]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmstat.c
goldfish: goldfish_tty_probe() is not using 'i' any more
[mirror_ubuntu-artful-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/writeback.h>
23 #include <linux/compaction.h>
24 #include <linux/mm_inline.h>
25
26 #include "internal.h"
27
28 #ifdef CONFIG_VM_EVENT_COUNTERS
29 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
30 EXPORT_PER_CPU_SYMBOL(vm_event_states);
31
32 static void sum_vm_events(unsigned long *ret)
33 {
34 int cpu;
35 int i;
36
37 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
38
39 for_each_online_cpu(cpu) {
40 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
41
42 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
43 ret[i] += this->event[i];
44 }
45 }
46
47 /*
48 * Accumulate the vm event counters across all CPUs.
49 * The result is unavoidably approximate - it can change
50 * during and after execution of this function.
51 */
52 void all_vm_events(unsigned long *ret)
53 {
54 get_online_cpus();
55 sum_vm_events(ret);
56 put_online_cpus();
57 }
58 EXPORT_SYMBOL_GPL(all_vm_events);
59
60 /*
61 * Fold the foreign cpu events into our own.
62 *
63 * This is adding to the events on one processor
64 * but keeps the global counts constant.
65 */
66 void vm_events_fold_cpu(int cpu)
67 {
68 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
69 int i;
70
71 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
72 count_vm_events(i, fold_state->event[i]);
73 fold_state->event[i] = 0;
74 }
75 }
76
77 #endif /* CONFIG_VM_EVENT_COUNTERS */
78
79 /*
80 * Manage combined zone based / global counters
81 *
82 * vm_stat contains the global counters
83 */
84 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
85 EXPORT_SYMBOL(vm_stat);
86
87 #ifdef CONFIG_SMP
88
89 int calculate_pressure_threshold(struct zone *zone)
90 {
91 int threshold;
92 int watermark_distance;
93
94 /*
95 * As vmstats are not up to date, there is drift between the estimated
96 * and real values. For high thresholds and a high number of CPUs, it
97 * is possible for the min watermark to be breached while the estimated
98 * value looks fine. The pressure threshold is a reduced value such
99 * that even the maximum amount of drift will not accidentally breach
100 * the min watermark
101 */
102 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
103 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
104
105 /*
106 * Maximum threshold is 125
107 */
108 threshold = min(125, threshold);
109
110 return threshold;
111 }
112
113 int calculate_normal_threshold(struct zone *zone)
114 {
115 int threshold;
116 int mem; /* memory in 128 MB units */
117
118 /*
119 * The threshold scales with the number of processors and the amount
120 * of memory per zone. More memory means that we can defer updates for
121 * longer, more processors could lead to more contention.
122 * fls() is used to have a cheap way of logarithmic scaling.
123 *
124 * Some sample thresholds:
125 *
126 * Threshold Processors (fls) Zonesize fls(mem+1)
127 * ------------------------------------------------------------------
128 * 8 1 1 0.9-1 GB 4
129 * 16 2 2 0.9-1 GB 4
130 * 20 2 2 1-2 GB 5
131 * 24 2 2 2-4 GB 6
132 * 28 2 2 4-8 GB 7
133 * 32 2 2 8-16 GB 8
134 * 4 2 2 <128M 1
135 * 30 4 3 2-4 GB 5
136 * 48 4 3 8-16 GB 8
137 * 32 8 4 1-2 GB 4
138 * 32 8 4 0.9-1GB 4
139 * 10 16 5 <128M 1
140 * 40 16 5 900M 4
141 * 70 64 7 2-4 GB 5
142 * 84 64 7 4-8 GB 6
143 * 108 512 9 4-8 GB 6
144 * 125 1024 10 8-16 GB 8
145 * 125 1024 10 16-32 GB 9
146 */
147
148 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
149
150 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
151
152 /*
153 * Maximum threshold is 125
154 */
155 threshold = min(125, threshold);
156
157 return threshold;
158 }
159
160 /*
161 * Refresh the thresholds for each zone.
162 */
163 void refresh_zone_stat_thresholds(void)
164 {
165 struct zone *zone;
166 int cpu;
167 int threshold;
168
169 for_each_populated_zone(zone) {
170 unsigned long max_drift, tolerate_drift;
171
172 threshold = calculate_normal_threshold(zone);
173
174 for_each_online_cpu(cpu)
175 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
176 = threshold;
177
178 /*
179 * Only set percpu_drift_mark if there is a danger that
180 * NR_FREE_PAGES reports the low watermark is ok when in fact
181 * the min watermark could be breached by an allocation
182 */
183 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
184 max_drift = num_online_cpus() * threshold;
185 if (max_drift > tolerate_drift)
186 zone->percpu_drift_mark = high_wmark_pages(zone) +
187 max_drift;
188 }
189 }
190
191 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
192 int (*calculate_pressure)(struct zone *))
193 {
194 struct zone *zone;
195 int cpu;
196 int threshold;
197 int i;
198
199 for (i = 0; i < pgdat->nr_zones; i++) {
200 zone = &pgdat->node_zones[i];
201 if (!zone->percpu_drift_mark)
202 continue;
203
204 threshold = (*calculate_pressure)(zone);
205 for_each_online_cpu(cpu)
206 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
207 = threshold;
208 }
209 }
210
211 /*
212 * For use when we know that interrupts are disabled,
213 * or when we know that preemption is disabled and that
214 * particular counter cannot be updated from interrupt context.
215 */
216 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
217 int delta)
218 {
219 struct per_cpu_pageset __percpu *pcp = zone->pageset;
220 s8 __percpu *p = pcp->vm_stat_diff + item;
221 long x;
222 long t;
223
224 x = delta + __this_cpu_read(*p);
225
226 t = __this_cpu_read(pcp->stat_threshold);
227
228 if (unlikely(x > t || x < -t)) {
229 zone_page_state_add(x, zone, item);
230 x = 0;
231 }
232 __this_cpu_write(*p, x);
233 }
234 EXPORT_SYMBOL(__mod_zone_page_state);
235
236 /*
237 * Optimized increment and decrement functions.
