]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/vmscan.c
Merge branch 'cpufreq/arm/fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
74
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
80
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
87 /* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
103 /*
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
113
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
158 };
159
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173
174 /*
175 * From 0 .. 200. Higher means more swappy.
176 */
177 int vm_swappiness = 60;
178
179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181 {
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189 }
190
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210 {
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213 }
214
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
218 {
219 struct shrinker_info *new, *old;
220 struct mem_cgroup_per_node *pn;
221 int nid;
222 int size = map_size + defer_size;
223
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
226 old = shrinker_info_protected(memcg, nid);
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
245
246 rcu_assign_pointer(pn->shrinker_info, new);
247 kvfree_rcu(old, rcu);
248 }
249
250 return 0;
251 }
252
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 struct mem_cgroup_per_node *pn;
256 struct shrinker_info *info;
257 int nid;
258
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
264 }
265 }
266
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 struct shrinker_info *info;
270 int nid, size, ret = 0;
271 int map_size, defer_size = 0;
272
273 down_write(&shrinker_rwsem);
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
277 for_each_node(nid) {
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
281 ret = -ENOMEM;
282 break;
283 }
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 }
288 up_write(&shrinker_rwsem);
289
290 return ret;
291 }
292
293 static inline bool need_expand(int nr_max)
294 {
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298
299 static int expand_shrinker_info(int new_id)
300 {
301 int ret = 0;
302 int new_nr_max = new_id + 1;
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
305 struct mem_cgroup *memcg;
306
307 if (!need_expand(new_nr_max))
308 goto out;
309
310 if (!root_mem_cgroup)
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
314
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
326 goto out;
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 if (!ret)
331 shrinker_nr_max = new_nr_max;
332
333 return ret;
334 }
335
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 struct shrinker_info *info;
340
341 rcu_read_lock();
342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
346 rcu_read_unlock();
347 }
348 }
349
350 static DEFINE_IDR(shrinker_idr);
351
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 int id, ret = -ENOMEM;
355
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 if (id < 0)
363 goto unlock;
364
365 if (id >= shrinker_nr_max) {
366 if (expand_shrinker_info(id)) {
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
370 }
371 shrinker->id = id;
372 ret = 0;
373 unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376 }
377
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
384 lockdep_assert_held(&shrinker_rwsem);
385
386 idr_remove(&shrinker_idr, id);
387 }
388
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391 {
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400 {
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429 }
430
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 return sc->target_mem_cgroup;
434 }
435
436 /**
437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 if (!cgroup_reclaim(sc))
452 return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 return true;
456 #endif
457 return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 return -ENOSYS;
463 }
464
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471 {
472 return 0;
473 }
474
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477 {
478 return 0;
479 }
480
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 return false;
484 }
485
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 return true;
489 }
490 #endif
491
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494 {
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507
508
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511 {
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 if (!numa_demotion_enabled)
528 return false;
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
539 return true;
540 }
541
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545 {
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565 }
566
567 /*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583 }
584
585 /**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
593 {
594 unsigned long size = 0;
595 int zid;
596
597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 else
606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 }
608 return size;
609 }
610
611 /*
612 * Add a shrinker callback to be called from the vm.
613 */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
623
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
634
635 return 0;
636 }
637
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
642 unregister_memcg_shrinker(shrinker);
643 up_write(&shrinker_rwsem);
644 return;
645 }
646
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649 }
650
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
655 shrinker->flags |= SHRINKER_REGISTERED;
656 up_write(&shrinker_rwsem);
657 }
658
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
666 return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669
670 /*
671 * Remove one
672 */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 if (!(shrinker->flags & SHRINKER_REGISTERED))
676 return;
677
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
683 up_write(&shrinker_rwsem);
684
685 kfree(shrinker->nr_deferred);
686 shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689
690 /**
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
692 *
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
696 * rcu.
697 */
698 void synchronize_shrinkers(void)
699 {
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704
705 #define SHRINK_BATCH 128
706
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 struct shrinker *shrinker, int priority)
709 {
710 unsigned long freed = 0;
711 unsigned long long delta;
712 long total_scan;
713 long freeable;
714 long nr;
715 long new_nr;
716 long batch_size = shrinker->batch ? shrinker->batch
717 : SHRINK_BATCH;
718 long scanned = 0, next_deferred;
719
720 freeable = shrinker->count_objects(shrinker, shrinkctl);
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
722 return freeable;
723
724 /*
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
728 */
729 nr = xchg_nr_deferred(shrinker, shrinkctl);
730
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
733 delta *= 4;
734 do_div(delta, shrinker->seeks);
735 } else {
736 /*
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
740 */
741 delta = freeable / 2;
742 }
743
744 total_scan = nr >> priority;
745 total_scan += delta;
746 total_scan = min(total_scan, (2 * freeable));
747
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 freeable, delta, total_scan, priority);
750
751 /*
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
758 * batch_size.
759 *
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
762 * than the total number of objects on slab (freeable), we must be
763 * scanning at high prio and therefore should try to reclaim as much as
764 * possible.
765 */
766 while (total_scan >= batch_size ||
767 total_scan >= freeable) {
768 unsigned long ret;
769 unsigned long nr_to_scan = min(batch_size, total_scan);
770
771 shrinkctl->nr_to_scan = nr_to_scan;
772 shrinkctl->nr_scanned = nr_to_scan;
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
775 break;
776 freed += ret;
777
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
781
782 cond_resched();
783 }
784
785 /*
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
788 *
789 * And it is capped to two times of the freeable items.
790 */
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
793
794 /*
795 * move the unused scan count back into the shrinker in a
796 * manner that handles concurrent updates.
797 */
798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799
800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 return freed;
802 }
803
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
807 {
808 struct shrinker_info *info;
809 unsigned long ret, freed = 0;
810 int i;
811
812 if (!mem_cgroup_online(memcg))
813 return 0;
814
815 if (!down_read_trylock(&shrinker_rwsem))
816 return 0;
817
818 info = shrinker_info_protected(memcg, nid);
819 if (unlikely(!info))
820 goto unlock;
821
822 for_each_set_bit(i, info->map, shrinker_nr_max) {
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
825 .nid = nid,
826 .memcg = memcg,
827 };
828 struct shrinker *shrinker;
829
830 shrinker = idr_find(&shrinker_idr, i);
831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 if (!shrinker)
833 clear_bit(i, info->map);
834 continue;
835 }
836
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
840 continue;
841
842 ret = do_shrink_slab(&sc, shrinker, priority);
843 if (ret == SHRINK_EMPTY) {
844 clear_bit(i, info->map);
845 /*
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
853 * set_shrinker_bit():
854 *
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
857 * <MB> <MB>
858 * set_bit() do_shrink_slab()
859 */
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
863 ret = 0;
864 else
865 set_shrinker_bit(memcg, nid, i);
866 }
867 freed += ret;
868
869 if (rwsem_is_contended(&shrinker_rwsem)) {
870 freed = freed ? : 1;
871 break;
872 }
873 }
874 unlock:
875 up_read(&shrinker_rwsem);
876 return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
881 {
882 return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885
886 /**
887 * shrink_slab - shrink slab caches
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
890 * @memcg: memory cgroup whose slab caches to target
891 * @priority: the reclaim priority
892 *
893 * Call the shrink functions to age shrinkable caches.
894 *
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
897 *
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
900 *
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
903 *
904 * Returns the number of reclaimed slab objects.
905 */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
908 int priority)
909 {
910 unsigned long ret, freed = 0;
911 struct shrinker *shrinker;
912
913 /*
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
918 * oom.
919 */
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922
923 if (!down_read_trylock(&shrinker_rwsem))
924 goto out;
925
926 list_for_each_entry(shrinker, &shrinker_list, list) {
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
929 .nid = nid,
930 .memcg = memcg,
931 };
932
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
935 ret = 0;
936 freed += ret;
937 /*
938 * Bail out if someone want to register a new shrinker to
939 * prevent the registration from being stalled for long periods
940 * by parallel ongoing shrinking.
941 */
942 if (rwsem_is_contended(&shrinker_rwsem)) {
943 freed = freed ? : 1;
944 break;
945 }
946 }
947
948 up_read(&shrinker_rwsem);
949 out:
950 cond_resched();
951 return freed;
952 }
953
954 static void drop_slab_node(int nid)
955 {
956 unsigned long freed;
957 int shift = 0;
958
959 do {
960 struct mem_cgroup *memcg = NULL;
961
962 if (fatal_signal_pending(current))
963 return;
964
965 freed = 0;
966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 do {
968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 } while ((freed >> shift++) > 1);
971 }
972
973 void drop_slab(void)
974 {
975 int nid;
976
977 for_each_online_node(nid)
978 drop_slab_node(nid);
979 }
980
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 /*
984 * A freeable page cache page is referenced only by the caller
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
987 */
988 int page_cache_pins = thp_nr_pages(page);
989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991
992 static int may_write_to_inode(struct inode *inode)
993 {
994 if (current->flags & PF_SWAPWRITE)
995 return 1;
996 if (!inode_write_congested(inode))
997 return 1;
998 if (inode_to_bdi(inode) == current->backing_dev_info)
999 return 1;
1000 return 0;
1001 }
1002
1003 /*
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1007 *
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1011 *
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1013 * __GFP_FS.
1014 */
1015 static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1017 {
1018 lock_page(page);
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1021 unlock_page(page);
1022 }
1023
1024 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1025 {
1026 int reclaimable = 0, write_pending = 0;
1027 int i;
1028
1029 /*
1030 * If kswapd is disabled, reschedule if necessary but do not
1031 * throttle as the system is likely near OOM.
1032 */
1033 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1034 return true;
1035
1036 /*
1037 * If there are a lot of dirty/writeback pages then do not
1038 * throttle as throttling will occur when the pages cycle
1039 * towards the end of the LRU if still under writeback.
1040 */
1041 for (i = 0; i < MAX_NR_ZONES; i++) {
1042 struct zone *zone = pgdat->node_zones + i;
1043
1044 if (!populated_zone(zone))
1045 continue;
1046
1047 reclaimable += zone_reclaimable_pages(zone);
1048 write_pending += zone_page_state_snapshot(zone,
1049 NR_ZONE_WRITE_PENDING);
1050 }
1051 if (2 * write_pending <= reclaimable)
1052 return true;
1053
1054 return false;
1055 }
1056
1057 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1058 {
1059 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1060 long timeout, ret;
1061 DEFINE_WAIT(wait);
1062
1063 /*
1064 * Do not throttle IO workers, kthreads other than kswapd or
1065 * workqueues. They may be required for reclaim to make
1066 * forward progress (e.g. journalling workqueues or kthreads).
1067 */
1068 if (!current_is_kswapd() &&
1069 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1070 cond_resched();
1071 return;
1072 }
1073
1074 /*
1075 * These figures are pulled out of thin air.
1076 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1077 * parallel reclaimers which is a short-lived event so the timeout is
1078 * short. Failing to make progress or waiting on writeback are
1079 * potentially long-lived events so use a longer timeout. This is shaky
1080 * logic as a failure to make progress could be due to anything from
1081 * writeback to a slow device to excessive references pages at the tail
1082 * of the inactive LRU.
1083 */
1084 switch(reason) {
1085 case VMSCAN_THROTTLE_WRITEBACK:
1086 timeout = HZ/10;
1087
1088 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1089 WRITE_ONCE(pgdat->nr_reclaim_start,
1090 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1091 }
1092
1093 break;
1094 case VMSCAN_THROTTLE_CONGESTED:
1095 fallthrough;
1096 case VMSCAN_THROTTLE_NOPROGRESS:
1097 if (skip_throttle_noprogress(pgdat)) {
1098 cond_resched();
1099 return;
1100 }
1101
1102 timeout = 1;
1103
1104 break;
1105 case VMSCAN_THROTTLE_ISOLATED:
1106 timeout = HZ/50;
1107 break;
1108 default:
1109 WARN_ON_ONCE(1);
1110 timeout = HZ;
1111 break;
1112 }
1113
1114 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1115 ret = schedule_timeout(timeout);
1116 finish_wait(wqh, &wait);
1117
1118 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1119 atomic_dec(&pgdat->nr_writeback_throttled);
1120
1121 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1122 jiffies_to_usecs(timeout - ret),
1123 reason);
1124 }
1125
1126 /*
1127 * Account for pages written if tasks are throttled waiting on dirty
1128 * pages to clean. If enough pages have been cleaned since throttling
1129 * started then wakeup the throttled tasks.
1130 */
1131 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1132 int nr_throttled)
1133 {
1134 unsigned long nr_written;
1135
1136 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1137
1138 /*
1139 * This is an inaccurate read as the per-cpu deltas may not
1140 * be synchronised. However, given that the system is
1141 * writeback throttled, it is not worth taking the penalty
1142 * of getting an accurate count. At worst, the throttle
1143 * timeout guarantees forward progress.
1144 */
1145 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1146 READ_ONCE(pgdat->nr_reclaim_start);
1147
1148 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1149 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1150 }
1151
1152 /* possible outcome of pageout() */
1153 typedef enum {
1154 /* failed to write page out, page is locked */
1155 PAGE_KEEP,
1156 /* move page to the active list, page is locked */
1157 PAGE_ACTIVATE,
1158 /* page has been sent to the disk successfully, page is unlocked */
1159 PAGE_SUCCESS,
1160 /* page is clean and locked */
1161 PAGE_CLEAN,
1162 } pageout_t;
1163
1164 /*
1165 * pageout is called by shrink_page_list() for each dirty page.
1166 * Calls ->writepage().
1167 */
1168 static pageout_t pageout(struct page *page, struct address_space *mapping)
1169 {
1170 /*
1171 * If the page is dirty, only perform writeback if that write
1172 * will be non-blocking. To prevent this allocation from being
1173 * stalled by pagecache activity. But note that there may be
1174 * stalls if we need to run get_block(). We could test
1175 * PagePrivate for that.
1176 *
1177 * If this process is currently in __generic_file_write_iter() against
1178 * this page's queue, we can perform writeback even if that
1179 * will block.
1180 *
1181 * If the page is swapcache, write it back even if that would
1182 * block, for some throttling. This happens by accident, because
1183 * swap_backing_dev_info is bust: it doesn't reflect the
1184 * congestion state of the swapdevs. Easy to fix, if needed.
1185 */
1186 if (!is_page_cache_freeable(page))
1187 return PAGE_KEEP;
1188 if (!mapping) {
1189 /*
1190 * Some data journaling orphaned pages can have
1191 * page->mapping == NULL while being dirty with clean buffers.
1192 */
1193 if (page_has_private(page)) {
1194 if (try_to_free_buffers(page)) {
1195 ClearPageDirty(page);
1196 pr_info("%s: orphaned page\n", __func__);
1197 return PAGE_CLEAN;
1198 }
1199 }
1200 return PAGE_KEEP;
1201 }
1202 if (mapping->a_ops->writepage == NULL)
1203 return PAGE_ACTIVATE;
1204 if (!may_write_to_inode(mapping->host))
1205 return PAGE_KEEP;
1206
1207 if (clear_page_dirty_for_io(page)) {
1208 int res;
1209 struct writeback_control wbc = {
1210 .sync_mode = WB_SYNC_NONE,
1211 .nr_to_write = SWAP_CLUSTER_MAX,
1212 .range_start = 0,
1213 .range_end = LLONG_MAX,
1214 .for_reclaim = 1,
1215 };
1216
1217 SetPageReclaim(page);
1218 res = mapping->a_ops->writepage(page, &wbc);
1219 if (res < 0)
1220 handle_write_error(mapping, page, res);
1221 if (res == AOP_WRITEPAGE_ACTIVATE) {
1222 ClearPageReclaim(page);
1223 return PAGE_ACTIVATE;
1224 }
1225
1226 if (!PageWriteback(page)) {
1227 /* synchronous write or broken a_ops? */
1228 ClearPageReclaim(page);
1229 }
1230 trace_mm_vmscan_writepage(page);
1231 inc_node_page_state(page, NR_VMSCAN_WRITE);
1232 return PAGE_SUCCESS;
1233 }
1234
1235 return PAGE_CLEAN;
1236 }
1237
1238 /*
1239 * Same as remove_mapping, but if the page is removed from the mapping, it
1240 * gets returned with a refcount of 0.
1241 */
1242 static int __remove_mapping(struct address_space *mapping, struct page *page,
1243 bool reclaimed, struct mem_cgroup *target_memcg)
1244 {
1245 int refcount;
1246 void *shadow = NULL;
1247
1248 BUG_ON(!PageLocked(page));
1249 BUG_ON(mapping != page_mapping(page));
1250
1251 if (!PageSwapCache(page))
1252 spin_lock(&mapping->host->i_lock);
1253 xa_lock_irq(&mapping->i_pages);
1254 /*
1255 * The non racy check for a busy page.
