning
2474 * its current usage to its memory.low or memory.min
2475 * setting.
2476 *
2477 * This is important, as otherwise scanning aggression
2478 * becomes extremely binary -- from nothing as we
2479 * approach the memory protection threshold, to totally
2480 * nominal as we exceed it. This results in requiring
2481 * setting extremely liberal protection thresholds. It
2482 * also means we simply get no protection at all if we
2483 * set it too low, which is not ideal.
2484 *
2485 * If there is any protection in place, we reduce scan
2486 * pressure by how much of the total memory used is
2487 * within protection thresholds.
2488 *
2489 * There is one special case: in the first reclaim pass,
2490 * we skip over all groups that are within their low
2491 * protection. If that fails to reclaim enough pages to
2492 * satisfy the reclaim goal, we come back and override
2493 * the best-effort low protection. However, we still
2494 * ideally want to honor how well-behaved groups are in
2495 * that case instead of simply punishing them all
2496 * equally. As such, we reclaim them based on how much
2497 * memory they are using, reducing the scan pressure
2498 * again by how much of the total memory used is under
2499 * hard protection.
2500 */
2501 unsigned long cgroup_size = mem_cgroup_size(memcg);
2502 unsigned long protection;
2503
2504 /* memory.low scaling, make sure we retry before OOM */
2505 if (!sc->memcg_low_reclaim && low > min) {
2506 protection = low;
2507 sc->memcg_low_skipped = 1;
2508 } else {
2509 protection = min;
2510 }
2511
2512 /* Avoid TOCTOU with earlier protection check */
2513 cgroup_size = max(cgroup_size, protection);
2514
2515 scan = lruvec_size - lruvec_size * protection /
2516 (cgroup_size + 1);
2517
2518 /*
2519 * Minimally target SWAP_CLUSTER_MAX pages to keep
2520 * reclaim moving forwards, avoiding decremeting
2521 * sc->priority further than desirable.
2522 */
2523 scan = max(scan, SWAP_CLUSTER_MAX);
2524 } else {
2525 scan = lruvec_size;
2526 }
2527
2528 scan >>= sc->priority;
2529
2530 /*
2531 * If the cgroup's already been deleted, make sure to
2532 * scrape out the remaining cache.
2533 */
2534 if (!scan && !mem_cgroup_online(memcg))
2535 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2536
2537 switch (scan_balance) {
2538 case SCAN_EQUAL:
2539 /* Scan lists relative to size */
2540 break;
2541 case SCAN_FRACT:
2542 /*
2543 * Scan types proportional to swappiness and
2544 * their relative recent reclaim efficiency.
2545 * Make sure we don't miss the last page on
2546 * the offlined memory cgroups because of a
2547 * round-off error.
2548 */
2549 scan = mem_cgroup_online(memcg) ?
2550 div64_u64(scan * fraction[file], denominator) :
2551 DIV64_U64_ROUND_UP(scan * fraction[file],
2552 denominator);
2553 break;
2554 case SCAN_FILE:
2555 case SCAN_ANON:
2556 /* Scan one type exclusively */
2557 if ((scan_balance == SCAN_FILE) != file) {
2558 lruvec_size = 0;
2559 scan = 0;
2560 }
2561 break;
2562 default:
2563 /* Look ma, no brain */
2564 BUG();
2565 }
2566
2567 *lru_pages += lruvec_size;
2568 nr[lru] = scan;
2569 }
2570 }
2571
2572 /*
2573 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2574 */
2575 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2576 struct scan_control *sc, unsigned long *lru_pages)
2577 {
2578 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2579 unsigned long nr[NR_LRU_LISTS];
2580 unsigned long targets[NR_LRU_LISTS];
2581 unsigned long nr_to_scan;
2582 enum lru_list lru;
2583 unsigned long nr_reclaimed = 0;
2584 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2585 struct blk_plug plug;
2586 bool scan_adjusted;
2587
2588 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2589
2590 /* Record the original scan target for proportional adjustments later */
2591 memcpy(targets, nr, sizeof(nr));
2592
2593 /*
2594 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2595 * event that can occur when there is little memory pressure e.g.
2596 * multiple streaming readers/writers. Hence, we do not abort scanning
2597 * when the requested number of pages are reclaimed when scanning at
2598 * DEF_PRIORITY on the assumption that the fact we are direct
2599 * reclaiming implies that kswapd is not keeping up and it is best to
2600 * do a batch of work at once. For memcg reclaim one check is made to
2601 * abort proportional reclaim if either the file or anon lru has already
2602 * dropped to zero at the first pass.
2603 */
2604 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2605 sc->priority == DEF_PRIORITY);
2606
2607 blk_start_plug(&plug);
2608 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2609 nr[LRU_INACTIVE_FILE]) {
2610 unsigned long nr_anon, nr_file, percentage;
2611 unsigned long nr_scanned;
2612
2613 for_each_evictable_lru(lru) {
2614 if (nr[lru]) {
2615 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2616 nr[lru] -= nr_to_scan;
2617
2618 nr_reclaimed += shrink_list(lru, nr_to_scan,
2619 lruvec, sc);
2620 }
2621 }
2622
2623 cond_resched();
2624
2625 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2626 continue;
2627
2628 /*
2629 * For kswapd and memcg, reclaim at least the number of pages
2630 * requested. Ensure that the anon and file LRUs are scanned
2631 * proportionally what was requested by get_scan_count(). We
2632 * stop reclaiming one LRU and reduce the amount scanning
2633 * proportional to the original scan target.
2634 */
2635 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2636 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2637
2638 /*
2639 * It's just vindictive to attack the larger once the smaller
2640 * has gone to zero. And given the way we stop scanning the
2641 * smaller below, this makes sure that we only make one nudge
2642 * towards proportionality once we've got nr_to_reclaim.
2643 */
2644 if (!nr_file || !nr_anon)
2645 break;
2646
2647 if (nr_file > nr_anon) {
2648 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2649 targets[LRU_ACTIVE_ANON] + 1;
2650 lru = LRU_BASE;
2651 percentage = nr_anon * 100 / scan_target;
2652 } else {
2653 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2654 targets[LRU_ACTIVE_FILE] + 1;
2655 lru = LRU_FILE;
2656 percentage = nr_file * 100 / scan_target;
2657 }
2658
2659 /* Stop scanning the smaller of the LRU */
2660 nr[lru] = 0;
2661 nr[lru + LRU_ACTIVE] = 0;
2662
2663 /*
2664 * Recalculate the other LRU scan count based on its original
2665 * scan target and the percentage scanning already complete
2666 */
2667 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2668 nr_scanned = targets[lru] - nr[lru];
2669 nr[lru] = targets[lru] * (100 - percentage) / 100;
2670 nr[lru] -= min(nr[lru], nr_scanned);
2671
2672 lru += LRU_ACTIVE;
2673 nr_scanned = targets[lru] - nr[lru];
2674 nr[lru] = targets[lru] * (100 - percentage) / 100;
2675 nr[lru] -= min(nr[lru], nr_scanned);
2676
2677 scan_adjusted = true;
2678 }
2679 blk_finish_plug(&plug);
2680 sc->nr_reclaimed += nr_reclaimed;
2681
2682 /*
2683 * Even if we did not try to evict anon pages at all, we want to
2684 * rebalance the anon lru active/inactive ratio.
