]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmscan.c
memcg: avoid css_get()
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
53
54 struct scan_control {
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
64 unsigned long hibernation_mode;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 int may_writepage;
70
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
73
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
77 int swappiness;
78
79 int order;
80
81 /*
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
84 */
85 bool lumpy_reclaim_mode;
86
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
141
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148 return &zone->reclaim_stat;
149 }
150
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
153 {
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159
160
161 /*
162 * Add a shrinker callback to be called from the vm
163 */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174 * Remove one
175 */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 #define SHRINK_BATCH 128
185 /*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
206 {
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass;
220
221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
222 delta = (4 * scanned) / shrinker->seeks;
223 delta *= max_pass;
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
226 if (shrinker->nr < 0) {
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
247 int nr_before;
248
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
252 if (shrink_ret == -1)
253 break;
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
256 count_vm_events(SLABS_SCANNED, this_scan);
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
265 return ret;
266 }
267
268 static inline int is_page_cache_freeable(struct page *page)
269 {
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
275 return page_count(page) - page_has_private(page) == 2;
276 }
277
278 static int may_write_to_queue(struct backing_dev_info *bdi)
279 {
280 if (current->flags & PF_SWAPWRITE)
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287 }
288
289 /*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301 static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303 {
304 lock_page_nosync(page);
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
307 unlock_page(page);
308 }
309
310 /* Request for sync pageout. */
311 enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314 };
315
316 /* possible outcome of pageout() */
317 typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326 } pageout_t;
327
328 /*
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
331 */
332 static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
334 {
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
358 if (page_has_private(page)) {
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
361 printk("%s: orphaned page\n", __func__);
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
377 .range_start = 0,
378 .range_end = LLONG_MAX,
379 .nonblocking = 1,
380 .for_reclaim = 1,
381 };
382
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
387 if (res == AOP_WRITEPAGE_ACTIVATE) {
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
390 }
391
392 /*
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
396 */
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
399
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
403 }
404 trace_mm_vmscan_writepage(page,
405 trace_reclaim_flags(page, sync_writeback));
406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
407 return PAGE_SUCCESS;
408 }
409
410 return PAGE_CLEAN;
411 }
412
413 /*
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
416 */
417 static int __remove_mapping(struct address_space *mapping, struct page *page)
418 {
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
421
422 spin_lock_irq(&mapping->tree_lock);
423 /*
424 * The non racy check for a busy page.
425 *
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
430 *
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
438 *
439 * [oops, our write_to data is lost]
440 *
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
444 *
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
447 */
448 if (!page_freeze_refs(page, 2))
449 goto cannot_free;
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
453 goto cannot_free;
454 }
455
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
459 spin_unlock_irq(&mapping->tree_lock);
460 swapcache_free(swap, page);
461 } else {
462 __remove_from_page_cache(page);
463 spin_unlock_irq(&mapping->tree_lock);
464 mem_cgroup_uncharge_cache_page(page);
465 }
466
467 return 1;
468
469 cannot_free:
470 spin_unlock_irq(&mapping->tree_lock);
471 return 0;
472 }
473
474 /*
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
478 * this page.
479 */
480 int remove_mapping(struct address_space *mapping, struct page *page)
481 {
482 if (__remove_mapping(mapping, page)) {
483 /*
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
486 * atomic operation.
487 */
488 page_unfreeze_refs(page, 1);
489 return 1;
490 }
491 return 0;
492 }
493
494 /**
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
497 *
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
500 *
501 * lru_lock must not be held, interrupts must be enabled.
502 */
503 void putback_lru_page(struct page *page)
504 {
505 int lru;
506 int active = !!TestClearPageActive(page);
507 int was_unevictable = PageUnevictable(page);
508
509 VM_BUG_ON(PageLRU(page));
510
511 redo:
512 ClearPageUnevictable(page);
513
514 if (page_evictable(page, NULL)) {
515 /*
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
520 */
521 lru = active + page_lru_base_type(page);
522 lru_cache_add_lru(page, lru);
523 } else {
524 /*
525 * Put unevictable pages directly on zone's unevictable
526 * list.
527 */
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
530 /*
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
536 *
537 * The other side is TestClearPageMlocked().
538 */
539 smp_mb();
540 }
541
542 /*
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
546 */
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
551 }
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
555 */
556 }
557
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
562
563 put_page(page); /* drop ref from isolate */
564 }
565
566 enum page_references {
567 PAGEREF_RECLAIM,
568 PAGEREF_RECLAIM_CLEAN,
569 PAGEREF_KEEP,
570 PAGEREF_ACTIVATE,
571 };
572
573 static enum page_references page_check_references(struct page *page,
574 struct scan_control *sc)
575 {
576 int referenced_ptes, referenced_page;
577 unsigned long vm_flags;
578
579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580 referenced_page = TestClearPageReferenced(page);
581
582 /* Lumpy reclaim - ignore references */
583 if (sc->lumpy_reclaim_mode)
584 return PAGEREF_RECLAIM;
585
586 /*
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
589 */
590 if (vm_flags & VM_LOCKED)
591 return PAGEREF_RECLAIM;
592
593 if (referenced_ptes) {
594 if (PageAnon(page))
595 return PAGEREF_ACTIVATE;
596 /*
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
600 * than once.
601 *
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
605 *
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
608 * quickly recovered.
609 */
610 SetPageReferenced(page);
611
612 if (referenced_page)
613 return PAGEREF_ACTIVATE;
614
615 return PAGEREF_KEEP;
616 }
617
618 /* Reclaim if clean, defer dirty pages to writeback */
619 if (referenced_page)
620 return PAGEREF_RECLAIM_CLEAN;
621
622 return PAGEREF_RECLAIM;
623 }
624
625 static noinline_for_stack void free_page_list(struct list_head *free_pages)
626 {
627 struct pagevec freed_pvec;
628 struct page *page, *tmp;
629
630 pagevec_init(&freed_pvec, 1);
631
632 list_for_each_entry_safe(page, tmp, free_pages, lru) {
633 list_del(&page->lru);
634 if (!pagevec_add(&freed_pvec, page)) {
635 __pagevec_free(&freed_pvec);
636 pagevec_reinit(&freed_pvec);
637 }
638 }
639
640 pagevec_free(&freed_pvec);
641 }
642
643 /*
644 * shrink_page_list() returns the number of reclaimed pages
645 */
646 static unsigned long shrink_page_list(struct list_head *page_list,
647 struct scan_control *sc,
648 enum pageout_io sync_writeback)
649 {
650 LIST_HEAD(ret_pages);
651 LIST_HEAD(free_pages);
652 int pgactivate = 0;
653 unsigned long nr_reclaimed = 0;
654
655 cond_resched();
656
657 while (!list_empty(page_list)) {
658 enum page_references references;
659 struct address_space *mapping;
660 struct page *page;
661 int may_enter_fs;
662
663 cond_resched();
664
665 page = lru_to_page(page_list);
666 list_del(&page->lru);
667
668 if (!trylock_page(page))
669 goto keep;
670
671 VM_BUG_ON(PageActive(page));
672
673 sc->nr_scanned++;
674
675 if (unlikely(!page_evictable(page, NULL)))
676 goto cull_mlocked;
677
678 if (!sc->may_unmap && page_mapped(page))
679 goto keep_locked;
680
681 /* Double the slab pressure for mapped and swapcache pages */
682 if (page_mapped(page) || PageSwapCache(page))
683 sc->nr_scanned++;
684
685 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
686 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
687
688 if (PageWriteback(page)) {
689 /*
690 * Synchronous reclaim is performed in two passes,
691 * first an asynchronous pass over the list to
692 * start parallel writeback, and a second synchronous
693 * pass to wait for the IO to complete. Wait here
694 * for any page for which writeback has already
695 * started.
696 */
697 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
698 wait_on_page_writeback(page);
699 else
700 goto keep_locked;
701 }
702
703 references = page_check_references(page, sc);
704 switch (references) {
705 case PAGEREF_ACTIVATE:
706 goto activate_locked;
707 case PAGEREF_KEEP:
708 goto keep_locked;
709 case PAGEREF_RECLAIM:
710 case PAGEREF_RECLAIM_CLEAN:
711 ; /* try to reclaim the page below */
712 }
713
714 /*
715 * Anonymous process memory has backing store?
716 * Try to allocate it some swap space here.
717 */
718 if (PageAnon(page) && !PageSwapCache(page)) {
719 if (!(sc->gfp_mask & __GFP_IO))
720 goto keep_locked;
721 if (!add_to_swap(page))
722 goto activate_locked;
723 may_enter_fs = 1;
724 }
725
726 mapping = page_mapping(page);
727
728 /*
729 * The page is mapped into the page tables of one or more
730 * processes. Try to unmap it here.
731 */
732 if (page_mapped(page) && mapping) {
733 switch (try_to_unmap(page, TTU_UNMAP)) {
734 case SWAP_FAIL:
735 goto activate_locked;
736 case SWAP_AGAIN:
737 goto keep_locked;
738 case SWAP_MLOCK:
739 goto cull_mlocked;
740 case SWAP_SUCCESS:
741 ; /* try to free the page below */
742 }
743 }
744
745 if (PageDirty(page)) {
746 if (references == PAGEREF_RECLAIM_CLEAN)
747 goto keep_locked;
748 if (!may_enter_fs)
749 goto keep_locked;
750 if (!sc->may_writepage)
751 goto keep_locked;
752
753 /* Page is dirty, try to write it out here */
754 switch (pageout(page, mapping, sync_writeback)) {
755 case PAGE_KEEP:
756 goto keep_locked;
757 case PAGE_ACTIVATE:
758 goto activate_locked;
759 case PAGE_SUCCESS:
760 if (PageWriteback(page) || PageDirty(page))
761 goto keep;
762 /*
763 * A synchronous write - probably a ramdisk. Go
764 * ahead and try to reclaim the page.
