]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmstat.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50 }
51
52 /*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71 void vm_events_fold_cpu(int cpu)
72 {
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163 }
164
165 /*
166 * Refresh the thresholds for each zone.
167 */
168 void refresh_zone_stat_thresholds(void)
169 {
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198 {
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214 }
215
216 /*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223 {
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323 {
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361 {
362 mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384 * Use interrupt disable to serialize counter updates
385 */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434 static int fold_diff(int *diff)
435 {
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445 }
446
447 /*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463 static int refresh_cpu_vm_stats(void)
464 {
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
485 }
486 }
487 cond_resched();
488 #ifdef CONFIG_NUMA
489 /*
490 * Deal with draining the remote pageset of this
491 * processor
492 *
493 * Check if there are pages remaining in this pageset
494 * if not then there is nothing to expire.
495 */
496 if (!__this_cpu_read(p->expire) ||
497 !__this_cpu_read(p->pcp.count))
498 continue;
499
500 /*
501 * We never drain zones local to this processor.
502 */
503 if (zone_to_nid(zone) == numa_node_id()) {
504 __this_cpu_write(p->expire, 0);
505 continue;
506 }
507
508 if (__this_cpu_dec_return(p->expire))
509 continue;
510
511 if (__this_cpu_read(p->pcp.count)) {
512 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
513 changes++;
514 }
515 #endif
516 }
517 changes += fold_diff(global_diff);
518 return changes;
519 }
520
521 /*
522 * Fold the data for an offline cpu into the global array.
523 * There cannot be any access by the offline cpu and therefore
524 * synchronization is simplified.
525 */
526 void cpu_vm_stats_fold(int cpu)
527 {
528 struct zone *zone;
529 int i;
530 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
531
532 for_each_populated_zone(zone) {
533 struct per_cpu_pageset *p;
534
535 p = per_cpu_ptr(zone->pageset, cpu);
536
537 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
538 if (p->vm_stat_diff[i]) {
539 int v;
540
541 v = p->vm_stat_diff[i];
542 p->vm_stat_diff[i] = 0;
543 atomic_long_add(v, &zone->vm_stat[i]);
544 global_diff[i] += v;
545 }
546 }
547
548 fold_diff(global_diff);
549 }
550
551 /*
552 * this is only called if !populated_zone(zone), which implies no other users of
553 * pset->vm_stat_diff[] exsist.
554 */
555 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
556 {
557 int i;
558
559 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
560 if (pset->vm_stat_diff[i]) {
561 int v = pset->vm_stat_diff[i];
562 pset->vm_stat_diff[i] = 0;
563 atomic_long_add(v, &zone->vm_stat[i]);
564 atomic_long_add(v, &vm_stat[i]);
565 }
566 }
567 #endif
568
569 #ifdef CONFIG_NUMA
570 /*
571 * zonelist = the list of zones passed to the allocator
572 * z = the zone from which the allocation occurred.
573 *
574 * Must be called with interrupts disabled.
575 *
576 * When __GFP_OTHER_NODE is set assume the node of the preferred
577 * zone is the local node. This is useful for daemons who allocate
578 * memory on behalf of other processes.
579 */
580 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
581 {
582 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
583 __inc_zone_state(z, NUMA_HIT);
584 } else {
585 __inc_zone_state(z, NUMA_MISS);
586 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
587 }
588 if (z->node == ((flags & __GFP_OTHER_NODE) ?
589 preferred_zone->node : numa_node_id()))
590 __inc_zone_state(z, NUMA_LOCAL);
591 else
592 __inc_zone_state(z, NUMA_OTHER);
593 }
594
595 /*
596 * Determine the per node value of a stat item.