238 *
239 * These are only for a single page and therefore can take a struct page *
240 * argument instead of struct zone *. This allows the inclusion of the code
241 * generated for page_zone(page) into the optimized functions.
242 *
243 * No overflow check is necessary and therefore the differential can be
244 * incremented or decremented in place which may allow the compilers to
245 * generate better code.
246 * The increment or decrement is known and therefore one boundary check can
247 * be omitted.
248 *
249 * NOTE: These functions are very performance sensitive. Change only
250 * with care.
251 *
252 * Some processors have inc/dec instructions that are atomic vs an interrupt.
253 * However, the code must first determine the differential location in a zone
254 * based on the processor number and then inc/dec the counter. There is no
255 * guarantee without disabling preemption that the processor will not change
256 * in between and therefore the atomicity vs. interrupt cannot be exploited
257 * in a useful way here.
258 */
259 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
260 {
261 struct per_cpu_pageset __percpu *pcp = zone->pageset;
262 s8 __percpu *p = pcp->vm_stat_diff + item;
263 s8 v, t;
264
265 v = __this_cpu_inc_return(*p);
266 t = __this_cpu_read(pcp->stat_threshold);
267 if (unlikely(v > t)) {
268 s8 overstep = t >> 1;
269
270 zone_page_state_add(v + overstep, zone, item);
271 __this_cpu_write(*p, -overstep);
272 }
273 }
274
275 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
276 {
277 __inc_zone_state(page_zone(page), item);
278 }
279 EXPORT_SYMBOL(__inc_zone_page_state);
280
281 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
282 {
283 struct per_cpu_pageset __percpu *pcp = zone->pageset;
284 s8 __percpu *p = pcp->vm_stat_diff + item;
285 s8 v, t;
286
287 v = __this_cpu_dec_return(*p);
288 t = __this_cpu_read(pcp->stat_threshold);
289 if (unlikely(v < - t)) {
290 s8 overstep = t >> 1;
291
292 zone_page_state_add(v - overstep, zone, item);
293 __this_cpu_write(*p, overstep);
294 }
295 }
296
297 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
298 {
299 __dec_zone_state(page_zone(page), item);
300 }
301 EXPORT_SYMBOL(__dec_zone_page_state);
302
303 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
304 /*
305 * If we have cmpxchg_local support then we do not need to incur the overhead
306 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
307 *
308 * mod_state() modifies the zone counter state through atomic per cpu
309 * operations.
310 *
311 * Overstep mode specifies how overstep should handled:
312 * 0 No overstepping
313 * 1 Overstepping half of threshold
314 * -1 Overstepping minus half of threshold
315 */
316 static inline void mod_state(struct zone *zone,
317 enum zone_stat_item item, int delta, int overstep_mode)
318 {
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long o, n, t, z;
322
323 do {
324 z = 0; /* overflow to zone counters */
325
326 /*
327 * The fetching of the stat_threshold is racy. We may apply
328 * a counter threshold to the wrong the cpu if we get
329 * rescheduled while executing here. However, the next
330 * counter update will apply the threshold again and
331 * therefore bring the counter under the threshold again.
332 *
333 * Most of the time the thresholds are the same anyways
334 * for all cpus in a zone.
335 */
336 t = this_cpu_read(pcp->stat_threshold);
337
338 o = this_cpu_read(*p);
339 n = delta + o;
340
341 if (n > t || n < -t) {
342 int os = overstep_mode * (t >> 1) ;
343
344 /* Overflow must be added to zone counters */
345 z = n + os;
346 n = -os;
347 }
348 } while (this_cpu_cmpxchg(*p, o, n) != o);
349
350 if (z)
351 zone_page_state_add(z, zone, item);
352 }
353
354 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
355 int delta)
356 {
357 mod_state(zone, item, delta, 0);
358 }
359 EXPORT_SYMBOL(mod_zone_page_state);
360
361 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
362 {
363 mod_state(zone, item, 1, 1);
364 }
365
366 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
367 {
368 mod_state(page_zone(page), item, 1, 1);
369 }
370 EXPORT_SYMBOL(inc_zone_page_state);
371
372 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
373 {
374 mod_state(page_zone(page), item, -1, -1);
375 }
376 EXPORT_SYMBOL(dec_zone_page_state);
377 #else
378 /*
379 * Use interrupt disable to serialize counter updates
380 */
381 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
382 int delta)
383 {
384 unsigned long flags;
385
386 local_irq_save(flags);
387 __mod_zone_page_state(zone, item, delta);
388 local_irq_restore(flags);
389 }
390 EXPORT_SYMBOL(mod_zone_page_state);
391
392 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
393 {
394 unsigned long flags;
395
396 local_irq_save(flags);
397 __inc_zone_state(zone, item);
398 local_irq_restore(flags);
399 }
400
401 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
402 {
403 unsigned long flags;
404 struct zone *zone;
405
406 zone = page_zone(page);
407 local_irq_save(flags);
408 __inc_zone_state(zone, item);
409 local_irq_restore(flags);
410 }
411 EXPORT_SYMBOL(inc_zone_page_state);
412
413 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
414 {
415 unsigned long flags;
416
417 local_irq_save(flags);
418 __dec_zone_page_state(page, item);
419 local_irq_restore(flags);
420 }
421 EXPORT_SYMBOL(dec_zone_page_state);
422 #endif
423
424
425 /*
426 * Fold a differential into the global counters.
427 * Returns the number of counters updated.