1256 *
1257 * Must be careful with the order of the tests. When someone has
1258 * a ref to the page, it may be possible that they dirty it then
1259 * drop the reference. So if PageDirty is tested before page_count
1260 * here, then the following race may occur:
1261 *
1262 * get_user_pages(&page);
1263 * [user mapping goes away]
1264 * write_to(page);
1265 * !PageDirty(page) [good]
1266 * SetPageDirty(page);
1267 * put_page(page);
1268 * !page_count(page) [good, discard it]
1269 *
1270 * [oops, our write_to data is lost]
1271 *
1272 * Reversing the order of the tests ensures such a situation cannot
1273 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1274 * load is not satisfied before that of page->_refcount.
1275 *
1276 * Note that if SetPageDirty is always performed via set_page_dirty,
1277 * and thus under the i_pages lock, then this ordering is not required.
1278 */
1279 refcount = 1 + compound_nr(page);
1280 if (!page_ref_freeze(page, refcount))
1281 goto cannot_free;
1282 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1283 if (unlikely(PageDirty(page))) {
1284 page_ref_unfreeze(page, refcount);
1285 goto cannot_free;
1286 }
1287
1288 if (PageSwapCache(page)) {
1289 swp_entry_t swap = { .val = page_private(page) };
1290 mem_cgroup_swapout(page, swap);
1291 if (reclaimed && !mapping_exiting(mapping))
1292 shadow = workingset_eviction(page, target_memcg);
1293 __delete_from_swap_cache(page, swap, shadow);
1294 xa_unlock_irq(&mapping->i_pages);
1295 put_swap_page(page, swap);
1296 } else {
1297 void (*freepage)(struct page *);
1298
1299 freepage = mapping->a_ops->freepage;
1300 /*
1301 * Remember a shadow entry for reclaimed file cache in
1302 * order to detect refaults, thus thrashing, later on.
1303 *
1304 * But don't store shadows in an address space that is
1305 * already exiting. This is not just an optimization,
1306 * inode reclaim needs to empty out the radix tree or
1307 * the nodes are lost. Don't plant shadows behind its
1308 * back.
1309 *
1310 * We also don't store shadows for DAX mappings because the
1311 * only page cache pages found in these are zero pages
1312 * covering holes, and because we don't want to mix DAX
1313 * exceptional entries and shadow exceptional entries in the
1314 * same address_space.
1315 */
1316 if (reclaimed && page_is_file_lru(page) &&
1317 !mapping_exiting(mapping) && !dax_mapping(mapping))
1318 shadow = workingset_eviction(page, target_memcg);
1319 __delete_from_page_cache(page, shadow);
1320 xa_unlock_irq(&mapping->i_pages);
1321 if (mapping_shrinkable(mapping))
1322 inode_add_lru(mapping->host);
1323 spin_unlock(&mapping->host->i_lock);
1324
1325 if (freepage != NULL)
1326 freepage(page);
1327 }
1328
1329 return 1;
1330
1331 cannot_free:
1332 xa_unlock_irq(&mapping->i_pages);
1333 if (!PageSwapCache(page))
1334 spin_unlock(&mapping->host->i_lock);
1335 return 0;
1336 }
1337
1338 /*
1339 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1340 * someone else has a ref on the page, abort and return 0. If it was
1341 * successfully detached, return 1. Assumes the caller has a single ref on
1342 * this page.
1343 */
1344 int remove_mapping(struct address_space *mapping, struct page *page)
1345 {
1346 if (__remove_mapping(mapping, page, false, NULL)) {
1347 /*
1348 * Unfreezing the refcount with 1 rather than 2 effectively
1349 * drops the pagecache ref for us without requiring another
1350 * atomic operation.
1351 */
1352 page_ref_unfreeze(page, 1);
1353 return 1;
1354 }
1355 return 0;
1356 }
1357
1358 /**
1359 * putback_lru_page - put previously isolated page onto appropriate LRU list
1360 * @page: page to be put back to appropriate lru list
1361 *
1362 * Add previously isolated @page to appropriate LRU list.
1363 * Page may still be unevictable for other reasons.
1364 *
1365 * lru_lock must not be held, interrupts must be enabled.
1366 */
1367 void putback_lru_page(struct page *page)
1368 {
1369 lru_cache_add(page);
1370 put_page(page); /* drop ref from isolate */
1371 }
1372
1373 enum page_references {
1374 PAGEREF_RECLAIM,
1375 PAGEREF_RECLAIM_CLEAN,
1376 PAGEREF_KEEP,
1377 PAGEREF_ACTIVATE,
1378 };
1379
1380 static enum page_references page_check_references(struct page *page,
1381 struct scan_control *sc)
1382 {
1383 int referenced_ptes, referenced_page;
1384 unsigned long vm_flags;
1385
1386 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1387 &vm_flags);
1388 referenced_page = TestClearPageReferenced(page);
1389
1390 /*
1391 * Mlock lost the isolation race with us. Let try_to_unmap()
1392 * move the page to the unevictable list.
1393 */
1394 if (vm_flags & VM_LOCKED)
1395 return PAGEREF_RECLAIM;
1396
1397 if (referenced_ptes) {
1398 /*
1399 * All mapped pages start out with page table
1400 * references from the instantiating fault, so we need
1401 * to look twice if a mapped file page is used more
1402 * than once.
1403 *
1404 * Mark it and spare it for another trip around the
1405 * inactive list. Another page table reference will
1406 * lead to its activation.
1407 *
1408 * Note: the mark is set for activated pages as well
1409 * so that recently deactivated but used pages are
1410 * quickly recovered.
1411 */
1412 SetPageReferenced(page);
1413
1414 if (referenced_page || referenced_ptes > 1)
1415 return PAGEREF_ACTIVATE;
1416
1417 /*
1418 * Activate file-backed executable pages after first usage.
1419 */
1420 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1421 return PAGEREF_ACTIVATE;
1422
1423 return PAGEREF_KEEP;
1424 }
1425
1426 /* Reclaim if clean, defer dirty pages to writeback */
1427 if (referenced_page && !PageSwapBacked(page))
1428 return PAGEREF_RECLAIM_CLEAN;
1429
1430 return PAGEREF_RECLAIM;
1431 }
1432
1433 /* Check if a page is dirty or under writeback */
1434 static void page_check_dirty_writeback(struct page *page,
1435 bool *dirty, bool *writeback)
1436 {
1437 struct address_space *mapping;
1438
1439 /*
1440 * Anonymous pages are not handled by flushers and must be written
1441 * from reclaim context. Do not stall reclaim based on them
1442 */
1443 if (!page_is_file_lru(page) ||
1444 (PageAnon(page) && !PageSwapBacked(page))) {
1445 *dirty = false;
1446 *writeback = false;
1447 return;
1448 }
1449
1450 /* By default assume that the page flags are accurate */
1451 *dirty = PageDirty(page);
1452 *writeback = PageWriteback(page);
1453
1454 /* Verify dirty/writeback state if the filesystem supports it */
1455 if (!page_has_private(page))
1456 return;
1457
1458 mapping = page_mapping(page);
1459 if (mapping && mapping->a_ops->is_dirty_writeback)
1460 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1461 }
1462
1463 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1464 {
1465 struct migration_target_control mtc = {
1466 /*
1467 * Allocate from 'node', or fail quickly and quietly.
1468 * When this happens, 'page' will likely just be discarded
1469 * instead of migrated.
1470 */
1471 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1472 __GFP_THISNODE | __GFP_NOWARN |
1473 __GFP_NOMEMALLOC | GFP_NOWAIT,
1474 .nid = node
1475 };
1476
1477 return alloc_migration_target(page, (unsigned long)&mtc);
1478 }
1479
1480 /*
1481 * Take pages on @demote_list and attempt to demote them to
1482 * another node. Pages which are not demoted are left on
1483 * @demote_pages.
1484 */
1485 static unsigned int demote_page_list(struct list_head *demote_pages,
1486 struct pglist_data *pgdat)
1487 {
1488 int target_nid = next_demotion_node(pgdat->node_id);
1489 unsigned int nr_succeeded;
1490
1491 if (list_empty(demote_pages))
1492 return 0;
1493
1494 if (target_nid == NUMA_NO_NODE)
1495 return 0;
1496
1497 /* Demotion ignores all cpuset and mempolicy settings */
1498 migrate_pages(demote_pages, alloc_demote_page, NULL,
1499 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500 &nr_succeeded);
1501
1502 if (current_is_kswapd())
1503 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1504 else
1505 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1506
1507 return nr_succeeded;
1508 }
1509
1510 /*
1511 * shrink_page_list() returns the number of reclaimed pages
1512 */
1513 static unsigned int shrink_page_list(struct list_head *page_list,
1514 struct pglist_data *pgdat,
1515 struct scan_control *sc,
1516 struct reclaim_stat *stat,
1517 bool ignore_references)
1518 {
1519 LIST_HEAD(ret_pages);
1520 LIST_HEAD(free_pages);
1521 LIST_HEAD(demote_pages);
1522 unsigned int nr_reclaimed = 0;
1523 unsigned int pgactivate = 0;
1524 bool do_demote_pass;
1525
1526 memset(stat, 0, sizeof(*stat));
1527 cond_resched();
1528 do_demote_pass = can_demote(pgdat->node_id, sc);
1529
1530 retry:
1531 while (!list_empty(page_list)) {
1532 struct address_space *mapping;
1533 struct page *page;
1534 enum page_references references = PAGEREF_RECLAIM;
1535 bool dirty, writeback, may_enter_fs;
1536 unsigned int nr_pages;
1537
1538 cond_resched();
1539
1540 page = lru_to_page(page_list);
1541 list_del(&page->lru);
1542
1543 if (!trylock_page(page))
1544 goto keep;
1545
1546 VM_BUG_ON_PAGE(PageActive(page), page);
1547
1548 nr_pages = compound_nr(page);
1549
1550 /* Account the number of base pages even though THP */
1551 sc->nr_scanned += nr_pages;
1552
1553 if (unlikely(!page_evictable(page)))
1554 goto activate_locked;
1555
1556 if (!sc->may_unmap && page_mapped(page))
1557 goto keep_locked;
1558
1559 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1560 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1561
1562 /*
1563 * The number of dirty pages determines if a node is marked
1564 * reclaim_congested. kswapd will stall and start writing
1565 * pages if the tail of the LRU is all dirty unqueued pages.
1566 */
1567 page_check_dirty_writeback(page, &dirty, &writeback);
1568 if (dirty || writeback)
1569 stat->nr_dirty++;
1570
1571 if (dirty && !writeback)
1572 stat->nr_unqueued_dirty++;
1573
1574 /*
1575 * Treat this page as congested if the underlying BDI is or if
1576 * pages are cycling through the LRU so quickly that the
1577 * pages marked for immediate reclaim are making it to the
1578 * end of the LRU a second time.
1579 */
1580 mapping = page_mapping(page);
1581 if (((dirty || writeback) && mapping &&
1582 inode_write_congested(mapping->host)) ||
1583 (writeback && PageReclaim(page)))
1584 stat->nr_congested++;
1585
1586 /*
1587 * If a page at the tail of the LRU is under writeback, there
1588 * are three cases to consider.
1589 *
1590 * 1) If reclaim is encountering an excessive number of pages
1591 * under writeback and this page is both under writeback and
1592 * PageReclaim then it indicates that pages are being queued
1593 * for IO but are being recycled through the LRU before the
1594 * IO can complete. Waiting on the page itself risks an
1595 * indefinite stall if it is impossible to writeback the
1596 * page due to IO error or disconnected storage so instead
1597 * note that the LRU is being scanned too quickly and the
1598 * caller can stall after page list has been processed.
1599 *
1600 * 2) Global or new memcg reclaim encounters a page that is
1601 * not marked for immediate reclaim, or the caller does not
1602 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1603 * not to fs). In this case mark the page for immediate
1604 * reclaim and continue scanning.
1605 *
1606 * Require may_enter_fs because we would wait on fs, which
1607 * may not have submitted IO yet. And the loop driver might
1608 * enter reclaim, and deadlock if it waits on a page for
1609 * which it is needed to do the write (loop masks off
1610 * __GFP_IO|__GFP_FS for this reason); but more thought
1611 * would probably show more reasons.
1612 *
1613 * 3) Legacy memcg encounters a page that is already marked
1614 * PageReclaim. memcg does not have any dirty pages
1615 * throttling so we could easily OOM just because too many
1616 * pages are in writeback and there is nothing else to
1617 * reclaim. Wait for the writeback to complete.
1618 *
1619 * In cases 1) and 2) we activate the pages to get them out of
1620 * the way while we continue scanning for clean pages on the
1621 * inactive list and refilling from the active list. The
1622 * observation here is that waiting for disk writes is more
1623 * expensive than potentially causing reloads down the line.
1624 * Since they're marked for immediate reclaim, they won't put
1625 * memory pressure on the cache working set any longer than it
1626 * takes to write them to disk.
1627 */
1628 if (PageWriteback(page)) {
1629 /* Case 1 above */
1630 if (current_is_kswapd() &&
1631 PageReclaim(page) &&
1632 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1633 stat->nr_immediate++;
1634 goto activate_locked;
1635
1636 /* Case 2 above */
1637 } else if (writeback_throttling_sane(sc) ||
1638 !PageReclaim(page) || !may_enter_fs) {
1639 /*
1640 * This is slightly racy - end_page_writeback()
1641 * might have just cleared PageReclaim, then
1642 * setting PageReclaim here end up interpreted
1643 * as PageReadahead - but that does not matter
1644 * enough to care. What we do want is for this
1645 * page to have PageReclaim set next time memcg
1646 * reclaim reaches the tests above, so it will
1647 * then wait_on_page_writeback() to avoid OOM;
1648 * and it's also appropriate in global reclaim.
1649 */
1650 SetPageReclaim(page);
1651 stat->nr_writeback++;
1652 goto activate_locked;
1653
1654 /* Case 3 above */
1655 } else {
1656 unlock_page(page);
1657 wait_on_page_writeback(page);
1658 /* then go back and try same page again */
1659 list_add_tail(&page->lru, page_list);
1660 continue;
1661 }
1662 }
1663
1664 if (!ignore_references)
1665 references = page_check_references(page, sc);
1666
1667 switch (references) {
1668 case PAGEREF_ACTIVATE:
1669 goto activate_locked;
1670 case PAGEREF_KEEP:
1671 stat->nr_ref_keep += nr_pages;
1672 goto keep_locked;
1673 case PAGEREF_RECLAIM:
1674 case PAGEREF_RECLAIM_CLEAN:
1675 ; /* try to reclaim the page below */
1676 }
1677
1678 /*
1679 * Before reclaiming the page, try to relocate
1680 * its contents to another node.
1681 */
1682 if (do_demote_pass &&
1683 (thp_migration_supported() || !PageTransHuge(page))) {
1684 list_add(&page->lru, &demote_pages);
1685 unlock_page(page);
1686 continue;
1687 }
1688
1689 /*
1690 * Anonymous process memory has backing store?
1691 * Try to allocate it some swap space here.
1692 * Lazyfree page could be freed directly
1693 */
1694 if (PageAnon(page) && PageSwapBacked(page)) {
1695 if (!PageSwapCache(page)) {
1696 if (!(sc->gfp_mask & __GFP_IO))
1697 goto keep_locked;
1698 if (page_maybe_dma_pinned(page))
1699 goto keep_locked;
1700 if (PageTransHuge(page)) {
1701 /* cannot split THP, skip it */
1702 if (!can_split_huge_page(page, NULL))
1703 goto activate_locked;
1704 /*
1705 * Split pages without a PMD map right
1706 * away. Chances are some or all of the
1707 * tail pages can be freed without IO.
1708 */
1709 if (!compound_mapcount(page) &&
1710 split_huge_page_to_list(page,
1711 page_list))
1712 goto activate_locked;
1713 }
1714 if (!add_to_swap(page)) {
1715 if (!PageTransHuge(page))
1716 goto activate_locked_split;
1717 /* Fallback to swap normal pages */
1718 if (split_huge_page_to_list(page,
1719 page_list))
1720 goto activate_locked;
1721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1722 count_vm_event(THP_SWPOUT_FALLBACK);
1723 #endif
1724 if (!add_to_swap(page))
1725 goto activate_locked_split;
1726 }
1727
1728 may_enter_fs = true;
1729
1730 /* Adding to swap updated mapping */
1731 mapping = page_mapping(page);
1732 }
1733 } else if (unlikely(PageTransHuge(page))) {
1734 /* Split file THP */
1735 if (split_huge_page_to_list(page, page_list))
1736 goto keep_locked;
1737 }
1738
1739 /*
1740 * THP may get split above, need minus tail pages and update
1741 * nr_pages to avoid accounting tail pages twice.