597 */
598 unsigned long node_page_state(int node, enum zone_stat_item item)
599 {
600 struct zone *zones = NODE_DATA(node)->node_zones;
601
602 return
603 #ifdef CONFIG_ZONE_DMA
604 zone_page_state(&zones[ZONE_DMA], item) +
605 #endif
606 #ifdef CONFIG_ZONE_DMA32
607 zone_page_state(&zones[ZONE_DMA32], item) +
608 #endif
609 #ifdef CONFIG_HIGHMEM
610 zone_page_state(&zones[ZONE_HIGHMEM], item) +
611 #endif
612 zone_page_state(&zones[ZONE_NORMAL], item) +
613 zone_page_state(&zones[ZONE_MOVABLE], item);
614 }
615
616 #endif
617
618 #ifdef CONFIG_COMPACTION
619
620 struct contig_page_info {
621 unsigned long free_pages;
622 unsigned long free_blocks_total;
623 unsigned long free_blocks_suitable;
624 };
625
626 /*
627 * Calculate the number of free pages in a zone, how many contiguous
628 * pages are free and how many are large enough to satisfy an allocation of
629 * the target size. Note that this function makes no attempt to estimate
630 * how many suitable free blocks there *might* be if MOVABLE pages were
631 * migrated. Calculating that is possible, but expensive and can be
632 * figured out from userspace
633 */
634 static void fill_contig_page_info(struct zone *zone,
635 unsigned int suitable_order,
636 struct contig_page_info *info)
637 {
638 unsigned int order;
639
640 info->free_pages = 0;
641 info->free_blocks_total = 0;
642 info->free_blocks_suitable = 0;
643
644 for (order = 0; order < MAX_ORDER; order++) {
645 unsigned long blocks;
646
647 /* Count number of free blocks */
648 blocks = zone->free_area[order].nr_free;
649 info->free_blocks_total += blocks;
650
651 /* Count free base pages */
652 info->free_pages += blocks << order;
653
654 /* Count the suitable free blocks */
655 if (order >= suitable_order)
656 info->free_blocks_suitable += blocks <<
657 (order - suitable_order);
658 }
659 }
660
661 /*
662 * A fragmentation index only makes sense if an allocation of a requested
663 * size would fail. If that is true, the fragmentation index indicates
664 * whether external fragmentation or a lack of memory was the problem.
665 * The value can be used to determine if page reclaim or compaction
666 * should be used
667 */
668 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
669 {
670 unsigned long requested = 1UL << order;
671
672 if (!info->free_blocks_total)
673 return 0;
674
675 /* Fragmentation index only makes sense when a request would fail */
676 if (info->free_blocks_suitable)
677 return -1000;
678
679 /*
680 * Index is between 0 and 1 so return within 3 decimal places
681 *
682 * 0 => allocation would fail due to lack of memory
683 * 1 => allocation would fail due to fragmentation
684 */
685 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
686 }
687
688 /* Same as __fragmentation index but allocs contig_page_info on stack */
689 int fragmentation_index(struct zone *zone, unsigned int order)
690 {
691 struct contig_page_info info;
692
693 fill_contig_page_info(zone, order, &info);
694 return __fragmentation_index(order, &info);
695 }
696 #endif
697
698 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
699 #ifdef CONFIG_ZONE_DMA
700 #define TEXT_FOR_DMA(xx) xx "_dma",
701 #else
702 #define TEXT_FOR_DMA(xx)
703 #endif
704
705 #ifdef CONFIG_ZONE_DMA32
706 #define TEXT_FOR_DMA32(xx) xx "_dma32",
707 #else
708 #define TEXT_FOR_DMA32(xx)
709 #endif
710
711 #ifdef CONFIG_HIGHMEM
712 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
713 #else
714 #define TEXT_FOR_HIGHMEM(xx)
715 #endif
716
717 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
718 TEXT_FOR_HIGHMEM(xx) xx "_movable",
719
720 const char * const vmstat_text[] = {
721 /* enum zone_stat_item countes */
722 "nr_free_pages",
723 "nr_alloc_batch",
724 "nr_inactive_anon",
725 "nr_active_anon",
726 "nr_inactive_file",
727 "nr_active_file",
728 "nr_unevictable",
729 "nr_mlock",
730 "nr_anon_pages",
731 "nr_mapped",
732 "nr_file_pages",
733 "nr_dirty",
734 "nr_writeback",
735 "nr_slab_reclaimable",
736 "nr_slab_unreclaimable",
737 "nr_page_table_pages",
738 "nr_kernel_stack",
739 "nr_overhead",
740 "nr_unstable",
741 "nr_bounce",
742 "nr_vmscan_write",
743 "nr_vmscan_immediate_reclaim",
744 "nr_writeback_temp",
745 "nr_isolated_anon",
746 "nr_isolated_file",
747 "nr_shmem",
748 "nr_dirtied",
749 "nr_written",
750 "nr_pages_scanned",
751
752 #ifdef CONFIG_NUMA
753 "numa_hit",
754 "numa_miss",
755 "numa_foreign",
756 "numa_interleave",
757 "numa_local",
758 "numa_other",
759 #endif
760 "workingset_refault",