428 */
429 static int fold_diff(int *diff)
430 {
431 int i;
432 int changes = 0;
433
434 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
435 if (diff[i]) {
436 atomic_long_add(diff[i], &vm_stat[i]);
437 changes++;
438 }
439 return changes;
440 }
441
442 /*
443 * Update the zone counters for the current cpu.
444 *
445 * Note that refresh_cpu_vm_stats strives to only access
446 * node local memory. The per cpu pagesets on remote zones are placed
447 * in the memory local to the processor using that pageset. So the
448 * loop over all zones will access a series of cachelines local to
449 * the processor.
450 *
451 * The call to zone_page_state_add updates the cachelines with the
452 * statistics in the remote zone struct as well as the global cachelines
453 * with the global counters. These could cause remote node cache line
454 * bouncing and will have to be only done when necessary.
455 *
456 * The function returns the number of global counters updated.
457 */
458 static int refresh_cpu_vm_stats(void)
459 {
460 struct zone *zone;
461 int i;
462 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
463 int changes = 0;
464
465 for_each_populated_zone(zone) {
466 struct per_cpu_pageset __percpu *p = zone->pageset;
467
468 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
469 int v;
470
471 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
472 if (v) {
473
474 atomic_long_add(v, &zone->vm_stat[i]);
475 global_diff[i] += v;
476 #ifdef CONFIG_NUMA
477 /* 3 seconds idle till flush */
478 __this_cpu_write(p->expire, 3);
479 #endif
480 }
481 }
482 cond_resched();
483 #ifdef CONFIG_NUMA
484 /*
485 * Deal with draining the remote pageset of this
486 * processor
487 *
488 * Check if there are pages remaining in this pageset
489 * if not then there is nothing to expire.
490 */
491 if (!__this_cpu_read(p->expire) ||
492 !__this_cpu_read(p->pcp.count))
493 continue;
494
495 /*
496 * We never drain zones local to this processor.
497 */
498 if (zone_to_nid(zone) == numa_node_id()) {
499 __this_cpu_write(p->expire, 0);
500 continue;
501 }
502
503 if (__this_cpu_dec_return(p->expire))
504 continue;
505
506 if (__this_cpu_read(p->pcp.count)) {
507 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
508 changes++;
509 }
510 #endif
511 }
512 changes += fold_diff(global_diff);
513 return changes;
514 }
515
516 /*
517 * Fold the data for an offline cpu into the global array.
518 * There cannot be any access by the offline cpu and therefore
519 * synchronization is simplified.
520 */
521 void cpu_vm_stats_fold(int cpu)
522 {
523 struct zone *zone;
524 int i;
525 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
526
527 for_each_populated_zone(zone) {
528 struct per_cpu_pageset *p;
529
530 p = per_cpu_ptr(zone->pageset, cpu);
531
532 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
533 if (p->vm_stat_diff[i]) {
534 int v;
535
536 v = p->vm_stat_diff[i];
537 p->vm_stat_diff[i] = 0;
538 atomic_long_add(v, &zone->vm_stat[i]);
539 global_diff[i] += v;
540 }
541 }
542
543 fold_diff(global_diff);
544 }
545
546 /*
547 * this is only called if !populated_zone(zone), which implies no other users of
548 * pset->vm_stat_diff[] exsist.
549 */
550 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
551 {
552 int i;
553
554 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
555 if (pset->vm_stat_diff[i]) {
556 int v = pset->vm_stat_diff[i];
557 pset->vm_stat_diff[i] = 0;
558 atomic_long_add(v, &zone->vm_stat[i]);
559 atomic_long_add(v, &vm_stat[i]);
560 }
561 }
562 #endif
563
564 #ifdef CONFIG_NUMA
565 /*
566 * zonelist = the list of zones passed to the allocator
567 * z = the zone from which the allocation occurred.
568 *
569 * Must be called with interrupts disabled.
570 *
571 * When __GFP_OTHER_NODE is set assume the node of the preferred
572 * zone is the local node. This is useful for daemons who allocate
573 * memory on behalf of other processes.
574 */
575 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
576 {
577 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
578 __inc_zone_state(z, NUMA_HIT);
579 } else {
580 __inc_zone_state(z, NUMA_MISS);
581 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
582 }
583 if (z->node == ((flags & __GFP_OTHER_NODE) ?
584 preferred_zone->node : numa_node_id()))
585 __inc_zone_state(z, NUMA_LOCAL);
586 else
587 __inc_zone_state(z, NUMA_OTHER);
588 }
589 #endif
590
591 #ifdef CONFIG_COMPACTION
592
593 struct contig_page_info {
594 unsigned long free_pages;
595 unsigned long free_blocks_total;
596 unsigned long free_blocks_suitable;
597 };
598
599 /*
600 * Calculate the number of free pages in a zone, how many contiguous
601 * pages are free and how many are large enough to satisfy an allocation of
602 * the target size. Note that this function makes no attempt to estimate
603 * how many suitable free blocks there *might* be if MOVABLE pages were
604 * migrated. Calculating that is possible, but expensive and can be
605 * figured out from userspace
606 */
607 static void fill_contig_page_info(struct zone *zone,
608 unsigned int suitable_order,
609 struct contig_page_info *info)
610 {
611 unsigned int order;
612
613 info->free_pages = 0;
614 info->free_blocks_total = 0;
615 info->free_blocks_suitable = 0;
616
617 for (order = 0; order < MAX_ORDER; order++) {
618 unsigned long blocks;
619
620 /* Count number of free blocks */
621 blocks = zone->free_area[order].nr_free;
622 info->free_blocks_total += blocks;
623
624 /* Count free base pages */
625 info->free_pages += blocks << order;
626
627 /* Count the suitable free blocks */
628 if (order >= suitable_order)
629 info->free_blocks_suitable += blocks <<
630 (order - suitable_order);
631 }
632 }
633
634 /*
635 * A fragmentation index only makes sense if an allocation of a requested
636 * size would fail. If that is true, the fragmentation index indicates
637 * whether external fragmentation or a lack of memory was the problem.