1742 *
1743 * The tail pages that are added into swap cache successfully
1744 * reach here.
1745 */
1746 if ((nr_pages > 1) && !PageTransHuge(page)) {
1747 sc->nr_scanned -= (nr_pages - 1);
1748 nr_pages = 1;
1749 }
1750
1751 /*
1752 * The page is mapped into the page tables of one or more
1753 * processes. Try to unmap it here.
1754 */
1755 if (page_mapped(page)) {
1756 enum ttu_flags flags = TTU_BATCH_FLUSH;
1757 bool was_swapbacked = PageSwapBacked(page);
1758
1759 if (unlikely(PageTransHuge(page)))
1760 flags |= TTU_SPLIT_HUGE_PMD;
1761
1762 try_to_unmap(page, flags);
1763 if (page_mapped(page)) {
1764 stat->nr_unmap_fail += nr_pages;
1765 if (!was_swapbacked && PageSwapBacked(page))
1766 stat->nr_lazyfree_fail += nr_pages;
1767 goto activate_locked;
1768 }
1769 }
1770
1771 if (PageDirty(page)) {
1772 /*
1773 * Only kswapd can writeback filesystem pages
1774 * to avoid risk of stack overflow. But avoid
1775 * injecting inefficient single-page IO into
1776 * flusher writeback as much as possible: only
1777 * write pages when we've encountered many
1778 * dirty pages, and when we've already scanned
1779 * the rest of the LRU for clean pages and see
1780 * the same dirty pages again (PageReclaim).
1781 */
1782 if (page_is_file_lru(page) &&
1783 (!current_is_kswapd() || !PageReclaim(page) ||
1784 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1785 /*
1786 * Immediately reclaim when written back.
1787 * Similar in principal to deactivate_page()
1788 * except we already have the page isolated
1789 * and know it's dirty
1790 */
1791 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1792 SetPageReclaim(page);
1793
1794 goto activate_locked;
1795 }
1796
1797 if (references == PAGEREF_RECLAIM_CLEAN)
1798 goto keep_locked;
1799 if (!may_enter_fs)
1800 goto keep_locked;
1801 if (!sc->may_writepage)
1802 goto keep_locked;
1803
1804 /*
1805 * Page is dirty. Flush the TLB if a writable entry
1806 * potentially exists to avoid CPU writes after IO
1807 * starts and then write it out here.
1808 */
1809 try_to_unmap_flush_dirty();
1810 switch (pageout(page, mapping)) {
1811 case PAGE_KEEP:
1812 goto keep_locked;
1813 case PAGE_ACTIVATE:
1814 goto activate_locked;
1815 case PAGE_SUCCESS:
1816 stat->nr_pageout += thp_nr_pages(page);
1817
1818 if (PageWriteback(page))
1819 goto keep;
1820 if (PageDirty(page))
1821 goto keep;
1822
1823 /*
1824 * A synchronous write - probably a ramdisk. Go
1825 * ahead and try to reclaim the page.
1826 */
1827 if (!trylock_page(page))
1828 goto keep;
1829 if (PageDirty(page) || PageWriteback(page))
1830 goto keep_locked;
1831 mapping = page_mapping(page);
1832 fallthrough;
1833 case PAGE_CLEAN:
1834 ; /* try to free the page below */
1835 }
1836 }
1837
1838 /*
1839 * If the page has buffers, try to free the buffer mappings
1840 * associated with this page. If we succeed we try to free
1841 * the page as well.
1842 *
1843 * We do this even if the page is PageDirty().
1844 * try_to_release_page() does not perform I/O, but it is
1845 * possible for a page to have PageDirty set, but it is actually
1846 * clean (all its buffers are clean). This happens if the
1847 * buffers were written out directly, with submit_bh(). ext3
1848 * will do this, as well as the blockdev mapping.
1849 * try_to_release_page() will discover that cleanness and will
1850 * drop the buffers and mark the page clean - it can be freed.
1851 *
1852 * Rarely, pages can have buffers and no ->mapping. These are
1853 * the pages which were not successfully invalidated in
1854 * truncate_cleanup_page(). We try to drop those buffers here
1855 * and if that worked, and the page is no longer mapped into
1856 * process address space (page_count == 1) it can be freed.
1857 * Otherwise, leave the page on the LRU so it is swappable.
1858 */
1859 if (page_has_private(page)) {
1860 if (!try_to_release_page(page, sc->gfp_mask))
1861 goto activate_locked;
1862 if (!mapping && page_count(page) == 1) {
1863 unlock_page(page);
1864 if (put_page_testzero(page))
1865 goto free_it;
1866 else {
1867 /*
1868 * rare race with speculative reference.
1869 * the speculative reference will free
1870 * this page shortly, so we may
1871 * increment nr_reclaimed here (and
1872 * leave it off the LRU).
1873 */
1874 nr_reclaimed++;
1875 continue;
1876 }
1877 }
1878 }
1879
1880 if (PageAnon(page) && !PageSwapBacked(page)) {
1881 /* follow __remove_mapping for reference */
1882 if (!page_ref_freeze(page, 1))
1883 goto keep_locked;
1884 /*
1885 * The page has only one reference left, which is
1886 * from the isolation. After the caller puts the
1887 * page back on lru and drops the reference, the
1888 * page will be freed anyway. It doesn't matter
1889 * which lru it goes. So we don't bother checking
1890 * PageDirty here.
1891 */
1892 count_vm_event(PGLAZYFREED);
1893 count_memcg_page_event(page, PGLAZYFREED);
1894 } else if (!mapping || !__remove_mapping(mapping, page, true,
1895 sc->target_mem_cgroup))
1896 goto keep_locked;
1897
1898 unlock_page(page);
1899 free_it:
1900 /*
1901 * THP may get swapped out in a whole, need account
1902 * all base pages.
1903 */
1904 nr_reclaimed += nr_pages;
1905
1906 /*
1907 * Is there need to periodically free_page_list? It would
1908 * appear not as the counts should be low
1909 */
1910 if (unlikely(PageTransHuge(page)))
1911 destroy_compound_page(page);
1912 else
1913 list_add(&page->lru, &free_pages);
1914 continue;
1915
1916 activate_locked_split:
1917 /*
1918 * The tail pages that are failed to add into swap cache
1919 * reach here. Fixup nr_scanned and nr_pages.
1920 */
1921 if (nr_pages > 1) {
1922 sc->nr_scanned -= (nr_pages - 1);
1923 nr_pages = 1;
1924 }
1925 activate_locked:
1926 /* Not a candidate for swapping, so reclaim swap space. */
1927 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1928 PageMlocked(page)))
1929 try_to_free_swap(page);
1930 VM_BUG_ON_PAGE(PageActive(page), page);
1931 if (!PageMlocked(page)) {
1932 int type = page_is_file_lru(page);
1933 SetPageActive(page);
1934 stat->nr_activate[type] += nr_pages;
1935 count_memcg_page_event(page, PGACTIVATE);
1936 }
1937 keep_locked:
1938 unlock_page(page);
1939 keep:
1940 list_add(&page->lru, &ret_pages);
1941 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1942 }
1943 /* 'page_list' is always empty here */
1944
1945 /* Migrate pages selected for demotion */
1946 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1947 /* Pages that could not be demoted are still in @demote_pages */
1948 if (!list_empty(&demote_pages)) {
1949 /* Pages which failed to demoted go back on @page_list for retry: */
1950 list_splice_init(&demote_pages, page_list);
1951 do_demote_pass = false;
1952 goto retry;
1953 }
1954
1955 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1956
1957 mem_cgroup_uncharge_list(&free_pages);
1958 try_to_unmap_flush();
1959 free_unref_page_list(&free_pages);
1960
1961 list_splice(&ret_pages, page_list);
1962 count_vm_events(PGACTIVATE, pgactivate);
1963
1964 return nr_reclaimed;
1965 }
1966
1967 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1968 struct list_head *page_list)
1969 {
1970 struct scan_control sc = {
1971 .gfp_mask = GFP_KERNEL,
1972 .may_unmap = 1,
1973 };
1974 struct reclaim_stat stat;
1975 unsigned int nr_reclaimed;
1976 struct page *page, *next;
1977 LIST_HEAD(clean_pages);
1978 unsigned int noreclaim_flag;
1979
1980 list_for_each_entry_safe(page, next, page_list, lru) {
1981 if (!PageHuge(page) && page_is_file_lru(page) &&
1982 !PageDirty(page) && !__PageMovable(page) &&
1983 !PageUnevictable(page)) {
1984 ClearPageActive(page);
1985 list_move(&page->lru, &clean_pages);
1986 }
1987 }
1988
1989 /*
1990 * We should be safe here since we are only dealing with file pages and
1991 * we are not kswapd and therefore cannot write dirty file pages. But
1992 * call memalloc_noreclaim_save() anyway, just in case these conditions
1993 * change in the future.
1994 */
1995 noreclaim_flag = memalloc_noreclaim_save();
1996 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1997 &stat, true);
1998 memalloc_noreclaim_restore(noreclaim_flag);
1999
2000 list_splice(&clean_pages, page_list);
2001 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2002 -(long)nr_reclaimed);
2003 /*
2004 * Since lazyfree pages are isolated from file LRU from the beginning,
2005 * they will rotate back to anonymous LRU in the end if it failed to
2006 * discard so isolated count will be mismatched.
2007 * Compensate the isolated count for both LRU lists.
2008 */
2009 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2010 stat.nr_lazyfree_fail);
2011 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2012 -(long)stat.nr_lazyfree_fail);
2013 return nr_reclaimed;
2014 }
2015
2016 /*
2017 * Attempt to remove the specified page from its LRU. Only take this page
2018 * if it is of the appropriate PageActive status. Pages which are being
2019 * freed elsewhere are also ignored.
2020 *
2021 * page: page to consider
2022 * mode: one of the LRU isolation modes defined above
2023 *
2024 * returns true on success, false on failure.
2025 */
2026 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
2027 {
2028 /* Only take pages on the LRU. */
2029 if (!PageLRU(page))
2030 return false;
2031
2032 /* Compaction should not handle unevictable pages but CMA can do so */
2033 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
2034 return false;
2035
2036 /*
2037 * To minimise LRU disruption, the caller can indicate that it only
2038 * wants to isolate pages it will be able to operate on without
2039 * blocking - clean pages for the most part.
2040 *
2041 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2042 * that it is possible to migrate without blocking
2043 */
2044 if (mode & ISOLATE_ASYNC_MIGRATE) {
2045 /* All the caller can do on PageWriteback is block */
2046 if (PageWriteback(page))
2047 return false;
2048
2049 if (PageDirty(page)) {
2050 struct address_space *mapping;
2051 bool migrate_dirty;
2052
2053 /*
2054 * Only pages without mappings or that have a
2055 * ->migratepage callback are possible to migrate
2056 * without blocking. However, we can be racing with
2057 * truncation so it's necessary to lock the page
2058 * to stabilise the mapping as truncation holds
2059 * the page lock until after the page is removed
2060 * from the page cache.
2061 */
2062 if (!trylock_page(page))
2063 return false;
2064
2065 mapping = page_mapping(page);
2066 migrate_dirty = !mapping || mapping->a_ops->migratepage;
2067 unlock_page(page);
2068 if (!migrate_dirty)
2069 return false;
2070 }
2071 }
2072
2073 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2074 return false;
2075
2076 return true;
2077 }
2078
2079 /*
2080 * Update LRU sizes after isolating pages. The LRU size updates must
2081 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2082 */
2083 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2084 enum lru_list lru, unsigned long *nr_zone_taken)
2085 {
2086 int zid;
2087
2088 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2089 if (!nr_zone_taken[zid])
2090 continue;
2091
2092 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2093 }
2094
2095 }
2096
2097 /*
2098 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2099 *
2100 * lruvec->lru_lock is heavily contended. Some of the functions that
2101 * shrink the lists perform better by taking out a batch of pages
2102 * and working on them outside the LRU lock.
2103 *
2104 * For pagecache intensive workloads, this function is the hottest
2105 * spot in the kernel (apart from copy_*_user functions).
2106 *
2107 * Lru_lock must be held before calling this function.
2108 *
2109 * @nr_to_scan: The number of eligible pages to look through on the list.
2110 * @lruvec: The LRU vector to pull pages from.
2111 * @dst: The temp list to put pages on to.
2112 * @nr_scanned: The number of pages that were scanned.
2113 * @sc: The scan_control struct for this reclaim session
2114 * @lru: LRU list id for isolating
2115 *
2116 * returns how many pages were moved onto *@dst.
2117 */
2118 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2119 struct lruvec *lruvec, struct list_head *dst,
2120 unsigned long *nr_scanned, struct scan_control *sc,
2121 enum lru_list lru)
2122 {
2123 struct list_head *src = &lruvec->lists[lru];
2124 unsigned long nr_taken = 0;
2125 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2126 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2127 unsigned long skipped = 0;
2128 unsigned long scan, total_scan, nr_pages;
2129 LIST_HEAD(pages_skipped);
2130 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2131
2132 total_scan = 0;
2133 scan = 0;
2134 while (scan < nr_to_scan && !list_empty(src)) {
2135 struct page *page;
2136
2137 page = lru_to_page(src);
2138 prefetchw_prev_lru_page(page, src, flags);
2139
2140 nr_pages = compound_nr(page);
2141 total_scan += nr_pages;
2142
2143 if (page_zonenum(page) > sc->reclaim_idx) {
2144 list_move(&page->lru, &pages_skipped);
2145 nr_skipped[page_zonenum(page)] += nr_pages;
2146 continue;
2147 }
2148
2149 /*
2150 * Do not count skipped pages because that makes the function
2151 * return with no isolated pages if the LRU mostly contains
2152 * ineligible pages. This causes the VM to not reclaim any
2153 * pages, triggering a premature OOM.
2154 *
2155 * Account all tail pages of THP. This would not cause
2156 * premature OOM since __isolate_lru_page() returns -EBUSY
2157 * only when the page is being freed somewhere else.
2158 */
2159 scan += nr_pages;
2160 if (!__isolate_lru_page_prepare(page, mode)) {
2161 /* It is being freed elsewhere */
2162 list_move(&page->lru, src);
2163 continue;
2164 }
2165 /*
2166 * Be careful not to clear PageLRU until after we're
2167 * sure the page is not being freed elsewhere -- the
2168 * page release code relies on it.
2169 */
2170 if (unlikely(!get_page_unless_zero(page))) {
2171 list_move(&page->lru, src);
2172 continue;
2173 }
2174
2175 if (!TestClearPageLRU(page)) {
2176 /* Another thread is already isolating this page */
2177 put_page(page);
2178 list_move(&page->lru, src);
2179 continue;
2180 }
2181
2182 nr_taken += nr_pages;
2183 nr_zone_taken[page_zonenum(page)] += nr_pages;
2184 list_move(&page->lru, dst);
2185 }
2186
2187 /*
2188 * Splice any skipped pages to the start of the LRU list. Note that
2189 * this disrupts the LRU order when reclaiming for lower zones but
2190 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2191 * scanning would soon rescan the same pages to skip and put the
2192 * system at risk of premature OOM.
2193 */
2194 if (!list_empty(&pages_skipped)) {
2195 int zid;
2196
2197 list_splice(&pages_skipped, src);
2198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2199 if (!nr_skipped[zid])
2200 continue;
2201
2202 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2203 skipped += nr_skipped[zid];
2204 }
2205 }
2206 *nr_scanned = total_scan;
2207 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2208 total_scan, skipped, nr_taken, mode, lru);
2209 update_lru_sizes(lruvec, lru, nr_zone_taken);
2210 return nr_taken;
2211 }
2212
2213 /**
2214 * isolate_lru_page - tries to isolate a page from its LRU list
2215 * @page: page to isolate from its LRU list
2216 *
2217 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2218 * vmstat statistic corresponding to whatever LRU list the page was on.
2219 *
2220 * Returns 0 if the page was removed from an LRU list.
2221 * Returns -EBUSY if the page was not on an LRU list.
2222 *
2223 * The returned page will have PageLRU() cleared. If it was found on
2224 * the active list, it will have PageActive set. If it was found on
2225 * the unevictable list, it will have the PageUnevictable bit set. That flag
2226 * may need to be cleared by the caller before letting the page go.