761 "workingset_activate",
762 "workingset_nodereclaim",
763 "nr_anon_transparent_hugepages",
764 "nr_free_cma",
765
766 /* enum writeback_stat_item counters */
767 "nr_dirty_threshold",
768 "nr_dirty_background_threshold",
769
770 #ifdef CONFIG_VM_EVENT_COUNTERS
771 /* enum vm_event_item counters */
772 "pgpgin",
773 "pgpgout",
774 "pswpin",
775 "pswpout",
776
777 TEXTS_FOR_ZONES("pgalloc")
778
779 "pgfree",
780 "pgactivate",
781 "pgdeactivate",
782
783 "pgfault",
784 "pgmajfault",
785
786 TEXTS_FOR_ZONES("pgrefill")
787 TEXTS_FOR_ZONES("pgsteal_kswapd")
788 TEXTS_FOR_ZONES("pgsteal_direct")
789 TEXTS_FOR_ZONES("pgscan_kswapd")
790 TEXTS_FOR_ZONES("pgscan_direct")
791 "pgscan_direct_throttle",
792
793 #ifdef CONFIG_NUMA
794 "zone_reclaim_failed",
795 #endif
796 "pginodesteal",
797 "slabs_scanned",
798 "kswapd_inodesteal",
799 "kswapd_low_wmark_hit_quickly",
800 "kswapd_high_wmark_hit_quickly",
801 "pageoutrun",
802 "allocstall",
803
804 "pgrotated",
805
806 "drop_pagecache",
807 "drop_slab",
808
809 #ifdef CONFIG_NUMA_BALANCING
810 "numa_pte_updates",
811 "numa_huge_pte_updates",
812 "numa_hint_faults",
813 "numa_hint_faults_local",
814 "numa_pages_migrated",
815 #endif
816 #ifdef CONFIG_MIGRATION
817 "pgmigrate_success",
818 "pgmigrate_fail",
819 #endif
820 #ifdef CONFIG_COMPACTION
821 "compact_migrate_scanned",
822 "compact_free_scanned",
823 "compact_isolated",
824 "compact_stall",
825 "compact_fail",
826 "compact_success",
827 #endif
828
829 #ifdef CONFIG_HUGETLB_PAGE
830 "htlb_buddy_alloc_success",
831 "htlb_buddy_alloc_fail",
832 #endif
833 "unevictable_pgs_culled",
834 "unevictable_pgs_scanned",
835 "unevictable_pgs_rescued",
836 "unevictable_pgs_mlocked",
837 "unevictable_pgs_munlocked",
838 "unevictable_pgs_cleared",
839 "unevictable_pgs_stranded",
840
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 "thp_fault_alloc",
843 "thp_fault_fallback",
844 "thp_collapse_alloc",
845 "thp_collapse_alloc_failed",
846 "thp_split",
847 "thp_zero_page_alloc",
848 "thp_zero_page_alloc_failed",
849 #endif
850 #ifdef CONFIG_MEMORY_BALLOON
851 "balloon_inflate",
852 "balloon_deflate",
853 #ifdef CONFIG_BALLOON_COMPACTION
854 "balloon_migrate",
855 #endif
856 #endif /* CONFIG_MEMORY_BALLOON */
857 #ifdef CONFIG_DEBUG_TLBFLUSH
858 #ifdef CONFIG_SMP
859 "nr_tlb_remote_flush",
860 "nr_tlb_remote_flush_received",
861 #endif /* CONFIG_SMP */
862 "nr_tlb_local_flush_all",
863 "nr_tlb_local_flush_one",
864 #endif /* CONFIG_DEBUG_TLBFLUSH */
865
866 #ifdef CONFIG_DEBUG_VM_VMACACHE
867 "vmacache_find_calls",
868 "vmacache_find_hits",
869 "vmacache_full_flushes",
870 #endif
871 #endif /* CONFIG_VM_EVENTS_COUNTERS */
872 };
873 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
874
875
876 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
877 defined(CONFIG_PROC_FS)
878 static void *frag_start(struct seq_file *m, loff_t *pos)
879 {
880 pg_data_t *pgdat;
881 loff_t node = *pos;
882
883 for (pgdat = first_online_pgdat();
884 pgdat && node;
885 pgdat = next_online_pgdat(pgdat))
886 --node;
887
888 return pgdat;
889 }
890
891 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
892 {
893 pg_data_t *pgdat = (pg_data_t *)arg;
894
895 (*pos)++;
896 return next_online_pgdat(pgdat);
897 }
898
899 static void frag_stop(struct seq_file *m, void *arg)
900 {
901 }
902
903 /* Walk all the zones in a node and print using a callback */
904 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
905 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
906 {
907 struct zone *zone;
908 struct zone *node_zones = pgdat->node_zones;
909 unsigned long flags;
910
911 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
912 if (!populated_zone(zone))
913 continue;
914
915 spin_lock_irqsave(&zone->lock, flags);
916 print(m, pgdat, zone);
917 spin_unlock_irqrestore(&zone->lock, flags);
918 }
919 }
920 #endif
921
922 #ifdef CONFIG_PROC_FS
923 static char * const migratetype_names[MIGRATE_TYPES] = {
924 "Unmovable",
925 "Movable",
926 "Reclaimable",
927 "HighAtomic",
928 #ifdef CONFIG_CMA
929 "CMA",
930 #endif
931 #ifdef CONFIG_MEMORY_ISOLATION
932 "Isolate",
933 #endif
934 };
935
936 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
937 struct zone *zone)
938 {
939 int order;
940
941 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
942 for (order = 0; order < MAX_ORDER; ++order)
943 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
944 seq_putc(m, '\n');
945 }
946
947 /*
948 * This walks the free areas for each zone.