2685 */
2686 if (inactive_list_is_low(lruvec, false, sc, true))
2687 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2688 sc, LRU_ACTIVE_ANON);
2689 }
2690
2691 /* Use reclaim/compaction for costly allocs or under memory pressure */
2692 static bool in_reclaim_compaction(struct scan_control *sc)
2693 {
2694 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2695 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2696 sc->priority < DEF_PRIORITY - 2))
2697 return true;
2698
2699 return false;
2700 }
2701
2702 /*
2703 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2704 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2705 * true if more pages should be reclaimed such that when the page allocator
2706 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2707 * It will give up earlier than that if there is difficulty reclaiming pages.
2708 */
2709 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2710 unsigned long nr_reclaimed,
2711 struct scan_control *sc)
2712 {
2713 unsigned long pages_for_compaction;
2714 unsigned long inactive_lru_pages;
2715 int z;
2716
2717 /* If not in reclaim/compaction mode, stop */
2718 if (!in_reclaim_compaction(sc))
2719 return false;
2720
2721 /*
2722 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2723 * number of pages that were scanned. This will return to the caller
2724 * with the risk reclaim/compaction and the resulting allocation attempt
2725 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2726 * allocations through requiring that the full LRU list has been scanned
2727 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2728 * scan, but that approximation was wrong, and there were corner cases
2729 * where always a non-zero amount of pages were scanned.
2730 */
2731 if (!nr_reclaimed)
2732 return false;
2733
2734 /* If compaction would go ahead or the allocation would succeed, stop */
2735 for (z = 0; z <= sc->reclaim_idx; z++) {
2736 struct zone *zone = &pgdat->node_zones[z];
2737 if (!managed_zone(zone))
2738 continue;
2739
2740 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2741 case COMPACT_SUCCESS:
2742 case COMPACT_CONTINUE:
2743 return false;
2744 default:
2745 /* check next zone */
2746 ;
2747 }
2748 }
2749
2750 /*
2751 * If we have not reclaimed enough pages for compaction and the
2752 * inactive lists are large enough, continue reclaiming
2753 */
2754 pages_for_compaction = compact_gap(sc->order);
2755 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2756 if (get_nr_swap_pages() > 0)
2757 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2758
2759 return inactive_lru_pages > pages_for_compaction;
2760 }
2761
2762 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2763 {
2764 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2765 (memcg && memcg_congested(pgdat, memcg));
2766 }
2767
2768 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2769 {
2770 struct reclaim_state *reclaim_state = current->reclaim_state;
2771 unsigned long nr_reclaimed, nr_scanned;
2772 bool reclaimable = false;
2773
2774 do {
2775 struct mem_cgroup *root = sc->target_mem_cgroup;
2776 unsigned long node_lru_pages = 0;
2777 struct mem_cgroup *memcg;
2778
2779 memset(&sc->nr, 0, sizeof(sc->nr));
2780
2781 nr_reclaimed = sc->nr_reclaimed;
2782 nr_scanned = sc->nr_scanned;
2783
2784 memcg = mem_cgroup_iter(root, NULL, NULL);
2785 do {
2786 unsigned long lru_pages;
2787 unsigned long reclaimed;
2788 unsigned long scanned;
2789
2790 /*
2791 * This loop can become CPU-bound when target memcgs
2792 * aren't eligible for reclaim - either because they
2793 * don't have any reclaimable pages, or because their
2794 * memory is explicitly protected. Avoid soft lockups.
2795 */
2796 cond_resched();
2797
2798 switch (mem_cgroup_protected(root, memcg)) {
2799 case MEMCG_PROT_MIN:
2800 /*
2801 * Hard protection.
2802 * If there is no reclaimable memory, OOM.
2803 */
2804 continue;
2805 case MEMCG_PROT_LOW:
2806 /*
2807 * Soft protection.
2808 * Respect the protection only as long as
2809 * there is an unprotected supply
2810 * of reclaimable memory from other cgroups.
2811 */
2812 if (!sc->memcg_low_reclaim) {
2813 sc->memcg_low_skipped = 1;
2814 continue;
2815 }
2816 memcg_memory_event(memcg, MEMCG_LOW);
2817 break;
2818 case MEMCG_PROT_NONE:
2819 /*
2820 * All protection thresholds breached. We may
2821 * still choose to vary the scan pressure
2822 * applied based on by how much the cgroup in
2823 * question has exceeded its protection
2824 * thresholds (see get_scan_count).
2825 */
2826 break;
2827 }
2828
2829 reclaimed = sc->nr_reclaimed;
2830 scanned = sc->nr_scanned;
2831 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2832 node_lru_pages += lru_pages;
2833
2834 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2835 sc->priority);
2836
2837 /* Record the group's reclaim efficiency */
2838 vmpressure(sc->gfp_mask, memcg, false,
2839 sc->nr_scanned - scanned,
2840 sc->nr_reclaimed - reclaimed);
2841
2842 } while ((memcg = mem_cgroup_iter(root, memcg, NULL)));
2843
2844 if (reclaim_state) {
2845 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2846 reclaim_state->reclaimed_slab = 0;
2847 }
2848
2849 /* Record the subtree's reclaim efficiency */
2850 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2851 sc->nr_scanned - nr_scanned,
2852 sc->nr_reclaimed - nr_reclaimed);
2853
2854 if (sc->nr_reclaimed - nr_reclaimed)
2855 reclaimable = true;
2856
2857 if (current_is_kswapd()) {
2858 /*
2859 * If reclaim is isolating dirty pages under writeback,
2860 * it implies that the long-lived page allocation rate
2861 * is exceeding the page laundering rate. Either the
2862 * global limits are not being effective at throttling
2863 * processes due to the page distribution throughout
2864 * zones or there is heavy usage of a slow backing
2865 * device. The only option is to throttle from reclaim
2866 * context which is not ideal as there is no guarantee
2867 * the dirtying process is throttled in the same way
2868 * balance_dirty_pages() manages.
2869 *
2870 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2871 * count the number of pages under pages flagged for
2872 * immediate reclaim and stall if any are encountered
2873 * in the nr_immediate check below.
2874 */
2875 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2876 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2877
2878 /*
2879 * Tag a node as congested if all the dirty pages
2880 * scanned were backed by a congested BDI and
2881 * wait_iff_congested will stall.
2882 */
2883 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2884 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2885
2886 /* Allow kswapd to start writing pages during reclaim.*/
2887 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2888 set_bit(PGDAT_DIRTY, &pgdat->flags);
2889
2890 /*
2891 * If kswapd scans pages marked marked for immediate
2892 * reclaim and under writeback (nr_immediate), it
2893 * implies that pages are cycling through the LRU
2894 * faster than they are written so also forcibly stall.
2895 */
2896 if (sc->nr.immediate)
2897 congestion_wait(BLK_RW_ASYNC, HZ/10);
2898 }
2899
2900 /*
2901 * Legacy memcg will stall in page writeback so avoid forcibly
2902 * stalling in wait_iff_congested().
2903 */
2904 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2905 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2906 set_memcg_congestion(pgdat, root, true);
2907
2908 /*
2909 * Stall direct reclaim for IO completions if underlying BDIs
2910 * and node is congested. Allow kswapd to continue until it
2911 * starts encountering unqueued dirty pages or cycling through
2912 * the LRU too quickly.
2913 */
2914 if (!sc->hibernation_mode && !current_is_kswapd() &&
2915 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2916 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2917
2918 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2919 sc));
2920
2921 /*
2922 * Kswapd gives up on balancing particular nodes after too
2923 * many failures to reclaim anything from them and goes to
2924 * sleep. On reclaim progress, reset the failure counter. A
2925 * successful direct reclaim run will revive a dormant kswapd.
2926 */
2927 if (reclaimable)
2928 pgdat->kswapd_failures = 0;
2929
2930 return reclaimable;
2931 }
2932
2933 /*
2934 * Returns true if compaction should go ahead for a costly-order request, or
2935 * the allocation would already succeed without compaction. Return false if we
2936 * should reclaim first.