638 * The value can be used to determine if page reclaim or compaction
639 * should be used
640 */
641 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
642 {
643 unsigned long requested = 1UL << order;
644
645 if (!info->free_blocks_total)
646 return 0;
647
648 /* Fragmentation index only makes sense when a request would fail */
649 if (info->free_blocks_suitable)
650 return -1000;
651
652 /*
653 * Index is between 0 and 1 so return within 3 decimal places
654 *
655 * 0 => allocation would fail due to lack of memory
656 * 1 => allocation would fail due to fragmentation
657 */
658 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
659 }
660
661 /* Same as __fragmentation index but allocs contig_page_info on stack */
662 int fragmentation_index(struct zone *zone, unsigned int order)
663 {
664 struct contig_page_info info;
665
666 fill_contig_page_info(zone, order, &info);
667 return __fragmentation_index(order, &info);
668 }
669 #endif
670
671 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
672 #include <linux/proc_fs.h>
673 #include <linux/seq_file.h>
674
675 static char * const migratetype_names[MIGRATE_TYPES] = {
676 "Unmovable",
677 "Reclaimable",
678 "Movable",
679 "Reserve",
680 #ifdef CONFIG_CMA
681 "CMA",
682 #endif
683 #ifdef CONFIG_MEMORY_ISOLATION
684 "Isolate",
685 #endif
686 };
687
688 static void *frag_start(struct seq_file *m, loff_t *pos)
689 {
690 pg_data_t *pgdat;
691 loff_t node = *pos;
692 for (pgdat = first_online_pgdat();
693 pgdat && node;
694 pgdat = next_online_pgdat(pgdat))
695 --node;
696
697 return pgdat;
698 }
699
700 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
701 {
702 pg_data_t *pgdat = (pg_data_t *)arg;
703
704 (*pos)++;
705 return next_online_pgdat(pgdat);
706 }
707
708 static void frag_stop(struct seq_file *m, void *arg)
709 {
710 }
711
712 /* Walk all the zones in a node and print using a callback */
713 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
714 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
715 {
716 struct zone *zone;
717 struct zone *node_zones = pgdat->node_zones;
718 unsigned long flags;
719
720 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
721 if (!populated_zone(zone))
722 continue;
723
724 spin_lock_irqsave(&zone->lock, flags);
725 print(m, pgdat, zone);
726 spin_unlock_irqrestore(&zone->lock, flags);
727 }
728 }
729 #endif
730
731 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
732 #ifdef CONFIG_ZONE_DMA
733 #define TEXT_FOR_DMA(xx) xx "_dma",
734 #else
735 #define TEXT_FOR_DMA(xx)
736 #endif
737
738 #ifdef CONFIG_ZONE_DMA32
739 #define TEXT_FOR_DMA32(xx) xx "_dma32",
740 #else
741 #define TEXT_FOR_DMA32(xx)
742 #endif
743
744 #ifdef CONFIG_HIGHMEM
745 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
746 #else
747 #define TEXT_FOR_HIGHMEM(xx)
748 #endif
749
750 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
751 TEXT_FOR_HIGHMEM(xx) xx "_movable",
752
753 const char * const vmstat_text[] = {
754 /* enum zone_stat_item countes */
755 "nr_free_pages",
756 "nr_alloc_batch",
757 "nr_inactive_anon",
758 "nr_active_anon",
759 "nr_inactive_file",
760 "nr_active_file",
761 "nr_unevictable",
762 "nr_mlock",
763 "nr_anon_pages",
764 "nr_mapped",
765 "nr_file_pages",
766 "nr_dirty",
767 "nr_writeback",
768 "nr_slab_reclaimable",
769 "nr_slab_unreclaimable",
770 "nr_page_table_pages",
771 "nr_kernel_stack",
772 "nr_unstable",
773 "nr_bounce",
774 "nr_vmscan_write",
775 "nr_vmscan_immediate_reclaim",
776 "nr_writeback_temp",
777 "nr_isolated_anon",
778 "nr_isolated_file",
779 "nr_shmem",
780 "nr_dirtied",
781 "nr_written",
782 "nr_pages_scanned",
783
784 #ifdef CONFIG_NUMA
785 "numa_hit",
786 "numa_miss",
787 "numa_foreign",
788 "numa_interleave",
789 "numa_local",
790 "numa_other",
791 #endif
792 "workingset_refault",
793 "workingset_activate",
794 "workingset_nodereclaim",
795 "nr_anon_transparent_hugepages",
796 "nr_free_cma",
797
798 /* enum writeback_stat_item counters */
799 "nr_dirty_threshold",
800 "nr_dirty_background_threshold",
801
802 #ifdef CONFIG_VM_EVENT_COUNTERS
803 /* enum vm_event_item counters */
804 "pgpgin",
805 "pgpgout",
806 "pswpin",
807 "pswpout",
808
809 TEXTS_FOR_ZONES("pgalloc")
810
811 "pgfree",
812 "pgactivate",
813 "pgdeactivate",
814
815 "pgfault",
816 "pgmajfault",
817
818 TEXTS_FOR_ZONES("pgrefill")
819 TEXTS_FOR_ZONES("pgsteal_kswapd")
820 TEXTS_FOR_ZONES("pgsteal_direct")
821 TEXTS_FOR_ZONES("pgscan_kswapd")
822 TEXTS_FOR_ZONES("pgscan_direct")
823 "pgscan_direct_throttle",
824
825 #ifdef CONFIG_NUMA
826 "zone_reclaim_failed",
827 #endif
828 "pginodesteal",
829 "slabs_scanned",
830 "kswapd_inodesteal",
831 "kswapd_low_wmark_hit_quickly",
832 "kswapd_high_wmark_hit_quickly",
833 "pageoutrun",
834 "allocstall",
835
836 "pgrotated",
837
838 "drop_pagecache",
839 "drop_slab",
840
841 #ifdef CONFIG_NUMA_BALANCING
