]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
mm, vmscan: do not loop on too_many_isolated for ever
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/sched/mm.h>
18 #include <linux/module.h>
19 #include <linux/gfp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/highmem.h>
25 #include <linux/vmpressure.h>
26 #include <linux/vmstat.h>
27 #include <linux/file.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30 #include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32 #include <linux/mm_inline.h>
33 #include <linux/backing-dev.h>
34 #include <linux/rmap.h>
35 #include <linux/topology.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/compaction.h>
39 #include <linux/notifier.h>
40 #include <linux/rwsem.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
44 #include <linux/memcontrol.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54
55 #include <linux/swapops.h>
56 #include <linux/balloon_compaction.h>
57
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/vmscan.h>
62
63 struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /*
101 * Cgroups are not reclaimed below their configured memory.low,
102 * unless we threaten to OOM. If any cgroups are skipped due to
103 * memory.low and nothing was reclaimed, go back for memory.low.
104 */
105 unsigned int memcg_low_reclaim:1;
106 unsigned int memcg_low_skipped:1;
107
108 unsigned int hibernation_mode:1;
109
110 /* One of the zones is ready for compaction */
111 unsigned int compaction_ready:1;
112
113 /* Incremented by the number of inactive pages that were scanned */
114 unsigned long nr_scanned;
115
116 /* Number of pages freed so far during a call to shrink_zones() */
117 unsigned long nr_reclaimed;
118 };
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field) \
122 do { \
123 if ((_page)->lru.prev != _base) { \
124 struct page *prev; \
125 \
126 prev = lru_to_page(&(_page->lru)); \
127 prefetch(&prev->_field); \
128 } \
129 } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 do { \
137 if ((_page)->lru.prev != _base) { \
138 struct page *prev; \
139 \
140 prev = lru_to_page(&(_page->lru)); \
141 prefetchw(&prev->_field); \
142 } \
143 } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149 * From 0 .. 100. Higher means more swappy.
150 */
151 int vm_swappiness = 60;
152 /*
153 * The total number of pages which are beyond the high watermark within all
154 * zones.
155 */
156 unsigned long vm_total_pages;
157
158 static LIST_HEAD(shrinker_list);
159 static DECLARE_RWSEM(shrinker_rwsem);
160
161 #ifdef CONFIG_MEMCG
162 static bool global_reclaim(struct scan_control *sc)
163 {
164 return !sc->target_mem_cgroup;
165 }
166
167 /**
168 * sane_reclaim - is the usual dirty throttling mechanism operational?
169 * @sc: scan_control in question
170 *
171 * The normal page dirty throttling mechanism in balance_dirty_pages() is
172 * completely broken with the legacy memcg and direct stalling in
173 * shrink_page_list() is used for throttling instead, which lacks all the
174 * niceties such as fairness, adaptive pausing, bandwidth proportional
175 * allocation and configurability.
176 *
177 * This function tests whether the vmscan currently in progress can assume
178 * that the normal dirty throttling mechanism is operational.
179 */
180 static bool sane_reclaim(struct scan_control *sc)
181 {
182 struct mem_cgroup *memcg = sc->target_mem_cgroup;
183
184 if (!memcg)
185 return true;
186 #ifdef CONFIG_CGROUP_WRITEBACK
187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
188 return true;
189 #endif
190 return false;
191 }
192 #else
193 static bool global_reclaim(struct scan_control *sc)
194 {
195 return true;
196 }
197
198 static bool sane_reclaim(struct scan_control *sc)
199 {
200 return true;
201 }
202 #endif
203
204 /*
205 * This misses isolated pages which are not accounted for to save counters.
206 * As the data only determines if reclaim or compaction continues, it is
207 * not expected that isolated pages will be a dominating factor.
208 */
209 unsigned long zone_reclaimable_pages(struct zone *zone)
210 {
211 unsigned long nr;
212
213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
215 if (get_nr_swap_pages() > 0)
216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
218
219 return nr;
220 }
221
222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
223 {
224 unsigned long nr;
225
226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
229
230 if (get_nr_swap_pages() > 0)
231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
234
235 return nr;
236 }
237
238 /**
239 * lruvec_lru_size - Returns the number of pages on the given LRU list.
240 * @lruvec: lru vector
241 * @lru: lru to use
242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 */
244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 {
246 unsigned long lru_size;
247 int zid;
248
249 if (!mem_cgroup_disabled())
250 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
251 else
252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253
254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
256 unsigned long size;
257
258 if (!managed_zone(zone))
259 continue;
260
261 if (!mem_cgroup_disabled())
262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
263 else
264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
265 NR_ZONE_LRU_BASE + lru);
266 lru_size -= min(size, lru_size);
267 }
268
269 return lru_size;
270
271 }
272
273 /*
274 * Add a shrinker callback to be called from the vm.
275 */
276 int register_shrinker(struct shrinker *shrinker)
277 {
278 size_t size = sizeof(*shrinker->nr_deferred);
279
280 if (shrinker->flags & SHRINKER_NUMA_AWARE)
281 size *= nr_node_ids;
282
283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
284 if (!shrinker->nr_deferred)
285 return -ENOMEM;
286
287 down_write(&shrinker_rwsem);
288 list_add_tail(&shrinker->list, &shrinker_list);
289 up_write(&shrinker_rwsem);
290 return 0;
291 }
292 EXPORT_SYMBOL(register_shrinker);
293
294 /*
295 * Remove one
296 */
297 void unregister_shrinker(struct shrinker *shrinker)
298 {
299 down_write(&shrinker_rwsem);
300 list_del(&shrinker->list);
301 up_write(&shrinker_rwsem);
302 kfree(shrinker->nr_deferred);
303 }
304 EXPORT_SYMBOL(unregister_shrinker);
305
306 #define SHRINK_BATCH 128
307
308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
309 struct shrinker *shrinker,
310 unsigned long nr_scanned,
311 unsigned long nr_eligible)
312 {
313 unsigned long freed = 0;
314 unsigned long long delta;
315 long total_scan;
316 long freeable;
317 long nr;
318 long new_nr;
319 int nid = shrinkctl->nid;
320 long batch_size = shrinker->batch ? shrinker->batch
321 : SHRINK_BATCH;
322 long scanned = 0, next_deferred;
323
324 freeable = shrinker->count_objects(shrinker, shrinkctl);
325 if (freeable == 0)
326 return 0;
327
328 /*
329 * copy the current shrinker scan count into a local variable
330 * and zero it so that other concurrent shrinker invocations
331 * don't also do this scanning work.
332 */
333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334
335 total_scan = nr;
336 delta = (4 * nr_scanned) / shrinker->seeks;
337 delta *= freeable;
338 do_div(delta, nr_eligible + 1);
339 total_scan += delta;
340 if (total_scan < 0) {
341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
342 shrinker->scan_objects, total_scan);
343 total_scan = freeable;
344 next_deferred = nr;
345 } else
346 next_deferred = total_scan;
347
348 /*
349 * We need to avoid excessive windup on filesystem shrinkers
350 * due to large numbers of GFP_NOFS allocations causing the
351 * shrinkers to return -1 all the time. This results in a large
352 * nr being built up so when a shrink that can do some work
353 * comes along it empties the entire cache due to nr >>>
354 * freeable. This is bad for sustaining a working set in
355 * memory.
356 *
357 * Hence only allow the shrinker to scan the entire cache when
358 * a large delta change is calculated directly.
359 */
360 if (delta < freeable / 4)
361 total_scan = min(total_scan, freeable / 2);
362
363 /*
364 * Avoid risking looping forever due to too large nr value:
365 * never try to free more than twice the estimate number of
366 * freeable entries.
367 */
368 if (total_scan > freeable * 2)
369 total_scan = freeable * 2;
370
371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
372 nr_scanned, nr_eligible,
373 freeable, delta, total_scan);
374
375 /*
376 * Normally, we should not scan less than batch_size objects in one
377 * pass to avoid too frequent shrinker calls, but if the slab has less
378 * than batch_size objects in total and we are really tight on memory,
379 * we will try to reclaim all available objects, otherwise we can end
380 * up failing allocations although there are plenty of reclaimable
381 * objects spread over several slabs with usage less than the
382 * batch_size.
383 *
384 * We detect the "tight on memory" situations by looking at the total
385 * number of objects we want to scan (total_scan). If it is greater
386 * than the total number of objects on slab (freeable), we must be
387 * scanning at high prio and therefore should try to reclaim as much as
388 * possible.
389 */
390 while (total_scan >= batch_size ||
391 total_scan >= freeable) {
392 unsigned long ret;
393 unsigned long nr_to_scan = min(batch_size, total_scan);
394
395 shrinkctl->nr_to_scan = nr_to_scan;
396 shrinkctl->nr_scanned = nr_to_scan;
397 ret = shrinker->scan_objects(shrinker, shrinkctl);
398 if (ret == SHRINK_STOP)
399 break;
400 freed += ret;
401
402 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
403 total_scan -= shrinkctl->nr_scanned;
404 scanned += shrinkctl->nr_scanned;
405
406 cond_resched();
407 }
408
409 if (next_deferred >= scanned)
410 next_deferred -= scanned;
411 else
412 next_deferred = 0;
413 /*
414 * move the unused scan count back into the shrinker in a
415 * manner that handles concurrent updates. If we exhausted the
416 * scan, there is no need to do an update.
417 */
418 if (next_deferred > 0)
419 new_nr = atomic_long_add_return(next_deferred,
420 &shrinker->nr_deferred[nid]);
421 else
422 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
423
424 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
425 return freed;
426 }
427
428 /**
429 * shrink_slab - shrink slab caches
430 * @gfp_mask: allocation context
431 * @nid: node whose slab caches to target
432 * @memcg: memory cgroup whose slab caches to target
433 * @nr_scanned: pressure numerator
434 * @nr_eligible: pressure denominator
435 *
436 * Call the shrink functions to age shrinkable caches.
437 *
438 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
439 * unaware shrinkers will receive a node id of 0 instead.
440 *
441 * @memcg specifies the memory cgroup to target. If it is not NULL,
442 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
443 * objects from the memory cgroup specified. Otherwise, only unaware
444 * shrinkers are called.
445 *
446 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
447 * the available objects should be scanned. Page reclaim for example
448 * passes the number of pages scanned and the number of pages on the
449 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
450 * when it encountered mapped pages. The ratio is further biased by
451 * the ->seeks setting of the shrink function, which indicates the
452 * cost to recreate an object relative to that of an LRU page.
453 *
454 * Returns the number of reclaimed slab objects.
455 */
456 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
457 struct mem_cgroup *memcg,
458 unsigned long nr_scanned,
459 unsigned long nr_eligible)
460 {
461 struct shrinker *shrinker;
462 unsigned long freed = 0;
463
464 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
465 return 0;
466
467 if (nr_scanned == 0)
468 nr_scanned = SWAP_CLUSTER_MAX;
469
470 if (!down_read_trylock(&shrinker_rwsem)) {
471 /*
472 * If we would return 0, our callers would understand that we
473 * have nothing else to shrink and give up trying. By returning
474 * 1 we keep it going and assume we'll be able to shrink next
475 * time.
476 */
477 freed = 1;
478 goto out;
479 }
480
481 list_for_each_entry(shrinker, &shrinker_list, list) {
482 struct shrink_control sc = {
483 .gfp_mask = gfp_mask,
484 .nid = nid,
485 .memcg = memcg,
486 };
487
488 /*
489 * If kernel memory accounting is disabled, we ignore
490 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
491 * passing NULL for memcg.
492 */
493 if (memcg_kmem_enabled() &&
494 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
495 continue;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 sc.nid = 0;
499
500 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 }
502
503 up_read(&shrinker_rwsem);
504 out:
505 cond_resched();
506 return freed;
507 }
508
509 void drop_slab_node(int nid)
510 {
511 unsigned long freed;
512
513 do {
514 struct mem_cgroup *memcg = NULL;
515
516 freed = 0;
517 do {
518 freed += shrink_slab(GFP_KERNEL, nid, memcg,
519 1000, 1000);
520 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
521 } while (freed > 10);
522 }
523
524 void drop_slab(void)
525 {
526 int nid;
527
528 for_each_online_node(nid)
529 drop_slab_node(nid);
530 }
531
532 static inline int is_page_cache_freeable(struct page *page)
533 {
534 /*
535 * A freeable page cache page is referenced only by the caller
536 * that isolated the page, the page cache radix tree and
537 * optional buffer heads at page->private.
538 */
539 return page_count(page) - page_has_private(page) == 2;
540 }
541
542 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
543 {
544 if (current->flags & PF_SWAPWRITE)
545 return 1;
546 if (!inode_write_congested(inode))
547 return 1;
548 if (inode_to_bdi(inode) == current->backing_dev_info)
549 return 1;
550 return 0;
551 }
552
553 /*
554 * We detected a synchronous write error writing a page out. Probably
555 * -ENOSPC. We need to propagate that into the address_space for a subsequent
556 * fsync(), msync() or close().
557 *
558 * The tricky part is that after writepage we cannot touch the mapping: nothing
559 * prevents it from being freed up. But we have a ref on the page and once
560 * that page is locked, the mapping is pinned.
561 *
562 * We're allowed to run sleeping lock_page() here because we know the caller has
563 * __GFP_FS.
564 */
565 static void handle_write_error(struct address_space *mapping,
566 struct page *page, int error)
567 {
568 lock_page(page);
569 if (page_mapping(page) == mapping)
570 mapping_set_error(mapping, error);
571 unlock_page(page);
572 }
573
574 /* possible outcome of pageout() */
575 typedef enum {
576 /* failed to write page out, page is locked */
577 PAGE_KEEP,
578 /* move page to the active list, page is locked */
579 PAGE_ACTIVATE,
580 /* page has been sent to the disk successfully, page is unlocked */
581 PAGE_SUCCESS,
582 /* page is clean and locked */
583 PAGE_CLEAN,
584 } pageout_t;
585
586 /*
587 * pageout is called by shrink_page_list() for each dirty page.
588 * Calls ->writepage().
589 */
590 static pageout_t pageout(struct page *page, struct address_space *mapping,
591 struct scan_control *sc)
592 {
593 /*
594 * If the page is dirty, only perform writeback if that write
595 * will be non-blocking. To prevent this allocation from being
596 * stalled by pagecache activity. But note that there may be
597 * stalls if we need to run get_block(). We could test
598 * PagePrivate for that.
599 *
600 * If this process is currently in __generic_file_write_iter() against
601 * this page's queue, we can perform writeback even if that
602 * will block.
603 *
604 * If the page is swapcache, write it back even if that would
605 * block, for some throttling. This happens by accident, because
606 * swap_backing_dev_info is bust: it doesn't reflect the
607 * congestion state of the swapdevs. Easy to fix, if needed.
608 */
609 if (!is_page_cache_freeable(page))
610 return PAGE_KEEP;
611 if (!mapping) {
612 /*
613 * Some data journaling orphaned pages can have
614 * page->mapping == NULL while being dirty with clean buffers.