2937 */
2938 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2939 {
2940 unsigned long watermark;
2941 enum compact_result suitable;
2942
2943 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2944 if (suitable == COMPACT_SUCCESS)
2945 /* Allocation should succeed already. Don't reclaim. */
2946 return true;
2947 if (suitable == COMPACT_SKIPPED)
2948 /* Compaction cannot yet proceed. Do reclaim. */
2949 return false;
2950
2951 /*
2952 * Compaction is already possible, but it takes time to run and there
2953 * are potentially other callers using the pages just freed. So proceed
2954 * with reclaim to make a buffer of free pages available to give
2955 * compaction a reasonable chance of completing and allocating the page.
2956 * Note that we won't actually reclaim the whole buffer in one attempt
2957 * as the target watermark in should_continue_reclaim() is lower. But if
2958 * we are already above the high+gap watermark, don't reclaim at all.
2959 */
2960 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2961
2962 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2963 }
2964
2965 /*
2966 * This is the direct reclaim path, for page-allocating processes. We only
2967 * try to reclaim pages from zones which will satisfy the caller's allocation
2968 * request.
2969 *
2970 * If a zone is deemed to be full of pinned pages then just give it a light
2971 * scan then give up on it.
2972 */
2973 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2974 {
2975 struct zoneref *z;
2976 struct zone *zone;
2977 unsigned long nr_soft_reclaimed;
2978 unsigned long nr_soft_scanned;
2979 gfp_t orig_mask;
2980 pg_data_t *last_pgdat = NULL;
2981
2982 /*
2983 * If the number of buffer_heads in the machine exceeds the maximum
2984 * allowed level, force direct reclaim to scan the highmem zone as
2985 * highmem pages could be pinning lowmem pages storing buffer_heads
2986 */
2987 orig_mask = sc->gfp_mask;
2988 if (buffer_heads_over_limit) {
2989 sc->gfp_mask |= __GFP_HIGHMEM;
2990 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2991 }
2992
2993 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2994 sc->reclaim_idx, sc->nodemask) {
2995 /*
2996 * Take care memory controller reclaiming has small influence
2997 * to global LRU.
2998 */
2999 if (global_reclaim(sc)) {
3000 if (!cpuset_zone_allowed(zone,
3001 GFP_KERNEL | __GFP_HARDWALL))
3002 continue;
3003
3004 /*
3005 * If we already have plenty of memory free for
3006 * compaction in this zone, don't free any more.
3007 * Even though compaction is invoked for any
3008 * non-zero order, only frequent costly order
3009 * reclamation is disruptive enough to become a
3010 * noticeable problem, like transparent huge
3011 * page allocations.
3012 */
3013 if (IS_ENABLED(CONFIG_COMPACTION) &&
3014 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3015 compaction_ready(zone, sc)) {
3016 sc->compaction_ready = true;
3017 continue;
3018 }
3019
3020 /*
3021 * Shrink each node in the zonelist once. If the
3022 * zonelist is ordered by zone (not the default) then a
3023 * node may be shrunk multiple times but in that case
3024 * the user prefers lower zones being preserved.
3025 */
3026 if (zone->zone_pgdat == last_pgdat)
3027 continue;
3028
3029 /*
3030 * This steals pages from memory cgroups over softlimit
3031 * and returns the number of reclaimed pages and
3032 * scanned pages. This works for global memory pressure
3033 * and balancing, not for a memcg's limit.
3034 */
3035 nr_soft_scanned = 0;
3036 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3037 sc->order, sc->gfp_mask,
3038 &nr_soft_scanned);
3039 sc->nr_reclaimed += nr_soft_reclaimed;
3040 sc->nr_scanned += nr_soft_scanned;
3041 /* need some check for avoid more shrink_zone() */
3042 }
3043
3044 /* See comment about same check for global reclaim above */
3045 if (zone->zone_pgdat == last_pgdat)
3046 continue;
3047 last_pgdat = zone->zone_pgdat;
3048 shrink_node(zone->zone_pgdat, sc);
3049 }
3050
3051 /*
3052 * Restore to original mask to avoid the impact on the caller if we
3053 * promoted it to __GFP_HIGHMEM.
3054 */
3055 sc->gfp_mask = orig_mask;
3056 }
3057
3058 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3059 {
3060 struct mem_cgroup *memcg;
3061
3062 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3063 do {
3064 unsigned long refaults;
3065 struct lruvec *lruvec;
3066
3067 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3068 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
3069 lruvec->refaults = refaults;
3070 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3071 }
3072
3073 /*
3074 * This is the main entry point to direct page reclaim.
3075 *
3076 * If a full scan of the inactive list fails to free enough memory then we
3077 * are "out of memory" and something needs to be killed.
3078 *
3079 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3080 * high - the zone may be full of dirty or under-writeback pages, which this
3081 * caller can't do much about. We kick the writeback threads and take explicit
3082 * naps in the hope that some of these pages can be written. But if the
3083 * allocating task holds filesystem locks which prevent writeout this might not
3084 * work, and the allocation attempt will fail.
3085 *
3086 * returns: 0, if no pages reclaimed
3087 * else, the number of pages reclaimed
3088 */
3089 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3090 struct scan_control *sc)
3091 {
3092 int initial_priority = sc->priority;
3093 pg_data_t *last_pgdat;
3094 struct zoneref *z;
3095 struct zone *zone;
3096 retry:
3097 delayacct_freepages_start();
3098
3099 if (global_reclaim(sc))
3100 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3101
3102 do {
3103 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3104 sc->priority);
3105 sc->nr_scanned = 0;
3106 shrink_zones(zonelist, sc);
3107
3108 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3109 break;
3110
3111 if (sc->compaction_ready)
3112 break;
3113
3114 /*
3115 * If we're getting trouble reclaiming, start doing
3116 * writepage even in laptop mode.
3117 */
3118 if (sc->priority < DEF_PRIORITY - 2)
3119 sc->may_writepage = 1;
3120 } while (--sc->priority >= 0);
3121
3122 last_pgdat = NULL;
3123 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3124 sc->nodemask) {
3125 if (zone->zone_pgdat == last_pgdat)
3126 continue;
3127 last_pgdat = zone->zone_pgdat;
3128 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3129 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3130 }
3131
3132 delayacct_freepages_end();
3133
3134 if (sc->nr_reclaimed)
3135 return sc->nr_reclaimed;
3136
3137 /* Aborted reclaim to try compaction? don't OOM, then */
3138 if (sc->compaction_ready)
3139 return 1;
3140
3141 /* Untapped cgroup reserves? Don't OOM, retry. */
3142 if (sc->memcg_low_skipped) {
3143 sc->priority = initial_priority;
3144 sc->memcg_low_reclaim = 1;
3145 sc->memcg_low_skipped = 0;
3146 goto retry;
3147 }
3148
3149 return 0;
3150 }
3151
3152 static bool allow_direct_reclaim(pg_data_t *pgdat)
3153 {
3154 struct zone *zone;
3155 unsigned long pfmemalloc_reserve = 0;
3156 unsigned long free_pages = 0;
3157 int i;
3158 bool wmark_ok;
3159
3160 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3161 return true;
3162
3163 for (i = 0; i <= ZONE_NORMAL; i++) {
3164 zone = &pgdat->node_zones[i];
3165 if (!managed_zone(zone))
3166 continue;
3167
3168 if (!zone_reclaimable_pages(zone))
3169 continue;
3170
3171 pfmemalloc_reserve += min_wmark_pages(zone);
3172 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3173 }
3174
3175 /* If there are no reserves (unexpected config) then do not throttle */
3176 if (!pfmemalloc_reserve)
3177 return true;
3178
3179 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3180
3181 /* kswapd must be awake if processes are being throttled */
3182 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3183 if (READ_ONCE(pgdat->kswapd_classzone_idx) > ZONE_NORMAL)
3184 WRITE_ONCE(pgdat->kswapd_classzone_idx, ZONE_NORMAL);
3185
3186 wake_up_interruptible(&pgdat->kswapd_wait);
3187 }
3188
3189 return wmark_ok;
3190 }
3191
3192 /*
3193 * Throttle direct reclaimers if backing storage is backed by the network
3194 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3195 * depleted. kswapd will continue to make progress and wake the processes
3196 * when the low watermark is reached.