2227 *
2228 * The vmstat statistic corresponding to the list on which the page was
2229 * found will be decremented.
2230 *
2231 * Restrictions:
2232 *
2233 * (1) Must be called with an elevated refcount on the page. This is a
2234 * fundamental difference from isolate_lru_pages (which is called
2235 * without a stable reference).
2236 * (2) the lru_lock must not be held.
2237 * (3) interrupts must be enabled.
2238 */
2239 int isolate_lru_page(struct page *page)
2240 {
2241 struct folio *folio = page_folio(page);
2242 int ret = -EBUSY;
2243
2244 VM_BUG_ON_PAGE(!page_count(page), page);
2245 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2246
2247 if (TestClearPageLRU(page)) {
2248 struct lruvec *lruvec;
2249
2250 get_page(page);
2251 lruvec = folio_lruvec_lock_irq(folio);
2252 del_page_from_lru_list(page, lruvec);
2253 unlock_page_lruvec_irq(lruvec);
2254 ret = 0;
2255 }
2256
2257 return ret;
2258 }
2259
2260 /*
2261 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2262 * then get rescheduled. When there are massive number of tasks doing page
2263 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2264 * the LRU list will go small and be scanned faster than necessary, leading to
2265 * unnecessary swapping, thrashing and OOM.
2266 */
2267 static int too_many_isolated(struct pglist_data *pgdat, int file,
2268 struct scan_control *sc)
2269 {
2270 unsigned long inactive, isolated;
2271 bool too_many;
2272
2273 if (current_is_kswapd())
2274 return 0;
2275
2276 if (!writeback_throttling_sane(sc))
2277 return 0;
2278
2279 if (file) {
2280 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2281 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2282 } else {
2283 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2284 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2285 }
2286
2287 /*
2288 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2289 * won't get blocked by normal direct-reclaimers, forming a circular
2290 * deadlock.
2291 */
2292 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2293 inactive >>= 3;
2294
2295 too_many = isolated > inactive;
2296
2297 /* Wake up tasks throttled due to too_many_isolated. */
2298 if (!too_many)
2299 wake_throttle_isolated(pgdat);
2300
2301 return too_many;
2302 }
2303
2304 /*
2305 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2306 * On return, @list is reused as a list of pages to be freed by the caller.
2307 *
2308 * Returns the number of pages moved to the given lruvec.
2309 */
2310 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2311 struct list_head *list)
2312 {
2313 int nr_pages, nr_moved = 0;
2314 LIST_HEAD(pages_to_free);
2315 struct page *page;
2316
2317 while (!list_empty(list)) {
2318 page = lru_to_page(list);
2319 VM_BUG_ON_PAGE(PageLRU(page), page);
2320 list_del(&page->lru);
2321 if (unlikely(!page_evictable(page))) {
2322 spin_unlock_irq(&lruvec->lru_lock);
2323 putback_lru_page(page);
2324 spin_lock_irq(&lruvec->lru_lock);
2325 continue;
2326 }
2327
2328 /*
2329 * The SetPageLRU needs to be kept here for list integrity.
2330 * Otherwise:
2331 * #0 move_pages_to_lru #1 release_pages
2332 * if !put_page_testzero
2333 * if (put_page_testzero())
2334 * !PageLRU //skip lru_lock
2335 * SetPageLRU()
2336 * list_add(&page->lru,)
2337 * list_add(&page->lru,)
2338 */
2339 SetPageLRU(page);
2340
2341 if (unlikely(put_page_testzero(page))) {
2342 __clear_page_lru_flags(page);
2343
2344 if (unlikely(PageCompound(page))) {
2345 spin_unlock_irq(&lruvec->lru_lock);
2346 destroy_compound_page(page);
2347 spin_lock_irq(&lruvec->lru_lock);
2348 } else
2349 list_add(&page->lru, &pages_to_free);
2350
2351 continue;
2352 }
2353
2354 /*
2355 * All pages were isolated from the same lruvec (and isolation
2356 * inhibits memcg migration).
2357 */
2358 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2359 add_page_to_lru_list(page, lruvec);
2360 nr_pages = thp_nr_pages(page);
2361 nr_moved += nr_pages;
2362 if (PageActive(page))
2363 workingset_age_nonresident(lruvec, nr_pages);
2364 }
2365
2366 /*
2367 * To save our caller's stack, now use input list for pages to free.
2368 */
2369 list_splice(&pages_to_free, list);
2370
2371 return nr_moved;
2372 }
2373
2374 /*
2375 * If a kernel thread (such as nfsd for loop-back mounts) services
2376 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2377 * In that case we should only throttle if the backing device it is
2378 * writing to is congested. In other cases it is safe to throttle.
2379 */
2380 static int current_may_throttle(void)
2381 {
2382 return !(current->flags & PF_LOCAL_THROTTLE) ||
2383 current->backing_dev_info == NULL ||
2384 bdi_write_congested(current->backing_dev_info);
2385 }
2386
2387 /*
2388 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2389 * of reclaimed pages
2390 */
2391 static unsigned long
2392 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2393 struct scan_control *sc, enum lru_list lru)
2394 {
2395 LIST_HEAD(page_list);
2396 unsigned long nr_scanned;
2397 unsigned int nr_reclaimed = 0;
2398 unsigned long nr_taken;
2399 struct reclaim_stat stat;
2400 bool file = is_file_lru(lru);
2401 enum vm_event_item item;
2402 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2403 bool stalled = false;
2404
2405 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2406 if (stalled)
2407 return 0;
2408
2409 /* wait a bit for the reclaimer. */
2410 stalled = true;
2411 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2412
2413 /* We are about to die and free our memory. Return now. */
2414 if (fatal_signal_pending(current))
2415 return SWAP_CLUSTER_MAX;
2416 }
2417
2418 lru_add_drain();
2419
2420 spin_lock_irq(&lruvec->lru_lock);
2421
2422 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2423 &nr_scanned, sc, lru);
2424
2425 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2426 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2427 if (!cgroup_reclaim(sc))
2428 __count_vm_events(item, nr_scanned);
2429 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2430 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2431
2432 spin_unlock_irq(&lruvec->lru_lock);
2433
2434 if (nr_taken == 0)
2435 return 0;
2436
2437 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2438
2439 spin_lock_irq(&lruvec->lru_lock);
2440 move_pages_to_lru(lruvec, &page_list);
2441
2442 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2443 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2444 if (!cgroup_reclaim(sc))
2445 __count_vm_events(item, nr_reclaimed);
2446 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2447 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2448 spin_unlock_irq(&lruvec->lru_lock);
2449
2450 lru_note_cost(lruvec, file, stat.nr_pageout);
2451 mem_cgroup_uncharge_list(&page_list);
2452 free_unref_page_list(&page_list);
2453
2454 /*
2455 * If dirty pages are scanned that are not queued for IO, it
2456 * implies that flushers are not doing their job. This can
2457 * happen when memory pressure pushes dirty pages to the end of
2458 * the LRU before the dirty limits are breached and the dirty
2459 * data has expired. It can also happen when the proportion of
2460 * dirty pages grows not through writes but through memory
2461 * pressure reclaiming all the clean cache. And in some cases,
2462 * the flushers simply cannot keep up with the allocation
2463 * rate. Nudge the flusher threads in case they are asleep.
2464 */
2465 if (stat.nr_unqueued_dirty == nr_taken)
2466 wakeup_flusher_threads(WB_REASON_VMSCAN);
2467
2468 sc->nr.dirty += stat.nr_dirty;
2469 sc->nr.congested += stat.nr_congested;
2470 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2471 sc->nr.writeback += stat.nr_writeback;
2472 sc->nr.immediate += stat.nr_immediate;
2473 sc->nr.taken += nr_taken;
2474 if (file)
2475 sc->nr.file_taken += nr_taken;
2476
2477 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2478 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2479 return nr_reclaimed;
2480 }
2481
2482 /*
2483 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2484 *
2485 * We move them the other way if the page is referenced by one or more
2486 * processes.
2487 *
2488 * If the pages are mostly unmapped, the processing is fast and it is
2489 * appropriate to hold lru_lock across the whole operation. But if
2490 * the pages are mapped, the processing is slow (page_referenced()), so
2491 * we should drop lru_lock around each page. It's impossible to balance
2492 * this, so instead we remove the pages from the LRU while processing them.
2493 * It is safe to rely on PG_active against the non-LRU pages in here because
2494 * nobody will play with that bit on a non-LRU page.
2495 *
2496 * The downside is that we have to touch page->_refcount against each page.
2497 * But we had to alter page->flags anyway.
2498 */
2499 static void shrink_active_list(unsigned long nr_to_scan,
2500 struct lruvec *lruvec,
2501 struct scan_control *sc,
2502 enum lru_list lru)
2503 {
2504 unsigned long nr_taken;
2505 unsigned long nr_scanned;
2506 unsigned long vm_flags;
2507 LIST_HEAD(l_hold); /* The pages which were snipped off */
2508 LIST_HEAD(l_active);
2509 LIST_HEAD(l_inactive);
2510 struct page *page;
2511 unsigned nr_deactivate, nr_activate;
2512 unsigned nr_rotated = 0;
2513 int file = is_file_lru(lru);
2514 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2515
2516 lru_add_drain();
2517
2518 spin_lock_irq(&lruvec->lru_lock);
2519
2520 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2521 &nr_scanned, sc, lru);
2522
2523 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2524
2525 if (!cgroup_reclaim(sc))
2526 __count_vm_events(PGREFILL, nr_scanned);
2527 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2528
2529 spin_unlock_irq(&lruvec->lru_lock);
2530
2531 while (!list_empty(&l_hold)) {
2532 cond_resched();
2533 page = lru_to_page(&l_hold);
2534 list_del(&page->lru);
2535
2536 if (unlikely(!page_evictable(page))) {
2537 putback_lru_page(page);
2538 continue;
2539 }
2540
2541 if (unlikely(buffer_heads_over_limit)) {
2542 if (page_has_private(page) && trylock_page(page)) {
2543 if (page_has_private(page))
2544 try_to_release_page(page, 0);
2545 unlock_page(page);
2546 }
2547 }
2548
2549 if (page_referenced(page, 0, sc->target_mem_cgroup,
2550 &vm_flags)) {
2551 /*
2552 * Identify referenced, file-backed active pages and
2553 * give them one more trip around the active list. So
2554 * that executable code get better chances to stay in
2555 * memory under moderate memory pressure. Anon pages
2556 * are not likely to be evicted by use-once streaming
2557 * IO, plus JVM can create lots of anon VM_EXEC pages,
2558 * so we ignore them here.
2559 */
2560 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2561 nr_rotated += thp_nr_pages(page);
2562 list_add(&page->lru, &l_active);
2563 continue;
2564 }
2565 }
2566
2567 ClearPageActive(page); /* we are de-activating */
2568 SetPageWorkingset(page);
2569 list_add(&page->lru, &l_inactive);
2570 }
2571
2572 /*
2573 * Move pages back to the lru list.
2574 */
2575 spin_lock_irq(&lruvec->lru_lock);
2576
2577 nr_activate = move_pages_to_lru(lruvec, &l_active);
2578 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2579 /* Keep all free pages in l_active list */
2580 list_splice(&l_inactive, &l_active);
2581
2582 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2583 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2584
2585 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2586 spin_unlock_irq(&lruvec->lru_lock);
2587
2588 mem_cgroup_uncharge_list(&l_active);
2589 free_unref_page_list(&l_active);
2590 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2591 nr_deactivate, nr_rotated, sc->priority, file);
2592 }
2593
2594 unsigned long reclaim_pages(struct list_head *page_list)
2595 {
2596 int nid = NUMA_NO_NODE;
2597 unsigned int nr_reclaimed = 0;
2598 LIST_HEAD(node_page_list);
2599 struct reclaim_stat dummy_stat;
2600 struct page *page;
2601 unsigned int noreclaim_flag;
2602 struct scan_control sc = {
2603 .gfp_mask = GFP_KERNEL,
2604 .may_writepage = 1,
2605 .may_unmap = 1,
2606 .may_swap = 1,
2607 .no_demotion = 1,
2608 };
2609
2610 noreclaim_flag = memalloc_noreclaim_save();
2611
2612 while (!list_empty(page_list)) {
2613 page = lru_to_page(page_list);
2614 if (nid == NUMA_NO_NODE) {
2615 nid = page_to_nid(page);
2616 INIT_LIST_HEAD(&node_page_list);
2617 }
2618
2619 if (nid == page_to_nid(page)) {
2620 ClearPageActive(page);
2621 list_move(&page->lru, &node_page_list);
2622 continue;
2623 }
2624
2625 nr_reclaimed += shrink_page_list(&node_page_list,
2626 NODE_DATA(nid),
2627 &sc, &dummy_stat, false);
2628 while (!list_empty(&node_page_list)) {
2629 page = lru_to_page(&node_page_list);
2630 list_del(&page->lru);
2631 putback_lru_page(page);
2632 }
2633
2634 nid = NUMA_NO_NODE;
2635 }
2636
2637 if (!list_empty(&node_page_list)) {
2638 nr_reclaimed += shrink_page_list(&node_page_list,
2639 NODE_DATA(nid),
2640 &sc, &dummy_stat, false);
2641 while (!list_empty(&node_page_list)) {
2642 page = lru_to_page(&node_page_list);
2643 list_del(&page->lru);
2644 putback_lru_page(page);
2645 }
2646 }
2647
2648 memalloc_noreclaim_restore(noreclaim_flag);
2649
2650 return nr_reclaimed;
2651 }
2652
2653 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2654 struct lruvec *lruvec, struct scan_control *sc)
2655 {
2656 if (is_active_lru(lru)) {
2657 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2658 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2659 else
2660 sc->skipped_deactivate = 1;
2661 return 0;
2662 }
2663
2664 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2665 }
2666
2667 /*
2668 * The inactive anon list should be small enough that the VM never has
2669 * to do too much work.
2670 *
2671 * The inactive file list should be small enough to leave most memory
2672 * to the established workingset on the scan-resistant active list,
2673 * but large enough to avoid thrashing the aggregate readahead window.
2674 *
2675 * Both inactive lists should also be large enough that each inactive
2676 * page has a chance to be referenced again before it is reclaimed.
2677 *
2678 * If that fails and refaulting is observed, the inactive list grows.
2679 *
2680 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2681 * on this LRU, maintained by the pageout code. An inactive_ratio
2682 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2683 *
2684 * total target max
2685 * memory ratio inactive
2686 * -------------------------------------
2687 * 10MB 1 5MB
2688 * 100MB 1 50MB
2689 * 1GB 3 250MB
2690 * 10GB 10 0.9GB
2691 * 100GB 31 3GB
2692 * 1TB 101 10GB
2693 * 10TB 320 32GB
2694 */
2695 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2696 {
2697 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2698 unsigned long inactive, active;
2699 unsigned long inactive_ratio;
2700 unsigned long gb;
2701
2702 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2703 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2704
2705 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2706 if (gb)
2707 inactive_ratio = int_sqrt(10 * gb);
2708 else
2709 inactive_ratio = 1;
2710
2711 return inactive * inactive_ratio < active;
2712 }
2713
2714 enum scan_balance {
2715 SCAN_EQUAL,
2716 SCAN_FRACT,
2717 SCAN_ANON,
2718 SCAN_FILE,
2719 };
2720
2721 /*
2722 * Determine how aggressively the anon and file LRU lists should be
2723 * scanned. The relative value of each set of LRU lists is determined
2724 * by looking at the fraction of the pages scanned we did rotate back
2725 * onto the active list instead of evict.
2726 *
2727 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2728 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2729 */
2730 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2731 unsigned long *nr)
2732 {
2733 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2734 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2735 unsigned long anon_cost, file_cost, total_cost;
2736 int swappiness = mem_cgroup_swappiness(memcg);
2737 u64 fraction[ANON_AND_FILE];
2738 u64 denominator = 0; /* gcc */
2739 enum scan_balance scan_balance;
2740 unsigned long ap, fp;
2741 enum lru_list lru;
2742
2743 /* If we have no swap space, do not bother scanning anon pages. */
2744 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2745 scan_balance = SCAN_FILE;
2746 goto out;
2747 }
2748
2749 /*
2750 * Global reclaim will swap to prevent OOM even with no
2751 * swappiness, but memcg users want to use this knob to
2752 * disable swapping for individual groups completely when
2753 * using the memory controller's swap limit feature would be
2754 * too expensive.