615 */
616 if (page_has_private(page)) {
617 if (try_to_free_buffers(page)) {
618 ClearPageDirty(page);
619 pr_info("%s: orphaned page\n", __func__);
620 return PAGE_CLEAN;
621 }
622 }
623 return PAGE_KEEP;
624 }
625 if (mapping->a_ops->writepage == NULL)
626 return PAGE_ACTIVATE;
627 if (!may_write_to_inode(mapping->host, sc))
628 return PAGE_KEEP;
629
630 if (clear_page_dirty_for_io(page)) {
631 int res;
632 struct writeback_control wbc = {
633 .sync_mode = WB_SYNC_NONE,
634 .nr_to_write = SWAP_CLUSTER_MAX,
635 .range_start = 0,
636 .range_end = LLONG_MAX,
637 .for_reclaim = 1,
638 };
639
640 SetPageReclaim(page);
641 res = mapping->a_ops->writepage(page, &wbc);
642 if (res < 0)
643 handle_write_error(mapping, page, res);
644 if (res == AOP_WRITEPAGE_ACTIVATE) {
645 ClearPageReclaim(page);
646 return PAGE_ACTIVATE;
647 }
648
649 if (!PageWriteback(page)) {
650 /* synchronous write or broken a_ops? */
651 ClearPageReclaim(page);
652 }
653 trace_mm_vmscan_writepage(page);
654 inc_node_page_state(page, NR_VMSCAN_WRITE);
655 return PAGE_SUCCESS;
656 }
657
658 return PAGE_CLEAN;
659 }
660
661 /*
662 * Same as remove_mapping, but if the page is removed from the mapping, it
663 * gets returned with a refcount of 0.
664 */
665 static int __remove_mapping(struct address_space *mapping, struct page *page,
666 bool reclaimed)
667 {
668 unsigned long flags;
669
670 BUG_ON(!PageLocked(page));
671 BUG_ON(mapping != page_mapping(page));
672
673 spin_lock_irqsave(&mapping->tree_lock, flags);
674 /*
675 * The non racy check for a busy page.
676 *
677 * Must be careful with the order of the tests. When someone has
678 * a ref to the page, it may be possible that they dirty it then
679 * drop the reference. So if PageDirty is tested before page_count
680 * here, then the following race may occur:
681 *
682 * get_user_pages(&page);
683 * [user mapping goes away]
684 * write_to(page);
685 * !PageDirty(page) [good]
686 * SetPageDirty(page);
687 * put_page(page);
688 * !page_count(page) [good, discard it]
689 *
690 * [oops, our write_to data is lost]
691 *
692 * Reversing the order of the tests ensures such a situation cannot
693 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
694 * load is not satisfied before that of page->_refcount.
695 *
696 * Note that if SetPageDirty is always performed via set_page_dirty,
697 * and thus under tree_lock, then this ordering is not required.
698 */
699 if (!page_ref_freeze(page, 2))
700 goto cannot_free;
701 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
702 if (unlikely(PageDirty(page))) {
703 page_ref_unfreeze(page, 2);
704 goto cannot_free;
705 }
706
707 if (PageSwapCache(page)) {
708 swp_entry_t swap = { .val = page_private(page) };
709 mem_cgroup_swapout(page, swap);
710 __delete_from_swap_cache(page);
711 spin_unlock_irqrestore(&mapping->tree_lock, flags);
712 put_swap_page(page, swap);
713 } else {
714 void (*freepage)(struct page *);
715 void *shadow = NULL;
716
717 freepage = mapping->a_ops->freepage;
718 /*
719 * Remember a shadow entry for reclaimed file cache in
720 * order to detect refaults, thus thrashing, later on.
721 *
722 * But don't store shadows in an address space that is
723 * already exiting. This is not just an optizimation,
724 * inode reclaim needs to empty out the radix tree or
725 * the nodes are lost. Don't plant shadows behind its
726 * back.
727 *
728 * We also don't store shadows for DAX mappings because the
729 * only page cache pages found in these are zero pages
730 * covering holes, and because we don't want to mix DAX
731 * exceptional entries and shadow exceptional entries in the
732 * same page_tree.
733 */
734 if (reclaimed && page_is_file_cache(page) &&
735 !mapping_exiting(mapping) && !dax_mapping(mapping))
736 shadow = workingset_eviction(mapping, page);
737 __delete_from_page_cache(page, shadow);
738 spin_unlock_irqrestore(&mapping->tree_lock, flags);
739
740 if (freepage != NULL)
741 freepage(page);
742 }
743
744 return 1;
745
746 cannot_free:
747 spin_unlock_irqrestore(&mapping->tree_lock, flags);
748 return 0;
749 }
750
751 /*
752 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
753 * someone else has a ref on the page, abort and return 0. If it was
754 * successfully detached, return 1. Assumes the caller has a single ref on
755 * this page.
756 */
757 int remove_mapping(struct address_space *mapping, struct page *page)
758 {
759 if (__remove_mapping(mapping, page, false)) {
760 /*
761 * Unfreezing the refcount with 1 rather than 2 effectively
762 * drops the pagecache ref for us without requiring another
763 * atomic operation.
764 */
765 page_ref_unfreeze(page, 1);
766 return 1;
767 }
768 return 0;
769 }
770
771 /**
772 * putback_lru_page - put previously isolated page onto appropriate LRU list
773 * @page: page to be put back to appropriate lru list
774 *
775 * Add previously isolated @page to appropriate LRU list.
776 * Page may still be unevictable for other reasons.
777 *
778 * lru_lock must not be held, interrupts must be enabled.
779 */
780 void putback_lru_page(struct page *page)
781 {
782 bool is_unevictable;
783 int was_unevictable = PageUnevictable(page);
784
785 VM_BUG_ON_PAGE(PageLRU(page), page);
786
787 redo:
788 ClearPageUnevictable(page);
789
790 if (page_evictable(page)) {
791 /*
792 * For evictable pages, we can use the cache.
793 * In event of a race, worst case is we end up with an
794 * unevictable page on [in]active list.
795 * We know how to handle that.
796 */
797 is_unevictable = false;
798 lru_cache_add(page);
799 } else {
800 /*
801 * Put unevictable pages directly on zone's unevictable
802 * list.
803 */
804 is_unevictable = true;
805 add_page_to_unevictable_list(page);
806 /*
807 * When racing with an mlock or AS_UNEVICTABLE clearing
808 * (page is unlocked) make sure that if the other thread
809 * does not observe our setting of PG_lru and fails
810 * isolation/check_move_unevictable_pages,
811 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
812 * the page back to the evictable list.
813 *
814 * The other side is TestClearPageMlocked() or shmem_lock().
815 */
816 smp_mb();
817 }
818
819 /*
820 * page's status can change while we move it among lru. If an evictable
821 * page is on unevictable list, it never be freed. To avoid that,
822 * check after we added it to the list, again.
823 */
824 if (is_unevictable && page_evictable(page)) {
825 if (!isolate_lru_page(page)) {
826 put_page(page);
827 goto redo;
828 }
829 /* This means someone else dropped this page from LRU
830 * So, it will be freed or putback to LRU again. There is
831 * nothing to do here.
832 */
833 }
834
835 if (was_unevictable && !is_unevictable)
836 count_vm_event(UNEVICTABLE_PGRESCUED);
837 else if (!was_unevictable && is_unevictable)
838 count_vm_event(UNEVICTABLE_PGCULLED);
839
840 put_page(page); /* drop ref from isolate */
841 }
842
843 enum page_references {
844 PAGEREF_RECLAIM,
845 PAGEREF_RECLAIM_CLEAN,
846 PAGEREF_KEEP,
847 PAGEREF_ACTIVATE,
848 };
849
850 static enum page_references page_check_references(struct page *page,
851 struct scan_control *sc)
852 {
853 int referenced_ptes, referenced_page;
854 unsigned long vm_flags;
855
856 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
857 &vm_flags);
858 referenced_page = TestClearPageReferenced(page);
859
860 /*
861 * Mlock lost the isolation race with us. Let try_to_unmap()
862 * move the page to the unevictable list.
863 */
864 if (vm_flags & VM_LOCKED)
865 return PAGEREF_RECLAIM;
866
867 if (referenced_ptes) {
868 if (PageSwapBacked(page))
869 return PAGEREF_ACTIVATE;
870 /*
871 * All mapped pages start out with page table
872 * references from the instantiating fault, so we need
873 * to look twice if a mapped file page is used more
874 * than once.
875 *
876 * Mark it and spare it for another trip around the
877 * inactive list. Another page table reference will
878 * lead to its activation.
879 *
880 * Note: the mark is set for activated pages as well
881 * so that recently deactivated but used pages are
882 * quickly recovered.
883 */
884 SetPageReferenced(page);
885
886 if (referenced_page || referenced_ptes > 1)
887 return PAGEREF_ACTIVATE;
888
889 /*
890 * Activate file-backed executable pages after first usage.
891 */
892 if (vm_flags & VM_EXEC)
893 return PAGEREF_ACTIVATE;
894
895 return PAGEREF_KEEP;
896 }
897
898 /* Reclaim if clean, defer dirty pages to writeback */
899 if (referenced_page && !PageSwapBacked(page))
900 return PAGEREF_RECLAIM_CLEAN;
901
902 return PAGEREF_RECLAIM;
903 }
904
905 /* Check if a page is dirty or under writeback */
906 static void page_check_dirty_writeback(struct page *page,
907 bool *dirty, bool *writeback)
908 {
909 struct address_space *mapping;
910
911 /*
912 * Anonymous pages are not handled by flushers and must be written
913 * from reclaim context. Do not stall reclaim based on them
914 */
915 if (!page_is_file_cache(page) ||
916 (PageAnon(page) && !PageSwapBacked(page))) {
917 *dirty = false;
918 *writeback = false;
919 return;
920 }
921
922 /* By default assume that the page flags are accurate */
923 *dirty = PageDirty(page);
924 *writeback = PageWriteback(page);
925
926 /* Verify dirty/writeback state if the filesystem supports it */
927 if (!page_has_private(page))
928 return;
929
930 mapping = page_mapping(page);
931 if (mapping && mapping->a_ops->is_dirty_writeback)
932 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
933 }
934
935 struct reclaim_stat {
936 unsigned nr_dirty;
937 unsigned nr_unqueued_dirty;
938 unsigned nr_congested;
939 unsigned nr_writeback;
940 unsigned nr_immediate;
941 unsigned nr_activate;
942 unsigned nr_ref_keep;
943 unsigned nr_unmap_fail;
944 };
945
946 /*
947 * shrink_page_list() returns the number of reclaimed pages
948 */
949 static unsigned long shrink_page_list(struct list_head *page_list,
950 struct pglist_data *pgdat,
951 struct scan_control *sc,
952 enum ttu_flags ttu_flags,
953 struct reclaim_stat *stat,
954 bool force_reclaim)
955 {
956 LIST_HEAD(ret_pages);
957 LIST_HEAD(free_pages);
958 int pgactivate = 0;
959 unsigned nr_unqueued_dirty = 0;
960 unsigned nr_dirty = 0;
961 unsigned nr_congested = 0;
962 unsigned nr_reclaimed = 0;
963 unsigned nr_writeback = 0;
964 unsigned nr_immediate = 0;
965 unsigned nr_ref_keep = 0;
966 unsigned nr_unmap_fail = 0;
967
968 cond_resched();
969
970 while (!list_empty(page_list)) {
971 struct address_space *mapping;
972 struct page *page;
973 int may_enter_fs;
974 enum page_references references = PAGEREF_RECLAIM_CLEAN;
975 bool dirty, writeback;
976
977 cond_resched();
978
979 page = lru_to_page(page_list);
980 list_del(&page->lru);
981
982 if (!trylock_page(page))
983 goto keep;
984
985 VM_BUG_ON_PAGE(PageActive(page), page);
986
987 sc->nr_scanned++;
988
989 if (unlikely(!page_evictable(page)))
990 goto activate_locked;
991
992 if (!sc->may_unmap && page_mapped(page))
993 goto keep_locked;
994
995 /* Double the slab pressure for mapped and swapcache pages */
996 if ((page_mapped(page) || PageSwapCache(page)) &&
997 !(PageAnon(page) && !PageSwapBacked(page)))
998 sc->nr_scanned++;
999
1000 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1001 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1002
1003 /*
1004 * The number of dirty pages determines if a zone is marked
1005 * reclaim_congested which affects wait_iff_congested. kswapd
1006 * will stall and start writing pages if the tail of the LRU
1007 * is all dirty unqueued pages.
1008 */
1009 page_check_dirty_writeback(page, &dirty, &writeback);
1010 if (dirty || writeback)
1011 nr_dirty++;
1012
1013 if (dirty && !writeback)
1014 nr_unqueued_dirty++;
1015
1016 /*
1017 * Treat this page as congested if the underlying BDI is or if
1018 * pages are cycling through the LRU so quickly that the
1019 * pages marked for immediate reclaim are making it to the
1020 * end of the LRU a second time.
1021 */
1022 mapping = page_mapping(page);
1023 if (((dirty || writeback) && mapping &&
1024 inode_write_congested(mapping->host)) ||
1025 (writeback && PageReclaim(page)))
1026 nr_congested++;
1027
1028 /*
1029 * If a page at the tail of the LRU is under writeback, there
1030 * are three cases to consider.
1031 *
1032 * 1) If reclaim is encountering an excessive number of pages
1033 * under writeback and this page is both under writeback and
1034 * PageReclaim then it indicates that pages are being queued
1035 * for IO but are being recycled through the LRU before the
1036 * IO can complete. Waiting on the page itself risks an
1037 * indefinite stall if it is impossible to writeback the
1038 * page due to IO error or disconnected storage so instead
1039 * note that the LRU is being scanned too quickly and the
1040 * caller can stall after page list has been processed.
1041 *
1042 * 2) Global or new memcg reclaim encounters a page that is
1043 * not marked for immediate reclaim, or the caller does not
1044 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1045 * not to fs). In this case mark the page for immediate
1046 * reclaim and continue scanning.
1047 *
1048 * Require may_enter_fs because we would wait on fs, which
1049 * may not have submitted IO yet. And the loop driver might
1050 * enter reclaim, and deadlock if it waits on a page for
1051 * which it is needed to do the write (loop masks off
1052 * __GFP_IO|__GFP_FS for this reason); but more thought
1053 * would probably show more reasons.
1054 *
1055 * 3) Legacy memcg encounters a page that is already marked
1056 * PageReclaim. memcg does not have any dirty pages
1057 * throttling so we could easily OOM just because too many
1058 * pages are in writeback and there is nothing else to
1059 * reclaim. Wait for the writeback to complete.
1060 *
1061 * In cases 1) and 2) we activate the pages to get them out of
1062 * the way while we continue scanning for clean pages on the
1063 * inactive list and refilling from the active list. The
1064 * observation here is that waiting for disk writes is more
1065 * expensive than potentially causing reloads down the line.
1066 * Since they're marked for immediate reclaim, they won't put
1067 * memory pressure on the cache working set any longer than it
1068 * takes to write them to disk.