3197 *
3198 * Returns true if a fatal signal was delivered during throttling. If this
3199 * happens, the page allocator should not consider triggering the OOM killer.
3200 */
3201 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3202 nodemask_t *nodemask)
3203 {
3204 struct zoneref *z;
3205 struct zone *zone;
3206 pg_data_t *pgdat = NULL;
3207
3208 /*
3209 * Kernel threads should not be throttled as they may be indirectly
3210 * responsible for cleaning pages necessary for reclaim to make forward
3211 * progress. kjournald for example may enter direct reclaim while
3212 * committing a transaction where throttling it could forcing other
3213 * processes to block on log_wait_commit().
3214 */
3215 if (current->flags & PF_KTHREAD)
3216 goto out;
3217
3218 /*
3219 * If a fatal signal is pending, this process should not throttle.
3220 * It should return quickly so it can exit and free its memory
3221 */
3222 if (fatal_signal_pending(current))
3223 goto out;
3224
3225 /*
3226 * Check if the pfmemalloc reserves are ok by finding the first node
3227 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3228 * GFP_KERNEL will be required for allocating network buffers when
3229 * swapping over the network so ZONE_HIGHMEM is unusable.
3230 *
3231 * Throttling is based on the first usable node and throttled processes
3232 * wait on a queue until kswapd makes progress and wakes them. There
3233 * is an affinity then between processes waking up and where reclaim
3234 * progress has been made assuming the process wakes on the same node.
3235 * More importantly, processes running on remote nodes will not compete
3236 * for remote pfmemalloc reserves and processes on different nodes
3237 * should make reasonable progress.
3238 */
3239 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3240 gfp_zone(gfp_mask), nodemask) {
3241 if (zone_idx(zone) > ZONE_NORMAL)
3242 continue;
3243
3244 /* Throttle based on the first usable node */
3245 pgdat = zone->zone_pgdat;
3246 if (allow_direct_reclaim(pgdat))
3247 goto out;
3248 break;
3249 }
3250
3251 /* If no zone was usable by the allocation flags then do not throttle */
3252 if (!pgdat)
3253 goto out;
3254
3255 /* Account for the throttling */
3256 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3257
3258 /*
3259 * If the caller cannot enter the filesystem, it's possible that it
3260 * is due to the caller holding an FS lock or performing a journal
3261 * transaction in the case of a filesystem like ext[3|4]. In this case,
3262 * it is not safe to block on pfmemalloc_wait as kswapd could be
3263 * blocked waiting on the same lock. Instead, throttle for up to a
3264 * second before continuing.
3265 */
3266 if (!(gfp_mask & __GFP_FS)) {
3267 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3268 allow_direct_reclaim(pgdat), HZ);
3269
3270 goto check_pending;
3271 }
3272
3273 /* Throttle until kswapd wakes the process */
3274 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3275 allow_direct_reclaim(pgdat));
3276
3277 check_pending:
3278 if (fatal_signal_pending(current))
3279 return true;
3280
3281 out:
3282 return false;
3283 }
3284
3285 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3286 gfp_t gfp_mask, nodemask_t *nodemask)
3287 {
3288 unsigned long nr_reclaimed;
3289 struct scan_control sc = {
3290 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3291 .gfp_mask = current_gfp_context(gfp_mask),
3292 .reclaim_idx = gfp_zone(gfp_mask),
3293 .order = order,
3294 .nodemask = nodemask,
3295 .priority = DEF_PRIORITY,
3296 .may_writepage = !laptop_mode,
3297 .may_unmap = 1,
3298 .may_swap = 1,
3299 };
3300
3301 /*
3302 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3303 * Confirm they are large enough for max values.
3304 */
3305 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3306 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3307 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3308
3309 /*
3310 * Do not enter reclaim if fatal signal was delivered while throttled.
3311 * 1 is returned so that the page allocator does not OOM kill at this
3312 * point.
3313 */
3314 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3315 return 1;
3316
3317 set_task_reclaim_state(current, &sc.reclaim_state);
3318 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3319
3320 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3321
3322 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3323 set_task_reclaim_state(current, NULL);
3324
3325 return nr_reclaimed;
3326 }
3327
3328 #ifdef CONFIG_MEMCG
3329
3330 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3331 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3332 gfp_t gfp_mask, bool noswap,
3333 pg_data_t *pgdat,
3334 unsigned long *nr_scanned)
3335 {
3336 struct scan_control sc = {
3337 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3338 .target_mem_cgroup = memcg,
3339 .may_writepage = !laptop_mode,
3340 .may_unmap = 1,
3341 .reclaim_idx = MAX_NR_ZONES - 1,
3342 .may_swap = !noswap,
3343 };
3344 unsigned long lru_pages;
3345
3346 WARN_ON_ONCE(!current->reclaim_state);
3347
3348 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3349 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3350
3351 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3352 sc.gfp_mask);
3353
3354 /*
3355 * NOTE: Although we can get the priority field, using it
3356 * here is not a good idea, since it limits the pages we can scan.
3357 * if we don't reclaim here, the shrink_node from balance_pgdat
3358 * will pick up pages from other mem cgroup's as well. We hack
3359 * the priority and make it zero.
3360 */
3361 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3362
3363 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3364
3365 *nr_scanned = sc.nr_scanned;
3366
3367 return sc.nr_reclaimed;
3368 }
3369
3370 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3371 unsigned long nr_pages,
3372 gfp_t gfp_mask,
3373 bool may_swap)
3374 {
3375 struct zonelist *zonelist;
3376 unsigned long nr_reclaimed;
3377 unsigned long pflags;
3378 int nid;
3379 unsigned int noreclaim_flag;
3380 struct scan_control sc = {
3381 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3382 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3383 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3384 .reclaim_idx = MAX_NR_ZONES - 1,
3385 .target_mem_cgroup = memcg,
3386 .priority = DEF_PRIORITY,
3387 .may_writepage = !laptop_mode,
3388 .may_unmap = 1,
3389 .may_swap = may_swap,
3390 };
3391
3392 set_task_reclaim_state(current, &sc.reclaim_state);
3393 /*
3394 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3395 * take care of from where we get pages. So the node where we start the
3396 * scan does not need to be the current node.
3397 */
3398 nid = mem_cgroup_select_victim_node(memcg);
3399
3400 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3401
3402 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3403
3404 psi_memstall_enter(&pflags);
3405 noreclaim_flag = memalloc_noreclaim_save();
3406
3407 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3408
3409 memalloc_noreclaim_restore(noreclaim_flag);
3410 psi_memstall_leave(&pflags);
3411
3412 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3413 set_task_reclaim_state(current, NULL);
3414
3415 return nr_reclaimed;
3416 }
3417 #endif
3418
3419 static void age_active_anon(struct pglist_data *pgdat,
3420 struct scan_control *sc)
3421 {
3422 struct mem_cgroup *memcg;
3423
3424 if (!total_swap_pages)
3425 return;
3426
3427 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3428 do {
3429 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3430
3431 if (inactive_list_is_low(lruvec, false, sc, true))
3432 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3433 sc, LRU_ACTIVE_ANON);
3434
3435 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3436 } while (memcg);
3437 }
3438
3439 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3440 {
3441 int i;
3442 struct zone *zone;
3443
3444 /*
3445 * Check for watermark boosts top-down as the higher zones
3446 * are more likely to be boosted. Both watermarks and boosts
3447 * should not be checked at the time time as reclaim would
3448 * start prematurely when there is no boosting and a lower
3449 * zone is balanced.