2755 */
2756 if (cgroup_reclaim(sc) && !swappiness) {
2757 scan_balance = SCAN_FILE;
2758 goto out;
2759 }
2760
2761 /*
2762 * Do not apply any pressure balancing cleverness when the
2763 * system is close to OOM, scan both anon and file equally
2764 * (unless the swappiness setting disagrees with swapping).
2765 */
2766 if (!sc->priority && swappiness) {
2767 scan_balance = SCAN_EQUAL;
2768 goto out;
2769 }
2770
2771 /*
2772 * If the system is almost out of file pages, force-scan anon.
2773 */
2774 if (sc->file_is_tiny) {
2775 scan_balance = SCAN_ANON;
2776 goto out;
2777 }
2778
2779 /*
2780 * If there is enough inactive page cache, we do not reclaim
2781 * anything from the anonymous working right now.
2782 */
2783 if (sc->cache_trim_mode) {
2784 scan_balance = SCAN_FILE;
2785 goto out;
2786 }
2787
2788 scan_balance = SCAN_FRACT;
2789 /*
2790 * Calculate the pressure balance between anon and file pages.
2791 *
2792 * The amount of pressure we put on each LRU is inversely
2793 * proportional to the cost of reclaiming each list, as
2794 * determined by the share of pages that are refaulting, times
2795 * the relative IO cost of bringing back a swapped out
2796 * anonymous page vs reloading a filesystem page (swappiness).
2797 *
2798 * Although we limit that influence to ensure no list gets
2799 * left behind completely: at least a third of the pressure is
2800 * applied, before swappiness.
2801 *
2802 * With swappiness at 100, anon and file have equal IO cost.
2803 */
2804 total_cost = sc->anon_cost + sc->file_cost;
2805 anon_cost = total_cost + sc->anon_cost;
2806 file_cost = total_cost + sc->file_cost;
2807 total_cost = anon_cost + file_cost;
2808
2809 ap = swappiness * (total_cost + 1);
2810 ap /= anon_cost + 1;
2811
2812 fp = (200 - swappiness) * (total_cost + 1);
2813 fp /= file_cost + 1;
2814
2815 fraction[0] = ap;
2816 fraction[1] = fp;
2817 denominator = ap + fp;
2818 out:
2819 for_each_evictable_lru(lru) {
2820 int file = is_file_lru(lru);
2821 unsigned long lruvec_size;
2822 unsigned long low, min;
2823 unsigned long scan;
2824
2825 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2826 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2827 &min, &low);
2828
2829 if (min || low) {
2830 /*
2831 * Scale a cgroup's reclaim pressure by proportioning
2832 * its current usage to its memory.low or memory.min
2833 * setting.
2834 *
2835 * This is important, as otherwise scanning aggression
2836 * becomes extremely binary -- from nothing as we
2837 * approach the memory protection threshold, to totally
2838 * nominal as we exceed it. This results in requiring
2839 * setting extremely liberal protection thresholds. It
2840 * also means we simply get no protection at all if we
2841 * set it too low, which is not ideal.
2842 *
2843 * If there is any protection in place, we reduce scan
2844 * pressure by how much of the total memory used is
2845 * within protection thresholds.
2846 *
2847 * There is one special case: in the first reclaim pass,
2848 * we skip over all groups that are within their low
2849 * protection. If that fails to reclaim enough pages to
2850 * satisfy the reclaim goal, we come back and override
2851 * the best-effort low protection. However, we still
2852 * ideally want to honor how well-behaved groups are in
2853 * that case instead of simply punishing them all
2854 * equally. As such, we reclaim them based on how much
2855 * memory they are using, reducing the scan pressure
2856 * again by how much of the total memory used is under
2857 * hard protection.
2858 */
2859 unsigned long cgroup_size = mem_cgroup_size(memcg);
2860 unsigned long protection;
2861
2862 /* memory.low scaling, make sure we retry before OOM */
2863 if (!sc->memcg_low_reclaim && low > min) {
2864 protection = low;
2865 sc->memcg_low_skipped = 1;
2866 } else {
2867 protection = min;
2868 }
2869
2870 /* Avoid TOCTOU with earlier protection check */
2871 cgroup_size = max(cgroup_size, protection);
2872
2873 scan = lruvec_size - lruvec_size * protection /
2874 (cgroup_size + 1);
2875
2876 /*
2877 * Minimally target SWAP_CLUSTER_MAX pages to keep
2878 * reclaim moving forwards, avoiding decrementing
2879 * sc->priority further than desirable.
2880 */
2881 scan = max(scan, SWAP_CLUSTER_MAX);
2882 } else {
2883 scan = lruvec_size;
2884 }
2885
2886 scan >>= sc->priority;
2887
2888 /*
2889 * If the cgroup's already been deleted, make sure to
2890 * scrape out the remaining cache.
2891 */
2892 if (!scan && !mem_cgroup_online(memcg))
2893 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2894
2895 switch (scan_balance) {
2896 case SCAN_EQUAL:
2897 /* Scan lists relative to size */
2898 break;
2899 case SCAN_FRACT:
2900 /*
2901 * Scan types proportional to swappiness and
2902 * their relative recent reclaim efficiency.
2903 * Make sure we don't miss the last page on
2904 * the offlined memory cgroups because of a
2905 * round-off error.
2906 */
2907 scan = mem_cgroup_online(memcg) ?
2908 div64_u64(scan * fraction[file], denominator) :
2909 DIV64_U64_ROUND_UP(scan * fraction[file],
2910 denominator);
2911 break;
2912 case SCAN_FILE:
2913 case SCAN_ANON:
2914 /* Scan one type exclusively */
2915 if ((scan_balance == SCAN_FILE) != file)
2916 scan = 0;
2917 break;
2918 default:
2919 /* Look ma, no brain */
2920 BUG();
2921 }
2922
2923 nr[lru] = scan;
2924 }
2925 }
2926
2927 /*
2928 * Anonymous LRU management is a waste if there is
2929 * ultimately no way to reclaim the memory.
2930 */
2931 static bool can_age_anon_pages(struct pglist_data *pgdat,
2932 struct scan_control *sc)
2933 {
2934 /* Aging the anon LRU is valuable if swap is present: */
2935 if (total_swap_pages > 0)
2936 return true;
2937
2938 /* Also valuable if anon pages can be demoted: */
2939 return can_demote(pgdat->node_id, sc);
2940 }
2941
2942 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2943 {
2944 unsigned long nr[NR_LRU_LISTS];
2945 unsigned long targets[NR_LRU_LISTS];
2946 unsigned long nr_to_scan;
2947 enum lru_list lru;
2948 unsigned long nr_reclaimed = 0;
2949 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2950 struct blk_plug plug;
2951 bool scan_adjusted;
2952
2953 get_scan_count(lruvec, sc, nr);
2954
2955 /* Record the original scan target for proportional adjustments later */
2956 memcpy(targets, nr, sizeof(nr));
2957
2958 /*
2959 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2960 * event that can occur when there is little memory pressure e.g.
2961 * multiple streaming readers/writers. Hence, we do not abort scanning
2962 * when the requested number of pages are reclaimed when scanning at
2963 * DEF_PRIORITY on the assumption that the fact we are direct
2964 * reclaiming implies that kswapd is not keeping up and it is best to
2965 * do a batch of work at once. For memcg reclaim one check is made to
2966 * abort proportional reclaim if either the file or anon lru has already
2967 * dropped to zero at the first pass.
2968 */
2969 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2970 sc->priority == DEF_PRIORITY);
2971
2972 blk_start_plug(&plug);
2973 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2974 nr[LRU_INACTIVE_FILE]) {
2975 unsigned long nr_anon, nr_file, percentage;
2976 unsigned long nr_scanned;
2977
2978 for_each_evictable_lru(lru) {
2979 if (nr[lru]) {
2980 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2981 nr[lru] -= nr_to_scan;
2982
2983 nr_reclaimed += shrink_list(lru, nr_to_scan,
2984 lruvec, sc);
2985 }
2986 }
2987
2988 cond_resched();
2989
2990 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2991 continue;
2992
2993 /*
2994 * For kswapd and memcg, reclaim at least the number of pages
2995 * requested. Ensure that the anon and file LRUs are scanned
2996 * proportionally what was requested by get_scan_count(). We
2997 * stop reclaiming one LRU and reduce the amount scanning
2998 * proportional to the original scan target.
2999 */
3000 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3001 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3002
3003 /*
3004 * It's just vindictive to attack the larger once the smaller
3005 * has gone to zero. And given the way we stop scanning the
3006 * smaller below, this makes sure that we only make one nudge
3007 * towards proportionality once we've got nr_to_reclaim.
3008 */
3009 if (!nr_file || !nr_anon)
3010 break;
3011
3012 if (nr_file > nr_anon) {
3013 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3014 targets[LRU_ACTIVE_ANON] + 1;
3015 lru = LRU_BASE;
3016 percentage = nr_anon * 100 / scan_target;
3017 } else {
3018 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3019 targets[LRU_ACTIVE_FILE] + 1;
3020 lru = LRU_FILE;
3021 percentage = nr_file * 100 / scan_target;
3022 }
3023
3024 /* Stop scanning the smaller of the LRU */
3025 nr[lru] = 0;
3026 nr[lru + LRU_ACTIVE] = 0;
3027
3028 /*
3029 * Recalculate the other LRU scan count based on its original
3030 * scan target and the percentage scanning already complete
3031 */
3032 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3033 nr_scanned = targets[lru] - nr[lru];
3034 nr[lru] = targets[lru] * (100 - percentage) / 100;
3035 nr[lru] -= min(nr[lru], nr_scanned);
3036
3037 lru += LRU_ACTIVE;
3038 nr_scanned = targets[lru] - nr[lru];
3039 nr[lru] = targets[lru] * (100 - percentage) / 100;
3040 nr[lru] -= min(nr[lru], nr_scanned);
3041
3042 scan_adjusted = true;
3043 }
3044 blk_finish_plug(&plug);
3045 sc->nr_reclaimed += nr_reclaimed;
3046
3047 /*
3048 * Even if we did not try to evict anon pages at all, we want to
3049 * rebalance the anon lru active/inactive ratio.
3050 */
3051 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3052 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3053 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3054 sc, LRU_ACTIVE_ANON);
3055 }
3056
3057 /* Use reclaim/compaction for costly allocs or under memory pressure */
3058 static bool in_reclaim_compaction(struct scan_control *sc)
3059 {
3060 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3061 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3062 sc->priority < DEF_PRIORITY - 2))
3063 return true;
3064
3065 return false;
3066 }
3067
3068 /*
3069 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3070 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3071 * true if more pages should be reclaimed such that when the page allocator
3072 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3073 * It will give up earlier than that if there is difficulty reclaiming pages.
3074 */
3075 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3076 unsigned long nr_reclaimed,
3077 struct scan_control *sc)
3078 {
3079 unsigned long pages_for_compaction;
3080 unsigned long inactive_lru_pages;
3081 int z;
3082
3083 /* If not in reclaim/compaction mode, stop */
3084 if (!in_reclaim_compaction(sc))
3085 return false;
3086
3087 /*
3088 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3089 * number of pages that were scanned. This will return to the caller
3090 * with the risk reclaim/compaction and the resulting allocation attempt
3091 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3092 * allocations through requiring that the full LRU list has been scanned
3093 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3094 * scan, but that approximation was wrong, and there were corner cases
3095 * where always a non-zero amount of pages were scanned.
3096 */
3097 if (!nr_reclaimed)
3098 return false;
3099
3100 /* If compaction would go ahead or the allocation would succeed, stop */
3101 for (z = 0; z <= sc->reclaim_idx; z++) {
3102 struct zone *zone = &pgdat->node_zones[z];
3103 if (!managed_zone(zone))
3104 continue;
3105
3106 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3107 case COMPACT_SUCCESS:
3108 case COMPACT_CONTINUE:
3109 return false;
3110 default:
3111 /* check next zone */
3112 ;
3113 }
3114 }
3115
3116 /*
3117 * If we have not reclaimed enough pages for compaction and the
3118 * inactive lists are large enough, continue reclaiming
3119 */
3120 pages_for_compaction = compact_gap(sc->order);
3121 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3122 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3123 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3124
3125 return inactive_lru_pages > pages_for_compaction;
3126 }
3127
3128 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3129 {
3130 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3131 struct mem_cgroup *memcg;
3132
3133 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3134 do {
3135 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3136 unsigned long reclaimed;
3137 unsigned long scanned;
3138
3139 /*
3140 * This loop can become CPU-bound when target memcgs
3141 * aren't eligible for reclaim - either because they
3142 * don't have any reclaimable pages, or because their
3143 * memory is explicitly protected. Avoid soft lockups.
3144 */
3145 cond_resched();
3146
3147 mem_cgroup_calculate_protection(target_memcg, memcg);
3148
3149 if (mem_cgroup_below_min(memcg)) {
3150 /*
3151 * Hard protection.
3152 * If there is no reclaimable memory, OOM.
3153 */
3154 continue;
3155 } else if (mem_cgroup_below_low(memcg)) {
3156 /*
3157 * Soft protection.
3158 * Respect the protection only as long as
3159 * there is an unprotected supply
3160 * of reclaimable memory from other cgroups.
3161 */
3162 if (!sc->memcg_low_reclaim) {
3163 sc->memcg_low_skipped = 1;
3164 continue;
3165 }
3166 memcg_memory_event(memcg, MEMCG_LOW);
3167 }
3168
3169 reclaimed = sc->nr_reclaimed;
3170 scanned = sc->nr_scanned;
3171
3172 shrink_lruvec(lruvec, sc);
3173
3174 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3175 sc->priority);
3176
3177 /* Record the group's reclaim efficiency */
3178 vmpressure(sc->gfp_mask, memcg, false,
3179 sc->nr_scanned - scanned,
3180 sc->nr_reclaimed - reclaimed);
3181
3182 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3183 }
3184
3185 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3186 {
3187 struct reclaim_state *reclaim_state = current->reclaim_state;
3188 unsigned long nr_reclaimed, nr_scanned;
3189 struct lruvec *target_lruvec;
3190 bool reclaimable = false;
3191 unsigned long file;
3192
3193 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3194
3195 again:
3196 /*
3197 * Flush the memory cgroup stats, so that we read accurate per-memcg
3198 * lruvec stats for heuristics.
3199 */
3200 mem_cgroup_flush_stats();
3201
3202 memset(&sc->nr, 0, sizeof(sc->nr));
3203
3204 nr_reclaimed = sc->nr_reclaimed;
3205 nr_scanned = sc->nr_scanned;
3206
3207 /*
3208 * Determine the scan balance between anon and file LRUs.
3209 */
3210 spin_lock_irq(&target_lruvec->lru_lock);
3211 sc->anon_cost = target_lruvec->anon_cost;
3212 sc->file_cost = target_lruvec->file_cost;
3213 spin_unlock_irq(&target_lruvec->lru_lock);
3214
3215 /*
3216 * Target desirable inactive:active list ratios for the anon
3217 * and file LRU lists.
3218 */
3219 if (!sc->force_deactivate) {
3220 unsigned long refaults;
3221
3222 refaults = lruvec_page_state(target_lruvec,
3223 WORKINGSET_ACTIVATE_ANON);
3224 if (refaults != target_lruvec->refaults[0] ||
3225 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3226 sc->may_deactivate |= DEACTIVATE_ANON;
3227 else
3228 sc->may_deactivate &= ~DEACTIVATE_ANON;
3229
3230 /*
3231 * When refaults are being observed, it means a new
3232 * workingset is being established. Deactivate to get
3233 * rid of any stale active pages quickly.
3234 */
3235 refaults = lruvec_page_state(target_lruvec,
3236 WORKINGSET_ACTIVATE_FILE);
3237 if (refaults != target_lruvec->refaults[1] ||
3238 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3239 sc->may_deactivate |= DEACTIVATE_FILE;
3240 else
3241 sc->may_deactivate &= ~DEACTIVATE_FILE;
3242 } else
3243 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3244
3245 /*
3246 * If we have plenty of inactive file pages that aren't
3247 * thrashing, try to reclaim those first before touching
3248 * anonymous pages.
3249 */
3250 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3251 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3252 sc->cache_trim_mode = 1;
3253 else
3254 sc->cache_trim_mode = 0;
3255
3256 /*
3257 * Prevent the reclaimer from falling into the cache trap: as
3258 * cache pages start out inactive, every cache fault will tip
3259 * the scan balance towards the file LRU. And as the file LRU
3260 * shrinks, so does the window for rotation from references.
3261 * This means we have a runaway feedback loop where a tiny
3262 * thrashing file LRU becomes infinitely more attractive than
3263 * anon pages. Try to detect this based on file LRU size.