765 */
766 if (!trylock_page(page))
767 goto keep;
768 if (PageDirty(page) || PageWriteback(page))
769 goto keep_locked;
770 mapping = page_mapping(page);
771 case PAGE_CLEAN:
772 ; /* try to free the page below */
773 }
774 }
775
776 /*
777 * If the page has buffers, try to free the buffer mappings
778 * associated with this page. If we succeed we try to free
779 * the page as well.
780 *
781 * We do this even if the page is PageDirty().
782 * try_to_release_page() does not perform I/O, but it is
783 * possible for a page to have PageDirty set, but it is actually
784 * clean (all its buffers are clean). This happens if the
785 * buffers were written out directly, with submit_bh(). ext3
786 * will do this, as well as the blockdev mapping.
787 * try_to_release_page() will discover that cleanness and will
788 * drop the buffers and mark the page clean - it can be freed.
789 *
790 * Rarely, pages can have buffers and no ->mapping. These are
791 * the pages which were not successfully invalidated in
792 * truncate_complete_page(). We try to drop those buffers here
793 * and if that worked, and the page is no longer mapped into
794 * process address space (page_count == 1) it can be freed.
795 * Otherwise, leave the page on the LRU so it is swappable.
796 */
797 if (page_has_private(page)) {
798 if (!try_to_release_page(page, sc->gfp_mask))
799 goto activate_locked;
800 if (!mapping && page_count(page) == 1) {
801 unlock_page(page);
802 if (put_page_testzero(page))
803 goto free_it;
804 else {
805 /*
806 * rare race with speculative reference.
807 * the speculative reference will free
808 * this page shortly, so we may
809 * increment nr_reclaimed here (and
810 * leave it off the LRU).
811 */
812 nr_reclaimed++;
813 continue;
814 }
815 }
816 }
817
818 if (!mapping || !__remove_mapping(mapping, page))
819 goto keep_locked;
820
821 /*
822 * At this point, we have no other references and there is
823 * no way to pick any more up (removed from LRU, removed
824 * from pagecache). Can use non-atomic bitops now (and
825 * we obviously don't have to worry about waking up a process
826 * waiting on the page lock, because there are no references.
827 */
828 __clear_page_locked(page);
829 free_it:
830 nr_reclaimed++;
831
832 /*
833 * Is there need to periodically free_page_list? It would
834 * appear not as the counts should be low
835 */
836 list_add(&page->lru, &free_pages);
837 continue;
838
839 cull_mlocked:
840 if (PageSwapCache(page))
841 try_to_free_swap(page);
842 unlock_page(page);
843 putback_lru_page(page);
844 continue;
845
846 activate_locked:
847 /* Not a candidate for swapping, so reclaim swap space. */
848 if (PageSwapCache(page) && vm_swap_full())
849 try_to_free_swap(page);
850 VM_BUG_ON(PageActive(page));
851 SetPageActive(page);
852 pgactivate++;
853 keep_locked:
854 unlock_page(page);
855 keep:
856 list_add(&page->lru, &ret_pages);
857 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
858 }
859
860 free_page_list(&free_pages);
861
862 list_splice(&ret_pages, page_list);
863 count_vm_events(PGACTIVATE, pgactivate);
864 return nr_reclaimed;
865 }
866
867 /*
868 * Attempt to remove the specified page from its LRU. Only take this page
869 * if it is of the appropriate PageActive status. Pages which are being
870 * freed elsewhere are also ignored.
871 *
872 * page: page to consider
873 * mode: one of the LRU isolation modes defined above
874 *
875 * returns 0 on success, -ve errno on failure.
876 */
877 int __isolate_lru_page(struct page *page, int mode, int file)
878 {
879 int ret = -EINVAL;
880
881 /* Only take pages on the LRU. */
882 if (!PageLRU(page))
883 return ret;
884
885 /*
886 * When checking the active state, we need to be sure we are
887 * dealing with comparible boolean values. Take the logical not
888 * of each.
889 */
890 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
891 return ret;
892
893 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
894 return ret;
895
896 /*
897 * When this function is being called for lumpy reclaim, we
898 * initially look into all LRU pages, active, inactive and
899 * unevictable; only give shrink_page_list evictable pages.
900 */
901 if (PageUnevictable(page))
902 return ret;
903
904 ret = -EBUSY;
905
906 if (likely(get_page_unless_zero(page))) {
907 /*
908 * Be careful not to clear PageLRU until after we're
909 * sure the page is not being freed elsewhere -- the
910 * page release code relies on it.
911 */
912 ClearPageLRU(page);
913 ret = 0;
914 }
915
916 return ret;
917 }
918
919 /*
920 * zone->lru_lock is heavily contended. Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
923 *
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
926 *
927 * Appropriate locks must be held before calling this function.
928 *
929 * @nr_to_scan: The number of pages to look through on the list.
930 * @src: The LRU list to pull pages off.
931 * @dst: The temp list to put pages on to.
932 * @scanned: The number of pages that were scanned.
933 * @order: The caller's attempted allocation order
934 * @mode: One of the LRU isolation modes
935 * @file: True [1] if isolating file [!anon] pages
936 *
937 * returns how many pages were moved onto *@dst.
938 */
939 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
940 struct list_head *src, struct list_head *dst,
941 unsigned long *scanned, int order, int mode, int file)
942 {
943 unsigned long nr_taken = 0;
944 unsigned long nr_lumpy_taken = 0;
945 unsigned long nr_lumpy_dirty = 0;
946 unsigned long nr_lumpy_failed = 0;
947 unsigned long scan;
948
949 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
950 struct page *page;
951 unsigned long pfn;
952 unsigned long end_pfn;
953 unsigned long page_pfn;
954 int zone_id;
955
956 page = lru_to_page(src);
957 prefetchw_prev_lru_page(page, src, flags);
958
959 VM_BUG_ON(!PageLRU(page));
960
961 switch (__isolate_lru_page(page, mode, file)) {
962 case 0:
963 list_move(&page->lru, dst);
964 mem_cgroup_del_lru(page);
965 nr_taken++;
966 break;
967
968 case -EBUSY:
969 /* else it is being freed elsewhere */
970 list_move(&page->lru, src);
971 mem_cgroup_rotate_lru_list(page, page_lru(page));
972 continue;
973
974 default:
975 BUG();
976 }
977
978 if (!order)
979 continue;
980
981 /*
982 * Attempt to take all pages in the order aligned region
983 * surrounding the tag page. Only take those pages of
984 * the same active state as that tag page. We may safely
985 * round the target page pfn down to the requested order
986 * as the mem_map is guarenteed valid out to MAX_ORDER,
987 * where that page is in a different zone we will detect
988 * it from its zone id and abort this block scan.
989 */
990 zone_id = page_zone_id(page);
991 page_pfn = page_to_pfn(page);
992 pfn = page_pfn & ~((1 << order) - 1);
993 end_pfn = pfn + (1 << order);
994 for (; pfn < end_pfn; pfn++) {
995 struct page *cursor_page;
996
997 /* The target page is in the block, ignore it. */
998 if (unlikely(pfn == page_pfn))
999 continue;
1000
1001 /* Avoid holes within the zone. */
1002 if (unlikely(!pfn_valid_within(pfn)))
1003 break;
1004
1005 cursor_page = pfn_to_page(pfn);
1006
1007 /* Check that we have not crossed a zone boundary. */
1008 if (unlikely(page_zone_id(cursor_page) != zone_id))
1009 continue;
1010
1011 /*
1012 * If we don't have enough swap space, reclaiming of
1013 * anon page which don't already have a swap slot is
1014 * pointless.
1015 */
1016 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1017 !PageSwapCache(cursor_page))
1018 continue;
1019
1020 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1021 list_move(&cursor_page->lru, dst);
1022 mem_cgroup_del_lru(cursor_page);
1023 nr_taken++;
1024 nr_lumpy_taken++;
1025 if (PageDirty(cursor_page))
1026 nr_lumpy_dirty++;
1027 scan++;
1028 } else {
1029 if (mode == ISOLATE_BOTH &&
1030 page_count(cursor_page))
1031 nr_lumpy_failed++;
1032 }
1033 }
1034 }
1035
1036 *scanned = scan;
1037
1038 trace_mm_vmscan_lru_isolate(order,
1039 nr_to_scan, scan,
1040 nr_taken,
1041 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1042 mode);
1043 return nr_taken;
1044 }
1045
1046 static unsigned long isolate_pages_global(unsigned long nr,
1047 struct list_head *dst,
1048 unsigned long *scanned, int order,
1049 int mode, struct zone *z,
1050 int active, int file)
1051 {
1052 int lru = LRU_BASE;
1053 if (active)
1054 lru += LRU_ACTIVE;
1055 if (file)
1056 lru += LRU_FILE;
1057 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1058 mode, file);
1059 }
1060
1061 /*
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1064 */
1065 static unsigned long clear_active_flags(struct list_head *page_list,
1066 unsigned int *count)
1067 {
1068 int nr_active = 0;
1069 int lru;
1070 struct page *page;
1071
1072 list_for_each_entry(page, page_list, lru) {
1073 lru = page_lru_base_type(page);
1074 if (PageActive(page)) {
1075 lru += LRU_ACTIVE;
1076 ClearPageActive(page);
1077 nr_active++;
1078 }
1079 if (count)
1080 count[lru]++;
1081 }
1082
1083 return nr_active;
1084 }
1085
1086 /**
1087 * isolate_lru_page - tries to isolate a page from its LRU list
1088 * @page: page to isolate from its LRU list
1089 *
1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1091 * vmstat statistic corresponding to whatever LRU list the page was on.