842 "numa_pte_updates",
843 "numa_huge_pte_updates",
844 "numa_hint_faults",
845 "numa_hint_faults_local",
846 "numa_pages_migrated",
847 #endif
848 #ifdef CONFIG_MIGRATION
849 "pgmigrate_success",
850 "pgmigrate_fail",
851 #endif
852 #ifdef CONFIG_COMPACTION
853 "compact_migrate_scanned",
854 "compact_free_scanned",
855 "compact_isolated",
856 "compact_stall",
857 "compact_fail",
858 "compact_success",
859 #endif
860
861 #ifdef CONFIG_HUGETLB_PAGE
862 "htlb_buddy_alloc_success",
863 "htlb_buddy_alloc_fail",
864 #endif
865 "unevictable_pgs_culled",
866 "unevictable_pgs_scanned",
867 "unevictable_pgs_rescued",
868 "unevictable_pgs_mlocked",
869 "unevictable_pgs_munlocked",
870 "unevictable_pgs_cleared",
871 "unevictable_pgs_stranded",
872
873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
874 "thp_fault_alloc",
875 "thp_fault_fallback",
876 "thp_collapse_alloc",
877 "thp_collapse_alloc_failed",
878 "thp_split",
879 "thp_zero_page_alloc",
880 "thp_zero_page_alloc_failed",
881 #endif
882 #ifdef CONFIG_MEMORY_BALLOON
883 "balloon_inflate",
884 "balloon_deflate",
885 #ifdef CONFIG_BALLOON_COMPACTION
886 "balloon_migrate",
887 #endif
888 #endif /* CONFIG_MEMORY_BALLOON */
889 #ifdef CONFIG_DEBUG_TLBFLUSH
890 #ifdef CONFIG_SMP
891 "nr_tlb_remote_flush",
892 "nr_tlb_remote_flush_received",
893 #endif /* CONFIG_SMP */
894 "nr_tlb_local_flush_all",
895 "nr_tlb_local_flush_one",
896 #endif /* CONFIG_DEBUG_TLBFLUSH */
897
898 #ifdef CONFIG_DEBUG_VM_VMACACHE
899 "vmacache_find_calls",
900 "vmacache_find_hits",
901 #endif
902 #endif /* CONFIG_VM_EVENTS_COUNTERS */
903 };
904 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
905
906
907 #ifdef CONFIG_PROC_FS
908 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
909 struct zone *zone)
910 {
911 int order;
912
913 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
914 for (order = 0; order < MAX_ORDER; ++order)
915 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
916 seq_putc(m, '\n');
917 }
918
919 /*
920 * This walks the free areas for each zone.
921 */
922 static int frag_show(struct seq_file *m, void *arg)
923 {
924 pg_data_t *pgdat = (pg_data_t *)arg;
925 walk_zones_in_node(m, pgdat, frag_show_print);
926 return 0;
927 }
928
929 static void pagetypeinfo_showfree_print(struct seq_file *m,
930 pg_data_t *pgdat, struct zone *zone)
931 {
932 int order, mtype;
933
934 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
935 seq_printf(m, "Node %4d, zone %8s, type %12s ",
936 pgdat->node_id,
937 zone->name,
938 migratetype_names[mtype]);
939 for (order = 0; order < MAX_ORDER; ++order) {
940 unsigned long freecount = 0;
941 struct free_area *area;
942 struct list_head *curr;
943
944 area = &(zone->free_area[order]);
945
946 list_for_each(curr, &area->free_list[mtype])
947 freecount++;
948 seq_printf(m, "%6lu ", freecount);
949 }
950 seq_putc(m, '\n');
951 }
952 }
953
954 /* Print out the free pages at each order for each migatetype */
955 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
956 {
957 int order;
958 pg_data_t *pgdat = (pg_data_t *)arg;
959
960 /* Print header */
961 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
962 for (order = 0; order < MAX_ORDER; ++order)
963 seq_printf(m, "%6d ", order);
964 seq_putc(m, '\n');
965
966 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
967
968 return 0;
969 }
970
971 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
972 pg_data_t *pgdat, struct zone *zone)
973 {
974 int mtype;
975 unsigned long pfn;
976 unsigned long start_pfn = zone->zone_start_pfn;
977 unsigned long end_pfn = zone_end_pfn(zone);
978 unsigned long count[MIGRATE_TYPES] = { 0, };
979
980 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
981 struct page *page;
982
983 if (!pfn_valid(pfn))
984 continue;
985
986 page = pfn_to_page(pfn);
987
988 /* Watch for unexpected holes punched in the memmap */
989 if (!memmap_valid_within(pfn, page, zone))
990 continue;
991
992 mtype = get_pageblock_migratetype(page);
993
994 if (mtype < MIGRATE_TYPES)
995 count[mtype]++;
996 }
997
998 /* Print counts */
999 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1000 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1001 seq_printf(m, "%12lu ", count[mtype]);
1002 seq_putc(m, '\n');
1003 }
1004
1005 /* Print out the free pages at each order for each migratetype */
1006 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1007 {
1008 int mtype;
1009 pg_data_t *pgdat = (pg_data_t *)arg;
1010
1011 seq_printf(m, "\n%-23s", "Number of blocks type ");
1012 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1013 seq_printf(m, "%12s ", migratetype_names[mtype]);
1014 seq_putc(m, '\n');
1015 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * This prints out statistics in relation to grouping pages by mobility.
1022 * It is expensive to collect so do not constantly read the file.