3450 */
3451 for (i = classzone_idx; i >= 0; i--) {
3452 zone = pgdat->node_zones + i;
3453 if (!managed_zone(zone))
3454 continue;
3455
3456 if (zone->watermark_boost)
3457 return true;
3458 }
3459
3460 return false;
3461 }
3462
3463 /*
3464 * Returns true if there is an eligible zone balanced for the request order
3465 * and classzone_idx
3466 */
3467 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3468 {
3469 int i;
3470 unsigned long mark = -1;
3471 struct zone *zone;
3472
3473 /*
3474 * Check watermarks bottom-up as lower zones are more likely to
3475 * meet watermarks.
3476 */
3477 for (i = 0; i <= classzone_idx; i++) {
3478 zone = pgdat->node_zones + i;
3479
3480 if (!managed_zone(zone))
3481 continue;
3482
3483 mark = high_wmark_pages(zone);
3484 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3485 return true;
3486 }
3487
3488 /*
3489 * If a node has no populated zone within classzone_idx, it does not
3490 * need balancing by definition. This can happen if a zone-restricted
3491 * allocation tries to wake a remote kswapd.
3492 */
3493 if (mark == -1)
3494 return true;
3495
3496 return false;
3497 }
3498
3499 /* Clear pgdat state for congested, dirty or under writeback. */
3500 static void clear_pgdat_congested(pg_data_t *pgdat)
3501 {
3502 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3503 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3504 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3505 }
3506
3507 /*
3508 * Prepare kswapd for sleeping. This verifies that there are no processes
3509 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3510 *
3511 * Returns true if kswapd is ready to sleep
3512 */
3513 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3514 {
3515 /*
3516 * The throttled processes are normally woken up in balance_pgdat() as
3517 * soon as allow_direct_reclaim() is true. But there is a potential
3518 * race between when kswapd checks the watermarks and a process gets
3519 * throttled. There is also a potential race if processes get
3520 * throttled, kswapd wakes, a large process exits thereby balancing the
3521 * zones, which causes kswapd to exit balance_pgdat() before reaching
3522 * the wake up checks. If kswapd is going to sleep, no process should
3523 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3524 * the wake up is premature, processes will wake kswapd and get
3525 * throttled again. The difference from wake ups in balance_pgdat() is
3526 * that here we are under prepare_to_wait().
3527 */
3528 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3529 wake_up_all(&pgdat->pfmemalloc_wait);
3530
3531 /* Hopeless node, leave it to direct reclaim */
3532 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3533 return true;
3534
3535 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3536 clear_pgdat_congested(pgdat);
3537 return true;
3538 }
3539
3540 return false;
3541 }
3542
3543 /*
3544 * kswapd shrinks a node of pages that are at or below the highest usable
3545 * zone that is currently unbalanced.
3546 *
3547 * Returns true if kswapd scanned at least the requested number of pages to
3548 * reclaim or if the lack of progress was due to pages under writeback.
3549 * This is used to determine if the scanning priority needs to be raised.
3550 */
3551 static bool kswapd_shrink_node(pg_data_t *pgdat,
3552 struct scan_control *sc)
3553 {
3554 struct zone *zone;
3555 int z;
3556
3557 /* Reclaim a number of pages proportional to the number of zones */
3558 sc->nr_to_reclaim = 0;
3559 for (z = 0; z <= sc->reclaim_idx; z++) {
3560 zone = pgdat->node_zones + z;
3561 if (!managed_zone(zone))
3562 continue;
3563
3564 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3565 }
3566
3567 /*
3568 * Historically care was taken to put equal pressure on all zones but
3569 * now pressure is applied based on node LRU order.
3570 */
3571 shrink_node(pgdat, sc);
3572
3573 /*
3574 * Fragmentation may mean that the system cannot be rebalanced for
3575 * high-order allocations. If twice the allocation size has been
3576 * reclaimed then recheck watermarks only at order-0 to prevent
3577 * excessive reclaim. Assume that a process requested a high-order
3578 * can direct reclaim/compact.
3579 */
3580 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3581 sc->order = 0;
3582
3583 return sc->nr_scanned >= sc->nr_to_reclaim;
3584 }
3585
3586 /*
3587 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3588 * that are eligible for use by the caller until at least one zone is
3589 * balanced.
3590 *
3591 * Returns the order kswapd finished reclaiming at.
3592 *
3593 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3594 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3595 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3596 * or lower is eligible for reclaim until at least one usable zone is
3597 * balanced.
3598 */
3599 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3600 {
3601 int i;
3602 unsigned long nr_soft_reclaimed;
3603 unsigned long nr_soft_scanned;
3604 unsigned long pflags;
3605 unsigned long nr_boost_reclaim;
3606 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3607 bool boosted;
3608 struct zone *zone;
3609 struct scan_control sc = {
3610 .gfp_mask = GFP_KERNEL,
3611 .order = order,
3612 .may_unmap = 1,
3613 };
3614
3615 set_task_reclaim_state(current, &sc.reclaim_state);
3616 psi_memstall_enter(&pflags);
3617 __fs_reclaim_acquire();
3618
3619 count_vm_event(PAGEOUTRUN);
3620
3621 /*
3622 * Account for the reclaim boost. Note that the zone boost is left in
3623 * place so that parallel allocations that are near the watermark will
3624 * stall or direct reclaim until kswapd is finished.
3625 */
3626 nr_boost_reclaim = 0;
3627 for (i = 0; i <= classzone_idx; i++) {
3628 zone = pgdat->node_zones + i;
3629 if (!managed_zone(zone))
3630 continue;
3631
3632 nr_boost_reclaim += zone->watermark_boost;
3633 zone_boosts[i] = zone->watermark_boost;
3634 }
3635 boosted = nr_boost_reclaim;
3636
3637 restart:
3638 sc.priority = DEF_PRIORITY;
3639 do {
3640 unsigned long nr_reclaimed = sc.nr_reclaimed;
3641 bool raise_priority = true;
3642 bool balanced;
3643 bool ret;
3644
3645 sc.reclaim_idx = classzone_idx;
3646
3647 /*
3648 * If the number of buffer_heads exceeds the maximum allowed
3649 * then consider reclaiming from all zones. This has a dual
3650 * purpose -- on 64-bit systems it is expected that
3651 * buffer_heads are stripped during active rotation. On 32-bit
3652 * systems, highmem pages can pin lowmem memory and shrinking
3653 * buffers can relieve lowmem pressure. Reclaim may still not
3654 * go ahead if all eligible zones for the original allocation
3655 * request are balanced to avoid excessive reclaim from kswapd.
3656 */
3657 if (buffer_heads_over_limit) {
3658 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3659 zone = pgdat->node_zones + i;
3660 if (!managed_zone(zone))
3661 continue;
3662
3663 sc.reclaim_idx = i;
3664 break;
3665 }
3666 }
3667
3668 /*
3669 * If the pgdat is imbalanced then ignore boosting and preserve
3670 * the watermarks for a later time and restart. Note that the
3671 * zone watermarks will be still reset at the end of balancing
3672 * on the grounds that the normal reclaim should be enough to
3673 * re-evaluate if boosting is required when kswapd next wakes.