1092 *
1093 * Returns 0 if the page was removed from an LRU list.
1094 * Returns -EBUSY if the page was not on an LRU list.
1095 *
1096 * The returned page will have PageLRU() cleared. If it was found on
1097 * the active list, it will have PageActive set. If it was found on
1098 * the unevictable list, it will have the PageUnevictable bit set. That flag
1099 * may need to be cleared by the caller before letting the page go.
1100 *
1101 * The vmstat statistic corresponding to the list on which the page was
1102 * found will be decremented.
1103 *
1104 * Restrictions:
1105 * (1) Must be called with an elevated refcount on the page. This is a
1106 * fundamentnal difference from isolate_lru_pages (which is called
1107 * without a stable reference).
1108 * (2) the lru_lock must not be held.
1109 * (3) interrupts must be enabled.
1110 */
1111 int isolate_lru_page(struct page *page)
1112 {
1113 int ret = -EBUSY;
1114
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1117
1118 spin_lock_irq(&zone->lru_lock);
1119 if (PageLRU(page) && get_page_unless_zero(page)) {
1120 int lru = page_lru(page);
1121 ret = 0;
1122 ClearPageLRU(page);
1123
1124 del_page_from_lru_list(zone, page, lru);
1125 }
1126 spin_unlock_irq(&zone->lru_lock);
1127 }
1128 return ret;
1129 }
1130
1131 /*
1132 * Are there way too many processes in the direct reclaim path already?
1133 */
1134 static int too_many_isolated(struct zone *zone, int file,
1135 struct scan_control *sc)
1136 {
1137 unsigned long inactive, isolated;
1138
1139 if (current_is_kswapd())
1140 return 0;
1141
1142 if (!scanning_global_lru(sc))
1143 return 0;
1144
1145 if (file) {
1146 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148 } else {
1149 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1151 }
1152
1153 return isolated > inactive;
1154 }
1155
1156 /*
1157 * TODO: Try merging with migrations version of putback_lru_pages
1158 */
1159 static noinline_for_stack void
1160 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1161 unsigned long nr_anon, unsigned long nr_file,
1162 struct list_head *page_list)
1163 {
1164 struct page *page;
1165 struct pagevec pvec;
1166 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1167
1168 pagevec_init(&pvec, 1);
1169
1170 /*
1171 * Put back any unfreeable pages.
1172 */
1173 spin_lock(&zone->lru_lock);
1174 while (!list_empty(page_list)) {
1175 int lru;
1176 page = lru_to_page(page_list);
1177 VM_BUG_ON(PageLRU(page));
1178 list_del(&page->lru);
1179 if (unlikely(!page_evictable(page, NULL))) {
1180 spin_unlock_irq(&zone->lru_lock);
1181 putback_lru_page(page);
1182 spin_lock_irq(&zone->lru_lock);
1183 continue;
1184 }
1185 SetPageLRU(page);
1186 lru = page_lru(page);
1187 add_page_to_lru_list(zone, page, lru);
1188 if (is_active_lru(lru)) {
1189 int file = is_file_lru(lru);
1190 reclaim_stat->recent_rotated[file]++;
1191 }
1192 if (!pagevec_add(&pvec, page)) {
1193 spin_unlock_irq(&zone->lru_lock);
1194 __pagevec_release(&pvec);
1195 spin_lock_irq(&zone->lru_lock);
1196 }
1197 }
1198 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1199 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1200
1201 spin_unlock_irq(&zone->lru_lock);
1202 pagevec_release(&pvec);
1203 }
1204
1205 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1206 struct scan_control *sc,
1207 unsigned long *nr_anon,
1208 unsigned long *nr_file,
1209 struct list_head *isolated_list)
1210 {
1211 unsigned long nr_active;
1212 unsigned int count[NR_LRU_LISTS] = { 0, };
1213 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1214
1215 nr_active = clear_active_flags(isolated_list, count);
1216 __count_vm_events(PGDEACTIVATE, nr_active);
1217
1218 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1219 -count[LRU_ACTIVE_FILE]);
1220 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1221 -count[LRU_INACTIVE_FILE]);
1222 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1223 -count[LRU_ACTIVE_ANON]);
1224 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1225 -count[LRU_INACTIVE_ANON]);
1226
1227 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1228 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1229 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1230 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1231
1232 reclaim_stat->recent_scanned[0] += *nr_anon;
1233 reclaim_stat->recent_scanned[1] += *nr_file;
1234 }
1235
1236 /*
1237 * Returns true if the caller should wait to clean dirty/writeback pages.
1238 *
1239 * If we are direct reclaiming for contiguous pages and we do not reclaim
1240 * everything in the list, try again and wait for writeback IO to complete.
1241 * This will stall high-order allocations noticeably. Only do that when really
1242 * need to free the pages under high memory pressure.
1243 */
1244 static inline bool should_reclaim_stall(unsigned long nr_taken,
1245 unsigned long nr_freed,
1246 int priority,
1247 struct scan_control *sc)
1248 {
1249 int lumpy_stall_priority;
1250
1251 /* kswapd should not stall on sync IO */
1252 if (current_is_kswapd())
1253 return false;
1254
1255 /* Only stall on lumpy reclaim */
1256 if (!sc->lumpy_reclaim_mode)
1257 return false;
1258
1259 /* If we have relaimed everything on the isolated list, no stall */
1260 if (nr_freed == nr_taken)
1261 return false;
1262
1263 /*
1264 * For high-order allocations, there are two stall thresholds.
1265 * High-cost allocations stall immediately where as lower
1266 * order allocations such as stacks require the scanning
1267 * priority to be much higher before stalling.
1268 */
1269 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1270 lumpy_stall_priority = DEF_PRIORITY;
1271 else
1272 lumpy_stall_priority = DEF_PRIORITY / 3;
1273
1274 return priority <= lumpy_stall_priority;
1275 }
1276
1277 /*
1278 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1279 * of reclaimed pages
1280 */
1281 static noinline_for_stack unsigned long
1282 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1283 struct scan_control *sc, int priority, int file)
1284 {
1285 LIST_HEAD(page_list);
1286 unsigned long nr_scanned;
1287 unsigned long nr_reclaimed = 0;
1288 unsigned long nr_taken;
1289 unsigned long nr_active;
1290 unsigned long nr_anon;
1291 unsigned long nr_file;
1292
1293 while (unlikely(too_many_isolated(zone, file, sc))) {
1294 congestion_wait(BLK_RW_ASYNC, HZ/10);
1295
1296 /* We are about to die and free our memory. Return now. */
1297 if (fatal_signal_pending(current))
1298 return SWAP_CLUSTER_MAX;
1299 }
1300
1301
1302 lru_add_drain();
1303 spin_lock_irq(&zone->lru_lock);
1304
1305 if (scanning_global_lru(sc)) {
1306 nr_taken = isolate_pages_global(nr_to_scan,
1307 &page_list, &nr_scanned, sc->order,
1308 sc->lumpy_reclaim_mode ?
1309 ISOLATE_BOTH : ISOLATE_INACTIVE,
1310 zone, 0, file);
1311 zone->pages_scanned += nr_scanned;
1312 if (current_is_kswapd())
1313 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1314 nr_scanned);
1315 else
1316 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1317 nr_scanned);
1318 } else {
1319 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1320 &page_list, &nr_scanned, sc->order,
1321 sc->lumpy_reclaim_mode ?
1322 ISOLATE_BOTH : ISOLATE_INACTIVE,
1323 zone, sc->mem_cgroup,
1324 0, file);
1325 /*
1326 * mem_cgroup_isolate_pages() keeps track of
1327 * scanned pages on its own.
1328 */
1329 }
1330
1331 if (nr_taken == 0) {
1332 spin_unlock_irq(&zone->lru_lock);
1333 return 0;
1334 }
1335
1336 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1337
1338 spin_unlock_irq(&zone->lru_lock);
1339
1340 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1341
1342 /* Check if we should syncronously wait for writeback */
1343 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1344 congestion_wait(BLK_RW_ASYNC, HZ/10);
1345
1346 /*
1347 * The attempt at page out may have made some
1348 * of the pages active, mark them inactive again.
1349 */
1350 nr_active = clear_active_flags(&page_list, NULL);
1351 count_vm_events(PGDEACTIVATE, nr_active);
1352
1353 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1354 }
1355
1356 local_irq_disable();
1357 if (current_is_kswapd())
1358 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1359 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1360
1361 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1362 return nr_reclaimed;
1363 }
1364
1365 /*
1366 * This moves pages from the active list to the inactive list.
1367 *
1368 * We move them the other way if the page is referenced by one or more
1369 * processes, from rmap.
1370 *
1371 * If the pages are mostly unmapped, the processing is fast and it is
1372 * appropriate to hold zone->lru_lock across the whole operation. But if
1373 * the pages are mapped, the processing is slow (page_referenced()) so we
1374 * should drop zone->lru_lock around each page. It's impossible to balance
1375 * this, so instead we remove the pages from the LRU while processing them.
1376 * It is safe to rely on PG_active against the non-LRU pages in here because
1377 * nobody will play with that bit on a non-LRU page.
1378 *
1379 * The downside is that we have to touch page->_count against each page.
1380 * But we had to alter page->flags anyway.