3264 */
3265 if (!cgroup_reclaim(sc)) {
3266 unsigned long total_high_wmark = 0;
3267 unsigned long free, anon;
3268 int z;
3269
3270 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3271 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3272 node_page_state(pgdat, NR_INACTIVE_FILE);
3273
3274 for (z = 0; z < MAX_NR_ZONES; z++) {
3275 struct zone *zone = &pgdat->node_zones[z];
3276 if (!managed_zone(zone))
3277 continue;
3278
3279 total_high_wmark += high_wmark_pages(zone);
3280 }
3281
3282 /*
3283 * Consider anon: if that's low too, this isn't a
3284 * runaway file reclaim problem, but rather just
3285 * extreme pressure. Reclaim as per usual then.
3286 */
3287 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3288
3289 sc->file_is_tiny =
3290 file + free <= total_high_wmark &&
3291 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3292 anon >> sc->priority;
3293 }
3294
3295 shrink_node_memcgs(pgdat, sc);
3296
3297 if (reclaim_state) {
3298 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3299 reclaim_state->reclaimed_slab = 0;
3300 }
3301
3302 /* Record the subtree's reclaim efficiency */
3303 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3304 sc->nr_scanned - nr_scanned,
3305 sc->nr_reclaimed - nr_reclaimed);
3306
3307 if (sc->nr_reclaimed - nr_reclaimed)
3308 reclaimable = true;
3309
3310 if (current_is_kswapd()) {
3311 /*
3312 * If reclaim is isolating dirty pages under writeback,
3313 * it implies that the long-lived page allocation rate
3314 * is exceeding the page laundering rate. Either the
3315 * global limits are not being effective at throttling
3316 * processes due to the page distribution throughout
3317 * zones or there is heavy usage of a slow backing
3318 * device. The only option is to throttle from reclaim
3319 * context which is not ideal as there is no guarantee
3320 * the dirtying process is throttled in the same way
3321 * balance_dirty_pages() manages.
3322 *
3323 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3324 * count the number of pages under pages flagged for
3325 * immediate reclaim and stall if any are encountered
3326 * in the nr_immediate check below.
3327 */
3328 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3329 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3330
3331 /* Allow kswapd to start writing pages during reclaim.*/
3332 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3333 set_bit(PGDAT_DIRTY, &pgdat->flags);
3334
3335 /*
3336 * If kswapd scans pages marked for immediate
3337 * reclaim and under writeback (nr_immediate), it
3338 * implies that pages are cycling through the LRU
3339 * faster than they are written so forcibly stall
3340 * until some pages complete writeback.
3341 */
3342 if (sc->nr.immediate)
3343 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3344 }
3345
3346 /*
3347 * Tag a node/memcg as congested if all the dirty pages were marked
3348 * for writeback and immediate reclaim (counted in nr.congested).
3349 *
3350 * Legacy memcg will stall in page writeback so avoid forcibly
3351 * stalling in reclaim_throttle().
3352 */
3353 if ((current_is_kswapd() ||
3354 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3355 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3356 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3357
3358 /*
3359 * Stall direct reclaim for IO completions if the lruvec is
3360 * node is congested. Allow kswapd to continue until it
3361 * starts encountering unqueued dirty pages or cycling through
3362 * the LRU too quickly.
3363 */
3364 if (!current_is_kswapd() && current_may_throttle() &&
3365 !sc->hibernation_mode &&
3366 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3367 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3368
3369 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3370 sc))
3371 goto again;
3372
3373 /*
3374 * Kswapd gives up on balancing particular nodes after too
3375 * many failures to reclaim anything from them and goes to
3376 * sleep. On reclaim progress, reset the failure counter. A
3377 * successful direct reclaim run will revive a dormant kswapd.
3378 */
3379 if (reclaimable)
3380 pgdat->kswapd_failures = 0;
3381 }
3382
3383 /*
3384 * Returns true if compaction should go ahead for a costly-order request, or
3385 * the allocation would already succeed without compaction. Return false if we
3386 * should reclaim first.
3387 */
3388 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3389 {
3390 unsigned long watermark;
3391 enum compact_result suitable;
3392
3393 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3394 if (suitable == COMPACT_SUCCESS)
3395 /* Allocation should succeed already. Don't reclaim. */
3396 return true;
3397 if (suitable == COMPACT_SKIPPED)
3398 /* Compaction cannot yet proceed. Do reclaim. */
3399 return false;
3400
3401 /*
3402 * Compaction is already possible, but it takes time to run and there
3403 * are potentially other callers using the pages just freed. So proceed
3404 * with reclaim to make a buffer of free pages available to give
3405 * compaction a reasonable chance of completing and allocating the page.
3406 * Note that we won't actually reclaim the whole buffer in one attempt
3407 * as the target watermark in should_continue_reclaim() is lower. But if
3408 * we are already above the high+gap watermark, don't reclaim at all.
3409 */
3410 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3411
3412 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3413 }
3414
3415 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3416 {
3417 /*
3418 * If reclaim is making progress greater than 12% efficiency then
3419 * wake all the NOPROGRESS throttled tasks.
3420 */
3421 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3422 wait_queue_head_t *wqh;
3423
3424 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3425 if (waitqueue_active(wqh))
3426 wake_up(wqh);
3427
3428 return;
3429 }
3430
3431 /*
3432 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3433 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3434 * under writeback and marked for immediate reclaim at the tail of the
3435 * LRU.
3436 */
3437 if (current_is_kswapd() || cgroup_reclaim(sc))
3438 return;
3439
3440 /* Throttle if making no progress at high prioities. */
3441 if (sc->priority == 1 && !sc->nr_reclaimed)
3442 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3443 }
3444
3445 /*
3446 * This is the direct reclaim path, for page-allocating processes. We only
3447 * try to reclaim pages from zones which will satisfy the caller's allocation
3448 * request.
3449 *
3450 * If a zone is deemed to be full of pinned pages then just give it a light
3451 * scan then give up on it.
3452 */
3453 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3454 {
3455 struct zoneref *z;
3456 struct zone *zone;
3457 unsigned long nr_soft_reclaimed;
3458 unsigned long nr_soft_scanned;
3459 gfp_t orig_mask;
3460 pg_data_t *last_pgdat = NULL;
3461 pg_data_t *first_pgdat = NULL;
3462
3463 /*
3464 * If the number of buffer_heads in the machine exceeds the maximum
3465 * allowed level, force direct reclaim to scan the highmem zone as
3466 * highmem pages could be pinning lowmem pages storing buffer_heads
3467 */
3468 orig_mask = sc->gfp_mask;
3469 if (buffer_heads_over_limit) {
3470 sc->gfp_mask |= __GFP_HIGHMEM;
3471 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3472 }
3473
3474 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3475 sc->reclaim_idx, sc->nodemask) {
3476 /*
3477 * Take care memory controller reclaiming has small influence
3478 * to global LRU.
3479 */
3480 if (!cgroup_reclaim(sc)) {
3481 if (!cpuset_zone_allowed(zone,
3482 GFP_KERNEL | __GFP_HARDWALL))
3483 continue;
3484
3485 /*
3486 * If we already have plenty of memory free for
3487 * compaction in this zone, don't free any more.
3488 * Even though compaction is invoked for any
3489 * non-zero order, only frequent costly order
3490 * reclamation is disruptive enough to become a
3491 * noticeable problem, like transparent huge
3492 * page allocations.
3493 */
3494 if (IS_ENABLED(CONFIG_COMPACTION) &&
3495 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3496 compaction_ready(zone, sc)) {
3497 sc->compaction_ready = true;
3498 continue;
3499 }
3500
3501 /*
3502 * Shrink each node in the zonelist once. If the
3503 * zonelist is ordered by zone (not the default) then a
3504 * node may be shrunk multiple times but in that case
3505 * the user prefers lower zones being preserved.
3506 */
3507 if (zone->zone_pgdat == last_pgdat)
3508 continue;
3509
3510 /*
3511 * This steals pages from memory cgroups over softlimit
3512 * and returns the number of reclaimed pages and
3513 * scanned pages. This works for global memory pressure
3514 * and balancing, not for a memcg's limit.
3515 */
3516 nr_soft_scanned = 0;
3517 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3518 sc->order, sc->gfp_mask,
3519 &nr_soft_scanned);
3520 sc->nr_reclaimed += nr_soft_reclaimed;
3521 sc->nr_scanned += nr_soft_scanned;
3522 /* need some check for avoid more shrink_zone() */
3523 }
3524
3525 if (!first_pgdat)
3526 first_pgdat = zone->zone_pgdat;
3527
3528 /* See comment about same check for global reclaim above */
3529 if (zone->zone_pgdat == last_pgdat)
3530 continue;
3531 last_pgdat = zone->zone_pgdat;
3532 shrink_node(zone->zone_pgdat, sc);
3533 }
3534
3535 if (first_pgdat)
3536 consider_reclaim_throttle(first_pgdat, sc);
3537
3538 /*
3539 * Restore to original mask to avoid the impact on the caller if we
3540 * promoted it to __GFP_HIGHMEM.
3541 */
3542 sc->gfp_mask = orig_mask;
3543 }
3544
3545 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3546 {
3547 struct lruvec *target_lruvec;
3548 unsigned long refaults;
3549
3550 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3551 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3552 target_lruvec->refaults[0] = refaults;
3553 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3554 target_lruvec->refaults[1] = refaults;
3555 }
3556
3557 /*
3558 * This is the main entry point to direct page reclaim.
3559 *
3560 * If a full scan of the inactive list fails to free enough memory then we
3561 * are "out of memory" and something needs to be killed.
3562 *
3563 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3564 * high - the zone may be full of dirty or under-writeback pages, which this
3565 * caller can't do much about. We kick the writeback threads and take explicit
3566 * naps in the hope that some of these pages can be written. But if the
3567 * allocating task holds filesystem locks which prevent writeout this might not
3568 * work, and the allocation attempt will fail.
3569 *
3570 * returns: 0, if no pages reclaimed
3571 * else, the number of pages reclaimed
3572 */
3573 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3574 struct scan_control *sc)
3575 {
3576 int initial_priority = sc->priority;
3577 pg_data_t *last_pgdat;
3578 struct zoneref *z;
3579 struct zone *zone;
3580 retry:
3581 delayacct_freepages_start();
3582
3583 if (!cgroup_reclaim(sc))
3584 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3585
3586 do {
3587 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3588 sc->priority);
3589 sc->nr_scanned = 0;
3590 shrink_zones(zonelist, sc);
3591
3592 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3593 break;
3594
3595 if (sc->compaction_ready)
3596 break;
3597
3598 /*
3599 * If we're getting trouble reclaiming, start doing
3600 * writepage even in laptop mode.
3601 */
3602 if (sc->priority < DEF_PRIORITY - 2)
3603 sc->may_writepage = 1;
3604 } while (--sc->priority >= 0);
3605
3606 last_pgdat = NULL;
3607 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3608 sc->nodemask) {
3609 if (zone->zone_pgdat == last_pgdat)
3610 continue;
3611 last_pgdat = zone->zone_pgdat;
3612
3613 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3614
3615 if (cgroup_reclaim(sc)) {
3616 struct lruvec *lruvec;
3617
3618 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3619 zone->zone_pgdat);
3620 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3621 }
3622 }
3623
3624 delayacct_freepages_end();
3625
3626 if (sc->nr_reclaimed)
3627 return sc->nr_reclaimed;
3628
3629 /* Aborted reclaim to try compaction? don't OOM, then */
3630 if (sc->compaction_ready)
3631 return 1;
3632
3633 /*
3634 * We make inactive:active ratio decisions based on the node's
3635 * composition of memory, but a restrictive reclaim_idx or a
3636 * memory.low cgroup setting can exempt large amounts of
3637 * memory from reclaim. Neither of which are very common, so
3638 * instead of doing costly eligibility calculations of the
3639 * entire cgroup subtree up front, we assume the estimates are
3640 * good, and retry with forcible deactivation if that fails.
3641 */
3642 if (sc->skipped_deactivate) {
3643 sc->priority = initial_priority;
3644 sc->force_deactivate = 1;
3645 sc->skipped_deactivate = 0;
3646 goto retry;
3647 }
3648
3649 /* Untapped cgroup reserves? Don't OOM, retry. */
3650 if (sc->memcg_low_skipped) {
3651 sc->priority = initial_priority;
3652 sc->force_deactivate = 0;
3653 sc->memcg_low_reclaim = 1;
3654 sc->memcg_low_skipped = 0;
3655 goto retry;
3656 }
3657
3658 return 0;
3659 }
3660
3661 static bool allow_direct_reclaim(pg_data_t *pgdat)
3662 {
3663 struct zone *zone;
3664 unsigned long pfmemalloc_reserve = 0;
3665 unsigned long free_pages = 0;
3666 int i;
3667 bool wmark_ok;
3668
3669 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670 return true;
3671
3672 for (i = 0; i <= ZONE_NORMAL; i++) {
3673 zone = &pgdat->node_zones[i];
3674 if (!managed_zone(zone))
3675 continue;
3676
3677 if (!zone_reclaimable_pages(zone))
3678 continue;
3679
3680 pfmemalloc_reserve += min_wmark_pages(zone);
3681 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3682 }
3683
3684 /* If there are no reserves (unexpected config) then do not throttle */
3685 if (!pfmemalloc_reserve)
3686 return true;
3687
3688 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3689
3690 /* kswapd must be awake if processes are being throttled */
3691 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3692 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3693 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3694
3695 wake_up_interruptible(&pgdat->kswapd_wait);
3696 }
3697
3698 return wmark_ok;
3699 }
3700
3701 /*
3702 * Throttle direct reclaimers if backing storage is backed by the network
3703 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3704 * depleted. kswapd will continue to make progress and wake the processes
3705 * when the low watermark is reached.
3706 *
3707 * Returns true if a fatal signal was delivered during throttling. If this
3708 * happens, the page allocator should not consider triggering the OOM killer.
3709 */
3710 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3711 nodemask_t *nodemask)
3712 {
3713 struct zoneref *z;
3714 struct zone *zone;
3715 pg_data_t *pgdat = NULL;
3716
3717 /*
3718 * Kernel threads should not be throttled as they may be indirectly
3719 * responsible for cleaning pages necessary for reclaim to make forward
3720 * progress. kjournald for example may enter direct reclaim while
3721 * committing a transaction where throttling it could forcing other
3722 * processes to block on log_wait_commit().
3723 */
3724 if (current->flags & PF_KTHREAD)
3725 goto out;
3726
3727 /*
3728 * If a fatal signal is pending, this process should not throttle.
3729 * It should return quickly so it can exit and free its memory
3730 */
3731 if (fatal_signal_pending(current))
3732 goto out;
3733
3734 /*
3735 * Check if the pfmemalloc reserves are ok by finding the first node
3736 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3737 * GFP_KERNEL will be required for allocating network buffers when
3738 * swapping over the network so ZONE_HIGHMEM is unusable.
3739 *
3740 * Throttling is based on the first usable node and throttled processes
3741 * wait on a queue until kswapd makes progress and wakes them. There
3742 * is an affinity then between processes waking up and where reclaim
3743 * progress has been made assuming the process wakes on the same node.
3744 * More importantly, processes running on remote nodes will not compete
3745 * for remote pfmemalloc reserves and processes on different nodes
3746 * should make reasonable progress.
3747 */
3748 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3749 gfp_zone(gfp_mask), nodemask) {
3750 if (zone_idx(zone) > ZONE_NORMAL)
3751 continue;
3752
3753 /* Throttle based on the first usable node */
3754 pgdat = zone->zone_pgdat;
3755 if (allow_direct_reclaim(pgdat))
3756 goto out;
3757 break;
3758 }
3759
3760 /* If no zone was usable by the allocation flags then do not throttle */
3761 if (!pgdat)
3762 goto out;
3763
3764 /* Account for the throttling */
3765 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3766
3767 /*
3768 * If the caller cannot enter the filesystem, it's possible that it
3769 * is due to the caller holding an FS lock or performing a journal
3770 * transaction in the case of a filesystem like ext[3|4]. In this case,
3771 * it is not safe to block on pfmemalloc_wait as kswapd could be
3772 * blocked waiting on the same lock. Instead, throttle for up to a
3773 * second before continuing.