3674 */
3675 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3676 if (!balanced && nr_boost_reclaim) {
3677 nr_boost_reclaim = 0;
3678 goto restart;
3679 }
3680
3681 /*
3682 * If boosting is not active then only reclaim if there are no
3683 * eligible zones. Note that sc.reclaim_idx is not used as
3684 * buffer_heads_over_limit may have adjusted it.
3685 */
3686 if (!nr_boost_reclaim && balanced)
3687 goto out;
3688
3689 /* Limit the priority of boosting to avoid reclaim writeback */
3690 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3691 raise_priority = false;
3692
3693 /*
3694 * Do not writeback or swap pages for boosted reclaim. The
3695 * intent is to relieve pressure not issue sub-optimal IO
3696 * from reclaim context. If no pages are reclaimed, the
3697 * reclaim will be aborted.
3698 */
3699 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3700 sc.may_swap = !nr_boost_reclaim;
3701
3702 /*
3703 * Do some background aging of the anon list, to give
3704 * pages a chance to be referenced before reclaiming. All
3705 * pages are rotated regardless of classzone as this is
3706 * about consistent aging.
3707 */
3708 age_active_anon(pgdat, &sc);
3709
3710 /*
3711 * If we're getting trouble reclaiming, start doing writepage
3712 * even in laptop mode.
3713 */
3714 if (sc.priority < DEF_PRIORITY - 2)
3715 sc.may_writepage = 1;
3716
3717 /* Call soft limit reclaim before calling shrink_node. */
3718 sc.nr_scanned = 0;
3719 nr_soft_scanned = 0;
3720 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3721 sc.gfp_mask, &nr_soft_scanned);
3722 sc.nr_reclaimed += nr_soft_reclaimed;
3723
3724 /*
3725 * There should be no need to raise the scanning priority if
3726 * enough pages are already being scanned that that high
3727 * watermark would be met at 100% efficiency.
3728 */
3729 if (kswapd_shrink_node(pgdat, &sc))
3730 raise_priority = false;
3731
3732 /*
3733 * If the low watermark is met there is no need for processes
3734 * to be throttled on pfmemalloc_wait as they should not be
3735 * able to safely make forward progress. Wake them
3736 */
3737 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3738 allow_direct_reclaim(pgdat))
3739 wake_up_all(&pgdat->pfmemalloc_wait);
3740
3741 /* Check if kswapd should be suspending */
3742 __fs_reclaim_release();
3743 ret = try_to_freeze();
3744 __fs_reclaim_acquire();
3745 if (ret || kthread_should_stop())
3746 break;
3747
3748 /*
3749 * Raise priority if scanning rate is too low or there was no
3750 * progress in reclaiming pages
3751 */
3752 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3753 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3754
3755 /*
3756 * If reclaim made no progress for a boost, stop reclaim as
3757 * IO cannot be queued and it could be an infinite loop in
3758 * extreme circumstances.
3759 */
3760 if (nr_boost_reclaim && !nr_reclaimed)
3761 break;
3762
3763 if (raise_priority || !nr_reclaimed)
3764 sc.priority--;
3765 } while (sc.priority >= 1);
3766
3767 if (!sc.nr_reclaimed)
3768 pgdat->kswapd_failures++;
3769
3770 out:
3771 /* If reclaim was boosted, account for the reclaim done in this pass */
3772 if (boosted) {
3773 unsigned long flags;
3774
3775 for (i = 0; i <= classzone_idx; i++) {
3776 if (!zone_boosts[i])
3777 continue;
3778
3779 /* Increments are under the zone lock */
3780 zone = pgdat->node_zones + i;
3781 spin_lock_irqsave(&zone->lock, flags);
3782 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3783 spin_unlock_irqrestore(&zone->lock, flags);
3784 }
3785
3786 /*
3787 * As there is now likely space, wakeup kcompact to defragment
3788 * pageblocks.
3789 */
3790 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3791 }
3792
3793 snapshot_refaults(NULL, pgdat);
3794 __fs_reclaim_release();
3795 psi_memstall_leave(&pflags);
3796 set_task_reclaim_state(current, NULL);
3797
3798 /*
3799 * Return the order kswapd stopped reclaiming at as
3800 * prepare_kswapd_sleep() takes it into account. If another caller
3801 * entered the allocator slow path while kswapd was awake, order will
3802 * remain at the higher level.
3803 */
3804 return sc.order;
3805 }
3806
3807 /*
3808 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3809 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3810 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3811 * after previous reclaim attempt (node is still unbalanced). In that case
3812 * return the zone index of the previous kswapd reclaim cycle.
3813 */
3814 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3815 enum zone_type prev_classzone_idx)
3816 {
3817 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
3818
3819 return curr_idx == MAX_NR_ZONES ? prev_classzone_idx : curr_idx;
3820 }
3821
3822 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3823 unsigned int classzone_idx)
3824 {
3825 long remaining = 0;
3826 DEFINE_WAIT(wait);
3827
3828 if (freezing(current) || kthread_should_stop())
3829 return;
3830
3831 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3832
3833 /*
3834 * Try to sleep for a short interval. Note that kcompactd will only be
3835 * woken if it is possible to sleep for a short interval. This is
3836 * deliberate on the assumption that if reclaim cannot keep an
3837 * eligible zone balanced that it's also unlikely that compaction will
3838 * succeed.
3839 */
3840 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3841 /*
3842 * Compaction records what page blocks it recently failed to
3843 * isolate pages from and skips them in the future scanning.
3844 * When kswapd is going to sleep, it is reasonable to assume
3845 * that pages and compaction may succeed so reset the cache.
3846 */
3847 reset_isolation_suitable(pgdat);
3848
3849 /*
3850 * We have freed the memory, now we should compact it to make
3851 * allocation of the requested order possible.
3852 */
3853 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3854
3855 remaining = schedule_timeout(HZ/10);
3856
3857 /*
3858 * If woken prematurely then reset kswapd_classzone_idx and
3859 * order. The values will either be from a wakeup request or
3860 * the previous request that slept prematurely.
3861 */
3862 if (remaining) {
3863 WRITE_ONCE(pgdat->kswapd_classzone_idx,
3864 kswapd_classzone_idx(pgdat, classzone_idx));
3865
3866 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3867 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3868 }
3869
3870 finish_wait(&pgdat->kswapd_wait, &wait);
3871 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3872 }
3873
3874 /*
3875 * After a short sleep, check if it was a premature sleep. If not, then
3876 * go fully to sleep until explicitly woken up.
3877 */
3878 if (!remaining &&
3879 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3880 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3881
3882 /*
3883 * vmstat counters are not perfectly accurate and the estimated
3884 * value for counters such as NR_FREE_PAGES can deviate from the
3885 * true value by nr_online_cpus * threshold. To avoid the zone
3886 * watermarks being breached while under pressure, we reduce the
3887 * per-cpu vmstat threshold while kswapd is awake and restore
3888 * them before going back to sleep.
3889 */
3890 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3891
3892 if (!kthread_should_stop())
3893 schedule();
3894
3895 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3896 } else {
3897 if (remaining)
3898 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3899 else
3900 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3901 }
3902 finish_wait(&pgdat->kswapd_wait, &wait);
3903 }
3904
3905 /*
3906 * The background pageout daemon, started as a kernel thread
3907 * from the init process.
3908 *
3909 * This basically trickles out pages so that we have _some_
3910 * free memory available even if there is no other activity
3911 * that frees anything up. This is needed for things like routing
3912 * etc, where we otherwise might have all activity going on in
3913 * asynchronous contexts that cannot page things out.