1069 */
1070 if (PageWriteback(page)) {
1071 /* Case 1 above */
1072 if (current_is_kswapd() &&
1073 PageReclaim(page) &&
1074 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1075 nr_immediate++;
1076 goto activate_locked;
1077
1078 /* Case 2 above */
1079 } else if (sane_reclaim(sc) ||
1080 !PageReclaim(page) || !may_enter_fs) {
1081 /*
1082 * This is slightly racy - end_page_writeback()
1083 * might have just cleared PageReclaim, then
1084 * setting PageReclaim here end up interpreted
1085 * as PageReadahead - but that does not matter
1086 * enough to care. What we do want is for this
1087 * page to have PageReclaim set next time memcg
1088 * reclaim reaches the tests above, so it will
1089 * then wait_on_page_writeback() to avoid OOM;
1090 * and it's also appropriate in global reclaim.
1091 */
1092 SetPageReclaim(page);
1093 nr_writeback++;
1094 goto activate_locked;
1095
1096 /* Case 3 above */
1097 } else {
1098 unlock_page(page);
1099 wait_on_page_writeback(page);
1100 /* then go back and try same page again */
1101 list_add_tail(&page->lru, page_list);
1102 continue;
1103 }
1104 }
1105
1106 if (!force_reclaim)
1107 references = page_check_references(page, sc);
1108
1109 switch (references) {
1110 case PAGEREF_ACTIVATE:
1111 goto activate_locked;
1112 case PAGEREF_KEEP:
1113 nr_ref_keep++;
1114 goto keep_locked;
1115 case PAGEREF_RECLAIM:
1116 case PAGEREF_RECLAIM_CLEAN:
1117 ; /* try to reclaim the page below */
1118 }
1119
1120 /*
1121 * Anonymous process memory has backing store?
1122 * Try to allocate it some swap space here.
1123 * Lazyfree page could be freed directly
1124 */
1125 if (PageAnon(page) && PageSwapBacked(page) &&
1126 !PageSwapCache(page)) {
1127 if (!(sc->gfp_mask & __GFP_IO))
1128 goto keep_locked;
1129 if (PageTransHuge(page)) {
1130 /* cannot split THP, skip it */
1131 if (!can_split_huge_page(page, NULL))
1132 goto activate_locked;
1133 /*
1134 * Split pages without a PMD map right
1135 * away. Chances are some or all of the
1136 * tail pages can be freed without IO.
1137 */
1138 if (!compound_mapcount(page) &&
1139 split_huge_page_to_list(page, page_list))
1140 goto activate_locked;
1141 }
1142 if (!add_to_swap(page)) {
1143 if (!PageTransHuge(page))
1144 goto activate_locked;
1145 /* Split THP and swap individual base pages */
1146 if (split_huge_page_to_list(page, page_list))
1147 goto activate_locked;
1148 if (!add_to_swap(page))
1149 goto activate_locked;
1150 }
1151
1152 /* XXX: We don't support THP writes */
1153 if (PageTransHuge(page) &&
1154 split_huge_page_to_list(page, page_list)) {
1155 delete_from_swap_cache(page);
1156 goto activate_locked;
1157 }
1158
1159 may_enter_fs = 1;
1160
1161 /* Adding to swap updated mapping */
1162 mapping = page_mapping(page);
1163 } else if (unlikely(PageTransHuge(page))) {
1164 /* Split file THP */
1165 if (split_huge_page_to_list(page, page_list))
1166 goto keep_locked;
1167 }
1168
1169 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1170
1171 /*
1172 * The page is mapped into the page tables of one or more
1173 * processes. Try to unmap it here.
1174 */
1175 if (page_mapped(page)) {
1176 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) {
1177 nr_unmap_fail++;
1178 goto activate_locked;
1179 }
1180 }
1181
1182 if (PageDirty(page)) {
1183 /*
1184 * Only kswapd can writeback filesystem pages
1185 * to avoid risk of stack overflow. But avoid
1186 * injecting inefficient single-page IO into
1187 * flusher writeback as much as possible: only
1188 * write pages when we've encountered many
1189 * dirty pages, and when we've already scanned
1190 * the rest of the LRU for clean pages and see
1191 * the same dirty pages again (PageReclaim).
1192 */
1193 if (page_is_file_cache(page) &&
1194 (!current_is_kswapd() || !PageReclaim(page) ||
1195 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1196 /*
1197 * Immediately reclaim when written back.
1198 * Similar in principal to deactivate_page()
1199 * except we already have the page isolated
1200 * and know it's dirty
1201 */
1202 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1203 SetPageReclaim(page);
1204
1205 goto activate_locked;
1206 }
1207
1208 if (references == PAGEREF_RECLAIM_CLEAN)
1209 goto keep_locked;
1210 if (!may_enter_fs)
1211 goto keep_locked;
1212 if (!sc->may_writepage)
1213 goto keep_locked;
1214
1215 /*
1216 * Page is dirty. Flush the TLB if a writable entry
1217 * potentially exists to avoid CPU writes after IO
1218 * starts and then write it out here.
1219 */
1220 try_to_unmap_flush_dirty();
1221 switch (pageout(page, mapping, sc)) {
1222 case PAGE_KEEP:
1223 goto keep_locked;
1224 case PAGE_ACTIVATE:
1225 goto activate_locked;
1226 case PAGE_SUCCESS:
1227 if (PageWriteback(page))
1228 goto keep;
1229 if (PageDirty(page))
1230 goto keep;
1231
1232 /*
1233 * A synchronous write - probably a ramdisk. Go
1234 * ahead and try to reclaim the page.
1235 */
1236 if (!trylock_page(page))
1237 goto keep;
1238 if (PageDirty(page) || PageWriteback(page))
1239 goto keep_locked;
1240 mapping = page_mapping(page);
1241 case PAGE_CLEAN:
1242 ; /* try to free the page below */
1243 }
1244 }
1245
1246 /*
1247 * If the page has buffers, try to free the buffer mappings
1248 * associated with this page. If we succeed we try to free
1249 * the page as well.
1250 *
1251 * We do this even if the page is PageDirty().
1252 * try_to_release_page() does not perform I/O, but it is
1253 * possible for a page to have PageDirty set, but it is actually
1254 * clean (all its buffers are clean). This happens if the
1255 * buffers were written out directly, with submit_bh(). ext3
1256 * will do this, as well as the blockdev mapping.
1257 * try_to_release_page() will discover that cleanness and will
1258 * drop the buffers and mark the page clean - it can be freed.
1259 *
1260 * Rarely, pages can have buffers and no ->mapping. These are
1261 * the pages which were not successfully invalidated in
1262 * truncate_complete_page(). We try to drop those buffers here
1263 * and if that worked, and the page is no longer mapped into
1264 * process address space (page_count == 1) it can be freed.
1265 * Otherwise, leave the page on the LRU so it is swappable.
1266 */
1267 if (page_has_private(page)) {
1268 if (!try_to_release_page(page, sc->gfp_mask))
1269 goto activate_locked;
1270 if (!mapping && page_count(page) == 1) {
1271 unlock_page(page);
1272 if (put_page_testzero(page))
1273 goto free_it;
1274 else {
1275 /*
1276 * rare race with speculative reference.
1277 * the speculative reference will free
1278 * this page shortly, so we may
1279 * increment nr_reclaimed here (and
1280 * leave it off the LRU).
1281 */
1282 nr_reclaimed++;
1283 continue;
1284 }
1285 }
1286 }
1287
1288 if (PageAnon(page) && !PageSwapBacked(page)) {
1289 /* follow __remove_mapping for reference */
1290 if (!page_ref_freeze(page, 1))
1291 goto keep_locked;
1292 if (PageDirty(page)) {
1293 page_ref_unfreeze(page, 1);
1294 goto keep_locked;
1295 }
1296
1297 count_vm_event(PGLAZYFREED);
1298 count_memcg_page_event(page, PGLAZYFREED);
1299 } else if (!mapping || !__remove_mapping(mapping, page, true))
1300 goto keep_locked;
1301 /*
1302 * At this point, we have no other references and there is
1303 * no way to pick any more up (removed from LRU, removed
1304 * from pagecache). Can use non-atomic bitops now (and
1305 * we obviously don't have to worry about waking up a process
1306 * waiting on the page lock, because there are no references.
1307 */
1308 __ClearPageLocked(page);
1309 free_it:
1310 nr_reclaimed++;
1311
1312 /*
1313 * Is there need to periodically free_page_list? It would
1314 * appear not as the counts should be low
1315 */
1316 list_add(&page->lru, &free_pages);
1317 continue;
1318
1319 activate_locked:
1320 /* Not a candidate for swapping, so reclaim swap space. */
1321 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1322 PageMlocked(page)))
1323 try_to_free_swap(page);
1324 VM_BUG_ON_PAGE(PageActive(page), page);
1325 if (!PageMlocked(page)) {
1326 SetPageActive(page);
1327 pgactivate++;
1328 count_memcg_page_event(page, PGACTIVATE);
1329 }
1330 keep_locked:
1331 unlock_page(page);
1332 keep:
1333 list_add(&page->lru, &ret_pages);
1334 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1335 }
1336
1337 mem_cgroup_uncharge_list(&free_pages);
1338 try_to_unmap_flush();
1339 free_hot_cold_page_list(&free_pages, true);
1340
1341 list_splice(&ret_pages, page_list);
1342 count_vm_events(PGACTIVATE, pgactivate);
1343
1344 if (stat) {
1345 stat->nr_dirty = nr_dirty;
1346 stat->nr_congested = nr_congested;
1347 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1348 stat->nr_writeback = nr_writeback;
1349 stat->nr_immediate = nr_immediate;
1350 stat->nr_activate = pgactivate;
1351 stat->nr_ref_keep = nr_ref_keep;
1352 stat->nr_unmap_fail = nr_unmap_fail;
1353 }
1354 return nr_reclaimed;
1355 }
1356
1357 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1358 struct list_head *page_list)
1359 {
1360 struct scan_control sc = {
1361 .gfp_mask = GFP_KERNEL,
1362 .priority = DEF_PRIORITY,
1363 .may_unmap = 1,
1364 };
1365 unsigned long ret;
1366 struct page *page, *next;
1367 LIST_HEAD(clean_pages);
1368
1369 list_for_each_entry_safe(page, next, page_list, lru) {
1370 if (page_is_file_cache(page) && !PageDirty(page) &&
1371 !__PageMovable(page)) {
1372 ClearPageActive(page);
1373 list_move(&page->lru, &clean_pages);
1374 }
1375 }
1376
1377 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1378 TTU_IGNORE_ACCESS, NULL, true);
1379 list_splice(&clean_pages, page_list);
1380 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1381 return ret;
1382 }
1383
1384 /*
1385 * Attempt to remove the specified page from its LRU. Only take this page
1386 * if it is of the appropriate PageActive status. Pages which are being
1387 * freed elsewhere are also ignored.
1388 *
1389 * page: page to consider
1390 * mode: one of the LRU isolation modes defined above
1391 *
1392 * returns 0 on success, -ve errno on failure.
1393 */
1394 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1395 {
1396 int ret = -EINVAL;
1397
1398 /* Only take pages on the LRU. */
1399 if (!PageLRU(page))
1400 return ret;
1401
1402 /* Compaction should not handle unevictable pages but CMA can do so */
1403 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1404 return ret;
1405
1406 ret = -EBUSY;
1407
1408 /*
1409 * To minimise LRU disruption, the caller can indicate that it only
1410 * wants to isolate pages it will be able to operate on without
1411 * blocking - clean pages for the most part.
1412 *
1413 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1414 * that it is possible to migrate without blocking
1415 */
1416 if (mode & ISOLATE_ASYNC_MIGRATE) {
1417 /* All the caller can do on PageWriteback is block */
1418 if (PageWriteback(page))
1419 return ret;
1420
1421 if (PageDirty(page)) {
1422 struct address_space *mapping;
1423
1424 /*
1425 * Only pages without mappings or that have a
1426 * ->migratepage callback are possible to migrate
1427 * without blocking
1428 */
1429 mapping = page_mapping(page);
1430 if (mapping && !mapping->a_ops->migratepage)
1431 return ret;
1432 }
1433 }
1434
1435 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1436 return ret;
1437
1438 if (likely(get_page_unless_zero(page))) {
1439 /*
1440 * Be careful not to clear PageLRU until after we're
1441 * sure the page is not being freed elsewhere -- the
1442 * page release code relies on it.
1443 */
1444 ClearPageLRU(page);
1445 ret = 0;
1446 }
1447
1448 return ret;
1449 }
1450
1451
1452 /*
1453 * Update LRU sizes after isolating pages. The LRU size updates must
1454 * be complete before mem_cgroup_update_lru_size due to a santity check.
1455 */
1456 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1457 enum lru_list lru, unsigned long *nr_zone_taken)
1458 {
1459 int zid;
1460
1461 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1462 if (!nr_zone_taken[zid])
1463 continue;
1464
1465 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1466 #ifdef CONFIG_MEMCG
1467 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1468 #endif
1469 }
1470
1471 }
1472
1473 /*
1474 * zone_lru_lock is heavily contended. Some of the functions that
1475 * shrink the lists perform better by taking out a batch of pages
1476 * and working on them outside the LRU lock.
1477 *
1478 * For pagecache intensive workloads, this function is the hottest
1479 * spot in the kernel (apart from copy_*_user functions).
1480 *
1481 * Appropriate locks must be held before calling this function.
1482 *
1483 * @nr_to_scan: The number of eligible pages to look through on the list.
1484 * @lruvec: The LRU vector to pull pages from.
1485 * @dst: The temp list to put pages on to.
1486 * @nr_scanned: The number of pages that were scanned.
1487 * @sc: The scan_control struct for this reclaim session
1488 * @mode: One of the LRU isolation modes
1489 * @lru: LRU list id for isolating
1490 *
1491 * returns how many pages were moved onto *@dst.
1492 */
1493 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1494 struct lruvec *lruvec, struct list_head *dst,
1495 unsigned long *nr_scanned, struct scan_control *sc,
1496 isolate_mode_t mode, enum lru_list lru)
1497 {
1498 struct list_head *src = &lruvec->lists[lru];
1499 unsigned long nr_taken = 0;
1500 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1501 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1502 unsigned long skipped = 0;
1503 unsigned long scan, total_scan, nr_pages;
1504 LIST_HEAD(pages_skipped);
1505
1506 scan = 0;
1507 for (total_scan = 0;
1508 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1509 total_scan++) {
1510 struct page *page;
1511
1512 page = lru_to_page(src);
1513 prefetchw_prev_lru_page(page, src, flags);
1514
1515 VM_BUG_ON_PAGE(!PageLRU(page), page);
1516
1517 if (page_zonenum(page) > sc->reclaim_idx) {
1518 list_move(&page->lru, &pages_skipped);
1519 nr_skipped[page_zonenum(page)]++;
1520 continue;
1521 }
1522
1523 /*
1524 * Do not count skipped pages because that makes the function
1525 * return with no isolated pages if the LRU mostly contains
1526 * ineligible pages. This causes the VM to not reclaim any
1527 * pages, triggering a premature OOM.