3774 */
3775 if (!(gfp_mask & __GFP_FS))
3776 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3777 allow_direct_reclaim(pgdat), HZ);
3778 else
3779 /* Throttle until kswapd wakes the process */
3780 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3781 allow_direct_reclaim(pgdat));
3782
3783 if (fatal_signal_pending(current))
3784 return true;
3785
3786 out:
3787 return false;
3788 }
3789
3790 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3791 gfp_t gfp_mask, nodemask_t *nodemask)
3792 {
3793 unsigned long nr_reclaimed;
3794 struct scan_control sc = {
3795 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3796 .gfp_mask = current_gfp_context(gfp_mask),
3797 .reclaim_idx = gfp_zone(gfp_mask),
3798 .order = order,
3799 .nodemask = nodemask,
3800 .priority = DEF_PRIORITY,
3801 .may_writepage = !laptop_mode,
3802 .may_unmap = 1,
3803 .may_swap = 1,
3804 };
3805
3806 /*
3807 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3808 * Confirm they are large enough for max values.
3809 */
3810 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3811 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3812 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3813
3814 /*
3815 * Do not enter reclaim if fatal signal was delivered while throttled.
3816 * 1 is returned so that the page allocator does not OOM kill at this
3817 * point.
3818 */
3819 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3820 return 1;
3821
3822 set_task_reclaim_state(current, &sc.reclaim_state);
3823 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3824
3825 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3826
3827 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3828 set_task_reclaim_state(current, NULL);
3829
3830 return nr_reclaimed;
3831 }
3832
3833 #ifdef CONFIG_MEMCG
3834
3835 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3836 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3837 gfp_t gfp_mask, bool noswap,
3838 pg_data_t *pgdat,
3839 unsigned long *nr_scanned)
3840 {
3841 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3842 struct scan_control sc = {
3843 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3844 .target_mem_cgroup = memcg,
3845 .may_writepage = !laptop_mode,
3846 .may_unmap = 1,
3847 .reclaim_idx = MAX_NR_ZONES - 1,
3848 .may_swap = !noswap,
3849 };
3850
3851 WARN_ON_ONCE(!current->reclaim_state);
3852
3853 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3854 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3855
3856 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3857 sc.gfp_mask);
3858
3859 /*
3860 * NOTE: Although we can get the priority field, using it
3861 * here is not a good idea, since it limits the pages we can scan.
3862 * if we don't reclaim here, the shrink_node from balance_pgdat
3863 * will pick up pages from other mem cgroup's as well. We hack
3864 * the priority and make it zero.
3865 */
3866 shrink_lruvec(lruvec, &sc);
3867
3868 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3869
3870 *nr_scanned = sc.nr_scanned;
3871
3872 return sc.nr_reclaimed;
3873 }
3874
3875 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3876 unsigned long nr_pages,
3877 gfp_t gfp_mask,
3878 bool may_swap)
3879 {
3880 unsigned long nr_reclaimed;
3881 unsigned int noreclaim_flag;
3882 struct scan_control sc = {
3883 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3884 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3885 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3886 .reclaim_idx = MAX_NR_ZONES - 1,
3887 .target_mem_cgroup = memcg,
3888 .priority = DEF_PRIORITY,
3889 .may_writepage = !laptop_mode,
3890 .may_unmap = 1,
3891 .may_swap = may_swap,
3892 };
3893 /*
3894 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3895 * equal pressure on all the nodes. This is based on the assumption that
3896 * the reclaim does not bail out early.
3897 */
3898 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3899
3900 set_task_reclaim_state(current, &sc.reclaim_state);
3901 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3902 noreclaim_flag = memalloc_noreclaim_save();
3903
3904 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3905
3906 memalloc_noreclaim_restore(noreclaim_flag);
3907 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3908 set_task_reclaim_state(current, NULL);
3909
3910 return nr_reclaimed;
3911 }
3912 #endif
3913
3914 static void age_active_anon(struct pglist_data *pgdat,
3915 struct scan_control *sc)
3916 {
3917 struct mem_cgroup *memcg;
3918 struct lruvec *lruvec;
3919
3920 if (!can_age_anon_pages(pgdat, sc))
3921 return;
3922
3923 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3924 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3925 return;
3926
3927 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3928 do {
3929 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3930 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3931 sc, LRU_ACTIVE_ANON);
3932 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3933 } while (memcg);
3934 }
3935
3936 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3937 {
3938 int i;
3939 struct zone *zone;
3940
3941 /*
3942 * Check for watermark boosts top-down as the higher zones
3943 * are more likely to be boosted. Both watermarks and boosts
3944 * should not be checked at the same time as reclaim would
3945 * start prematurely when there is no boosting and a lower
3946 * zone is balanced.
3947 */
3948 for (i = highest_zoneidx; i >= 0; i--) {
3949 zone = pgdat->node_zones + i;
3950 if (!managed_zone(zone))
3951 continue;
3952
3953 if (zone->watermark_boost)
3954 return true;
3955 }
3956
3957 return false;
3958 }
3959
3960 /*
3961 * Returns true if there is an eligible zone balanced for the request order
3962 * and highest_zoneidx
3963 */
3964 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3965 {
3966 int i;
3967 unsigned long mark = -1;
3968 struct zone *zone;
3969
3970 /*
3971 * Check watermarks bottom-up as lower zones are more likely to
3972 * meet watermarks.
3973 */
3974 for (i = 0; i <= highest_zoneidx; i++) {
3975 zone = pgdat->node_zones + i;
3976
3977 if (!managed_zone(zone))
3978 continue;
3979
3980 mark = high_wmark_pages(zone);
3981 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3982 return true;
3983 }
3984
3985 /*
3986 * If a node has no populated zone within highest_zoneidx, it does not
3987 * need balancing by definition. This can happen if a zone-restricted
3988 * allocation tries to wake a remote kswapd.
3989 */
3990 if (mark == -1)
3991 return true;
3992
3993 return false;
3994 }
3995
3996 /* Clear pgdat state for congested, dirty or under writeback. */
3997 static void clear_pgdat_congested(pg_data_t *pgdat)
3998 {
3999 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4000
4001 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4002 clear_bit(PGDAT_DIRTY, &pgdat->flags);
4003 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4004 }
4005
4006 /*
4007 * Prepare kswapd for sleeping. This verifies that there are no processes
4008 * waiting in throttle_direct_reclaim() and that watermarks have been met.
4009 *
4010 * Returns true if kswapd is ready to sleep
4011 */
4012 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4013 int highest_zoneidx)
4014 {
4015 /*
4016 * The throttled processes are normally woken up in balance_pgdat() as
4017 * soon as allow_direct_reclaim() is true. But there is a potential
4018 * race between when kswapd checks the watermarks and a process gets
4019 * throttled. There is also a potential race if processes get
4020 * throttled, kswapd wakes, a large process exits thereby balancing the
4021 * zones, which causes kswapd to exit balance_pgdat() before reaching
4022 * the wake up checks. If kswapd is going to sleep, no process should
4023 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4024 * the wake up is premature, processes will wake kswapd and get
4025 * throttled again. The difference from wake ups in balance_pgdat() is
4026 * that here we are under prepare_to_wait().
4027 */
4028 if (waitqueue_active(&pgdat->pfmemalloc_wait))
4029 wake_up_all(&pgdat->pfmemalloc_wait);
4030
4031 /* Hopeless node, leave it to direct reclaim */
4032 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4033 return true;
4034
4035 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4036 clear_pgdat_congested(pgdat);
4037 return true;
4038 }
4039
4040 return false;
4041 }
4042
4043 /*
4044 * kswapd shrinks a node of pages that are at or below the highest usable
4045 * zone that is currently unbalanced.
4046 *
4047 * Returns true if kswapd scanned at least the requested number of pages to
4048 * reclaim or if the lack of progress was due to pages under writeback.
4049 * This is used to determine if the scanning priority needs to be raised.
4050 */
4051 static bool kswapd_shrink_node(pg_data_t *pgdat,
4052 struct scan_control *sc)
4053 {
4054 struct zone *zone;
4055 int z;
4056
4057 /* Reclaim a number of pages proportional to the number of zones */
4058 sc->nr_to_reclaim = 0;
4059 for (z = 0; z <= sc->reclaim_idx; z++) {
4060 zone = pgdat->node_zones + z;
4061 if (!managed_zone(zone))
4062 continue;
4063
4064 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4065 }
4066
4067 /*
4068 * Historically care was taken to put equal pressure on all zones but
4069 * now pressure is applied based on node LRU order.
4070 */
4071 shrink_node(pgdat, sc);
4072
4073 /*
4074 * Fragmentation may mean that the system cannot be rebalanced for
4075 * high-order allocations. If twice the allocation size has been
4076 * reclaimed then recheck watermarks only at order-0 to prevent
4077 * excessive reclaim. Assume that a process requested a high-order
4078 * can direct reclaim/compact.
4079 */
4080 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4081 sc->order = 0;
4082
4083 return sc->nr_scanned >= sc->nr_to_reclaim;
4084 }
4085
4086 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4087 static inline void
4088 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4089 {
4090 int i;
4091 struct zone *zone;
4092
4093 for (i = 0; i <= highest_zoneidx; i++) {
4094 zone = pgdat->node_zones + i;
4095
4096 if (!managed_zone(zone))
4097 continue;
4098
4099 if (active)
4100 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4101 else
4102 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4103 }
4104 }
4105
4106 static inline void
4107 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4108 {
4109 update_reclaim_active(pgdat, highest_zoneidx, true);
4110 }
4111
4112 static inline void
4113 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4114 {
4115 update_reclaim_active(pgdat, highest_zoneidx, false);
4116 }
4117
4118 /*
4119 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4120 * that are eligible for use by the caller until at least one zone is
4121 * balanced.
4122 *
4123 * Returns the order kswapd finished reclaiming at.
4124 *
4125 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4126 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4127 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4128 * or lower is eligible for reclaim until at least one usable zone is
4129 * balanced.
4130 */
4131 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4132 {
4133 int i;
4134 unsigned long nr_soft_reclaimed;
4135 unsigned long nr_soft_scanned;
4136 unsigned long pflags;
4137 unsigned long nr_boost_reclaim;
4138 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4139 bool boosted;
4140 struct zone *zone;
4141 struct scan_control sc = {
4142 .gfp_mask = GFP_KERNEL,
4143 .order = order,
4144 .may_unmap = 1,
4145 };
4146
4147 set_task_reclaim_state(current, &sc.reclaim_state);
4148 psi_memstall_enter(&pflags);
4149 __fs_reclaim_acquire(_THIS_IP_);
4150
4151 count_vm_event(PAGEOUTRUN);
4152
4153 /*
4154 * Account for the reclaim boost. Note that the zone boost is left in
4155 * place so that parallel allocations that are near the watermark will
4156 * stall or direct reclaim until kswapd is finished.
4157 */
4158 nr_boost_reclaim = 0;
4159 for (i = 0; i <= highest_zoneidx; i++) {
4160 zone = pgdat->node_zones + i;
4161 if (!managed_zone(zone))
4162 continue;
4163
4164 nr_boost_reclaim += zone->watermark_boost;
4165 zone_boosts[i] = zone->watermark_boost;
4166 }
4167 boosted = nr_boost_reclaim;
4168
4169 restart:
4170 set_reclaim_active(pgdat, highest_zoneidx);
4171 sc.priority = DEF_PRIORITY;
4172 do {
4173 unsigned long nr_reclaimed = sc.nr_reclaimed;
4174 bool raise_priority = true;
4175 bool balanced;
4176 bool ret;
4177
4178 sc.reclaim_idx = highest_zoneidx;
4179
4180 /*
4181 * If the number of buffer_heads exceeds the maximum allowed
4182 * then consider reclaiming from all zones. This has a dual
4183 * purpose -- on 64-bit systems it is expected that
4184 * buffer_heads are stripped during active rotation. On 32-bit
4185 * systems, highmem pages can pin lowmem memory and shrinking
4186 * buffers can relieve lowmem pressure. Reclaim may still not
4187 * go ahead if all eligible zones for the original allocation
4188 * request are balanced to avoid excessive reclaim from kswapd.
4189 */
4190 if (buffer_heads_over_limit) {
4191 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4192 zone = pgdat->node_zones + i;
4193 if (!managed_zone(zone))
4194 continue;
4195
4196 sc.reclaim_idx = i;
4197 break;
4198 }
4199 }
4200
4201 /*
4202 * If the pgdat is imbalanced then ignore boosting and preserve
4203 * the watermarks for a later time and restart. Note that the
4204 * zone watermarks will be still reset at the end of balancing
4205 * on the grounds that the normal reclaim should be enough to
4206 * re-evaluate if boosting is required when kswapd next wakes.
4207 */
4208 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4209 if (!balanced && nr_boost_reclaim) {
4210 nr_boost_reclaim = 0;
4211 goto restart;
4212 }
4213
4214 /*
4215 * If boosting is not active then only reclaim if there are no
4216 * eligible zones. Note that sc.reclaim_idx is not used as
4217 * buffer_heads_over_limit may have adjusted it.
4218 */
4219 if (!nr_boost_reclaim && balanced)
4220 goto out;
4221
4222 /* Limit the priority of boosting to avoid reclaim writeback */
4223 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4224 raise_priority = false;
4225
4226 /*
4227 * Do not writeback or swap pages for boosted reclaim. The
4228 * intent is to relieve pressure not issue sub-optimal IO
4229 * from reclaim context. If no pages are reclaimed, the
4230 * reclaim will be aborted.
4231 */
4232 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4233 sc.may_swap = !nr_boost_reclaim;
4234
4235 /*
4236 * Do some background aging of the anon list, to give
4237 * pages a chance to be referenced before reclaiming. All
4238 * pages are rotated regardless of classzone as this is
4239 * about consistent aging.
4240 */
4241 age_active_anon(pgdat, &sc);
4242
4243 /*
4244 * If we're getting trouble reclaiming, start doing writepage
4245 * even in laptop mode.
4246 */
4247 if (sc.priority < DEF_PRIORITY - 2)
4248 sc.may_writepage = 1;
4249
4250 /* Call soft limit reclaim before calling shrink_node. */
4251 sc.nr_scanned = 0;
4252 nr_soft_scanned = 0;
4253 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4254 sc.gfp_mask, &nr_soft_scanned);
4255 sc.nr_reclaimed += nr_soft_reclaimed;
4256
4257 /*
4258 * There should be no need to raise the scanning priority if
4259 * enough pages are already being scanned that that high
4260 * watermark would be met at 100% efficiency.
4261 */
4262 if (kswapd_shrink_node(pgdat, &sc))
4263 raise_priority = false;
4264
4265 /*
4266 * If the low watermark is met there is no need for processes
4267 * to be throttled on pfmemalloc_wait as they should not be
4268 * able to safely make forward progress. Wake them
4269 */
4270 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4271 allow_direct_reclaim(pgdat))
4272 wake_up_all(&pgdat->pfmemalloc_wait);
4273
4274 /* Check if kswapd should be suspending */
4275 __fs_reclaim_release(_THIS_IP_);
4276 ret = try_to_freeze();
4277 __fs_reclaim_acquire(_THIS_IP_);
4278 if (ret || kthread_should_stop())
4279 break;
4280
4281 /*
4282 * Raise priority if scanning rate is too low or there was no
4283 * progress in reclaiming pages
4284 */
4285 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4286 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4287
4288 /*
4289 * If reclaim made no progress for a boost, stop reclaim as
4290 * IO cannot be queued and it could be an infinite loop in
4291 * extreme circumstances.
4292 */
4293 if (nr_boost_reclaim && !nr_reclaimed)
4294 break;
4295
4296 if (raise_priority || !nr_reclaimed)
4297 sc.priority--;
4298 } while (sc.priority >= 1);
4299
4300 if (!sc.nr_reclaimed)
4301 pgdat->kswapd_failures++;
4302
4303 out:
4304 clear_reclaim_active(pgdat, highest_zoneidx);
4305
4306 /* If reclaim was boosted, account for the reclaim done in this pass */
4307 if (boosted) {
4308 unsigned long flags;
4309
4310 for (i = 0; i <= highest_zoneidx; i++) {
4311 if (!zone_boosts[i])
4312 continue;
4313
4314 /* Increments are under the zone lock */
4315 zone = pgdat->node_zones + i;
4316 spin_lock_irqsave(&zone->lock, flags);
4317 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4318 spin_unlock_irqrestore(&zone->lock, flags);
4319 }
4320
4321 /*
4322 * As there is now likely space, wakeup kcompact to defragment
4323 * pageblocks.
4324 */
4325 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4326 }
4327
4328 snapshot_refaults(NULL, pgdat);
4329 __fs_reclaim_release(_THIS_IP_);
4330 psi_memstall_leave(&pflags);
4331 set_task_reclaim_state(current, NULL);
4332
4333 /*
4334 * Return the order kswapd stopped reclaiming at as
4335 * prepare_kswapd_sleep() takes it into account. If another caller
4336 * entered the allocator slow path while kswapd was awake, order will
4337 * remain at the higher level.