1381 */
1382
1383 static void move_active_pages_to_lru(struct zone *zone,
1384 struct list_head *list,
1385 enum lru_list lru)
1386 {
1387 unsigned long pgmoved = 0;
1388 struct pagevec pvec;
1389 struct page *page;
1390
1391 pagevec_init(&pvec, 1);
1392
1393 while (!list_empty(list)) {
1394 page = lru_to_page(list);
1395
1396 VM_BUG_ON(PageLRU(page));
1397 SetPageLRU(page);
1398
1399 list_move(&page->lru, &zone->lru[lru].list);
1400 mem_cgroup_add_lru_list(page, lru);
1401 pgmoved++;
1402
1403 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 if (buffer_heads_over_limit)
1406 pagevec_strip(&pvec);
1407 __pagevec_release(&pvec);
1408 spin_lock_irq(&zone->lru_lock);
1409 }
1410 }
1411 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1412 if (!is_active_lru(lru))
1413 __count_vm_events(PGDEACTIVATE, pgmoved);
1414 }
1415
1416 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1417 struct scan_control *sc, int priority, int file)
1418 {
1419 unsigned long nr_taken;
1420 unsigned long pgscanned;
1421 unsigned long vm_flags;
1422 LIST_HEAD(l_hold); /* The pages which were snipped off */
1423 LIST_HEAD(l_active);
1424 LIST_HEAD(l_inactive);
1425 struct page *page;
1426 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1427 unsigned long nr_rotated = 0;
1428
1429 lru_add_drain();
1430 spin_lock_irq(&zone->lru_lock);
1431 if (scanning_global_lru(sc)) {
1432 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1433 &pgscanned, sc->order,
1434 ISOLATE_ACTIVE, zone,
1435 1, file);
1436 zone->pages_scanned += pgscanned;
1437 } else {
1438 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1439 &pgscanned, sc->order,
1440 ISOLATE_ACTIVE, zone,
1441 sc->mem_cgroup, 1, file);
1442 /*
1443 * mem_cgroup_isolate_pages() keeps track of
1444 * scanned pages on its own.
1445 */
1446 }
1447
1448 reclaim_stat->recent_scanned[file] += nr_taken;
1449
1450 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1451 if (file)
1452 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1453 else
1454 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1455 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1456 spin_unlock_irq(&zone->lru_lock);
1457
1458 while (!list_empty(&l_hold)) {
1459 cond_resched();
1460 page = lru_to_page(&l_hold);
1461 list_del(&page->lru);
1462
1463 if (unlikely(!page_evictable(page, NULL))) {
1464 putback_lru_page(page);
1465 continue;
1466 }
1467
1468 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1469 nr_rotated++;
1470 /*
1471 * Identify referenced, file-backed active pages and
1472 * give them one more trip around the active list. So
1473 * that executable code get better chances to stay in
1474 * memory under moderate memory pressure. Anon pages
1475 * are not likely to be evicted by use-once streaming
1476 * IO, plus JVM can create lots of anon VM_EXEC pages,
1477 * so we ignore them here.
1478 */
1479 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1480 list_add(&page->lru, &l_active);
1481 continue;
1482 }
1483 }
1484
1485 ClearPageActive(page); /* we are de-activating */
1486 list_add(&page->lru, &l_inactive);
1487 }
1488
1489 /*
1490 * Move pages back to the lru list.
1491 */
1492 spin_lock_irq(&zone->lru_lock);
1493 /*
1494 * Count referenced pages from currently used mappings as rotated,
1495 * even though only some of them are actually re-activated. This
1496 * helps balance scan pressure between file and anonymous pages in
1497 * get_scan_ratio.
1498 */
1499 reclaim_stat->recent_rotated[file] += nr_rotated;
1500
1501 move_active_pages_to_lru(zone, &l_active,
1502 LRU_ACTIVE + file * LRU_FILE);
1503 move_active_pages_to_lru(zone, &l_inactive,
1504 LRU_BASE + file * LRU_FILE);
1505 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1506 spin_unlock_irq(&zone->lru_lock);
1507 }
1508
1509 static int inactive_anon_is_low_global(struct zone *zone)
1510 {
1511 unsigned long active, inactive;
1512
1513 active = zone_page_state(zone, NR_ACTIVE_ANON);
1514 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1515
1516 if (inactive * zone->inactive_ratio < active)
1517 return 1;
1518
1519 return 0;
1520 }
1521
1522 /**
1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1524 * @zone: zone to check
1525 * @sc: scan control of this context
1526 *
1527 * Returns true if the zone does not have enough inactive anon pages,
1528 * meaning some active anon pages need to be deactivated.
1529 */
1530 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1531 {
1532 int low;
1533
1534 if (scanning_global_lru(sc))
1535 low = inactive_anon_is_low_global(zone);
1536 else
1537 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1538 return low;
1539 }
1540
1541 static int inactive_file_is_low_global(struct zone *zone)
1542 {
1543 unsigned long active, inactive;
1544
1545 active = zone_page_state(zone, NR_ACTIVE_FILE);
1546 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1547
1548 return (active > inactive);
1549 }
1550
1551 /**
1552 * inactive_file_is_low - check if file pages need to be deactivated
1553 * @zone: zone to check
1554 * @sc: scan control of this context
1555 *
1556 * When the system is doing streaming IO, memory pressure here
1557 * ensures that active file pages get deactivated, until more
1558 * than half of the file pages are on the inactive list.
1559 *
1560 * Once we get to that situation, protect the system's working
1561 * set from being evicted by disabling active file page aging.
1562 *
1563 * This uses a different ratio than the anonymous pages, because
1564 * the page cache uses a use-once replacement algorithm.
1565 */
1566 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1567 {
1568 int low;
1569
1570 if (scanning_global_lru(sc))
1571 low = inactive_file_is_low_global(zone);
1572 else
1573 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1574 return low;
1575 }
1576
1577 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1578 int file)
1579 {
1580 if (file)
1581 return inactive_file_is_low(zone, sc);
1582 else
1583 return inactive_anon_is_low(zone, sc);
1584 }
1585
1586 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1587 struct zone *zone, struct scan_control *sc, int priority)
1588 {
1589 int file = is_file_lru(lru);
1590
1591 if (is_active_lru(lru)) {
1592 if (inactive_list_is_low(zone, sc, file))
1593 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1594 return 0;
1595 }
1596
1597 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1598 }
1599
1600 /*
1601 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1602 * until we collected @swap_cluster_max pages to scan.
1603 */
1604 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1605 unsigned long *nr_saved_scan)
1606 {
1607 unsigned long nr;
1608
1609 *nr_saved_scan += nr_to_scan;
1610 nr = *nr_saved_scan;
1611
1612 if (nr >= SWAP_CLUSTER_MAX)
1613 *nr_saved_scan = 0;
1614 else
1615 nr = 0;
1616
1617 return nr;
1618 }
1619
1620 /*
1621 * Determine how aggressively the anon and file LRU lists should be
1622 * scanned. The relative value of each set of LRU lists is determined
1623 * by looking at the fraction of the pages scanned we did rotate back
1624 * onto the active list instead of evict.
1625 *
1626 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1627 */
1628 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1629 unsigned long *nr, int priority)
1630 {
1631 unsigned long anon, file, free;
1632 unsigned long anon_prio, file_prio;
1633 unsigned long ap, fp;
1634 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1635 u64 fraction[2], denominator;
1636 enum lru_list l;
1637 int noswap = 0;
1638
1639 /* If we have no swap space, do not bother scanning anon pages. */
1640 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1641 noswap = 1;
1642 fraction[0] = 0;
1643 fraction[1] = 1;
1644 denominator = 1;
1645 goto out;
1646 }
1647
1648 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1649 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1650 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1651 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1652
1653 if (scanning_global_lru(sc)) {
1654 free = zone_page_state(zone, NR_FREE_PAGES);
1655 /* If we have very few page cache pages,
1656 force-scan anon pages. */
1657 if (unlikely(file + free <= high_wmark_pages(zone))) {
1658 fraction[0] = 1;
1659 fraction[1] = 0;
1660 denominator = 1;
1661 goto out;
1662 }
1663 }
1664
1665 /*
1666 * With swappiness at 100, anonymous and file have the same priority.
1667 * This scanning priority is essentially the inverse of IO cost.
1668 */
1669 anon_prio = sc->swappiness;
1670 file_prio = 200 - sc->swappiness;
1671
1672 /*
1673 * OK, so we have swap space and a fair amount of page cache
1674 * pages. We use the recently rotated / recently scanned
1675 * ratios to determine how valuable each cache is.
1676 *
1677 * Because workloads change over time (and to avoid overflow)
1678 * we keep these statistics as a floating average, which ends
1679 * up weighing recent references more than old ones.
1680 *
1681 * anon in [0], file in [1]
1682 */
1683 spin_lock_irq(&zone->lru_lock);
1684 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1685 reclaim_stat->recent_scanned[0] /= 2;
1686 reclaim_stat->recent_rotated[0] /= 2;
1687 }
1688
1689 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1690 reclaim_stat->recent_scanned[1] /= 2;
1691 reclaim_stat->recent_rotated[1] /= 2;
1692 }
1693
1694 /*
1695 * The amount of pressure on anon vs file pages is inversely
1696 * proportional to the fraction of recently scanned pages on
1697 * each list that were recently referenced and in active use.
1698 */
1699 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1700 ap /= reclaim_stat->recent_rotated[0] + 1;
1701
1702 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1703 fp /= reclaim_stat->recent_rotated[1] + 1;
1704 spin_unlock_irq(&zone->lru_lock);
1705
1706 fraction[0] = ap;
1707 fraction[1] = fp;
1708 denominator = ap + fp + 1;
1709 out:
1710 for_each_evictable_lru(l) {
1711 int file = is_file_lru(l);
1712 unsigned long scan;
1713
1714 scan = zone_nr_lru_pages(zone, sc, l);
1715 if (priority || noswap) {
1716 scan >>= priority;
1717 scan = div64_u64(scan * fraction[file], denominator);
1718 }
1719 nr[l] = nr_scan_try_batch(scan,
1720 &reclaim_stat->nr_saved_scan[l]);
1721 }
1722 }
1723
1724 static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1725 {
1726 /*
1727 * If we need a large contiguous chunk of memory, or have
1728 * trouble getting a small set of contiguous pages, we
1729 * will reclaim both active and inactive pages.