1528 */
1529 scan++;
1530 switch (__isolate_lru_page(page, mode)) {
1531 case 0:
1532 nr_pages = hpage_nr_pages(page);
1533 nr_taken += nr_pages;
1534 nr_zone_taken[page_zonenum(page)] += nr_pages;
1535 list_move(&page->lru, dst);
1536 break;
1537
1538 case -EBUSY:
1539 /* else it is being freed elsewhere */
1540 list_move(&page->lru, src);
1541 continue;
1542
1543 default:
1544 BUG();
1545 }
1546 }
1547
1548 /*
1549 * Splice any skipped pages to the start of the LRU list. Note that
1550 * this disrupts the LRU order when reclaiming for lower zones but
1551 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1552 * scanning would soon rescan the same pages to skip and put the
1553 * system at risk of premature OOM.
1554 */
1555 if (!list_empty(&pages_skipped)) {
1556 int zid;
1557
1558 list_splice(&pages_skipped, src);
1559 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1560 if (!nr_skipped[zid])
1561 continue;
1562
1563 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1564 skipped += nr_skipped[zid];
1565 }
1566 }
1567 *nr_scanned = total_scan;
1568 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1569 total_scan, skipped, nr_taken, mode, lru);
1570 update_lru_sizes(lruvec, lru, nr_zone_taken);
1571 return nr_taken;
1572 }
1573
1574 /**
1575 * isolate_lru_page - tries to isolate a page from its LRU list
1576 * @page: page to isolate from its LRU list
1577 *
1578 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1579 * vmstat statistic corresponding to whatever LRU list the page was on.
1580 *
1581 * Returns 0 if the page was removed from an LRU list.
1582 * Returns -EBUSY if the page was not on an LRU list.
1583 *
1584 * The returned page will have PageLRU() cleared. If it was found on
1585 * the active list, it will have PageActive set. If it was found on
1586 * the unevictable list, it will have the PageUnevictable bit set. That flag
1587 * may need to be cleared by the caller before letting the page go.
1588 *
1589 * The vmstat statistic corresponding to the list on which the page was
1590 * found will be decremented.
1591 *
1592 * Restrictions:
1593 * (1) Must be called with an elevated refcount on the page. This is a
1594 * fundamentnal difference from isolate_lru_pages (which is called
1595 * without a stable reference).
1596 * (2) the lru_lock must not be held.
1597 * (3) interrupts must be enabled.
1598 */
1599 int isolate_lru_page(struct page *page)
1600 {
1601 int ret = -EBUSY;
1602
1603 VM_BUG_ON_PAGE(!page_count(page), page);
1604 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1605
1606 if (PageLRU(page)) {
1607 struct zone *zone = page_zone(page);
1608 struct lruvec *lruvec;
1609
1610 spin_lock_irq(zone_lru_lock(zone));
1611 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1612 if (PageLRU(page)) {
1613 int lru = page_lru(page);
1614 get_page(page);
1615 ClearPageLRU(page);
1616 del_page_from_lru_list(page, lruvec, lru);
1617 ret = 0;
1618 }
1619 spin_unlock_irq(zone_lru_lock(zone));
1620 }
1621 return ret;
1622 }
1623
1624 /*
1625 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1626 * then get resheduled. When there are massive number of tasks doing page
1627 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1628 * the LRU list will go small and be scanned faster than necessary, leading to
1629 * unnecessary swapping, thrashing and OOM.
1630 */
1631 static int too_many_isolated(struct pglist_data *pgdat, int file,
1632 struct scan_control *sc)
1633 {
1634 unsigned long inactive, isolated;
1635
1636 if (current_is_kswapd())
1637 return 0;
1638
1639 if (!sane_reclaim(sc))
1640 return 0;
1641
1642 if (file) {
1643 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1644 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1645 } else {
1646 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1647 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1648 }
1649
1650 /*
1651 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1652 * won't get blocked by normal direct-reclaimers, forming a circular
1653 * deadlock.
1654 */
1655 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1656 inactive >>= 3;
1657
1658 return isolated > inactive;
1659 }
1660
1661 static noinline_for_stack void
1662 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1663 {
1664 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1665 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1666 LIST_HEAD(pages_to_free);
1667
1668 /*
1669 * Put back any unfreeable pages.
1670 */
1671 while (!list_empty(page_list)) {
1672 struct page *page = lru_to_page(page_list);
1673 int lru;
1674
1675 VM_BUG_ON_PAGE(PageLRU(page), page);
1676 list_del(&page->lru);
1677 if (unlikely(!page_evictable(page))) {
1678 spin_unlock_irq(&pgdat->lru_lock);
1679 putback_lru_page(page);
1680 spin_lock_irq(&pgdat->lru_lock);
1681 continue;
1682 }
1683
1684 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1685
1686 SetPageLRU(page);
1687 lru = page_lru(page);
1688 add_page_to_lru_list(page, lruvec, lru);
1689
1690 if (is_active_lru(lru)) {
1691 int file = is_file_lru(lru);
1692 int numpages = hpage_nr_pages(page);
1693 reclaim_stat->recent_rotated[file] += numpages;
1694 }
1695 if (put_page_testzero(page)) {
1696 __ClearPageLRU(page);
1697 __ClearPageActive(page);
1698 del_page_from_lru_list(page, lruvec, lru);
1699
1700 if (unlikely(PageCompound(page))) {
1701 spin_unlock_irq(&pgdat->lru_lock);
1702 mem_cgroup_uncharge(page);
1703 (*get_compound_page_dtor(page))(page);
1704 spin_lock_irq(&pgdat->lru_lock);
1705 } else
1706 list_add(&page->lru, &pages_to_free);
1707 }
1708 }
1709
1710 /*
1711 * To save our caller's stack, now use input list for pages to free.
1712 */
1713 list_splice(&pages_to_free, page_list);
1714 }
1715
1716 /*
1717 * If a kernel thread (such as nfsd for loop-back mounts) services
1718 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1719 * In that case we should only throttle if the backing device it is
1720 * writing to is congested. In other cases it is safe to throttle.
1721 */
1722 static int current_may_throttle(void)
1723 {
1724 return !(current->flags & PF_LESS_THROTTLE) ||
1725 current->backing_dev_info == NULL ||
1726 bdi_write_congested(current->backing_dev_info);
1727 }
1728
1729 /*
1730 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1731 * of reclaimed pages
1732 */
1733 static noinline_for_stack unsigned long
1734 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1735 struct scan_control *sc, enum lru_list lru)
1736 {
1737 LIST_HEAD(page_list);
1738 unsigned long nr_scanned;
1739 unsigned long nr_reclaimed = 0;
1740 unsigned long nr_taken;
1741 struct reclaim_stat stat = {};
1742 isolate_mode_t isolate_mode = 0;
1743 int file = is_file_lru(lru);
1744 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1745 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1746 bool stalled = false;
1747
1748 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1749 if (stalled)
1750 return 0;
1751
1752 /* wait a bit for the reclaimer. */
1753 msleep(100);
1754 stalled = true;
1755
1756 /* We are about to die and free our memory. Return now. */
1757 if (fatal_signal_pending(current))
1758 return SWAP_CLUSTER_MAX;
1759 }
1760
1761 lru_add_drain();
1762
1763 if (!sc->may_unmap)
1764 isolate_mode |= ISOLATE_UNMAPPED;
1765
1766 spin_lock_irq(&pgdat->lru_lock);
1767
1768 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1769 &nr_scanned, sc, isolate_mode, lru);
1770
1771 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1772 reclaim_stat->recent_scanned[file] += nr_taken;
1773
1774 if (current_is_kswapd()) {
1775 if (global_reclaim(sc))
1776 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1777 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1778 nr_scanned);
1779 } else {
1780 if (global_reclaim(sc))
1781 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1782 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1783 nr_scanned);
1784 }
1785 spin_unlock_irq(&pgdat->lru_lock);
1786
1787 if (nr_taken == 0)
1788 return 0;
1789
1790 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1791 &stat, false);
1792
1793 spin_lock_irq(&pgdat->lru_lock);
1794
1795 if (current_is_kswapd()) {
1796 if (global_reclaim(sc))
1797 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1798 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1799 nr_reclaimed);
1800 } else {
1801 if (global_reclaim(sc))
1802 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1803 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1804 nr_reclaimed);
1805 }
1806
1807 putback_inactive_pages(lruvec, &page_list);
1808
1809 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1810
1811 spin_unlock_irq(&pgdat->lru_lock);
1812
1813 mem_cgroup_uncharge_list(&page_list);
1814 free_hot_cold_page_list(&page_list, true);
1815
1816 /*
1817 * If reclaim is isolating dirty pages under writeback, it implies
1818 * that the long-lived page allocation rate is exceeding the page
1819 * laundering rate. Either the global limits are not being effective
1820 * at throttling processes due to the page distribution throughout
1821 * zones or there is heavy usage of a slow backing device. The
1822 * only option is to throttle from reclaim context which is not ideal
1823 * as there is no guarantee the dirtying process is throttled in the
1824 * same way balance_dirty_pages() manages.
1825 *
1826 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1827 * of pages under pages flagged for immediate reclaim and stall if any
1828 * are encountered in the nr_immediate check below.
1829 */
1830 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1831 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1832
1833 /*
1834 * Legacy memcg will stall in page writeback so avoid forcibly
1835 * stalling here.
1836 */
1837 if (sane_reclaim(sc)) {
1838 /*
1839 * Tag a zone as congested if all the dirty pages scanned were
1840 * backed by a congested BDI and wait_iff_congested will stall.
1841 */
1842 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1843 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1844
1845 /*
1846 * If dirty pages are scanned that are not queued for IO, it
1847 * implies that flushers are not doing their job. This can
1848 * happen when memory pressure pushes dirty pages to the end of
1849 * the LRU before the dirty limits are breached and the dirty
1850 * data has expired. It can also happen when the proportion of
1851 * dirty pages grows not through writes but through memory
1852 * pressure reclaiming all the clean cache. And in some cases,
1853 * the flushers simply cannot keep up with the allocation
1854 * rate. Nudge the flusher threads in case they are asleep, but
1855 * also allow kswapd to start writing pages during reclaim.
1856 */
1857 if (stat.nr_unqueued_dirty == nr_taken) {
1858 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1859 set_bit(PGDAT_DIRTY, &pgdat->flags);
1860 }
1861
1862 /*
1863 * If kswapd scans pages marked marked for immediate
1864 * reclaim and under writeback (nr_immediate), it implies
1865 * that pages are cycling through the LRU faster than
1866 * they are written so also forcibly stall.
1867 */
1868 if (stat.nr_immediate && current_may_throttle())
1869 congestion_wait(BLK_RW_ASYNC, HZ/10);
1870 }
1871
1872 /*
1873 * Stall direct reclaim for IO completions if underlying BDIs or zone
1874 * is congested. Allow kswapd to continue until it starts encountering
1875 * unqueued dirty pages or cycling through the LRU too quickly.
1876 */
1877 if (!sc->hibernation_mode && !current_is_kswapd() &&
1878 current_may_throttle())
1879 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1880
1881 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1882 nr_scanned, nr_reclaimed,
1883 stat.nr_dirty, stat.nr_writeback,
1884 stat.nr_congested, stat.nr_immediate,
1885 stat.nr_activate, stat.nr_ref_keep,
1886 stat.nr_unmap_fail,
1887 sc->priority, file);
1888 return nr_reclaimed;
1889 }
1890
1891 /*
1892 * This moves pages from the active list to the inactive list.
1893 *
1894 * We move them the other way if the page is referenced by one or more
1895 * processes, from rmap.
1896 *
1897 * If the pages are mostly unmapped, the processing is fast and it is
1898 * appropriate to hold zone_lru_lock across the whole operation. But if
1899 * the pages are mapped, the processing is slow (page_referenced()) so we
1900 * should drop zone_lru_lock around each page. It's impossible to balance
1901 * this, so instead we remove the pages from the LRU while processing them.
1902 * It is safe to rely on PG_active against the non-LRU pages in here because
1903 * nobody will play with that bit on a non-LRU page.
1904 *
1905 * The downside is that we have to touch page->_refcount against each page.
1906 * But we had to alter page->flags anyway.
1907 *
1908 * Returns the number of pages moved to the given lru.
1909 */
1910
1911 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1912 struct list_head *list,
1913 struct list_head *pages_to_free,
1914 enum lru_list lru)
1915 {
1916 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1917 struct page *page;
1918 int nr_pages;
1919 int nr_moved = 0;
1920
1921 while (!list_empty(list)) {
1922 page = lru_to_page(list);
1923 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1924
1925 VM_BUG_ON_PAGE(PageLRU(page), page);
1926 SetPageLRU(page);
1927
1928 nr_pages = hpage_nr_pages(page);
1929 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1930 list_move(&page->lru, &lruvec->lists[lru]);
1931
1932 if (put_page_testzero(page)) {
1933 __ClearPageLRU(page);
1934 __ClearPageActive(page);
1935 del_page_from_lru_list(page, lruvec, lru);
1936
1937 if (unlikely(PageCompound(page))) {
1938 spin_unlock_irq(&pgdat->lru_lock);
1939 mem_cgroup_uncharge(page);
1940 (*get_compound_page_dtor(page))(page);
1941 spin_lock_irq(&pgdat->lru_lock);
1942 } else
1943 list_add(&page->lru, pages_to_free);
1944 } else {
1945 nr_moved += nr_pages;
1946 }
1947 }
1948
1949 if (!is_active_lru(lru)) {
1950 __count_vm_events(PGDEACTIVATE, nr_moved);
1951 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1952 nr_moved);
1953 }
1954
1955 return nr_moved;
1956 }
1957
1958 static void shrink_active_list(unsigned long nr_to_scan,
1959 struct lruvec *lruvec,
1960 struct scan_control *sc,
1961 enum lru_list lru)
1962 {
1963 unsigned long nr_taken;
1964 unsigned long nr_scanned;
1965 unsigned long vm_flags;
1966 LIST_HEAD(l_hold); /* The pages which were snipped off */
1967 LIST_HEAD(l_active);
1968 LIST_HEAD(l_inactive);
1969 struct page *page;
1970 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1971 unsigned nr_deactivate, nr_activate;
1972 unsigned nr_rotated = 0;
1973 isolate_mode_t isolate_mode = 0;
1974 int file = is_file_lru(lru);
1975 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1976
1977 lru_add_drain();
1978
1979 if (!sc->may_unmap)
1980 isolate_mode |= ISOLATE_UNMAPPED;
1981
1982 spin_lock_irq(&pgdat->lru_lock);
1983
1984 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1985 &nr_scanned, sc, isolate_mode, lru);
1986
1987 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1988 reclaim_stat->recent_scanned[file] += nr_taken;
1989
1990 __count_vm_events(PGREFILL, nr_scanned);
1991 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1992
1993 spin_unlock_irq(&pgdat->lru_lock);
1994
1995 while (!list_empty(&l_hold)) {
1996 cond_resched();
1997 page = lru_to_page(&l_hold);
1998 list_del(&page->lru);
1999
2000 if (unlikely(!page_evictable(page))) {
2001 putback_lru_page(page);
2002 continue;
2003 }
2004
2005 if (unlikely(buffer_heads_over_limit)) {
2006 if (page_has_private(page) && trylock_page(page)) {
2007 if (page_has_private(page))
2008 try_to_release_page(page, 0);
2009 unlock_page(page);
2010 }
2011 }
2012
2013 if (page_referenced(page, 0, sc->target_mem_cgroup,
2014 &vm_flags)) {
2015 nr_rotated += hpage_nr_pages(page);
2016 /*
2017 * Identify referenced, file-backed active pages and
2018 * give them one more trip around the active list. So
2019 * that executable code get better chances to stay in
2020 * memory under moderate memory pressure. Anon pages
2021 * are not likely to be evicted by use-once streaming
2022 * IO, plus JVM can create lots of anon VM_EXEC pages,
2023 * so we ignore them here.