1023 */
1024 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1025 {
1026 pg_data_t *pgdat = (pg_data_t *)arg;
1027
1028 /* check memoryless node */
1029 if (!node_state(pgdat->node_id, N_MEMORY))
1030 return 0;
1031
1032 seq_printf(m, "Page block order: %d\n", pageblock_order);
1033 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1034 seq_putc(m, '\n');
1035 pagetypeinfo_showfree(m, pgdat);
1036 pagetypeinfo_showblockcount(m, pgdat);
1037
1038 return 0;
1039 }
1040
1041 static const struct seq_operations fragmentation_op = {
1042 .start = frag_start,
1043 .next = frag_next,
1044 .stop = frag_stop,
1045 .show = frag_show,
1046 };
1047
1048 static int fragmentation_open(struct inode *inode, struct file *file)
1049 {
1050 return seq_open(file, &fragmentation_op);
1051 }
1052
1053 static const struct file_operations fragmentation_file_operations = {
1054 .open = fragmentation_open,
1055 .read = seq_read,
1056 .llseek = seq_lseek,
1057 .release = seq_release,
1058 };
1059
1060 static const struct seq_operations pagetypeinfo_op = {
1061 .start = frag_start,
1062 .next = frag_next,
1063 .stop = frag_stop,
1064 .show = pagetypeinfo_show,
1065 };
1066
1067 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1068 {
1069 return seq_open(file, &pagetypeinfo_op);
1070 }
1071
1072 static const struct file_operations pagetypeinfo_file_ops = {
1073 .open = pagetypeinfo_open,
1074 .read = seq_read,
1075 .llseek = seq_lseek,
1076 .release = seq_release,
1077 };
1078
1079 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1080 struct zone *zone)
1081 {
1082 int i;
1083 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1084 seq_printf(m,
1085 "\n pages free %lu"
1086 "\n min %lu"
1087 "\n low %lu"
1088 "\n high %lu"
1089 "\n scanned %lu"
1090 "\n spanned %lu"
1091 "\n present %lu"
1092 "\n managed %lu",
1093 zone_page_state(zone, NR_FREE_PAGES),
1094 min_wmark_pages(zone),
1095 low_wmark_pages(zone),
1096 high_wmark_pages(zone),
1097 zone_page_state(zone, NR_PAGES_SCANNED),
1098 zone->spanned_pages,
1099 zone->present_pages,
1100 zone->managed_pages);
1101
1102 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1103 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1104 zone_page_state(zone, i));
1105
1106 seq_printf(m,
1107 "\n protection: (%ld",
1108 zone->lowmem_reserve[0]);
1109 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1110 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1111 seq_printf(m,
1112 ")"
1113 "\n pagesets");
1114 for_each_online_cpu(i) {
1115 struct per_cpu_pageset *pageset;
1116
1117 pageset = per_cpu_ptr(zone->pageset, i);
1118 seq_printf(m,
1119 "\n cpu: %i"
1120 "\n count: %i"
1121 "\n high: %i"
1122 "\n batch: %i",
1123 i,
1124 pageset->pcp.count,
1125 pageset->pcp.high,
1126 pageset->pcp.batch);
1127 #ifdef CONFIG_SMP
1128 seq_printf(m, "\n vm stats threshold: %d",
1129 pageset->stat_threshold);
1130 #endif
1131 }
1132 seq_printf(m,
1133 "\n all_unreclaimable: %u"
1134 "\n start_pfn: %lu"
1135 "\n inactive_ratio: %u",
1136 !zone_reclaimable(zone),
1137 zone->zone_start_pfn,
1138 zone->inactive_ratio);
1139 seq_putc(m, '\n');
1140 }
1141
1142 /*
1143 * Output information about zones in @pgdat.
1144 */
1145 static int zoneinfo_show(struct seq_file *m, void *arg)
1146 {
1147 pg_data_t *pgdat = (pg_data_t *)arg;
1148 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1149 return 0;
1150 }
1151
1152 static const struct seq_operations zoneinfo_op = {
1153 .start = frag_start, /* iterate over all zones. The same as in
1154 * fragmentation. */
1155 .next = frag_next,
1156 .stop = frag_stop,
1157 .show = zoneinfo_show,
1158 };
1159
1160 static int zoneinfo_open(struct inode *inode, struct file *file)
1161 {
1162 return seq_open(file, &zoneinfo_op);
1163 }
1164
1165 static const struct file_operations proc_zoneinfo_file_operations = {
1166 .open = zoneinfo_open,
1167 .read = seq_read,
1168 .llseek = seq_lseek,
1169 .release = seq_release,
1170 };
1171
1172 enum writeback_stat_item {
1173 NR_DIRTY_THRESHOLD,
1174 NR_DIRTY_BG_THRESHOLD,
1175 NR_VM_WRITEBACK_STAT_ITEMS,
1176 };
1177
1178 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1179 {
1180 unsigned long *v;
1181 int i, stat_items_size;
1182
1183 if (*pos >= ARRAY_SIZE(vmstat_text))
1184 return NULL;
1185 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1186 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1187
1188 #ifdef CONFIG_VM_EVENT_COUNTERS
1189 stat_items_size += sizeof(struct vm_event_state);
1190 #endif
1191
1192 v = kmalloc(stat_items_size, GFP_KERNEL);
1193 m->private = v;
1194 if (!v)
1195 return ERR_PTR(-ENOMEM);
1196 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1197 v[i] = global_page_state(i);
1198 v += NR_VM_ZONE_STAT_ITEMS;
1199
1200 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1201 v + NR_DIRTY_THRESHOLD);
1202 v += NR_VM_WRITEBACK_STAT_ITEMS;
1203
1204 #ifdef CONFIG_VM_EVENT_COUNTERS
1205 all_vm_events(v);
1206 v[PGPGIN] /= 2; /* sectors -> kbytes */
1207 v[PGPGOUT] /= 2;
1208 #endif
1209 return (unsigned long *)m->private + *pos;
1210 }
1211
1212 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1213 {
1214 (*pos)++;
1215 if (*pos >= ARRAY_SIZE(vmstat_text))
1216 return NULL;
1217 return (unsigned long *)m->private + *pos;
1218 }
1219
1220 static int vmstat_show(struct seq_file *m, void *arg)
1221 {
1222 unsigned long *l = arg;
1223 unsigned long off = l - (unsigned long *)m->private;
1224
1225 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1226 return 0;
1227 }
1228
1229 static void vmstat_stop(struct seq_file *m, void *arg)
1230 {
1231 kfree(m->private);
1232 m->private = NULL;
1233 }
1234
1235 static const struct seq_operations vmstat_op = {
1236 .start = vmstat_start,
1237 .next = vmstat_next,
1238 .stop = vmstat_stop,
1239 .show = vmstat_show,
1240 };
1241
1242 static int vmstat_open(struct inode *inode, struct file *file)
1243 {
1244 return seq_open(file, &vmstat_op);
1245 }
1246
1247 static const struct file_operations proc_vmstat_file_operations = {
1248 .open = vmstat_open,
1249 .read = seq_read,
1250 .llseek = seq_lseek,
1251 .release = seq_release,
1252 };
1253 #endif /* CONFIG_PROC_FS */
1254
1255 #ifdef CONFIG_SMP
1256 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1257 int sysctl_stat_interval __read_mostly = HZ;
1258 static cpumask_var_t cpu_stat_off;
1259
1260 static void vmstat_update(struct work_struct *w)
1261 {
1262 if (refresh_cpu_vm_stats())
1263 /*
1264 * Counters were updated so we expect more updates
1265 * to occur in the future. Keep on running the
1266 * update worker thread.