4338 */
4339 return sc.order;
4340 }
4341
4342 /*
4343 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4344 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4345 * not a valid index then either kswapd runs for first time or kswapd couldn't
4346 * sleep after previous reclaim attempt (node is still unbalanced). In that
4347 * case return the zone index of the previous kswapd reclaim cycle.
4348 */
4349 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4350 enum zone_type prev_highest_zoneidx)
4351 {
4352 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4353
4354 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4355 }
4356
4357 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4358 unsigned int highest_zoneidx)
4359 {
4360 long remaining = 0;
4361 DEFINE_WAIT(wait);
4362
4363 if (freezing(current) || kthread_should_stop())
4364 return;
4365
4366 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4367
4368 /*
4369 * Try to sleep for a short interval. Note that kcompactd will only be
4370 * woken if it is possible to sleep for a short interval. This is
4371 * deliberate on the assumption that if reclaim cannot keep an
4372 * eligible zone balanced that it's also unlikely that compaction will
4373 * succeed.
4374 */
4375 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4376 /*
4377 * Compaction records what page blocks it recently failed to
4378 * isolate pages from and skips them in the future scanning.
4379 * When kswapd is going to sleep, it is reasonable to assume
4380 * that pages and compaction may succeed so reset the cache.
4381 */
4382 reset_isolation_suitable(pgdat);
4383
4384 /*
4385 * We have freed the memory, now we should compact it to make
4386 * allocation of the requested order possible.
4387 */
4388 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4389
4390 remaining = schedule_timeout(HZ/10);
4391
4392 /*
4393 * If woken prematurely then reset kswapd_highest_zoneidx and
4394 * order. The values will either be from a wakeup request or
4395 * the previous request that slept prematurely.
4396 */
4397 if (remaining) {
4398 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4399 kswapd_highest_zoneidx(pgdat,
4400 highest_zoneidx));
4401
4402 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4403 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4404 }
4405
4406 finish_wait(&pgdat->kswapd_wait, &wait);
4407 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4408 }
4409
4410 /*
4411 * After a short sleep, check if it was a premature sleep. If not, then
4412 * go fully to sleep until explicitly woken up.
4413 */
4414 if (!remaining &&
4415 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4416 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4417
4418 /*
4419 * vmstat counters are not perfectly accurate and the estimated
4420 * value for counters such as NR_FREE_PAGES can deviate from the
4421 * true value by nr_online_cpus * threshold. To avoid the zone
4422 * watermarks being breached while under pressure, we reduce the
4423 * per-cpu vmstat threshold while kswapd is awake and restore
4424 * them before going back to sleep.
4425 */
4426 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4427
4428 if (!kthread_should_stop())
4429 schedule();
4430
4431 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4432 } else {
4433 if (remaining)
4434 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4435 else
4436 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4437 }
4438 finish_wait(&pgdat->kswapd_wait, &wait);
4439 }
4440
4441 /*
4442 * The background pageout daemon, started as a kernel thread
4443 * from the init process.
4444 *
4445 * This basically trickles out pages so that we have _some_
4446 * free memory available even if there is no other activity
4447 * that frees anything up. This is needed for things like routing
4448 * etc, where we otherwise might have all activity going on in
4449 * asynchronous contexts that cannot page things out.
4450 *
4451 * If there are applications that are active memory-allocators
4452 * (most normal use), this basically shouldn't matter.
4453 */
4454 static int kswapd(void *p)
4455 {
4456 unsigned int alloc_order, reclaim_order;
4457 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4458 pg_data_t *pgdat = (pg_data_t *)p;
4459 struct task_struct *tsk = current;
4460 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4461
4462 if (!cpumask_empty(cpumask))
4463 set_cpus_allowed_ptr(tsk, cpumask);
4464
4465 /*
4466 * Tell the memory management that we're a "memory allocator",
4467 * and that if we need more memory we should get access to it
4468 * regardless (see "__alloc_pages()"). "kswapd" should
4469 * never get caught in the normal page freeing logic.
4470 *
4471 * (Kswapd normally doesn't need memory anyway, but sometimes
4472 * you need a small amount of memory in order to be able to
4473 * page out something else, and this flag essentially protects
4474 * us from recursively trying to free more memory as we're
4475 * trying to free the first piece of memory in the first place).
4476 */
4477 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4478 set_freezable();
4479
4480 WRITE_ONCE(pgdat->kswapd_order, 0);
4481 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4482 atomic_set(&pgdat->nr_writeback_throttled, 0);
4483 for ( ; ; ) {
4484 bool ret;
4485
4486 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4487 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4488 highest_zoneidx);
4489
4490 kswapd_try_sleep:
4491 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4492 highest_zoneidx);
4493
4494 /* Read the new order and highest_zoneidx */
4495 alloc_order = READ_ONCE(pgdat->kswapd_order);
4496 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4497 highest_zoneidx);
4498 WRITE_ONCE(pgdat->kswapd_order, 0);
4499 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4500
4501 ret = try_to_freeze();
4502 if (kthread_should_stop())
4503 break;
4504
4505 /*
4506 * We can speed up thawing tasks if we don't call balance_pgdat
4507 * after returning from the refrigerator
4508 */
4509 if (ret)
4510 continue;
4511
4512 /*
4513 * Reclaim begins at the requested order but if a high-order
4514 * reclaim fails then kswapd falls back to reclaiming for
4515 * order-0. If that happens, kswapd will consider sleeping
4516 * for the order it finished reclaiming at (reclaim_order)
4517 * but kcompactd is woken to compact for the original
4518 * request (alloc_order).
4519 */
4520 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4521 alloc_order);
4522 reclaim_order = balance_pgdat(pgdat, alloc_order,
4523 highest_zoneidx);
4524 if (reclaim_order < alloc_order)
4525 goto kswapd_try_sleep;
4526 }
4527
4528 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4529
4530 return 0;
4531 }
4532
4533 /*
4534 * A zone is low on free memory or too fragmented for high-order memory. If
4535 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4536 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4537 * has failed or is not needed, still wake up kcompactd if only compaction is
4538 * needed.
4539 */
4540 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4541 enum zone_type highest_zoneidx)
4542 {
4543 pg_data_t *pgdat;
4544 enum zone_type curr_idx;
4545
4546 if (!managed_zone(zone))
4547 return;
4548
4549 if (!cpuset_zone_allowed(zone, gfp_flags))
4550 return;
4551
4552 pgdat = zone->zone_pgdat;
4553 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4554
4555 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4556 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4557
4558 if (READ_ONCE(pgdat->kswapd_order) < order)
4559 WRITE_ONCE(pgdat->kswapd_order, order);
4560
4561 if (!waitqueue_active(&pgdat->kswapd_wait))
4562 return;
4563
4564 /* Hopeless node, leave it to direct reclaim if possible */
4565 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4566 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4567 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4568 /*
4569 * There may be plenty of free memory available, but it's too
4570 * fragmented for high-order allocations. Wake up kcompactd
4571 * and rely on compaction_suitable() to determine if it's
4572 * needed. If it fails, it will defer subsequent attempts to
4573 * ratelimit its work.
4574 */
4575 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4576 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4577 return;
4578 }
4579
4580 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4581 gfp_flags);
4582 wake_up_interruptible(&pgdat->kswapd_wait);
4583 }
4584
4585 #ifdef CONFIG_HIBERNATION
4586 /*
4587 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4588 * freed pages.
4589 *
4590 * Rather than trying to age LRUs the aim is to preserve the overall
4591 * LRU order by reclaiming preferentially
4592 * inactive > active > active referenced > active mapped
4593 */
4594 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4595 {
4596 struct scan_control sc = {
4597 .nr_to_reclaim = nr_to_reclaim,
4598 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4599 .reclaim_idx = MAX_NR_ZONES - 1,
4600 .priority = DEF_PRIORITY,
4601 .may_writepage = 1,
4602 .may_unmap = 1,
4603 .may_swap = 1,
4604 .hibernation_mode = 1,
4605 };
4606 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4607 unsigned long nr_reclaimed;
4608 unsigned int noreclaim_flag;
4609
4610 fs_reclaim_acquire(sc.gfp_mask);
4611 noreclaim_flag = memalloc_noreclaim_save();
4612 set_task_reclaim_state(current, &sc.reclaim_state);
4613
4614 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4615
4616 set_task_reclaim_state(current, NULL);
4617 memalloc_noreclaim_restore(noreclaim_flag);
4618 fs_reclaim_release(sc.gfp_mask);
4619
4620 return nr_reclaimed;
4621 }
4622 #endif /* CONFIG_HIBERNATION */
4623
4624 /*
4625 * This kswapd start function will be called by init and node-hot-add.
4626 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4627 */
4628 void kswapd_run(int nid)
4629 {
4630 pg_data_t *pgdat = NODE_DATA(nid);
4631
4632 if (pgdat->kswapd)
4633 return;
4634
4635 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4636 if (IS_ERR(pgdat->kswapd)) {
4637 /* failure at boot is fatal */
4638 BUG_ON(system_state < SYSTEM_RUNNING);
4639 pr_err("Failed to start kswapd on node %d\n", nid);
4640 pgdat->kswapd = NULL;
4641 }
4642 }
4643
4644 /*
4645 * Called by memory hotplug when all memory in a node is offlined. Caller must
4646 * hold mem_hotplug_begin/end().
4647 */
4648 void kswapd_stop(int nid)
4649 {
4650 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4651
4652 if (kswapd) {
4653 kthread_stop(kswapd);
4654 NODE_DATA(nid)->kswapd = NULL;
4655 }
4656 }
4657
4658 static int __init kswapd_init(void)
4659 {
4660 int nid;
4661
4662 swap_setup();
4663 for_each_node_state(nid, N_MEMORY)
4664 kswapd_run(nid);
4665 return 0;
4666 }
4667
4668 module_init(kswapd_init)
4669
4670 #ifdef CONFIG_NUMA
4671 /*
4672 * Node reclaim mode
4673 *
4674 * If non-zero call node_reclaim when the number of free pages falls below
4675 * the watermarks.
4676 */
4677 int node_reclaim_mode __read_mostly;
4678
4679 /*
4680 * Priority for NODE_RECLAIM. This determines the fraction of pages
4681 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4682 * a zone.
4683 */
4684 #define NODE_RECLAIM_PRIORITY 4
4685
4686 /*
4687 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4688 * occur.
4689 */
4690 int sysctl_min_unmapped_ratio = 1;
4691
4692 /*
4693 * If the number of slab pages in a zone grows beyond this percentage then
4694 * slab reclaim needs to occur.
4695 */
4696 int sysctl_min_slab_ratio = 5;
4697
4698 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4699 {
4700 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4701 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4702 node_page_state(pgdat, NR_ACTIVE_FILE);
4703
4704 /*
4705 * It's possible for there to be more file mapped pages than
4706 * accounted for by the pages on the file LRU lists because
4707 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4708 */
4709 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4710 }
4711
4712 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4713 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4714 {
4715 unsigned long nr_pagecache_reclaimable;
4716 unsigned long delta = 0;
4717
4718 /*
4719 * If RECLAIM_UNMAP is set, then all file pages are considered
4720 * potentially reclaimable. Otherwise, we have to worry about
4721 * pages like swapcache and node_unmapped_file_pages() provides
4722 * a better estimate
4723 */
4724 if (node_reclaim_mode & RECLAIM_UNMAP)
4725 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4726 else
4727 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4728
4729 /* If we can't clean pages, remove dirty pages from consideration */
4730 if (!(node_reclaim_mode & RECLAIM_WRITE))
4731 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4732
4733 /* Watch for any possible underflows due to delta */
4734 if (unlikely(delta > nr_pagecache_reclaimable))
4735 delta = nr_pagecache_reclaimable;
4736
4737 return nr_pagecache_reclaimable - delta;
4738 }
4739
4740 /*
4741 * Try to free up some pages from this node through reclaim.
4742 */
4743 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4744 {
4745 /* Minimum pages needed in order to stay on node */
4746 const unsigned long nr_pages = 1 << order;
4747 struct task_struct *p = current;
4748 unsigned int noreclaim_flag;
4749 struct scan_control sc = {
4750 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4751 .gfp_mask = current_gfp_context(gfp_mask),
4752 .order = order,
4753 .priority = NODE_RECLAIM_PRIORITY,
4754 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4755 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4756 .may_swap = 1,
4757 .reclaim_idx = gfp_zone(gfp_mask),
4758 };
4759 unsigned long pflags;
4760
4761 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4762 sc.gfp_mask);
4763
4764 cond_resched();
4765 psi_memstall_enter(&pflags);
4766 fs_reclaim_acquire(sc.gfp_mask);
4767 /*
4768 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4769 * and we also need to be able to write out pages for RECLAIM_WRITE
4770 * and RECLAIM_UNMAP.
4771 */
4772 noreclaim_flag = memalloc_noreclaim_save();
4773 p->flags |= PF_SWAPWRITE;
4774 set_task_reclaim_state(p, &sc.reclaim_state);
4775
4776 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4777 /*
4778 * Free memory by calling shrink node with increasing
4779 * priorities until we have enough memory freed.
4780 */
4781 do {
4782 shrink_node(pgdat, &sc);
4783 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4784 }
4785
4786 set_task_reclaim_state(p, NULL);
4787 current->flags &= ~PF_SWAPWRITE;
4788 memalloc_noreclaim_restore(noreclaim_flag);
4789 fs_reclaim_release(sc.gfp_mask);
4790 psi_memstall_leave(&pflags);
4791
4792 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4793
4794 return sc.nr_reclaimed >= nr_pages;
4795 }
4796
4797 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4798 {
4799 int ret;
4800
4801 /*
4802 * Node reclaim reclaims unmapped file backed pages and
4803 * slab pages if we are over the defined limits.
4804 *
4805 * A small portion of unmapped file backed pages is needed for
4806 * file I/O otherwise pages read by file I/O will be immediately
4807 * thrown out if the node is overallocated. So we do not reclaim
4808 * if less than a specified percentage of the node is used by
4809 * unmapped file backed pages.
4810 */
4811 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4812 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4813 pgdat->min_slab_pages)
4814 return NODE_RECLAIM_FULL;
4815
4816 /*
4817 * Do not scan if the allocation should not be delayed.
4818 */
4819 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4820 return NODE_RECLAIM_NOSCAN;
4821
4822 /*
4823 * Only run node reclaim on the local node or on nodes that do not
4824 * have associated processors. This will favor the local processor
4825 * over remote processors and spread off node memory allocations
4826 * as wide as possible.
4827 */
4828 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4829 return NODE_RECLAIM_NOSCAN;
4830
4831 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4832 return NODE_RECLAIM_NOSCAN;
4833
4834 ret = __node_reclaim(pgdat, gfp_mask, order);
4835 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4836
4837 if (!ret)
4838 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4839
4840 return ret;
4841 }
4842 #endif
4843
4844 /**
4845 * check_move_unevictable_pages - check pages for evictability and move to
4846 * appropriate zone lru list
4847 * @pvec: pagevec with lru pages to check
4848 *
4849 * Checks pages for evictability, if an evictable page is in the unevictable
4850 * lru list, moves it to the appropriate evictable lru list. This function
4851 * should be only used for lru pages.
4852 */
4853 void check_move_unevictable_pages(struct pagevec *pvec)
4854 {
4855 struct lruvec *lruvec = NULL;
4856 int pgscanned = 0;
4857 int pgrescued = 0;
4858 int i;
4859
4860 for (i = 0; i < pvec->nr; i++) {
4861 struct page *page = pvec->pages[i];
4862 struct folio *folio = page_folio(page);
4863 int nr_pages;
4864
4865 if (PageTransTail(page))
4866 continue;
4867
4868 nr_pages = thp_nr_pages(page);
4869 pgscanned += nr_pages;
4870
4871 /* block memcg migration during page moving between lru */
4872 if (!TestClearPageLRU(page))
4873 continue;
4874
4875 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4876 if (page_evictable(page) && PageUnevictable(page)) {
4877 del_page_from_lru_list(page, lruvec);
4878 ClearPageUnevictable(page);
4879 add_page_to_lru_list(page, lruvec);
4880 pgrescued += nr_pages;
4881 }
4882 SetPageLRU(page);
4883 }
4884
4885 if (lruvec) {
4886 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4887 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4888 unlock_page_lruvec_irq(lruvec);
4889 } else if (pgscanned) {
4890 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4891 }
4892 }
4893 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);