2024 */
2025 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2026 list_add(&page->lru, &l_active);
2027 continue;
2028 }
2029 }
2030
2031 ClearPageActive(page); /* we are de-activating */
2032 list_add(&page->lru, &l_inactive);
2033 }
2034
2035 /*
2036 * Move pages back to the lru list.
2037 */
2038 spin_lock_irq(&pgdat->lru_lock);
2039 /*
2040 * Count referenced pages from currently used mappings as rotated,
2041 * even though only some of them are actually re-activated. This
2042 * helps balance scan pressure between file and anonymous pages in
2043 * get_scan_count.
2044 */
2045 reclaim_stat->recent_rotated[file] += nr_rotated;
2046
2047 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2048 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2049 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2050 spin_unlock_irq(&pgdat->lru_lock);
2051
2052 mem_cgroup_uncharge_list(&l_hold);
2053 free_hot_cold_page_list(&l_hold, true);
2054 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2055 nr_deactivate, nr_rotated, sc->priority, file);
2056 }
2057
2058 /*
2059 * The inactive anon list should be small enough that the VM never has
2060 * to do too much work.
2061 *
2062 * The inactive file list should be small enough to leave most memory
2063 * to the established workingset on the scan-resistant active list,
2064 * but large enough to avoid thrashing the aggregate readahead window.
2065 *
2066 * Both inactive lists should also be large enough that each inactive
2067 * page has a chance to be referenced again before it is reclaimed.
2068 *
2069 * If that fails and refaulting is observed, the inactive list grows.
2070 *
2071 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2072 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2073 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2074 *
2075 * total target max
2076 * memory ratio inactive
2077 * -------------------------------------
2078 * 10MB 1 5MB
2079 * 100MB 1 50MB
2080 * 1GB 3 250MB
2081 * 10GB 10 0.9GB
2082 * 100GB 31 3GB
2083 * 1TB 101 10GB
2084 * 10TB 320 32GB
2085 */
2086 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2087 struct mem_cgroup *memcg,
2088 struct scan_control *sc, bool actual_reclaim)
2089 {
2090 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2091 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2092 enum lru_list inactive_lru = file * LRU_FILE;
2093 unsigned long inactive, active;
2094 unsigned long inactive_ratio;
2095 unsigned long refaults;
2096 unsigned long gb;
2097
2098 /*
2099 * If we don't have swap space, anonymous page deactivation
2100 * is pointless.
2101 */
2102 if (!file && !total_swap_pages)
2103 return false;
2104
2105 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2106 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2107
2108 if (memcg)
2109 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2110 else
2111 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2112
2113 /*
2114 * When refaults are being observed, it means a new workingset
2115 * is being established. Disable active list protection to get
2116 * rid of the stale workingset quickly.
2117 */
2118 if (file && actual_reclaim && lruvec->refaults != refaults) {
2119 inactive_ratio = 0;
2120 } else {
2121 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2122 if (gb)
2123 inactive_ratio = int_sqrt(10 * gb);
2124 else
2125 inactive_ratio = 1;
2126 }
2127
2128 if (actual_reclaim)
2129 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2130 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2131 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2132 inactive_ratio, file);
2133
2134 return inactive * inactive_ratio < active;
2135 }
2136
2137 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2138 struct lruvec *lruvec, struct mem_cgroup *memcg,
2139 struct scan_control *sc)
2140 {
2141 if (is_active_lru(lru)) {
2142 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2143 memcg, sc, true))
2144 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2145 return 0;
2146 }
2147
2148 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2149 }
2150
2151 enum scan_balance {
2152 SCAN_EQUAL,
2153 SCAN_FRACT,
2154 SCAN_ANON,
2155 SCAN_FILE,
2156 };
2157
2158 /*
2159 * Determine how aggressively the anon and file LRU lists should be
2160 * scanned. The relative value of each set of LRU lists is determined
2161 * by looking at the fraction of the pages scanned we did rotate back
2162 * onto the active list instead of evict.
2163 *
2164 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2165 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2166 */
2167 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2168 struct scan_control *sc, unsigned long *nr,
2169 unsigned long *lru_pages)
2170 {
2171 int swappiness = mem_cgroup_swappiness(memcg);
2172 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2173 u64 fraction[2];
2174 u64 denominator = 0; /* gcc */
2175 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2176 unsigned long anon_prio, file_prio;
2177 enum scan_balance scan_balance;
2178 unsigned long anon, file;
2179 unsigned long ap, fp;
2180 enum lru_list lru;
2181
2182 /* If we have no swap space, do not bother scanning anon pages. */
2183 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2184 scan_balance = SCAN_FILE;
2185 goto out;
2186 }
2187
2188 /*
2189 * Global reclaim will swap to prevent OOM even with no
2190 * swappiness, but memcg users want to use this knob to
2191 * disable swapping for individual groups completely when
2192 * using the memory controller's swap limit feature would be
2193 * too expensive.
2194 */
2195 if (!global_reclaim(sc) && !swappiness) {
2196 scan_balance = SCAN_FILE;
2197 goto out;
2198 }
2199
2200 /*
2201 * Do not apply any pressure balancing cleverness when the
2202 * system is close to OOM, scan both anon and file equally
2203 * (unless the swappiness setting disagrees with swapping).
2204 */
2205 if (!sc->priority && swappiness) {
2206 scan_balance = SCAN_EQUAL;
2207 goto out;
2208 }
2209
2210 /*
2211 * Prevent the reclaimer from falling into the cache trap: as
2212 * cache pages start out inactive, every cache fault will tip
2213 * the scan balance towards the file LRU. And as the file LRU
2214 * shrinks, so does the window for rotation from references.
2215 * This means we have a runaway feedback loop where a tiny
2216 * thrashing file LRU becomes infinitely more attractive than
2217 * anon pages. Try to detect this based on file LRU size.
2218 */
2219 if (global_reclaim(sc)) {
2220 unsigned long pgdatfile;
2221 unsigned long pgdatfree;
2222 int z;
2223 unsigned long total_high_wmark = 0;
2224
2225 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2226 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2227 node_page_state(pgdat, NR_INACTIVE_FILE);
2228
2229 for (z = 0; z < MAX_NR_ZONES; z++) {
2230 struct zone *zone = &pgdat->node_zones[z];
2231 if (!managed_zone(zone))
2232 continue;
2233
2234 total_high_wmark += high_wmark_pages(zone);
2235 }
2236
2237 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2238 /*
2239 * Force SCAN_ANON if there are enough inactive
2240 * anonymous pages on the LRU in eligible zones.
2241 * Otherwise, the small LRU gets thrashed.
2242 */
2243 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2244 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2245 >> sc->priority) {
2246 scan_balance = SCAN_ANON;
2247 goto out;
2248 }
2249 }
2250 }
2251
2252 /*
2253 * If there is enough inactive page cache, i.e. if the size of the
2254 * inactive list is greater than that of the active list *and* the
2255 * inactive list actually has some pages to scan on this priority, we
2256 * do not reclaim anything from the anonymous working set right now.
2257 * Without the second condition we could end up never scanning an
2258 * lruvec even if it has plenty of old anonymous pages unless the
2259 * system is under heavy pressure.
2260 */
2261 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2262 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2263 scan_balance = SCAN_FILE;
2264 goto out;
2265 }
2266
2267 scan_balance = SCAN_FRACT;
2268
2269 /*
2270 * With swappiness at 100, anonymous and file have the same priority.
2271 * This scanning priority is essentially the inverse of IO cost.
2272 */
2273 anon_prio = swappiness;
2274 file_prio = 200 - anon_prio;
2275
2276 /*
2277 * OK, so we have swap space and a fair amount of page cache
2278 * pages. We use the recently rotated / recently scanned
2279 * ratios to determine how valuable each cache is.
2280 *
2281 * Because workloads change over time (and to avoid overflow)
2282 * we keep these statistics as a floating average, which ends
2283 * up weighing recent references more than old ones.
2284 *
2285 * anon in [0], file in [1]
2286 */
2287
2288 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2289 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2290 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2291 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2292
2293 spin_lock_irq(&pgdat->lru_lock);
2294 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2295 reclaim_stat->recent_scanned[0] /= 2;
2296 reclaim_stat->recent_rotated[0] /= 2;
2297 }
2298
2299 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2300 reclaim_stat->recent_scanned[1] /= 2;
2301 reclaim_stat->recent_rotated[1] /= 2;
2302 }
2303
2304 /*
2305 * The amount of pressure on anon vs file pages is inversely
2306 * proportional to the fraction of recently scanned pages on
2307 * each list that were recently referenced and in active use.
2308 */
2309 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2310 ap /= reclaim_stat->recent_rotated[0] + 1;
2311
2312 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2313 fp /= reclaim_stat->recent_rotated[1] + 1;
2314 spin_unlock_irq(&pgdat->lru_lock);
2315
2316 fraction[0] = ap;
2317 fraction[1] = fp;
2318 denominator = ap + fp + 1;
2319 out:
2320 *lru_pages = 0;
2321 for_each_evictable_lru(lru) {
2322 int file = is_file_lru(lru);
2323 unsigned long size;
2324 unsigned long scan;
2325
2326 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2327 scan = size >> sc->priority;
2328 /*
2329 * If the cgroup's already been deleted, make sure to
2330 * scrape out the remaining cache.
2331 */
2332 if (!scan && !mem_cgroup_online(memcg))
2333 scan = min(size, SWAP_CLUSTER_MAX);
2334
2335 switch (scan_balance) {
2336 case SCAN_EQUAL:
2337 /* Scan lists relative to size */
2338 break;
2339 case SCAN_FRACT:
2340 /*
2341 * Scan types proportional to swappiness and
2342 * their relative recent reclaim efficiency.
2343 */
2344 scan = div64_u64(scan * fraction[file],
2345 denominator);
2346 break;
2347 case SCAN_FILE:
2348 case SCAN_ANON:
2349 /* Scan one type exclusively */
2350 if ((scan_balance == SCAN_FILE) != file) {
2351 size = 0;
2352 scan = 0;
2353 }
2354 break;
2355 default:
2356 /* Look ma, no brain */
2357 BUG();
2358 }
2359
2360 *lru_pages += size;
2361 nr[lru] = scan;
2362 }
2363 }
2364
2365 /*
2366 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2367 */
2368 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2369 struct scan_control *sc, unsigned long *lru_pages)
2370 {
2371 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2372 unsigned long nr[NR_LRU_LISTS];
2373 unsigned long targets[NR_LRU_LISTS];
2374 unsigned long nr_to_scan;
2375 enum lru_list lru;
2376 unsigned long nr_reclaimed = 0;
2377 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2378 struct blk_plug plug;
2379 bool scan_adjusted;
2380
2381 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2382
2383 /* Record the original scan target for proportional adjustments later */
2384 memcpy(targets, nr, sizeof(nr));
2385
2386 /*
2387 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2388 * event that can occur when there is little memory pressure e.g.
2389 * multiple streaming readers/writers. Hence, we do not abort scanning
2390 * when the requested number of pages are reclaimed when scanning at
2391 * DEF_PRIORITY on the assumption that the fact we are direct
2392 * reclaiming implies that kswapd is not keeping up and it is best to
2393 * do a batch of work at once. For memcg reclaim one check is made to
2394 * abort proportional reclaim if either the file or anon lru has already
2395 * dropped to zero at the first pass.
2396 */
2397 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2398 sc->priority == DEF_PRIORITY);
2399
2400 blk_start_plug(&plug);
2401 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2402 nr[LRU_INACTIVE_FILE]) {
2403 unsigned long nr_anon, nr_file, percentage;
2404 unsigned long nr_scanned;
2405
2406 for_each_evictable_lru(lru) {
2407 if (nr[lru]) {
2408 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2409 nr[lru] -= nr_to_scan;
2410
2411 nr_reclaimed += shrink_list(lru, nr_to_scan,
2412 lruvec, memcg, sc);
2413 }
2414 }
2415
2416 cond_resched();
2417
2418 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2419 continue;
2420
2421 /*
2422 * For kswapd and memcg, reclaim at least the number of pages
2423 * requested. Ensure that the anon and file LRUs are scanned
2424 * proportionally what was requested by get_scan_count(). We
2425 * stop reclaiming one LRU and reduce the amount scanning
2426 * proportional to the original scan target.
2427 */
2428 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2429 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2430
2431 /*
2432 * It's just vindictive to attack the larger once the smaller
2433 * has gone to zero. And given the way we stop scanning the
2434 * smaller below, this makes sure that we only make one nudge
2435 * towards proportionality once we've got nr_to_reclaim.
2436 */
2437 if (!nr_file || !nr_anon)
2438 break;
2439
2440 if (nr_file > nr_anon) {
2441 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2442 targets[LRU_ACTIVE_ANON] + 1;
2443 lru = LRU_BASE;
2444 percentage = nr_anon * 100 / scan_target;
2445 } else {
2446 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2447 targets[LRU_ACTIVE_FILE] + 1;
2448 lru = LRU_FILE;
2449 percentage = nr_file * 100 / scan_target;
2450 }
2451
2452 /* Stop scanning the smaller of the LRU */
2453 nr[lru] = 0;
2454 nr[lru + LRU_ACTIVE] = 0;
2455
2456 /*
2457 * Recalculate the other LRU scan count based on its original
2458 * scan target and the percentage scanning already complete
2459 */
2460 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2461 nr_scanned = targets[lru] - nr[lru];
2462 nr[lru] = targets[lru] * (100 - percentage) / 100;
2463 nr[lru] -= min(nr[lru], nr_scanned);
2464
2465 lru += LRU_ACTIVE;
2466 nr_scanned = targets[lru] - nr[lru];
2467 nr[lru] = targets[lru] * (100 - percentage) / 100;
2468 nr[lru] -= min(nr[lru], nr_scanned);
2469
2470 scan_adjusted = true;
2471 }
2472 blk_finish_plug(&plug);
2473 sc->nr_reclaimed += nr_reclaimed;
2474
2475 /*
2476 * Even if we did not try to evict anon pages at all, we want to
2477 * rebalance the anon lru active/inactive ratio.
2478 */
2479 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2480 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2481 sc, LRU_ACTIVE_ANON);
2482 }
2483
2484 /* Use reclaim/compaction for costly allocs or under memory pressure */
2485 static bool in_reclaim_compaction(struct scan_control *sc)
2486 {
2487 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2488 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2489 sc->priority < DEF_PRIORITY - 2))
2490 return true;
2491
2492 return false;
2493 }
2494
2495 /*
2496 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2497 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2498 * true if more pages should be reclaimed such that when the page allocator
2499 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2500 * It will give up earlier than that if there is difficulty reclaiming pages.