3914 *
3915 * If there are applications that are active memory-allocators
3916 * (most normal use), this basically shouldn't matter.
3917 */
3918 static int kswapd(void *p)
3919 {
3920 unsigned int alloc_order, reclaim_order;
3921 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3922 pg_data_t *pgdat = (pg_data_t*)p;
3923 struct task_struct *tsk = current;
3924 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3925
3926 if (!cpumask_empty(cpumask))
3927 set_cpus_allowed_ptr(tsk, cpumask);
3928
3929 /*
3930 * Tell the memory management that we're a "memory allocator",
3931 * and that if we need more memory we should get access to it
3932 * regardless (see "__alloc_pages()"). "kswapd" should
3933 * never get caught in the normal page freeing logic.
3934 *
3935 * (Kswapd normally doesn't need memory anyway, but sometimes
3936 * you need a small amount of memory in order to be able to
3937 * page out something else, and this flag essentially protects
3938 * us from recursively trying to free more memory as we're
3939 * trying to free the first piece of memory in the first place).
3940 */
3941 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3942 set_freezable();
3943
3944 WRITE_ONCE(pgdat->kswapd_order, 0);
3945 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3946 for ( ; ; ) {
3947 bool ret;
3948
3949 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3950 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3951
3952 kswapd_try_sleep:
3953 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3954 classzone_idx);
3955
3956 /* Read the new order and classzone_idx */
3957 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3958 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3959 WRITE_ONCE(pgdat->kswapd_order, 0);
3960 WRITE_ONCE(pgdat->kswapd_classzone_idx, MAX_NR_ZONES);
3961
3962 ret = try_to_freeze();
3963 if (kthread_should_stop())
3964 break;
3965
3966 /*
3967 * We can speed up thawing tasks if we don't call balance_pgdat
3968 * after returning from the refrigerator
3969 */
3970 if (ret)
3971 continue;
3972
3973 /*
3974 * Reclaim begins at the requested order but if a high-order
3975 * reclaim fails then kswapd falls back to reclaiming for
3976 * order-0. If that happens, kswapd will consider sleeping
3977 * for the order it finished reclaiming at (reclaim_order)
3978 * but kcompactd is woken to compact for the original
3979 * request (alloc_order).
3980 */
3981 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3982 alloc_order);
3983 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3984 if (reclaim_order < alloc_order)
3985 goto kswapd_try_sleep;
3986 }
3987
3988 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3989
3990 return 0;
3991 }
3992
3993 /*
3994 * A zone is low on free memory or too fragmented for high-order memory. If
3995 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3996 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3997 * has failed or is not needed, still wake up kcompactd if only compaction is
3998 * needed.
3999 */
4000 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4001 enum zone_type classzone_idx)
4002 {
4003 pg_data_t *pgdat;
4004 enum zone_type curr_idx;
4005
4006 if (!managed_zone(zone))
4007 return;
4008
4009 if (!cpuset_zone_allowed(zone, gfp_flags))
4010 return;
4011
4012 pgdat = zone->zone_pgdat;
4013 curr_idx = READ_ONCE(pgdat->kswapd_classzone_idx);
4014
4015 if (curr_idx == MAX_NR_ZONES || curr_idx < classzone_idx)
4016 WRITE_ONCE(pgdat->kswapd_classzone_idx, classzone_idx);
4017
4018 if (READ_ONCE(pgdat->kswapd_order) < order)
4019 WRITE_ONCE(pgdat->kswapd_order, order);
4020
4021 if (!waitqueue_active(&pgdat->kswapd_wait))
4022 return;
4023
4024 /* Hopeless node, leave it to direct reclaim if possible */
4025 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4026 (pgdat_balanced(pgdat, order, classzone_idx) &&
4027 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
4028 /*
4029 * There may be plenty of free memory available, but it's too
4030 * fragmented for high-order allocations. Wake up kcompactd
4031 * and rely on compaction_suitable() to determine if it's
4032 * needed. If it fails, it will defer subsequent attempts to
4033 * ratelimit its work.
4034 */
4035 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4036 wakeup_kcompactd(pgdat, order, classzone_idx);
4037 return;
4038 }
4039
4040 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
4041 gfp_flags);
4042 wake_up_interruptible(&pgdat->kswapd_wait);
4043 }
4044
4045 #ifdef CONFIG_HIBERNATION
4046 /*
4047 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4048 * freed pages.
4049 *
4050 * Rather than trying to age LRUs the aim is to preserve the overall
4051 * LRU order by reclaiming preferentially
4052 * inactive > active > active referenced > active mapped
4053 */
4054 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4055 {
4056 struct scan_control sc = {
4057 .nr_to_reclaim = nr_to_reclaim,
4058 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4059 .reclaim_idx = MAX_NR_ZONES - 1,
4060 .priority = DEF_PRIORITY,
4061 .may_writepage = 1,
4062 .may_unmap = 1,
4063 .may_swap = 1,
4064 .hibernation_mode = 1,
4065 };
4066 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4067 unsigned long nr_reclaimed;
4068 unsigned int noreclaim_flag;
4069
4070 fs_reclaim_acquire(sc.gfp_mask);
4071 noreclaim_flag = memalloc_noreclaim_save();
4072 set_task_reclaim_state(current, &sc.reclaim_state);
4073
4074 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4075
4076 set_task_reclaim_state(current, NULL);
4077 memalloc_noreclaim_restore(noreclaim_flag);
4078 fs_reclaim_release(sc.gfp_mask);
4079
4080 return nr_reclaimed;
4081 }
4082 #endif /* CONFIG_HIBERNATION */
4083
4084 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4085 not required for correctness. So if the last cpu in a node goes
4086 away, we get changed to run anywhere: as the first one comes back,
4087 restore their cpu bindings. */
4088 static int kswapd_cpu_online(unsigned int cpu)
4089 {
4090 int nid;
4091
4092 for_each_node_state(nid, N_MEMORY) {
4093 pg_data_t *pgdat = NODE_DATA(nid);
4094 const struct cpumask *mask;
4095
4096 mask = cpumask_of_node(pgdat->node_id);
4097
4098 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4099 /* One of our CPUs online: restore mask */
4100 set_cpus_allowed_ptr(pgdat->kswapd, mask);
4101 }
4102 return 0;
4103 }
4104
4105 /*
4106 * This kswapd start function will be called by init and node-hot-add.
4107 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4108 */
4109 int kswapd_run(int nid)
4110 {
4111 pg_data_t *pgdat = NODE_DATA(nid);
4112 int ret = 0;
4113
4114 if (pgdat->kswapd)
4115 return 0;
4116
4117 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4118 if (IS_ERR(pgdat->kswapd)) {
4119 /* failure at boot is fatal */
4120 BUG_ON(system_state < SYSTEM_RUNNING);
4121 pr_err("Failed to start kswapd on node %d\n", nid);
4122 ret = PTR_ERR(pgdat->kswapd);
4123 pgdat->kswapd = NULL;
4124 }
4125 return ret;
4126 }
4127
4128 /*
4129 * Called by memory hotplug when all memory in a node is offlined. Caller must
4130 * hold mem_hotplug_begin/end().
4131 */
4132 void kswapd_stop(int nid)
4133 {
4134 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4135
4136 if (kswapd) {
4137 kthread_stop(kswapd);
4138 NODE_DATA(nid)->kswapd = NULL;
4139 }
4140 }
4141
4142 static int __init kswapd_init(void)
4143 {
4144 int nid, ret;
4145
4146 swap_setup();
4147 for_each_node_state(nid, N_MEMORY)
4148 kswapd_run(nid);
4149 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4150 "mm/vmscan:online", kswapd_cpu_online,
4151 NULL);
4152 WARN_ON(ret < 0);
4153 return 0;
4154 }
4155
4156 module_init(kswapd_init)
4157
4158 #ifdef CONFIG_NUMA
4159 /*
4160 * Node reclaim mode
4161 *
4162 * If non-zero call node_reclaim when the number of free pages falls below
4163 * the watermarks.