1730 */
1731 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1732 sc->lumpy_reclaim_mode = 1;
1733 else if (sc->order && priority < DEF_PRIORITY - 2)
1734 sc->lumpy_reclaim_mode = 1;
1735 else
1736 sc->lumpy_reclaim_mode = 0;
1737 }
1738
1739 /*
1740 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1741 */
1742 static void shrink_zone(int priority, struct zone *zone,
1743 struct scan_control *sc)
1744 {
1745 unsigned long nr[NR_LRU_LISTS];
1746 unsigned long nr_to_scan;
1747 enum lru_list l;
1748 unsigned long nr_reclaimed = sc->nr_reclaimed;
1749 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1750
1751 get_scan_count(zone, sc, nr, priority);
1752
1753 set_lumpy_reclaim_mode(priority, sc);
1754
1755 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1756 nr[LRU_INACTIVE_FILE]) {
1757 for_each_evictable_lru(l) {
1758 if (nr[l]) {
1759 nr_to_scan = min_t(unsigned long,
1760 nr[l], SWAP_CLUSTER_MAX);
1761 nr[l] -= nr_to_scan;
1762
1763 nr_reclaimed += shrink_list(l, nr_to_scan,
1764 zone, sc, priority);
1765 }
1766 }
1767 /*
1768 * On large memory systems, scan >> priority can become
1769 * really large. This is fine for the starting priority;
1770 * we want to put equal scanning pressure on each zone.
1771 * However, if the VM has a harder time of freeing pages,
1772 * with multiple processes reclaiming pages, the total
1773 * freeing target can get unreasonably large.
1774 */
1775 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1776 break;
1777 }
1778
1779 sc->nr_reclaimed = nr_reclaimed;
1780
1781 /*
1782 * Even if we did not try to evict anon pages at all, we want to
1783 * rebalance the anon lru active/inactive ratio.
1784 */
1785 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1786 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1787
1788 throttle_vm_writeout(sc->gfp_mask);
1789 }
1790
1791 /*
1792 * This is the direct reclaim path, for page-allocating processes. We only
1793 * try to reclaim pages from zones which will satisfy the caller's allocation
1794 * request.
1795 *
1796 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1797 * Because:
1798 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1799 * allocation or
1800 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1801 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1802 * zone defense algorithm.
1803 *
1804 * If a zone is deemed to be full of pinned pages then just give it a light
1805 * scan then give up on it.
1806 */
1807 static bool shrink_zones(int priority, struct zonelist *zonelist,
1808 struct scan_control *sc)
1809 {
1810 struct zoneref *z;
1811 struct zone *zone;
1812 bool all_unreclaimable = true;
1813
1814 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1815 gfp_zone(sc->gfp_mask), sc->nodemask) {
1816 if (!populated_zone(zone))
1817 continue;
1818 /*
1819 * Take care memory controller reclaiming has small influence
1820 * to global LRU.
1821 */
1822 if (scanning_global_lru(sc)) {
1823 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1824 continue;
1825 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1826 continue; /* Let kswapd poll it */
1827 }
1828
1829 shrink_zone(priority, zone, sc);
1830 all_unreclaimable = false;
1831 }
1832 return all_unreclaimable;
1833 }
1834
1835 /*
1836 * This is the main entry point to direct page reclaim.
1837 *
1838 * If a full scan of the inactive list fails to free enough memory then we
1839 * are "out of memory" and something needs to be killed.
1840 *
1841 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1842 * high - the zone may be full of dirty or under-writeback pages, which this
1843 * caller can't do much about. We kick the writeback threads and take explicit
1844 * naps in the hope that some of these pages can be written. But if the
1845 * allocating task holds filesystem locks which prevent writeout this might not
1846 * work, and the allocation attempt will fail.
1847 *
1848 * returns: 0, if no pages reclaimed
1849 * else, the number of pages reclaimed
1850 */
1851 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1852 struct scan_control *sc)
1853 {
1854 int priority;
1855 bool all_unreclaimable;
1856 unsigned long total_scanned = 0;
1857 struct reclaim_state *reclaim_state = current->reclaim_state;
1858 struct zoneref *z;
1859 struct zone *zone;
1860 unsigned long writeback_threshold;
1861
1862 get_mems_allowed();
1863 delayacct_freepages_start();
1864
1865 if (scanning_global_lru(sc))
1866 count_vm_event(ALLOCSTALL);
1867
1868 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1869 sc->nr_scanned = 0;
1870 if (!priority)
1871 disable_swap_token();
1872 all_unreclaimable = shrink_zones(priority, zonelist, sc);
1873 /*
1874 * Don't shrink slabs when reclaiming memory from
1875 * over limit cgroups
1876 */
1877 if (scanning_global_lru(sc)) {
1878 unsigned long lru_pages = 0;
1879 for_each_zone_zonelist(zone, z, zonelist,
1880 gfp_zone(sc->gfp_mask)) {
1881 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1882 continue;
1883
1884 lru_pages += zone_reclaimable_pages(zone);
1885 }
1886
1887 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1888 if (reclaim_state) {
1889 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1890 reclaim_state->reclaimed_slab = 0;
1891 }
1892 }
1893 total_scanned += sc->nr_scanned;
1894 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1895 goto out;
1896
1897 /*
1898 * Try to write back as many pages as we just scanned. This
1899 * tends to cause slow streaming writers to write data to the
1900 * disk smoothly, at the dirtying rate, which is nice. But
1901 * that's undesirable in laptop mode, where we *want* lumpy
1902 * writeout. So in laptop mode, write out the whole world.
1903 */
1904 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1905 if (total_scanned > writeback_threshold) {
1906 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1907 sc->may_writepage = 1;
1908 }
1909
1910 /* Take a nap, wait for some writeback to complete */
1911 if (!sc->hibernation_mode && sc->nr_scanned &&
1912 priority < DEF_PRIORITY - 2)
1913 congestion_wait(BLK_RW_ASYNC, HZ/10);
1914 }
1915
1916 out:
1917 /*
1918 * Now that we've scanned all the zones at this priority level, note
1919 * that level within the zone so that the next thread which performs
1920 * scanning of this zone will immediately start out at this priority
1921 * level. This affects only the decision whether or not to bring
1922 * mapped pages onto the inactive list.
1923 */
1924 if (priority < 0)
1925 priority = 0;
1926
1927 delayacct_freepages_end();
1928 put_mems_allowed();
1929
1930 if (sc->nr_reclaimed)
1931 return sc->nr_reclaimed;
1932
1933 /* top priority shrink_zones still had more to do? don't OOM, then */
1934 if (scanning_global_lru(sc) && !all_unreclaimable)
1935 return 1;
1936
1937 return 0;
1938 }
1939
1940 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1941 gfp_t gfp_mask, nodemask_t *nodemask)
1942 {
1943 unsigned long nr_reclaimed;
1944 struct scan_control sc = {
1945 .gfp_mask = gfp_mask,
1946 .may_writepage = !laptop_mode,
1947 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1948 .may_unmap = 1,
1949 .may_swap = 1,
1950 .swappiness = vm_swappiness,
1951 .order = order,
1952 .mem_cgroup = NULL,
1953 .nodemask = nodemask,
1954 };
1955
1956 trace_mm_vmscan_direct_reclaim_begin(order,
1957 sc.may_writepage,
1958 gfp_mask);
1959
1960 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1961
1962 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1963
1964 return nr_reclaimed;
1965 }
1966
1967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1968
1969 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1970 gfp_t gfp_mask, bool noswap,
1971 unsigned int swappiness,
1972 struct zone *zone, int nid)
1973 {
1974 struct scan_control sc = {
1975 .may_writepage = !laptop_mode,
1976 .may_unmap = 1,
1977 .may_swap = !noswap,
1978 .swappiness = swappiness,
1979 .order = 0,
1980 .mem_cgroup = mem,
1981 };
1982 nodemask_t nm = nodemask_of_node(nid);
1983
1984 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1985 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1986 sc.nodemask = &nm;
1987 sc.nr_reclaimed = 0;
1988 sc.nr_scanned = 0;
1989
1990 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
1991 sc.may_writepage,
1992 sc.gfp_mask);
1993
1994 /*
1995 * NOTE: Although we can get the priority field, using it
1996 * here is not a good idea, since it limits the pages we can scan.
1997 * if we don't reclaim here, the shrink_zone from balance_pgdat
1998 * will pick up pages from other mem cgroup's as well. We hack
1999 * the priority and make it zero.