2501 */
2502 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2503 unsigned long nr_reclaimed,
2504 unsigned long nr_scanned,
2505 struct scan_control *sc)
2506 {
2507 unsigned long pages_for_compaction;
2508 unsigned long inactive_lru_pages;
2509 int z;
2510
2511 /* If not in reclaim/compaction mode, stop */
2512 if (!in_reclaim_compaction(sc))
2513 return false;
2514
2515 /* Consider stopping depending on scan and reclaim activity */
2516 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2517 /*
2518 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2519 * full LRU list has been scanned and we are still failing
2520 * to reclaim pages. This full LRU scan is potentially
2521 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2522 */
2523 if (!nr_reclaimed && !nr_scanned)
2524 return false;
2525 } else {
2526 /*
2527 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2528 * fail without consequence, stop if we failed to reclaim
2529 * any pages from the last SWAP_CLUSTER_MAX number of
2530 * pages that were scanned. This will return to the
2531 * caller faster at the risk reclaim/compaction and
2532 * the resulting allocation attempt fails
2533 */
2534 if (!nr_reclaimed)
2535 return false;
2536 }
2537
2538 /*
2539 * If we have not reclaimed enough pages for compaction and the
2540 * inactive lists are large enough, continue reclaiming
2541 */
2542 pages_for_compaction = compact_gap(sc->order);
2543 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2544 if (get_nr_swap_pages() > 0)
2545 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2546 if (sc->nr_reclaimed < pages_for_compaction &&
2547 inactive_lru_pages > pages_for_compaction)
2548 return true;
2549
2550 /* If compaction would go ahead or the allocation would succeed, stop */
2551 for (z = 0; z <= sc->reclaim_idx; z++) {
2552 struct zone *zone = &pgdat->node_zones[z];
2553 if (!managed_zone(zone))
2554 continue;
2555
2556 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2557 case COMPACT_SUCCESS:
2558 case COMPACT_CONTINUE:
2559 return false;
2560 default:
2561 /* check next zone */
2562 ;
2563 }
2564 }
2565 return true;
2566 }
2567
2568 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2569 {
2570 struct reclaim_state *reclaim_state = current->reclaim_state;
2571 unsigned long nr_reclaimed, nr_scanned;
2572 bool reclaimable = false;
2573
2574 do {
2575 struct mem_cgroup *root = sc->target_mem_cgroup;
2576 struct mem_cgroup_reclaim_cookie reclaim = {
2577 .pgdat = pgdat,
2578 .priority = sc->priority,
2579 };
2580 unsigned long node_lru_pages = 0;
2581 struct mem_cgroup *memcg;
2582
2583 nr_reclaimed = sc->nr_reclaimed;
2584 nr_scanned = sc->nr_scanned;
2585
2586 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2587 do {
2588 unsigned long lru_pages;
2589 unsigned long reclaimed;
2590 unsigned long scanned;
2591
2592 if (mem_cgroup_low(root, memcg)) {
2593 if (!sc->memcg_low_reclaim) {
2594 sc->memcg_low_skipped = 1;
2595 continue;
2596 }
2597 mem_cgroup_event(memcg, MEMCG_LOW);
2598 }
2599
2600 reclaimed = sc->nr_reclaimed;
2601 scanned = sc->nr_scanned;
2602
2603 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2604 node_lru_pages += lru_pages;
2605
2606 if (memcg)
2607 shrink_slab(sc->gfp_mask, pgdat->node_id,
2608 memcg, sc->nr_scanned - scanned,
2609 lru_pages);
2610
2611 /* Record the group's reclaim efficiency */
2612 vmpressure(sc->gfp_mask, memcg, false,
2613 sc->nr_scanned - scanned,
2614 sc->nr_reclaimed - reclaimed);
2615
2616 /*
2617 * Direct reclaim and kswapd have to scan all memory
2618 * cgroups to fulfill the overall scan target for the
2619 * node.
2620 *
2621 * Limit reclaim, on the other hand, only cares about
2622 * nr_to_reclaim pages to be reclaimed and it will
2623 * retry with decreasing priority if one round over the
2624 * whole hierarchy is not sufficient.
2625 */
2626 if (!global_reclaim(sc) &&
2627 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2628 mem_cgroup_iter_break(root, memcg);
2629 break;
2630 }
2631 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2632
2633 /*
2634 * Shrink the slab caches in the same proportion that
2635 * the eligible LRU pages were scanned.
2636 */
2637 if (global_reclaim(sc))
2638 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2639 sc->nr_scanned - nr_scanned,
2640 node_lru_pages);
2641
2642 if (reclaim_state) {
2643 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2644 reclaim_state->reclaimed_slab = 0;
2645 }
2646
2647 /* Record the subtree's reclaim efficiency */
2648 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2649 sc->nr_scanned - nr_scanned,
2650 sc->nr_reclaimed - nr_reclaimed);
2651
2652 if (sc->nr_reclaimed - nr_reclaimed)
2653 reclaimable = true;
2654
2655 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2656 sc->nr_scanned - nr_scanned, sc));
2657
2658 /*
2659 * Kswapd gives up on balancing particular nodes after too
2660 * many failures to reclaim anything from them and goes to
2661 * sleep. On reclaim progress, reset the failure counter. A
2662 * successful direct reclaim run will revive a dormant kswapd.
2663 */
2664 if (reclaimable)
2665 pgdat->kswapd_failures = 0;
2666
2667 return reclaimable;
2668 }
2669
2670 /*
2671 * Returns true if compaction should go ahead for a costly-order request, or
2672 * the allocation would already succeed without compaction. Return false if we
2673 * should reclaim first.
2674 */
2675 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2676 {
2677 unsigned long watermark;
2678 enum compact_result suitable;
2679
2680 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2681 if (suitable == COMPACT_SUCCESS)
2682 /* Allocation should succeed already. Don't reclaim. */
2683 return true;
2684 if (suitable == COMPACT_SKIPPED)
2685 /* Compaction cannot yet proceed. Do reclaim. */
2686 return false;
2687
2688 /*
2689 * Compaction is already possible, but it takes time to run and there
2690 * are potentially other callers using the pages just freed. So proceed
2691 * with reclaim to make a buffer of free pages available to give
2692 * compaction a reasonable chance of completing and allocating the page.
2693 * Note that we won't actually reclaim the whole buffer in one attempt
2694 * as the target watermark in should_continue_reclaim() is lower. But if
2695 * we are already above the high+gap watermark, don't reclaim at all.
2696 */
2697 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2698
2699 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2700 }
2701
2702 /*
2703 * This is the direct reclaim path, for page-allocating processes. We only
2704 * try to reclaim pages from zones which will satisfy the caller's allocation
2705 * request.
2706 *
2707 * If a zone is deemed to be full of pinned pages then just give it a light
2708 * scan then give up on it.
2709 */
2710 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2711 {
2712 struct zoneref *z;
2713 struct zone *zone;
2714 unsigned long nr_soft_reclaimed;
2715 unsigned long nr_soft_scanned;
2716 gfp_t orig_mask;
2717 pg_data_t *last_pgdat = NULL;
2718
2719 /*
2720 * If the number of buffer_heads in the machine exceeds the maximum
2721 * allowed level, force direct reclaim to scan the highmem zone as
2722 * highmem pages could be pinning lowmem pages storing buffer_heads
2723 */
2724 orig_mask = sc->gfp_mask;
2725 if (buffer_heads_over_limit) {
2726 sc->gfp_mask |= __GFP_HIGHMEM;
2727 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2728 }
2729
2730 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2731 sc->reclaim_idx, sc->nodemask) {
2732 /*
2733 * Take care memory controller reclaiming has small influence
2734 * to global LRU.
2735 */
2736 if (global_reclaim(sc)) {
2737 if (!cpuset_zone_allowed(zone,
2738 GFP_KERNEL | __GFP_HARDWALL))
2739 continue;
2740
2741 /*
2742 * If we already have plenty of memory free for
2743 * compaction in this zone, don't free any more.
2744 * Even though compaction is invoked for any
2745 * non-zero order, only frequent costly order
2746 * reclamation is disruptive enough to become a
2747 * noticeable problem, like transparent huge
2748 * page allocations.
2749 */
2750 if (IS_ENABLED(CONFIG_COMPACTION) &&
2751 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2752 compaction_ready(zone, sc)) {
2753 sc->compaction_ready = true;
2754 continue;
2755 }
2756
2757 /*
2758 * Shrink each node in the zonelist once. If the
2759 * zonelist is ordered by zone (not the default) then a
2760 * node may be shrunk multiple times but in that case
2761 * the user prefers lower zones being preserved.
2762 */
2763 if (zone->zone_pgdat == last_pgdat)
2764 continue;
2765
2766 /*
2767 * This steals pages from memory cgroups over softlimit
2768 * and returns the number of reclaimed pages and
2769 * scanned pages. This works for global memory pressure
2770 * and balancing, not for a memcg's limit.
2771 */
2772 nr_soft_scanned = 0;
2773 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2774 sc->order, sc->gfp_mask,
2775 &nr_soft_scanned);
2776 sc->nr_reclaimed += nr_soft_reclaimed;
2777 sc->nr_scanned += nr_soft_scanned;
2778 /* need some check for avoid more shrink_zone() */
2779 }
2780
2781 /* See comment about same check for global reclaim above */
2782 if (zone->zone_pgdat == last_pgdat)
2783 continue;
2784 last_pgdat = zone->zone_pgdat;
2785 shrink_node(zone->zone_pgdat, sc);
2786 }
2787
2788 /*
2789 * Restore to original mask to avoid the impact on the caller if we
2790 * promoted it to __GFP_HIGHMEM.
2791 */
2792 sc->gfp_mask = orig_mask;
2793 }
2794
2795 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2796 {
2797 struct mem_cgroup *memcg;
2798
2799 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2800 do {
2801 unsigned long refaults;
2802 struct lruvec *lruvec;
2803
2804 if (memcg)
2805 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2806 else
2807 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2808
2809 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2810 lruvec->refaults = refaults;
2811 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2812 }
2813
2814 /*
2815 * This is the main entry point to direct page reclaim.
2816 *
2817 * If a full scan of the inactive list fails to free enough memory then we
2818 * are "out of memory" and something needs to be killed.
2819 *
2820 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2821 * high - the zone may be full of dirty or under-writeback pages, which this
2822 * caller can't do much about. We kick the writeback threads and take explicit
2823 * naps in the hope that some of these pages can be written. But if the
2824 * allocating task holds filesystem locks which prevent writeout this might not
2825 * work, and the allocation attempt will fail.
2826 *
2827 * returns: 0, if no pages reclaimed
2828 * else, the number of pages reclaimed
2829 */
2830 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2831 struct scan_control *sc)
2832 {
2833 int initial_priority = sc->priority;
2834 pg_data_t *last_pgdat;
2835 struct zoneref *z;
2836 struct zone *zone;
2837 retry:
2838 delayacct_freepages_start();
2839
2840 if (global_reclaim(sc))
2841 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2842
2843 do {
2844 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2845 sc->priority);
2846 sc->nr_scanned = 0;
2847 shrink_zones(zonelist, sc);
2848
2849 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2850 break;
2851
2852 if (sc->compaction_ready)
2853 break;
2854
2855 /*
2856 * If we're getting trouble reclaiming, start doing
2857 * writepage even in laptop mode.
2858 */
2859 if (sc->priority < DEF_PRIORITY - 2)
2860 sc->may_writepage = 1;
2861 } while (--sc->priority >= 0);
2862
2863 last_pgdat = NULL;
2864 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2865 sc->nodemask) {
2866 if (zone->zone_pgdat == last_pgdat)
2867 continue;
2868 last_pgdat = zone->zone_pgdat;
2869 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2870 }
2871
2872 delayacct_freepages_end();
2873
2874 if (sc->nr_reclaimed)
2875 return sc->nr_reclaimed;
2876
2877 /* Aborted reclaim to try compaction? don't OOM, then */
2878 if (sc->compaction_ready)
2879 return 1;
2880
2881 /* Untapped cgroup reserves? Don't OOM, retry. */
2882 if (sc->memcg_low_skipped) {
2883 sc->priority = initial_priority;
2884 sc->memcg_low_reclaim = 1;
2885 sc->memcg_low_skipped = 0;
2886 goto retry;
2887 }
2888
2889 return 0;
2890 }
2891
2892 static bool allow_direct_reclaim(pg_data_t *pgdat)
2893 {
2894 struct zone *zone;
2895 unsigned long pfmemalloc_reserve = 0;
2896 unsigned long free_pages = 0;
2897 int i;
2898 bool wmark_ok;
2899
2900 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2901 return true;
2902
2903 for (i = 0; i <= ZONE_NORMAL; i++) {
2904 zone = &pgdat->node_zones[i];
2905 if (!managed_zone(zone))
2906 continue;
2907
2908 if (!zone_reclaimable_pages(zone))
2909 continue;
2910
2911 pfmemalloc_reserve += min_wmark_pages(zone);
2912 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2913 }
2914
2915 /* If there are no reserves (unexpected config) then do not throttle */
2916 if (!pfmemalloc_reserve)
2917 return true;
2918
2919 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2920
2921 /* kswapd must be awake if processes are being throttled */
2922 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2923 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2924 (enum zone_type)ZONE_NORMAL);
2925 wake_up_interruptible(&pgdat->kswapd_wait);
2926 }
2927
2928 return wmark_ok;
2929 }
2930
2931 /*
2932 * Throttle direct reclaimers if backing storage is backed by the network
2933 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2934 * depleted. kswapd will continue to make progress and wake the processes
2935 * when the low watermark is reached.
2936 *
2937 * Returns true if a fatal signal was delivered during throttling. If this
2938 * happens, the page allocator should not consider triggering the OOM killer.
2939 */
2940 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2941 nodemask_t *nodemask)
2942 {
2943 struct zoneref *z;
2944 struct zone *zone;
2945 pg_data_t *pgdat = NULL;
2946
2947 /*
2948 * Kernel threads should not be throttled as they may be indirectly
2949 * responsible for cleaning pages necessary for reclaim to make forward
2950 * progress. kjournald for example may enter direct reclaim while
2951 * committing a transaction where throttling it could forcing other
2952 * processes to block on log_wait_commit().
2953 */
2954 if (current->flags & PF_KTHREAD)
2955 goto out;
2956
2957 /*
2958 * If a fatal signal is pending, this process should not throttle.
2959 * It should return quickly so it can exit and free its memory
2960 */
2961 if (fatal_signal_pending(current))
2962 goto out;
2963
2964 /*
2965 * Check if the pfmemalloc reserves are ok by finding the first node
2966 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2967 * GFP_KERNEL will be required for allocating network buffers when
2968 * swapping over the network so ZONE_HIGHMEM is unusable.
2969 *
2970 * Throttling is based on the first usable node and throttled processes
2971 * wait on a queue until kswapd makes progress and wakes them. There
2972 * is an affinity then between processes waking up and where reclaim
2973 * progress has been made assuming the process wakes on the same node.