4164 */
4165 int node_reclaim_mode __read_mostly;
4166
4167 #define RECLAIM_OFF 0
4168 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4169 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4170 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4171
4172 /*
4173 * Priority for NODE_RECLAIM. This determines the fraction of pages
4174 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4175 * a zone.
4176 */
4177 #define NODE_RECLAIM_PRIORITY 4
4178
4179 /*
4180 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4181 * occur.
4182 */
4183 int sysctl_min_unmapped_ratio = 1;
4184
4185 /*
4186 * If the number of slab pages in a zone grows beyond this percentage then
4187 * slab reclaim needs to occur.
4188 */
4189 int sysctl_min_slab_ratio = 5;
4190
4191 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4192 {
4193 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4194 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4195 node_page_state(pgdat, NR_ACTIVE_FILE);
4196
4197 /*
4198 * It's possible for there to be more file mapped pages than
4199 * accounted for by the pages on the file LRU lists because
4200 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4201 */
4202 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4203 }
4204
4205 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4206 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4207 {
4208 unsigned long nr_pagecache_reclaimable;
4209 unsigned long delta = 0;
4210
4211 /*
4212 * If RECLAIM_UNMAP is set, then all file pages are considered
4213 * potentially reclaimable. Otherwise, we have to worry about
4214 * pages like swapcache and node_unmapped_file_pages() provides
4215 * a better estimate
4216 */
4217 if (node_reclaim_mode & RECLAIM_UNMAP)
4218 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4219 else
4220 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4221
4222 /* If we can't clean pages, remove dirty pages from consideration */
4223 if (!(node_reclaim_mode & RECLAIM_WRITE))
4224 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4225
4226 /* Watch for any possible underflows due to delta */
4227 if (unlikely(delta > nr_pagecache_reclaimable))
4228 delta = nr_pagecache_reclaimable;
4229
4230 return nr_pagecache_reclaimable - delta;
4231 }
4232
4233 /*
4234 * Try to free up some pages from this node through reclaim.
4235 */
4236 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4237 {
4238 /* Minimum pages needed in order to stay on node */
4239 const unsigned long nr_pages = 1 << order;
4240 struct task_struct *p = current;
4241 unsigned int noreclaim_flag;
4242 struct scan_control sc = {
4243 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4244 .gfp_mask = current_gfp_context(gfp_mask),
4245 .order = order,
4246 .priority = NODE_RECLAIM_PRIORITY,
4247 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4248 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4249 .may_swap = 1,
4250 .reclaim_idx = gfp_zone(gfp_mask),
4251 };
4252
4253 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4254 sc.gfp_mask);
4255
4256 cond_resched();
4257 fs_reclaim_acquire(sc.gfp_mask);
4258 /*
4259 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4260 * and we also need to be able to write out pages for RECLAIM_WRITE
4261 * and RECLAIM_UNMAP.
4262 */
4263 noreclaim_flag = memalloc_noreclaim_save();
4264 p->flags |= PF_SWAPWRITE;
4265 set_task_reclaim_state(p, &sc.reclaim_state);
4266
4267 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4268 /*
4269 * Free memory by calling shrink node with increasing
4270 * priorities until we have enough memory freed.
4271 */
4272 do {
4273 shrink_node(pgdat, &sc);
4274 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4275 }
4276
4277 set_task_reclaim_state(p, NULL);
4278 current->flags &= ~PF_SWAPWRITE;
4279 memalloc_noreclaim_restore(noreclaim_flag);
4280 fs_reclaim_release(sc.gfp_mask);
4281
4282 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4283
4284 return sc.nr_reclaimed >= nr_pages;
4285 }
4286
4287 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4288 {
4289 int ret;
4290
4291 /*
4292 * Node reclaim reclaims unmapped file backed pages and
4293 * slab pages if we are over the defined limits.
4294 *
4295 * A small portion of unmapped file backed pages is needed for
4296 * file I/O otherwise pages read by file I/O will be immediately
4297 * thrown out if the node is overallocated. So we do not reclaim
4298 * if less than a specified percentage of the node is used by
4299 * unmapped file backed pages.
4300 */
4301 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4302 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4303 return NODE_RECLAIM_FULL;
4304
4305 /*
4306 * Do not scan if the allocation should not be delayed.
4307 */
4308 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4309 return NODE_RECLAIM_NOSCAN;
4310
4311 /*
4312 * Only run node reclaim on the local node or on nodes that do not
4313 * have associated processors. This will favor the local processor
4314 * over remote processors and spread off node memory allocations
4315 * as wide as possible.
4316 */
4317 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4318 return NODE_RECLAIM_NOSCAN;
4319
4320 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4321 return NODE_RECLAIM_NOSCAN;
4322
4323 ret = __node_reclaim(pgdat, gfp_mask, order);
4324 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4325
4326 if (!ret)
4327 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4328
4329 return ret;
4330 }
4331 #endif
4332
4333 /*
4334 * page_evictable - test whether a page is evictable
4335 * @page: the page to test
4336 *
4337 * Test whether page is evictable--i.e., should be placed on active/inactive
4338 * lists vs unevictable list.
4339 *
4340 * Reasons page might not be evictable:
4341 * (1) page's mapping marked unevictable
4342 * (2) page is part of an mlocked VMA
4343 *
4344 */
4345 int page_evictable(struct page *page)
4346 {
4347 int ret;
4348
4349 /* Prevent address_space of inode and swap cache from being freed */
4350 rcu_read_lock();
4351 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4352 rcu_read_unlock();
4353 return ret;
4354 }
4355
4356 /**
4357 * check_move_unevictable_pages - check pages for evictability and move to
4358 * appropriate zone lru list
4359 * @pvec: pagevec with lru pages to check
4360 *
4361 * Checks pages for evictability, if an evictable page is in the unevictable
4362 * lru list, moves it to the appropriate evictable lru list. This function
4363 * should be only used for lru pages.
4364 */
4365 void check_move_unevictable_pages(struct pagevec *pvec)
4366 {
4367 struct lruvec *lruvec;
4368 struct pglist_data *pgdat = NULL;
4369 int pgscanned = 0;
4370 int pgrescued = 0;
4371 int i;
4372
4373 for (i = 0; i < pvec->nr; i++) {
4374 struct page *page = pvec->pages[i];
4375 struct pglist_data *pagepgdat = page_pgdat(page);
4376
4377 pgscanned++;
4378 if (pagepgdat != pgdat) {
4379 if (pgdat)
4380 spin_unlock_irq(&pgdat->lru_lock);
4381 pgdat = pagepgdat;
4382 spin_lock_irq(&pgdat->lru_lock);
4383 }
4384 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4385
4386 if (!PageLRU(page) || !PageUnevictable(page))
4387 continue;
4388
4389 if (page_evictable(page)) {
4390 enum lru_list lru = page_lru_base_type(page);
4391
4392 VM_BUG_ON_PAGE(PageActive(page), page);
4393 ClearPageUnevictable(page);
4394 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4395 add_page_to_lru_list(page, lruvec, lru);
4396 pgrescued++;
4397 }
4398 }
4399
4400 if (pgdat) {
4401 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4402 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4403 spin_unlock_irq(&pgdat->lru_lock);
4404 }
4405 }
4406 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);