2000 */
2001 shrink_zone(0, zone, &sc);
2002
2003 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2004
2005 return sc.nr_reclaimed;
2006 }
2007
2008 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2009 gfp_t gfp_mask,
2010 bool noswap,
2011 unsigned int swappiness)
2012 {
2013 struct zonelist *zonelist;
2014 unsigned long nr_reclaimed;
2015 struct scan_control sc = {
2016 .may_writepage = !laptop_mode,
2017 .may_unmap = 1,
2018 .may_swap = !noswap,
2019 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2020 .swappiness = swappiness,
2021 .order = 0,
2022 .mem_cgroup = mem_cont,
2023 .nodemask = NULL, /* we don't care the placement */
2024 };
2025
2026 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2027 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2028 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2029
2030 trace_mm_vmscan_memcg_reclaim_begin(0,
2031 sc.may_writepage,
2032 sc.gfp_mask);
2033
2034 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2035
2036 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2037
2038 return nr_reclaimed;
2039 }
2040 #endif
2041
2042 /* is kswapd sleeping prematurely? */
2043 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2044 {
2045 int i;
2046
2047 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2048 if (remaining)
2049 return 1;
2050
2051 /* If after HZ/10, a zone is below the high mark, it's premature */
2052 for (i = 0; i < pgdat->nr_zones; i++) {
2053 struct zone *zone = pgdat->node_zones + i;
2054
2055 if (!populated_zone(zone))
2056 continue;
2057
2058 if (zone->all_unreclaimable)
2059 continue;
2060
2061 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2062 0, 0))
2063 return 1;
2064 }
2065
2066 return 0;
2067 }
2068
2069 /*
2070 * For kswapd, balance_pgdat() will work across all this node's zones until
2071 * they are all at high_wmark_pages(zone).
2072 *
2073 * Returns the number of pages which were actually freed.
2074 *
2075 * There is special handling here for zones which are full of pinned pages.
2076 * This can happen if the pages are all mlocked, or if they are all used by
2077 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2078 * What we do is to detect the case where all pages in the zone have been
2079 * scanned twice and there has been zero successful reclaim. Mark the zone as
2080 * dead and from now on, only perform a short scan. Basically we're polling
2081 * the zone for when the problem goes away.
2082 *
2083 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2084 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2085 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2086 * lower zones regardless of the number of free pages in the lower zones. This
2087 * interoperates with the page allocator fallback scheme to ensure that aging
2088 * of pages is balanced across the zones.
2089 */
2090 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
2091 {
2092 int all_zones_ok;
2093 int priority;
2094 int i;
2095 unsigned long total_scanned;
2096 struct reclaim_state *reclaim_state = current->reclaim_state;
2097 struct scan_control sc = {
2098 .gfp_mask = GFP_KERNEL,
2099 .may_unmap = 1,
2100 .may_swap = 1,
2101 /*
2102 * kswapd doesn't want to be bailed out while reclaim. because
2103 * we want to put equal scanning pressure on each zone.
2104 */
2105 .nr_to_reclaim = ULONG_MAX,
2106 .swappiness = vm_swappiness,
2107 .order = order,
2108 .mem_cgroup = NULL,
2109 };
2110 loop_again:
2111 total_scanned = 0;
2112 sc.nr_reclaimed = 0;
2113 sc.may_writepage = !laptop_mode;
2114 count_vm_event(PAGEOUTRUN);
2115
2116 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2117 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2118 unsigned long lru_pages = 0;
2119 int has_under_min_watermark_zone = 0;
2120
2121 /* The swap token gets in the way of swapout... */
2122 if (!priority)
2123 disable_swap_token();
2124
2125 all_zones_ok = 1;
2126
2127 /*
2128 * Scan in the highmem->dma direction for the highest
2129 * zone which needs scanning
2130 */
2131 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2132 struct zone *zone = pgdat->node_zones + i;
2133
2134 if (!populated_zone(zone))
2135 continue;
2136
2137 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2138 continue;
2139
2140 /*
2141 * Do some background aging of the anon list, to give
2142 * pages a chance to be referenced before reclaiming.
2143 */
2144 if (inactive_anon_is_low(zone, &sc))
2145 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2146 &sc, priority, 0);
2147
2148 if (!zone_watermark_ok(zone, order,
2149 high_wmark_pages(zone), 0, 0)) {
2150 end_zone = i;
2151 break;
2152 }
2153 }
2154 if (i < 0)
2155 goto out;
2156
2157 for (i = 0; i <= end_zone; i++) {
2158 struct zone *zone = pgdat->node_zones + i;
2159
2160 lru_pages += zone_reclaimable_pages(zone);
2161 }
2162
2163 /*
2164 * Now scan the zone in the dma->highmem direction, stopping
2165 * at the last zone which needs scanning.
2166 *
2167 * We do this because the page allocator works in the opposite
2168 * direction. This prevents the page allocator from allocating
2169 * pages behind kswapd's direction of progress, which would
2170 * cause too much scanning of the lower zones.
2171 */
2172 for (i = 0; i <= end_zone; i++) {
2173 struct zone *zone = pgdat->node_zones + i;
2174 int nr_slab;
2175 int nid, zid;
2176
2177 if (!populated_zone(zone))
2178 continue;
2179
2180 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2181 continue;
2182
2183 sc.nr_scanned = 0;
2184
2185 nid = pgdat->node_id;
2186 zid = zone_idx(zone);
2187 /*
2188 * Call soft limit reclaim before calling shrink_zone.
2189 * For now we ignore the return value
2190 */
2191 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2192 nid, zid);
2193 /*
2194 * We put equal pressure on every zone, unless one
2195 * zone has way too many pages free already.
2196 */
2197 if (!zone_watermark_ok(zone, order,
2198 8*high_wmark_pages(zone), end_zone, 0))
2199 shrink_zone(priority, zone, &sc);
2200 reclaim_state->reclaimed_slab = 0;
2201 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2202 lru_pages);
2203 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2204 total_scanned += sc.nr_scanned;
2205 if (zone->all_unreclaimable)
2206 continue;
2207 if (nr_slab == 0 &&
2208 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2209 zone->all_unreclaimable = 1;
2210 /*
2211 * If we've done a decent amount of scanning and
2212 * the reclaim ratio is low, start doing writepage
2213 * even in laptop mode
2214 */
2215 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2216 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2217 sc.may_writepage = 1;
2218
2219 if (!zone_watermark_ok(zone, order,
2220 high_wmark_pages(zone), end_zone, 0)) {
2221 all_zones_ok = 0;
2222 /*
2223 * We are still under min water mark. This
2224 * means that we have a GFP_ATOMIC allocation
2225 * failure risk. Hurry up!
2226 */
2227 if (!zone_watermark_ok(zone, order,
2228 min_wmark_pages(zone), end_zone, 0))
2229 has_under_min_watermark_zone = 1;
2230 }
2231
2232 }
2233 if (all_zones_ok)
2234 break; /* kswapd: all done */
2235 /*
2236 * OK, kswapd is getting into trouble. Take a nap, then take
2237 * another pass across the zones.
2238 */
2239 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2240 if (has_under_min_watermark_zone)
2241 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2242 else
2243 congestion_wait(BLK_RW_ASYNC, HZ/10);
2244 }
2245
2246 /*
2247 * We do this so kswapd doesn't build up large priorities for
2248 * example when it is freeing in parallel with allocators. It
2249 * matches the direct reclaim path behaviour in terms of impact
2250 * on zone->*_priority.
2251 */
2252 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2253 break;
2254 }
2255 out:
2256 if (!all_zones_ok) {
2257 cond_resched();
2258
2259 try_to_freeze();
2260
2261 /*
2262 * Fragmentation may mean that the system cannot be
2263 * rebalanced for high-order allocations in all zones.
2264 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2265 * it means the zones have been fully scanned and are still
2266 * not balanced. For high-order allocations, there is
2267 * little point trying all over again as kswapd may
2268 * infinite loop.
2269 *
2270 * Instead, recheck all watermarks at order-0 as they
2271 * are the most important. If watermarks are ok, kswapd will go
2272 * back to sleep. High-order users can still perform direct
2273 * reclaim if they wish.
2274 */
2275 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2276 order = sc.order = 0;
2277
2278 goto loop_again;
2279 }
2280
2281 return sc.nr_reclaimed;
2282 }
2283
2284 /*
2285 * The background pageout daemon, started as a kernel thread
2286 * from the init process.
2287 *
2288 * This basically trickles out pages so that we have _some_
2289 * free memory available even if there is no other activity
2290 * that frees anything up. This is needed for things like routing
2291 * etc, where we otherwise might have all activity going on in
2292 * asynchronous contexts that cannot page things out.
2293 *
2294 * If there are applications that are active memory-allocators
2295 * (most normal use), this basically shouldn't matter.
2296 */
2297 static int kswapd(void *p)
2298 {
2299 unsigned long order;
2300 pg_data_t *pgdat = (pg_data_t*)p;
2301 struct task_struct *tsk = current;
2302 DEFINE_WAIT(wait);
2303 struct reclaim_state reclaim_state = {
2304 .reclaimed_slab = 0,
2305 };
2306 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2307
2308 lockdep_set_current_reclaim_state(GFP_KERNEL);
2309
2310 if (!cpumask_empty(cpumask))
2311 set_cpus_allowed_ptr(tsk, cpumask);
2312 current->reclaim_state = &reclaim_state;
2313
2314 /*
2315 * Tell the memory management that we're a "memory allocator",
2316 * and that if we need more memory we should get access to it
2317 * regardless (see "__alloc_pages()"). "kswapd" should
2318 * never get caught in the normal page freeing logic.
2319 *
2320 * (Kswapd normally doesn't need memory anyway, but sometimes
2321 * you need a small amount of memory in order to be able to
2322 * page out something else, and this flag essentially protects
2323 * us from recursively trying to free more memory as we're
2324 * trying to free the first piece of memory in the first place).