1267 */
1268 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1269 round_jiffies_relative(sysctl_stat_interval));
1270 else {
1271 /*
1272 * We did not update any counters so the app may be in
1273 * a mode where it does not cause counter updates.
1274 * We may be uselessly running vmstat_update.
1275 * Defer the checking for differentials to the
1276 * shepherd thread on a different processor.
1277 */
1278 int r;
1279 /*
1280 * Shepherd work thread does not race since it never
1281 * changes the bit if its zero but the cpu
1282 * online / off line code may race if
1283 * worker threads are still allowed during
1284 * shutdown / startup.
1285 */
1286 r = cpumask_test_and_set_cpu(smp_processor_id(),
1287 cpu_stat_off);
1288 VM_BUG_ON(r);
1289 }
1290 }
1291
1292 /*
1293 * Check if the diffs for a certain cpu indicate that
1294 * an update is needed.
1295 */
1296 static bool need_update(int cpu)
1297 {
1298 struct zone *zone;
1299
1300 for_each_populated_zone(zone) {
1301 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1302
1303 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1304 /*
1305 * The fast way of checking if there are any vmstat diffs.
1306 * This works because the diffs are byte sized items.
1307 */
1308 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1309 return true;
1310
1311 }
1312 return false;
1313 }
1314
1315
1316 /*
1317 * Shepherd worker thread that checks the
1318 * differentials of processors that have their worker
1319 * threads for vm statistics updates disabled because of
1320 * inactivity.
1321 */
1322 static void vmstat_shepherd(struct work_struct *w);
1323
1324 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1325
1326 static void vmstat_shepherd(struct work_struct *w)
1327 {
1328 int cpu;
1329
1330 get_online_cpus();
1331 /* Check processors whose vmstat worker threads have been disabled */
1332 for_each_cpu(cpu, cpu_stat_off)
1333 if (need_update(cpu) &&
1334 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1335
1336 schedule_delayed_work_on(cpu, &per_cpu(vmstat_work, cpu),
1337 __round_jiffies_relative(sysctl_stat_interval, cpu));
1338
1339 put_online_cpus();
1340
1341 schedule_delayed_work(&shepherd,
1342 round_jiffies_relative(sysctl_stat_interval));
1343
1344 }
1345
1346 static void __init start_shepherd_timer(void)
1347 {
1348 int cpu;
1349
1350 for_each_possible_cpu(cpu)
1351 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1352 vmstat_update);
1353
1354 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1355 BUG();
1356 cpumask_copy(cpu_stat_off, cpu_online_mask);
1357
1358 schedule_delayed_work(&shepherd,
1359 round_jiffies_relative(sysctl_stat_interval));
1360 }
1361
1362 static void vmstat_cpu_dead(int node)
1363 {
1364 int cpu;
1365
1366 get_online_cpus();
1367 for_each_online_cpu(cpu)
1368 if (cpu_to_node(cpu) == node)
1369 goto end;
1370
1371 node_clear_state(node, N_CPU);
1372 end:
1373 put_online_cpus();
1374 }
1375
1376 /*
1377 * Use the cpu notifier to insure that the thresholds are recalculated
1378 * when necessary.