2974 * More importantly, processes running on remote nodes will not compete
2975 * for remote pfmemalloc reserves and processes on different nodes
2976 * should make reasonable progress.
2977 */
2978 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2979 gfp_zone(gfp_mask), nodemask) {
2980 if (zone_idx(zone) > ZONE_NORMAL)
2981 continue;
2982
2983 /* Throttle based on the first usable node */
2984 pgdat = zone->zone_pgdat;
2985 if (allow_direct_reclaim(pgdat))
2986 goto out;
2987 break;
2988 }
2989
2990 /* If no zone was usable by the allocation flags then do not throttle */
2991 if (!pgdat)
2992 goto out;
2993
2994 /* Account for the throttling */
2995 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2996
2997 /*
2998 * If the caller cannot enter the filesystem, it's possible that it
2999 * is due to the caller holding an FS lock or performing a journal
3000 * transaction in the case of a filesystem like ext[3|4]. In this case,
3001 * it is not safe to block on pfmemalloc_wait as kswapd could be
3002 * blocked waiting on the same lock. Instead, throttle for up to a
3003 * second before continuing.
3004 */
3005 if (!(gfp_mask & __GFP_FS)) {
3006 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3007 allow_direct_reclaim(pgdat), HZ);
3008
3009 goto check_pending;
3010 }
3011
3012 /* Throttle until kswapd wakes the process */
3013 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3014 allow_direct_reclaim(pgdat));
3015
3016 check_pending:
3017 if (fatal_signal_pending(current))
3018 return true;
3019
3020 out:
3021 return false;
3022 }
3023
3024 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3025 gfp_t gfp_mask, nodemask_t *nodemask)
3026 {
3027 unsigned long nr_reclaimed;
3028 struct scan_control sc = {
3029 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3030 .gfp_mask = current_gfp_context(gfp_mask),
3031 .reclaim_idx = gfp_zone(gfp_mask),
3032 .order = order,
3033 .nodemask = nodemask,
3034 .priority = DEF_PRIORITY,
3035 .may_writepage = !laptop_mode,
3036 .may_unmap = 1,
3037 .may_swap = 1,
3038 };
3039
3040 /*
3041 * Do not enter reclaim if fatal signal was delivered while throttled.
3042 * 1 is returned so that the page allocator does not OOM kill at this
3043 * point.
3044 */
3045 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3046 return 1;
3047
3048 trace_mm_vmscan_direct_reclaim_begin(order,
3049 sc.may_writepage,
3050 sc.gfp_mask,
3051 sc.reclaim_idx);
3052
3053 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3054
3055 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3056
3057 return nr_reclaimed;
3058 }
3059
3060 #ifdef CONFIG_MEMCG
3061
3062 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3063 gfp_t gfp_mask, bool noswap,
3064 pg_data_t *pgdat,
3065 unsigned long *nr_scanned)
3066 {
3067 struct scan_control sc = {
3068 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3069 .target_mem_cgroup = memcg,
3070 .may_writepage = !laptop_mode,
3071 .may_unmap = 1,
3072 .reclaim_idx = MAX_NR_ZONES - 1,
3073 .may_swap = !noswap,
3074 };
3075 unsigned long lru_pages;
3076
3077 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3078 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3079
3080 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3081 sc.may_writepage,
3082 sc.gfp_mask,
3083 sc.reclaim_idx);
3084
3085 /*
3086 * NOTE: Although we can get the priority field, using it
3087 * here is not a good idea, since it limits the pages we can scan.
3088 * if we don't reclaim here, the shrink_node from balance_pgdat
3089 * will pick up pages from other mem cgroup's as well. We hack
3090 * the priority and make it zero.
3091 */
3092 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3093
3094 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3095
3096 *nr_scanned = sc.nr_scanned;
3097 return sc.nr_reclaimed;
3098 }
3099
3100 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3101 unsigned long nr_pages,
3102 gfp_t gfp_mask,
3103 bool may_swap)
3104 {
3105 struct zonelist *zonelist;
3106 unsigned long nr_reclaimed;
3107 int nid;
3108 unsigned int noreclaim_flag;
3109 struct scan_control sc = {
3110 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3111 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3112 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3113 .reclaim_idx = MAX_NR_ZONES - 1,
3114 .target_mem_cgroup = memcg,
3115 .priority = DEF_PRIORITY,
3116 .may_writepage = !laptop_mode,
3117 .may_unmap = 1,
3118 .may_swap = may_swap,
3119 };
3120
3121 /*
3122 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3123 * take care of from where we get pages. So the node where we start the
3124 * scan does not need to be the current node.
3125 */
3126 nid = mem_cgroup_select_victim_node(memcg);
3127
3128 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3129
3130 trace_mm_vmscan_memcg_reclaim_begin(0,
3131 sc.may_writepage,
3132 sc.gfp_mask,
3133 sc.reclaim_idx);
3134
3135 noreclaim_flag = memalloc_noreclaim_save();
3136 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3137 memalloc_noreclaim_restore(noreclaim_flag);
3138
3139 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3140
3141 return nr_reclaimed;
3142 }
3143 #endif
3144
3145 static void age_active_anon(struct pglist_data *pgdat,
3146 struct scan_control *sc)
3147 {
3148 struct mem_cgroup *memcg;
3149
3150 if (!total_swap_pages)
3151 return;
3152
3153 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3154 do {
3155 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3156
3157 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3158 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3159 sc, LRU_ACTIVE_ANON);
3160
3161 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3162 } while (memcg);
3163 }
3164
3165 /*
3166 * Returns true if there is an eligible zone balanced for the request order
3167 * and classzone_idx
3168 */
3169 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3170 {
3171 int i;
3172 unsigned long mark = -1;
3173 struct zone *zone;
3174
3175 for (i = 0; i <= classzone_idx; i++) {
3176 zone = pgdat->node_zones + i;
3177
3178 if (!managed_zone(zone))
3179 continue;
3180
3181 mark = high_wmark_pages(zone);
3182 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3183 return true;
3184 }
3185
3186 /*
3187 * If a node has no populated zone within classzone_idx, it does not
3188 * need balancing by definition. This can happen if a zone-restricted
3189 * allocation tries to wake a remote kswapd.
3190 */
3191 if (mark == -1)
3192 return true;
3193
3194 return false;
3195 }
3196
3197 /* Clear pgdat state for congested, dirty or under writeback. */
3198 static void clear_pgdat_congested(pg_data_t *pgdat)
3199 {
3200 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3201 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3202 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3203 }
3204
3205 /*
3206 * Prepare kswapd for sleeping. This verifies that there are no processes
3207 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3208 *
3209 * Returns true if kswapd is ready to sleep
3210 */
3211 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3212 {
3213 /*
3214 * The throttled processes are normally woken up in balance_pgdat() as
3215 * soon as allow_direct_reclaim() is true. But there is a potential
3216 * race between when kswapd checks the watermarks and a process gets
3217 * throttled. There is also a potential race if processes get
3218 * throttled, kswapd wakes, a large process exits thereby balancing the
3219 * zones, which causes kswapd to exit balance_pgdat() before reaching
3220 * the wake up checks. If kswapd is going to sleep, no process should
3221 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3222 * the wake up is premature, processes will wake kswapd and get
3223 * throttled again. The difference from wake ups in balance_pgdat() is
3224 * that here we are under prepare_to_wait().
3225 */
3226 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3227 wake_up_all(&pgdat->pfmemalloc_wait);
3228
3229 /* Hopeless node, leave it to direct reclaim */
3230 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3231 return true;
3232
3233 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3234 clear_pgdat_congested(pgdat);
3235 return true;
3236 }
3237
3238 return false;
3239 }
3240
3241 /*
3242 * kswapd shrinks a node of pages that are at or below the highest usable
3243 * zone that is currently unbalanced.
3244 *
3245 * Returns true if kswapd scanned at least the requested number of pages to
3246 * reclaim or if the lack of progress was due to pages under writeback.
3247 * This is used to determine if the scanning priority needs to be raised.
3248 */
3249 static bool kswapd_shrink_node(pg_data_t *pgdat,
3250 struct scan_control *sc)
3251 {
3252 struct zone *zone;
3253 int z;
3254
3255 /* Reclaim a number of pages proportional to the number of zones */
3256 sc->nr_to_reclaim = 0;
3257 for (z = 0; z <= sc->reclaim_idx; z++) {
3258 zone = pgdat->node_zones + z;
3259 if (!managed_zone(zone))
3260 continue;
3261
3262 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3263 }
3264
3265 /*
3266 * Historically care was taken to put equal pressure on all zones but
3267 * now pressure is applied based on node LRU order.
3268 */
3269 shrink_node(pgdat, sc);
3270
3271 /*
3272 * Fragmentation may mean that the system cannot be rebalanced for
3273 * high-order allocations. If twice the allocation size has been
3274 * reclaimed then recheck watermarks only at order-0 to prevent
3275 * excessive reclaim. Assume that a process requested a high-order
3276 * can direct reclaim/compact.
3277 */
3278 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3279 sc->order = 0;
3280
3281 return sc->nr_scanned >= sc->nr_to_reclaim;
3282 }
3283
3284 /*
3285 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3286 * that are eligible for use by the caller until at least one zone is
3287 * balanced.
3288 *
3289 * Returns the order kswapd finished reclaiming at.
3290 *
3291 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3292 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3293 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3294 * or lower is eligible for reclaim until at least one usable zone is
3295 * balanced.
3296 */
3297 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3298 {
3299 int i;
3300 unsigned long nr_soft_reclaimed;
3301 unsigned long nr_soft_scanned;
3302 struct zone *zone;
3303 struct scan_control sc = {
3304 .gfp_mask = GFP_KERNEL,
3305 .order = order,
3306 .priority = DEF_PRIORITY,
3307 .may_writepage = !laptop_mode,
3308 .may_unmap = 1,
3309 .may_swap = 1,
3310 };
3311 count_vm_event(PAGEOUTRUN);
3312
3313 do {
3314 unsigned long nr_reclaimed = sc.nr_reclaimed;
3315 bool raise_priority = true;
3316
3317 sc.reclaim_idx = classzone_idx;
3318
3319 /*
3320 * If the number of buffer_heads exceeds the maximum allowed
3321 * then consider reclaiming from all zones. This has a dual
3322 * purpose -- on 64-bit systems it is expected that
3323 * buffer_heads are stripped during active rotation. On 32-bit
3324 * systems, highmem pages can pin lowmem memory and shrinking
3325 * buffers can relieve lowmem pressure. Reclaim may still not
3326 * go ahead if all eligible zones for the original allocation
3327 * request are balanced to avoid excessive reclaim from kswapd.
3328 */
3329 if (buffer_heads_over_limit) {
3330 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3331 zone = pgdat->node_zones + i;
3332 if (!managed_zone(zone))
3333 continue;
3334
3335 sc.reclaim_idx = i;
3336 break;
3337 }
3338 }
3339
3340 /*
3341 * Only reclaim if there are no eligible zones. Note that
3342 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3343 * have adjusted it.
3344 */
3345 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3346 goto out;
3347
3348 /*
3349 * Do some background aging of the anon list, to give
3350 * pages a chance to be referenced before reclaiming. All
3351 * pages are rotated regardless of classzone as this is
3352 * about consistent aging.
3353 */
3354 age_active_anon(pgdat, &sc);
3355
3356 /*
3357 * If we're getting trouble reclaiming, start doing writepage
3358 * even in laptop mode.
3359 */
3360 if (sc.priority < DEF_PRIORITY - 2)
3361 sc.may_writepage = 1;
3362
3363 /* Call soft limit reclaim before calling shrink_node. */
3364 sc.nr_scanned = 0;
3365 nr_soft_scanned = 0;
3366 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3367 sc.gfp_mask, &nr_soft_scanned);
3368 sc.nr_reclaimed += nr_soft_reclaimed;
3369
3370 /*
3371 * There should be no need to raise the scanning priority if
3372 * enough pages are already being scanned that that high
3373 * watermark would be met at 100% efficiency.
3374 */
3375 if (kswapd_shrink_node(pgdat, &sc))
3376 raise_priority = false;
3377
3378 /*
3379 * If the low watermark is met there is no need for processes
3380 * to be throttled on pfmemalloc_wait as they should not be
3381 * able to safely make forward progress. Wake them
3382 */
3383 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3384 allow_direct_reclaim(pgdat))
3385 wake_up_all(&pgdat->pfmemalloc_wait);
3386
3387 /* Check if kswapd should be suspending */
3388 if (try_to_freeze() || kthread_should_stop())
3389 break;
3390
3391 /*
3392 * Raise priority if scanning rate is too low or there was no
3393 * progress in reclaiming pages
3394 */
3395 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3396 if (raise_priority || !nr_reclaimed)
3397 sc.priority--;
3398 } while (sc.priority >= 1);
3399
3400 if (!sc.nr_reclaimed)
3401 pgdat->kswapd_failures++;
3402
3403 out:
3404 snapshot_refaults(NULL, pgdat);
3405 /*
3406 * Return the order kswapd stopped reclaiming at as
3407 * prepare_kswapd_sleep() takes it into account. If another caller
3408 * entered the allocator slow path while kswapd was awake, order will
3409 * remain at the higher level.
3410 */
3411 return sc.order;
3412 }
3413
3414 /*
3415 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3416 * allocation request woke kswapd for. When kswapd has not woken recently,
3417 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3418 * given classzone and returns it or the highest classzone index kswapd
3419 * was recently woke for.
3420 */
3421 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3422 enum zone_type classzone_idx)
3423 {
3424 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3425 return classzone_idx;
3426
3427 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3428 }
3429
3430 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3431 unsigned int classzone_idx)
3432 {
3433 long remaining = 0;
3434 DEFINE_WAIT(wait);
3435
3436 if (freezing(current) || kthread_should_stop())
3437 return;
3438
3439 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3440
3441 /*
3442 * Try to sleep for a short interval. Note that kcompactd will only be
3443 * woken if it is possible to sleep for a short interval. This is
3444 * deliberate on the assumption that if reclaim cannot keep an
3445 * eligible zone balanced that it's also unlikely that compaction will
3446 * succeed.
3447 */
3448 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3449 /*
3450 * Compaction records what page blocks it recently failed to
3451 * isolate pages from and skips them in the future scanning.
3452 * When kswapd is going to sleep, it is reasonable to assume
3453 * that pages and compaction may succeed so reset the cache.
3454 */
3455 reset_isolation_suitable(pgdat);
3456
3457 /*
3458 * We have freed the memory, now we should compact it to make
3459 * allocation of the requested order possible.
3460 */
3461 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3462
3463 remaining = schedule_timeout(HZ/10);
3464
3465 /*
3466 * If woken prematurely then reset kswapd_classzone_idx and
3467 * order. The values will either be from a wakeup request or
3468 * the previous request that slept prematurely.
3469 */
3470 if (remaining) {
3471 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3472 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3473 }
3474
3475 finish_wait(&pgdat->kswapd_wait, &wait);
3476 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3477 }
3478
3479 /*
3480 * After a short sleep, check if it was a premature sleep. If not, then
3481 * go fully to sleep until explicitly woken up.