2325 */
2326 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2327 set_freezable();
2328
2329 order = 0;
2330 for ( ; ; ) {
2331 unsigned long new_order;
2332 int ret;
2333
2334 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2335 new_order = pgdat->kswapd_max_order;
2336 pgdat->kswapd_max_order = 0;
2337 if (order < new_order) {
2338 /*
2339 * Don't sleep if someone wants a larger 'order'
2340 * allocation
2341 */
2342 order = new_order;
2343 } else {
2344 if (!freezing(current) && !kthread_should_stop()) {
2345 long remaining = 0;
2346
2347 /* Try to sleep for a short interval */
2348 if (!sleeping_prematurely(pgdat, order, remaining)) {
2349 remaining = schedule_timeout(HZ/10);
2350 finish_wait(&pgdat->kswapd_wait, &wait);
2351 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2352 }
2353
2354 /*
2355 * After a short sleep, check if it was a
2356 * premature sleep. If not, then go fully
2357 * to sleep until explicitly woken up
2358 */
2359 if (!sleeping_prematurely(pgdat, order, remaining)) {
2360 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2361 schedule();
2362 } else {
2363 if (remaining)
2364 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2365 else
2366 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2367 }
2368 }
2369
2370 order = pgdat->kswapd_max_order;
2371 }
2372 finish_wait(&pgdat->kswapd_wait, &wait);
2373
2374 ret = try_to_freeze();
2375 if (kthread_should_stop())
2376 break;
2377
2378 /*
2379 * We can speed up thawing tasks if we don't call balance_pgdat
2380 * after returning from the refrigerator
2381 */
2382 if (!ret) {
2383 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2384 balance_pgdat(pgdat, order);
2385 }
2386 }
2387 return 0;
2388 }
2389
2390 /*
2391 * A zone is low on free memory, so wake its kswapd task to service it.
2392 */
2393 void wakeup_kswapd(struct zone *zone, int order)
2394 {
2395 pg_data_t *pgdat;
2396
2397 if (!populated_zone(zone))
2398 return;
2399
2400 pgdat = zone->zone_pgdat;
2401 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2402 return;
2403 if (pgdat->kswapd_max_order < order)
2404 pgdat->kswapd_max_order = order;
2405 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2406 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2407 return;
2408 if (!waitqueue_active(&pgdat->kswapd_wait))
2409 return;
2410 wake_up_interruptible(&pgdat->kswapd_wait);
2411 }
2412
2413 /*
2414 * The reclaimable count would be mostly accurate.
2415 * The less reclaimable pages may be
2416 * - mlocked pages, which will be moved to unevictable list when encountered
2417 * - mapped pages, which may require several travels to be reclaimed
2418 * - dirty pages, which is not "instantly" reclaimable
2419 */
2420 unsigned long global_reclaimable_pages(void)
2421 {
2422 int nr;
2423
2424 nr = global_page_state(NR_ACTIVE_FILE) +
2425 global_page_state(NR_INACTIVE_FILE);
2426
2427 if (nr_swap_pages > 0)
2428 nr += global_page_state(NR_ACTIVE_ANON) +
2429 global_page_state(NR_INACTIVE_ANON);
2430
2431 return nr;
2432 }
2433
2434 unsigned long zone_reclaimable_pages(struct zone *zone)
2435 {
2436 int nr;
2437
2438 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2439 zone_page_state(zone, NR_INACTIVE_FILE);
2440
2441 if (nr_swap_pages > 0)
2442 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2443 zone_page_state(zone, NR_INACTIVE_ANON);
2444
2445 return nr;
2446 }
2447
2448 #ifdef CONFIG_HIBERNATION
2449 /*
2450 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2451 * freed pages.
2452 *
2453 * Rather than trying to age LRUs the aim is to preserve the overall
2454 * LRU order by reclaiming preferentially
2455 * inactive > active > active referenced > active mapped
2456 */
2457 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2458 {
2459 struct reclaim_state reclaim_state;
2460 struct scan_control sc = {
2461 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2462 .may_swap = 1,
2463 .may_unmap = 1,
2464 .may_writepage = 1,
2465 .nr_to_reclaim = nr_to_reclaim,
2466 .hibernation_mode = 1,
2467 .swappiness = vm_swappiness,
2468 .order = 0,
2469 };
2470 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2471 struct task_struct *p = current;
2472 unsigned long nr_reclaimed;
2473
2474 p->flags |= PF_MEMALLOC;
2475 lockdep_set_current_reclaim_state(sc.gfp_mask);
2476 reclaim_state.reclaimed_slab = 0;
2477 p->reclaim_state = &reclaim_state;
2478
2479 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2480
2481 p->reclaim_state = NULL;
2482 lockdep_clear_current_reclaim_state();
2483 p->flags &= ~PF_MEMALLOC;
2484
2485 return nr_reclaimed;
2486 }
2487 #endif /* CONFIG_HIBERNATION */
2488
2489 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2490 not required for correctness. So if the last cpu in a node goes
2491 away, we get changed to run anywhere: as the first one comes back,
2492 restore their cpu bindings. */
2493 static int __devinit cpu_callback(struct notifier_block *nfb,
2494 unsigned long action, void *hcpu)
2495 {
2496 int nid;
2497
2498 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2499 for_each_node_state(nid, N_HIGH_MEMORY) {
2500 pg_data_t *pgdat = NODE_DATA(nid);
2501 const struct cpumask *mask;
2502
2503 mask = cpumask_of_node(pgdat->node_id);
2504
2505 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2506 /* One of our CPUs online: restore mask */
2507 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2508 }
2509 }
2510 return NOTIFY_OK;
2511 }
2512
2513 /*
2514 * This kswapd start function will be called by init and node-hot-add.
2515 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2516 */
2517 int kswapd_run(int nid)
2518 {
2519 pg_data_t *pgdat = NODE_DATA(nid);
2520 int ret = 0;
2521
2522 if (pgdat->kswapd)
2523 return 0;
2524
2525 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2526 if (IS_ERR(pgdat->kswapd)) {
2527 /* failure at boot is fatal */
2528 BUG_ON(system_state == SYSTEM_BOOTING);
2529 printk("Failed to start kswapd on node %d\n",nid);
2530 ret = -1;
2531 }
2532 return ret;
2533 }
2534
2535 /*
2536 * Called by memory hotplug when all memory in a node is offlined.
2537 */
2538 void kswapd_stop(int nid)
2539 {
2540 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2541
2542 if (kswapd)
2543 kthread_stop(kswapd);
2544 }
2545
2546 static int __init kswapd_init(void)
2547 {
2548 int nid;
2549
2550 swap_setup();
2551 for_each_node_state(nid, N_HIGH_MEMORY)
2552 kswapd_run(nid);
2553 hotcpu_notifier(cpu_callback, 0);
2554 return 0;
2555 }
2556
2557 module_init(kswapd_init)
2558
2559 #ifdef CONFIG_NUMA
2560 /*
2561 * Zone reclaim mode
2562 *
2563 * If non-zero call zone_reclaim when the number of free pages falls below
2564 * the watermarks.
2565 */
2566 int zone_reclaim_mode __read_mostly;
2567
2568 #define RECLAIM_OFF 0
2569 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2570 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2571 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2572
2573 /*
2574 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2575 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2576 * a zone.
2577 */
2578 #define ZONE_RECLAIM_PRIORITY 4
2579
2580 /*
2581 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2582 * occur.
2583 */
2584 int sysctl_min_unmapped_ratio = 1;
2585
2586 /*
2587 * If the number of slab pages in a zone grows beyond this percentage then
2588 * slab reclaim needs to occur.
2589 */
2590 int sysctl_min_slab_ratio = 5;
2591
2592 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2593 {
2594 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2595 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2596 zone_page_state(zone, NR_ACTIVE_FILE);
2597
2598 /*
2599 * It's possible for there to be more file mapped pages than
2600 * accounted for by the pages on the file LRU lists because
2601 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2602 */
2603 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2604 }
2605
2606 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2607 static long zone_pagecache_reclaimable(struct zone *zone)
2608 {
2609 long nr_pagecache_reclaimable;
2610 long delta = 0;
2611
2612 /*
2613 * If RECLAIM_SWAP is set, then all file pages are considered
2614 * potentially reclaimable. Otherwise, we have to worry about
2615 * pages like swapcache and zone_unmapped_file_pages() provides
2616 * a better estimate
2617 */
2618 if (zone_reclaim_mode & RECLAIM_SWAP)
2619 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2620 else
2621 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2622
2623 /* If we can't clean pages, remove dirty pages from consideration */
2624 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2625 delta += zone_page_state(zone, NR_FILE_DIRTY);
2626
2627 /* Watch for any possible underflows due to delta */
2628 if (unlikely(delta > nr_pagecache_reclaimable))
2629 delta = nr_pagecache_reclaimable;
2630
2631 return nr_pagecache_reclaimable - delta;
2632 }
2633
2634 /*
2635 * Try to free up some pages from this zone through reclaim.
2636 */
2637 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2638 {
2639 /* Minimum pages needed in order to stay on node */
2640 const unsigned long nr_pages = 1 << order;
2641 struct task_struct *p = current;
2642 struct reclaim_state reclaim_state;
2643 int priority;
2644 struct scan_control sc = {
2645 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2646 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2647 .may_swap = 1,
2648 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2649 SWAP_CLUSTER_MAX),
2650 .gfp_mask = gfp_mask,
2651 .swappiness = vm_swappiness,
2652 .order = order,
2653 };
2654 unsigned long nr_slab_pages0, nr_slab_pages1;
2655
2656 cond_resched();
2657 /*
2658 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2659 * and we also need to be able to write out pages for RECLAIM_WRITE
2660 * and RECLAIM_SWAP.
2661 */
2662 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2663 lockdep_set_current_reclaim_state(gfp_mask);
2664 reclaim_state.reclaimed_slab = 0;
2665 p->reclaim_state = &reclaim_state;
2666
2667 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2668 /*
2669 * Free memory by calling shrink zone with increasing
2670 * priorities until we have enough memory freed.