1379 */
1380 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1381 unsigned long action,
1382 void *hcpu)
1383 {
1384 long cpu = (long)hcpu;
1385
1386 switch (action) {
1387 case CPU_ONLINE:
1388 case CPU_ONLINE_FROZEN:
1389 refresh_zone_stat_thresholds();
1390 node_set_state(cpu_to_node(cpu), N_CPU);
1391 cpumask_set_cpu(cpu, cpu_stat_off);
1392 break;
1393 case CPU_DOWN_PREPARE:
1394 case CPU_DOWN_PREPARE_FROZEN:
1395 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1396 cpumask_clear_cpu(cpu, cpu_stat_off);
1397 break;
1398 case CPU_DOWN_FAILED:
1399 case CPU_DOWN_FAILED_FROZEN:
1400 cpumask_set_cpu(cpu, cpu_stat_off);
1401 break;
1402 case CPU_DEAD:
1403 case CPU_DEAD_FROZEN:
1404 refresh_zone_stat_thresholds();
1405 vmstat_cpu_dead(cpu_to_node(cpu));
1406 break;
1407 default:
1408 break;
1409 }
1410 return NOTIFY_OK;
1411 }
1412
1413 static struct notifier_block vmstat_notifier =
1414 { &vmstat_cpuup_callback, NULL, 0 };
1415 #endif
1416
1417 static int __init setup_vmstat(void)
1418 {
1419 #ifdef CONFIG_SMP
1420 cpu_notifier_register_begin();
1421 __register_cpu_notifier(&vmstat_notifier);
1422
1423 start_shepherd_timer();
1424 cpu_notifier_register_done();
1425 #endif
1426 #ifdef CONFIG_PROC_FS
1427 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1428 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1429 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1430 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1431 #endif
1432 return 0;
1433 }
1434 module_init(setup_vmstat)
1435
1436 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1437 #include <linux/debugfs.h>
1438
1439
1440 /*
1441 * Return an index indicating how much of the available free memory is
1442 * unusable for an allocation of the requested size.
1443 */
1444 static int unusable_free_index(unsigned int order,
1445 struct contig_page_info *info)
1446 {
1447 /* No free memory is interpreted as all free memory is unusable */
1448 if (info->free_pages == 0)
1449 return 1000;
1450
1451 /*
1452 * Index should be a value between 0 and 1. Return a value to 3
1453 * decimal places.
1454 *
1455 * 0 => no fragmentation
1456 * 1 => high fragmentation
1457 */
1458 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1459
1460 }
1461
1462 static void unusable_show_print(struct seq_file *m,
1463 pg_data_t *pgdat, struct zone *zone)
1464 {
1465 unsigned int order;
1466 int index;
1467 struct contig_page_info info;
1468
1469 seq_printf(m, "Node %d, zone %8s ",
1470 pgdat->node_id,
1471 zone->name);
1472 for (order = 0; order < MAX_ORDER; ++order) {
1473 fill_contig_page_info(zone, order, &info);
1474 index = unusable_free_index(order, &info);
1475 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1476 }
1477
1478 seq_putc(m, '\n');
1479 }
1480
1481 /*
1482 * Display unusable free space index
1483 *
1484 * The unusable free space index measures how much of the available free
1485 * memory cannot be used to satisfy an allocation of a given size and is a
1486 * value between 0 and 1. The higher the value, the more of free memory is
1487 * unusable and by implication, the worse the external fragmentation is. This
1488 * can be expressed as a percentage by multiplying by 100.
1489 */
1490 static int unusable_show(struct seq_file *m, void *arg)
1491 {
1492 pg_data_t *pgdat = (pg_data_t *)arg;
1493
1494 /* check memoryless node */
1495 if (!node_state(pgdat->node_id, N_MEMORY))
1496 return 0;
1497
1498 walk_zones_in_node(m, pgdat, unusable_show_print);
1499
1500 return 0;
1501 }
1502
1503 static const struct seq_operations unusable_op = {
1504 .start = frag_start,
1505 .next = frag_next,
1506 .stop = frag_stop,
1507 .show = unusable_show,
1508 };
1509
1510 static int unusable_open(struct inode *inode, struct file *file)
1511 {
1512 return seq_open(file, &unusable_op);
1513 }
1514
1515 static const struct file_operations unusable_file_ops = {
1516 .open = unusable_open,
1517 .read = seq_read,
1518 .llseek = seq_lseek,
1519 .release = seq_release,
1520 };
1521
1522 static void extfrag_show_print(struct seq_file *m,
1523 pg_data_t *pgdat, struct zone *zone)
1524 {
1525 unsigned int order;
1526 int index;
1527
1528 /* Alloc on stack as interrupts are disabled for zone walk */
1529 struct contig_page_info info;
1530
1531 seq_printf(m, "Node %d, zone %8s ",
1532 pgdat->node_id,
1533 zone->name);
1534 for (order = 0; order < MAX_ORDER; ++order) {
1535 fill_contig_page_info(zone, order, &info);
1536 index = __fragmentation_index(order, &info);
1537 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1538 }
1539
1540 seq_putc(m, '\n');
1541 }
1542
1543 /*
1544 * Display fragmentation index for orders that allocations would fail for
1545 */
1546 static int extfrag_show(struct seq_file *m, void *arg)
1547 {
1548 pg_data_t *pgdat = (pg_data_t *)arg;
1549
1550 walk_zones_in_node(m, pgdat, extfrag_show_print);
1551
1552 return 0;
1553 }
1554
1555 static const struct seq_operations extfrag_op = {
1556 .start = frag_start,
1557 .next = frag_next,
1558 .stop = frag_stop,
1559 .show = extfrag_show,
1560 };
1561
1562 static int extfrag_open(struct inode *inode, struct file *file)
1563 {
1564 return seq_open(file, &extfrag_op);
1565 }
1566
1567 static const struct file_operations extfrag_file_ops = {
1568 .open = extfrag_open,
1569 .read = seq_read,
1570 .llseek = seq_lseek,
1571 .release = seq_release,
1572 };
1573
1574 static int __init extfrag_debug_init(void)
1575 {
1576 struct dentry *extfrag_debug_root;
1577
1578 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1579 if (!extfrag_debug_root)
1580 return -ENOMEM;
1581
1582 if (!debugfs_create_file("unusable_index", 0444,
1583 extfrag_debug_root, NULL, &unusable_file_ops))
1584 goto fail;
1585
1586 if (!debugfs_create_file("extfrag_index", 0444,
1587 extfrag_debug_root, NULL, &extfrag_file_ops))
1588 goto fail;
1589
1590 return 0;
1591 fail:
1592 debugfs_remove_recursive(extfrag_debug_root);
1593 return -ENOMEM;
1594 }
1595
1596 module_init(extfrag_debug_init);
1597 #endif