3482 */
3483 if (!remaining &&
3484 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3485 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3486
3487 /*
3488 * vmstat counters are not perfectly accurate and the estimated
3489 * value for counters such as NR_FREE_PAGES can deviate from the
3490 * true value by nr_online_cpus * threshold. To avoid the zone
3491 * watermarks being breached while under pressure, we reduce the
3492 * per-cpu vmstat threshold while kswapd is awake and restore
3493 * them before going back to sleep.
3494 */
3495 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3496
3497 if (!kthread_should_stop())
3498 schedule();
3499
3500 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3501 } else {
3502 if (remaining)
3503 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3504 else
3505 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3506 }
3507 finish_wait(&pgdat->kswapd_wait, &wait);
3508 }
3509
3510 /*
3511 * The background pageout daemon, started as a kernel thread
3512 * from the init process.
3513 *
3514 * This basically trickles out pages so that we have _some_
3515 * free memory available even if there is no other activity
3516 * that frees anything up. This is needed for things like routing
3517 * etc, where we otherwise might have all activity going on in
3518 * asynchronous contexts that cannot page things out.
3519 *
3520 * If there are applications that are active memory-allocators
3521 * (most normal use), this basically shouldn't matter.
3522 */
3523 static int kswapd(void *p)
3524 {
3525 unsigned int alloc_order, reclaim_order;
3526 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3527 pg_data_t *pgdat = (pg_data_t*)p;
3528 struct task_struct *tsk = current;
3529
3530 struct reclaim_state reclaim_state = {
3531 .reclaimed_slab = 0,
3532 };
3533 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3534
3535 if (!cpumask_empty(cpumask))
3536 set_cpus_allowed_ptr(tsk, cpumask);
3537 current->reclaim_state = &reclaim_state;
3538
3539 /*
3540 * Tell the memory management that we're a "memory allocator",
3541 * and that if we need more memory we should get access to it
3542 * regardless (see "__alloc_pages()"). "kswapd" should
3543 * never get caught in the normal page freeing logic.
3544 *
3545 * (Kswapd normally doesn't need memory anyway, but sometimes
3546 * you need a small amount of memory in order to be able to
3547 * page out something else, and this flag essentially protects
3548 * us from recursively trying to free more memory as we're
3549 * trying to free the first piece of memory in the first place).
3550 */
3551 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3552 set_freezable();
3553
3554 pgdat->kswapd_order = 0;
3555 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3556 for ( ; ; ) {
3557 bool ret;
3558
3559 alloc_order = reclaim_order = pgdat->kswapd_order;
3560 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3561
3562 kswapd_try_sleep:
3563 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3564 classzone_idx);
3565
3566 /* Read the new order and classzone_idx */
3567 alloc_order = reclaim_order = pgdat->kswapd_order;
3568 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3569 pgdat->kswapd_order = 0;
3570 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3571
3572 ret = try_to_freeze();
3573 if (kthread_should_stop())
3574 break;
3575
3576 /*
3577 * We can speed up thawing tasks if we don't call balance_pgdat
3578 * after returning from the refrigerator
3579 */
3580 if (ret)
3581 continue;
3582
3583 /*
3584 * Reclaim begins at the requested order but if a high-order
3585 * reclaim fails then kswapd falls back to reclaiming for
3586 * order-0. If that happens, kswapd will consider sleeping
3587 * for the order it finished reclaiming at (reclaim_order)
3588 * but kcompactd is woken to compact for the original
3589 * request (alloc_order).
3590 */
3591 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3592 alloc_order);
3593 fs_reclaim_acquire(GFP_KERNEL);
3594 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3595 fs_reclaim_release(GFP_KERNEL);
3596 if (reclaim_order < alloc_order)
3597 goto kswapd_try_sleep;
3598 }
3599
3600 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3601 current->reclaim_state = NULL;
3602
3603 return 0;
3604 }
3605
3606 /*
3607 * A zone is low on free memory, so wake its kswapd task to service it.
3608 */
3609 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3610 {
3611 pg_data_t *pgdat;
3612
3613 if (!managed_zone(zone))
3614 return;
3615
3616 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3617 return;
3618 pgdat = zone->zone_pgdat;
3619 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3620 classzone_idx);
3621 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3622 if (!waitqueue_active(&pgdat->kswapd_wait))
3623 return;
3624
3625 /* Hopeless node, leave it to direct reclaim */
3626 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3627 return;
3628
3629 if (pgdat_balanced(pgdat, order, classzone_idx))
3630 return;
3631
3632 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3633 wake_up_interruptible(&pgdat->kswapd_wait);
3634 }
3635
3636 #ifdef CONFIG_HIBERNATION
3637 /*
3638 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3639 * freed pages.
3640 *
3641 * Rather than trying to age LRUs the aim is to preserve the overall
3642 * LRU order by reclaiming preferentially
3643 * inactive > active > active referenced > active mapped
3644 */
3645 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3646 {
3647 struct reclaim_state reclaim_state;
3648 struct scan_control sc = {
3649 .nr_to_reclaim = nr_to_reclaim,
3650 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3651 .reclaim_idx = MAX_NR_ZONES - 1,
3652 .priority = DEF_PRIORITY,
3653 .may_writepage = 1,
3654 .may_unmap = 1,
3655 .may_swap = 1,
3656 .hibernation_mode = 1,
3657 };
3658 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3659 struct task_struct *p = current;
3660 unsigned long nr_reclaimed;
3661 unsigned int noreclaim_flag;
3662
3663 noreclaim_flag = memalloc_noreclaim_save();
3664 fs_reclaim_acquire(sc.gfp_mask);
3665 reclaim_state.reclaimed_slab = 0;
3666 p->reclaim_state = &reclaim_state;
3667
3668 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3669
3670 p->reclaim_state = NULL;
3671 fs_reclaim_release(sc.gfp_mask);
3672 memalloc_noreclaim_restore(noreclaim_flag);
3673
3674 return nr_reclaimed;
3675 }
3676 #endif /* CONFIG_HIBERNATION */
3677
3678 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3679 not required for correctness. So if the last cpu in a node goes
3680 away, we get changed to run anywhere: as the first one comes back,
3681 restore their cpu bindings. */
3682 static int kswapd_cpu_online(unsigned int cpu)
3683 {
3684 int nid;
3685
3686 for_each_node_state(nid, N_MEMORY) {
3687 pg_data_t *pgdat = NODE_DATA(nid);
3688 const struct cpumask *mask;
3689
3690 mask = cpumask_of_node(pgdat->node_id);
3691
3692 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3693 /* One of our CPUs online: restore mask */
3694 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3695 }
3696 return 0;
3697 }
3698
3699 /*
3700 * This kswapd start function will be called by init and node-hot-add.
3701 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3702 */
3703 int kswapd_run(int nid)
3704 {
3705 pg_data_t *pgdat = NODE_DATA(nid);
3706 int ret = 0;
3707
3708 if (pgdat->kswapd)
3709 return 0;
3710
3711 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3712 if (IS_ERR(pgdat->kswapd)) {
3713 /* failure at boot is fatal */
3714 BUG_ON(system_state < SYSTEM_RUNNING);
3715 pr_err("Failed to start kswapd on node %d\n", nid);
3716 ret = PTR_ERR(pgdat->kswapd);
3717 pgdat->kswapd = NULL;
3718 }
3719 return ret;
3720 }
3721
3722 /*
3723 * Called by memory hotplug when all memory in a node is offlined. Caller must
3724 * hold mem_hotplug_begin/end().
3725 */
3726 void kswapd_stop(int nid)
3727 {
3728 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3729
3730 if (kswapd) {
3731 kthread_stop(kswapd);
3732 NODE_DATA(nid)->kswapd = NULL;
3733 }
3734 }
3735
3736 static int __init kswapd_init(void)
3737 {
3738 int nid, ret;
3739
3740 swap_setup();
3741 for_each_node_state(nid, N_MEMORY)
3742 kswapd_run(nid);
3743 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3744 "mm/vmscan:online", kswapd_cpu_online,
3745 NULL);
3746 WARN_ON(ret < 0);
3747 return 0;
3748 }
3749
3750 module_init(kswapd_init)
3751
3752 #ifdef CONFIG_NUMA
3753 /*
3754 * Node reclaim mode
3755 *
3756 * If non-zero call node_reclaim when the number of free pages falls below
3757 * the watermarks.
3758 */
3759 int node_reclaim_mode __read_mostly;
3760
3761 #define RECLAIM_OFF 0
3762 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3763 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3764 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3765
3766 /*
3767 * Priority for NODE_RECLAIM. This determines the fraction of pages
3768 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3769 * a zone.
3770 */
3771 #define NODE_RECLAIM_PRIORITY 4
3772
3773 /*
3774 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3775 * occur.
3776 */
3777 int sysctl_min_unmapped_ratio = 1;
3778
3779 /*
3780 * If the number of slab pages in a zone grows beyond this percentage then
3781 * slab reclaim needs to occur.
3782 */
3783 int sysctl_min_slab_ratio = 5;
3784
3785 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3786 {
3787 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3788 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3789 node_page_state(pgdat, NR_ACTIVE_FILE);
3790
3791 /*
3792 * It's possible for there to be more file mapped pages than
3793 * accounted for by the pages on the file LRU lists because
3794 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3795 */
3796 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3797 }
3798
3799 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3800 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3801 {
3802 unsigned long nr_pagecache_reclaimable;
3803 unsigned long delta = 0;
3804
3805 /*
3806 * If RECLAIM_UNMAP is set, then all file pages are considered
3807 * potentially reclaimable. Otherwise, we have to worry about
3808 * pages like swapcache and node_unmapped_file_pages() provides
3809 * a better estimate
3810 */
3811 if (node_reclaim_mode & RECLAIM_UNMAP)
3812 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3813 else
3814 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3815
3816 /* If we can't clean pages, remove dirty pages from consideration */
3817 if (!(node_reclaim_mode & RECLAIM_WRITE))
3818 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3819
3820 /* Watch for any possible underflows due to delta */
3821 if (unlikely(delta > nr_pagecache_reclaimable))
3822 delta = nr_pagecache_reclaimable;
3823
3824 return nr_pagecache_reclaimable - delta;
3825 }
3826
3827 /*
3828 * Try to free up some pages from this node through reclaim.
3829 */
3830 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3831 {
3832 /* Minimum pages needed in order to stay on node */
3833 const unsigned long nr_pages = 1 << order;
3834 struct task_struct *p = current;
3835 struct reclaim_state reclaim_state;
3836 unsigned int noreclaim_flag;
3837 struct scan_control sc = {
3838 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3839 .gfp_mask = current_gfp_context(gfp_mask),
3840 .order = order,
3841 .priority = NODE_RECLAIM_PRIORITY,
3842 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3843 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3844 .may_swap = 1,
3845 .reclaim_idx = gfp_zone(gfp_mask),
3846 };
3847
3848 cond_resched();
3849 /*
3850 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3851 * and we also need to be able to write out pages for RECLAIM_WRITE
3852 * and RECLAIM_UNMAP.
3853 */
3854 noreclaim_flag = memalloc_noreclaim_save();
3855 p->flags |= PF_SWAPWRITE;
3856 fs_reclaim_acquire(sc.gfp_mask);
3857 reclaim_state.reclaimed_slab = 0;
3858 p->reclaim_state = &reclaim_state;
3859
3860 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3861 /*
3862 * Free memory by calling shrink zone with increasing
3863 * priorities until we have enough memory freed.
3864 */
3865 do {
3866 shrink_node(pgdat, &sc);
3867 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3868 }
3869
3870 p->reclaim_state = NULL;
3871 fs_reclaim_release(gfp_mask);
3872 current->flags &= ~PF_SWAPWRITE;
3873 memalloc_noreclaim_restore(noreclaim_flag);
3874 return sc.nr_reclaimed >= nr_pages;
3875 }
3876
3877 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3878 {
3879 int ret;
3880
3881 /*
3882 * Node reclaim reclaims unmapped file backed pages and
3883 * slab pages if we are over the defined limits.
3884 *
3885 * A small portion of unmapped file backed pages is needed for
3886 * file I/O otherwise pages read by file I/O will be immediately
3887 * thrown out if the node is overallocated. So we do not reclaim
3888 * if less than a specified percentage of the node is used by
3889 * unmapped file backed pages.
3890 */
3891 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3892 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3893 return NODE_RECLAIM_FULL;
3894
3895 /*
3896 * Do not scan if the allocation should not be delayed.
3897 */
3898 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3899 return NODE_RECLAIM_NOSCAN;
3900
3901 /*
3902 * Only run node reclaim on the local node or on nodes that do not
3903 * have associated processors. This will favor the local processor
3904 * over remote processors and spread off node memory allocations
3905 * as wide as possible.
3906 */
3907 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3908 return NODE_RECLAIM_NOSCAN;
3909
3910 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3911 return NODE_RECLAIM_NOSCAN;
3912
3913 ret = __node_reclaim(pgdat, gfp_mask, order);
3914 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3915
3916 if (!ret)
3917 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3918
3919 return ret;
3920 }
3921 #endif
3922
3923 /*
3924 * page_evictable - test whether a page is evictable
3925 * @page: the page to test
3926 *
3927 * Test whether page is evictable--i.e., should be placed on active/inactive
3928 * lists vs unevictable list.
3929 *
3930 * Reasons page might not be evictable:
3931 * (1) page's mapping marked unevictable
3932 * (2) page is part of an mlocked VMA
3933 *
3934 */
3935 int page_evictable(struct page *page)
3936 {
3937 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3938 }
3939
3940 #ifdef CONFIG_SHMEM
3941 /**
3942 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3943 * @pages: array of pages to check
3944 * @nr_pages: number of pages to check
3945 *
3946 * Checks pages for evictability and moves them to the appropriate lru list.
3947 *
3948 * This function is only used for SysV IPC SHM_UNLOCK.
3949 */
3950 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3951 {
3952 struct lruvec *lruvec;
3953 struct pglist_data *pgdat = NULL;
3954 int pgscanned = 0;
3955 int pgrescued = 0;
3956 int i;
3957
3958 for (i = 0; i < nr_pages; i++) {
3959 struct page *page = pages[i];
3960 struct pglist_data *pagepgdat = page_pgdat(page);
3961
3962 pgscanned++;
3963 if (pagepgdat != pgdat) {
3964 if (pgdat)
3965 spin_unlock_irq(&pgdat->lru_lock);
3966 pgdat = pagepgdat;
3967 spin_lock_irq(&pgdat->lru_lock);
3968 }
3969 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3970
3971 if (!PageLRU(page) || !PageUnevictable(page))
3972 continue;
3973
3974 if (page_evictable(page)) {
3975 enum lru_list lru = page_lru_base_type(page);
3976
3977 VM_BUG_ON_PAGE(PageActive(page), page);
3978 ClearPageUnevictable(page);
3979 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3980 add_page_to_lru_list(page, lruvec, lru);
3981 pgrescued++;
3982 }
3983 }
3984
3985 if (pgdat) {
3986 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3987 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3988 spin_unlock_irq(&pgdat->lru_lock);
3989 }
3990 }
3991 #endif /* CONFIG_SHMEM */