2671 */
2672 priority = ZONE_RECLAIM_PRIORITY;
2673 do {
2674 shrink_zone(priority, zone, &sc);
2675 priority--;
2676 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2677 }
2678
2679 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2680 if (nr_slab_pages0 > zone->min_slab_pages) {
2681 /*
2682 * shrink_slab() does not currently allow us to determine how
2683 * many pages were freed in this zone. So we take the current
2684 * number of slab pages and shake the slab until it is reduced
2685 * by the same nr_pages that we used for reclaiming unmapped
2686 * pages.
2687 *
2688 * Note that shrink_slab will free memory on all zones and may
2689 * take a long time.
2690 */
2691 for (;;) {
2692 unsigned long lru_pages = zone_reclaimable_pages(zone);
2693
2694 /* No reclaimable slab or very low memory pressure */
2695 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2696 break;
2697
2698 /* Freed enough memory */
2699 nr_slab_pages1 = zone_page_state(zone,
2700 NR_SLAB_RECLAIMABLE);
2701 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2702 break;
2703 }
2704
2705 /*
2706 * Update nr_reclaimed by the number of slab pages we
2707 * reclaimed from this zone.
2708 */
2709 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2710 if (nr_slab_pages1 < nr_slab_pages0)
2711 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2712 }
2713
2714 p->reclaim_state = NULL;
2715 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2716 lockdep_clear_current_reclaim_state();
2717 return sc.nr_reclaimed >= nr_pages;
2718 }
2719
2720 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2721 {
2722 int node_id;
2723 int ret;
2724
2725 /*
2726 * Zone reclaim reclaims unmapped file backed pages and
2727 * slab pages if we are over the defined limits.
2728 *
2729 * A small portion of unmapped file backed pages is needed for
2730 * file I/O otherwise pages read by file I/O will be immediately
2731 * thrown out if the zone is overallocated. So we do not reclaim
2732 * if less than a specified percentage of the zone is used by
2733 * unmapped file backed pages.
2734 */
2735 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2736 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2737 return ZONE_RECLAIM_FULL;
2738
2739 if (zone->all_unreclaimable)
2740 return ZONE_RECLAIM_FULL;
2741
2742 /*
2743 * Do not scan if the allocation should not be delayed.
2744 */
2745 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2746 return ZONE_RECLAIM_NOSCAN;
2747
2748 /*
2749 * Only run zone reclaim on the local zone or on zones that do not
2750 * have associated processors. This will favor the local processor
2751 * over remote processors and spread off node memory allocations
2752 * as wide as possible.
2753 */
2754 node_id = zone_to_nid(zone);
2755 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2756 return ZONE_RECLAIM_NOSCAN;
2757
2758 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2759 return ZONE_RECLAIM_NOSCAN;
2760
2761 ret = __zone_reclaim(zone, gfp_mask, order);
2762 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2763
2764 if (!ret)
2765 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2766
2767 return ret;
2768 }
2769 #endif
2770
2771 /*
2772 * page_evictable - test whether a page is evictable
2773 * @page: the page to test
2774 * @vma: the VMA in which the page is or will be mapped, may be NULL
2775 *
2776 * Test whether page is evictable--i.e., should be placed on active/inactive
2777 * lists vs unevictable list. The vma argument is !NULL when called from the
2778 * fault path to determine how to instantate a new page.
2779 *
2780 * Reasons page might not be evictable:
2781 * (1) page's mapping marked unevictable
2782 * (2) page is part of an mlocked VMA
2783 *
2784 */
2785 int page_evictable(struct page *page, struct vm_area_struct *vma)
2786 {
2787
2788 if (mapping_unevictable(page_mapping(page)))
2789 return 0;
2790
2791 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2792 return 0;
2793
2794 return 1;
2795 }
2796
2797 /**
2798 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2799 * @page: page to check evictability and move to appropriate lru list
2800 * @zone: zone page is in
2801 *
2802 * Checks a page for evictability and moves the page to the appropriate
2803 * zone lru list.
2804 *
2805 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2806 * have PageUnevictable set.
2807 */
2808 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2809 {
2810 VM_BUG_ON(PageActive(page));
2811
2812 retry:
2813 ClearPageUnevictable(page);
2814 if (page_evictable(page, NULL)) {
2815 enum lru_list l = page_lru_base_type(page);
2816
2817 __dec_zone_state(zone, NR_UNEVICTABLE);
2818 list_move(&page->lru, &zone->lru[l].list);
2819 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2820 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2821 __count_vm_event(UNEVICTABLE_PGRESCUED);
2822 } else {
2823 /*
2824 * rotate unevictable list
2825 */
2826 SetPageUnevictable(page);
2827 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2828 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2829 if (page_evictable(page, NULL))
2830 goto retry;
2831 }
2832 }
2833
2834 /**
2835 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2836 * @mapping: struct address_space to scan for evictable pages
2837 *
2838 * Scan all pages in mapping. Check unevictable pages for
2839 * evictability and move them to the appropriate zone lru list.
2840 */
2841 void scan_mapping_unevictable_pages(struct address_space *mapping)
2842 {
2843 pgoff_t next = 0;
2844 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2845 PAGE_CACHE_SHIFT;
2846 struct zone *zone;
2847 struct pagevec pvec;
2848
2849 if (mapping->nrpages == 0)
2850 return;
2851
2852 pagevec_init(&pvec, 0);
2853 while (next < end &&
2854 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2855 int i;
2856 int pg_scanned = 0;
2857
2858 zone = NULL;
2859
2860 for (i = 0; i < pagevec_count(&pvec); i++) {
2861 struct page *page = pvec.pages[i];
2862 pgoff_t page_index = page->index;
2863 struct zone *pagezone = page_zone(page);
2864
2865 pg_scanned++;
2866 if (page_index > next)
2867 next = page_index;
2868 next++;
2869
2870 if (pagezone != zone) {
2871 if (zone)
2872 spin_unlock_irq(&zone->lru_lock);
2873 zone = pagezone;
2874 spin_lock_irq(&zone->lru_lock);
2875 }
2876
2877 if (PageLRU(page) && PageUnevictable(page))
2878 check_move_unevictable_page(page, zone);
2879 }
2880 if (zone)
2881 spin_unlock_irq(&zone->lru_lock);
2882 pagevec_release(&pvec);
2883
2884 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2885 }
2886
2887 }
2888
2889 /**
2890 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2891 * @zone - zone of which to scan the unevictable list
2892 *
2893 * Scan @zone's unevictable LRU lists to check for pages that have become
2894 * evictable. Move those that have to @zone's inactive list where they
2895 * become candidates for reclaim, unless shrink_inactive_zone() decides
2896 * to reactivate them. Pages that are still unevictable are rotated
2897 * back onto @zone's unevictable list.
2898 */
2899 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2900 static void scan_zone_unevictable_pages(struct zone *zone)
2901 {
2902 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2903 unsigned long scan;
2904 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2905
2906 while (nr_to_scan > 0) {
2907 unsigned long batch_size = min(nr_to_scan,
2908 SCAN_UNEVICTABLE_BATCH_SIZE);
2909
2910 spin_lock_irq(&zone->lru_lock);
2911 for (scan = 0; scan < batch_size; scan++) {
2912 struct page *page = lru_to_page(l_unevictable);
2913
2914 if (!trylock_page(page))
2915 continue;
2916
2917 prefetchw_prev_lru_page(page, l_unevictable, flags);
2918
2919 if (likely(PageLRU(page) && PageUnevictable(page)))
2920 check_move_unevictable_page(page, zone);
2921
2922 unlock_page(page);
2923 }
2924 spin_unlock_irq(&zone->lru_lock);
2925
2926 nr_to_scan -= batch_size;
2927 }
2928 }
2929
2930
2931 /**
2932 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2933 *
2934 * A really big hammer: scan all zones' unevictable LRU lists to check for
2935 * pages that have become evictable. Move those back to the zones'
2936 * inactive list where they become candidates for reclaim.
2937 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2938 * and we add swap to the system. As such, it runs in the context of a task
2939 * that has possibly/probably made some previously unevictable pages
2940 * evictable.
2941 */
2942 static void scan_all_zones_unevictable_pages(void)
2943 {
2944 struct zone *zone;
2945
2946 for_each_zone(zone) {
2947 scan_zone_unevictable_pages(zone);
2948 }
2949 }
2950
2951 /*
2952 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2953 * all nodes' unevictable lists for evictable pages
2954 */
2955 unsigned long scan_unevictable_pages;
2956
2957 int scan_unevictable_handler(struct ctl_table *table, int write,
2958 void __user *buffer,
2959 size_t *length, loff_t *ppos)
2960 {
2961 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962
2963 if (write && *(unsigned long *)table->data)
2964 scan_all_zones_unevictable_pages();
2965
2966 scan_unevictable_pages = 0;
2967 return 0;
2968 }
2969
2970 /*
2971 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2972 * a specified node's per zone unevictable lists for evictable pages.
2973 */
2974
2975 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2976 struct sysdev_attribute *attr,
2977 char *buf)
2978 {
2979 return sprintf(buf, "0\n"); /* always zero; should fit... */
2980 }
2981
2982 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2983 struct sysdev_attribute *attr,
2984 const char *buf, size_t count)
2985 {
2986 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2987 struct zone *zone;
2988 unsigned long res;
2989 unsigned long req = strict_strtoul(buf, 10, &res);
2990
2991 if (!req)
2992 return 1; /* zero is no-op */
2993
2994 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2995 if (!populated_zone(zone))
2996 continue;
2997 scan_zone_unevictable_pages(zone);
2998 }
2999 return 1;
3000 }
3001
3002
3003 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3004 read_scan_unevictable_node,
3005 write_scan_unevictable_node);
3006
3007 int scan_unevictable_register_node(struct node *node)
3008 {
3009 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3010 }
3011
3012 void scan_unevictable_unregister_node(struct node *node)
3013 {
3014 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3015 }
3016