949 */
950 static int frag_show(struct seq_file *m, void *arg)
951 {
952 pg_data_t *pgdat = (pg_data_t *)arg;
953 walk_zones_in_node(m, pgdat, frag_show_print);
954 return 0;
955 }
956
957 static void pagetypeinfo_showfree_print(struct seq_file *m,
958 pg_data_t *pgdat, struct zone *zone)
959 {
960 int order, mtype;
961
962 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
963 seq_printf(m, "Node %4d, zone %8s, type %12s ",
964 pgdat->node_id,
965 zone->name,
966 migratetype_names[mtype]);
967 for (order = 0; order < MAX_ORDER; ++order) {
968 unsigned long freecount = 0;
969 struct free_area *area;
970 struct list_head *curr;
971
972 area = &(zone->free_area[order]);
973
974 list_for_each(curr, &area->free_list[mtype])
975 freecount++;
976 seq_printf(m, "%6lu ", freecount);
977 }
978 seq_putc(m, '\n');
979 }
980 }
981
982 /* Print out the free pages at each order for each migatetype */
983 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
984 {
985 int order;
986 pg_data_t *pgdat = (pg_data_t *)arg;
987
988 /* Print header */
989 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
990 for (order = 0; order < MAX_ORDER; ++order)
991 seq_printf(m, "%6d ", order);
992 seq_putc(m, '\n');
993
994 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
995
996 return 0;
997 }
998
999 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1000 pg_data_t *pgdat, struct zone *zone)
1001 {
1002 int mtype;
1003 unsigned long pfn;
1004 unsigned long start_pfn = zone->zone_start_pfn;
1005 unsigned long end_pfn = zone_end_pfn(zone);
1006 unsigned long count[MIGRATE_TYPES] = { 0, };
1007
1008 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1009 struct page *page;
1010
1011 if (!pfn_valid(pfn))
1012 continue;
1013
1014 page = pfn_to_page(pfn);
1015
1016 /* Watch for unexpected holes punched in the memmap */
1017 if (!memmap_valid_within(pfn, page, zone))
1018 continue;
1019
1020 mtype = get_pageblock_migratetype(page);
1021
1022 if (mtype < MIGRATE_TYPES)
1023 count[mtype]++;
1024 }
1025
1026 /* Print counts */
1027 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1028 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1029 seq_printf(m, "%12lu ", count[mtype]);
1030 seq_putc(m, '\n');
1031 }
1032
1033 /* Print out the free pages at each order for each migratetype */
1034 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1035 {
1036 int mtype;
1037 pg_data_t *pgdat = (pg_data_t *)arg;
1038
1039 seq_printf(m, "\n%-23s", "Number of blocks type ");
1040 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1041 seq_printf(m, "%12s ", migratetype_names[mtype]);
1042 seq_putc(m, '\n');
1043 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1044
1045 return 0;
1046 }
1047
1048 #ifdef CONFIG_PAGE_OWNER
1049 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1050 pg_data_t *pgdat,
1051 struct zone *zone)
1052 {
1053 struct page *page;
1054 struct page_ext *page_ext;
1055 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1056 unsigned long end_pfn = pfn + zone->spanned_pages;
1057 unsigned long count[MIGRATE_TYPES] = { 0, };
1058 int pageblock_mt, page_mt;
1059 int i;
1060
1061 /* Scan block by block. First and last block may be incomplete */
1062 pfn = zone->zone_start_pfn;
1063
1064 /*
1065 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1066 * a zone boundary, it will be double counted between zones. This does
1067 * not matter as the mixed block count will still be correct
1068 */
1069 for (; pfn < end_pfn; ) {
1070 if (!pfn_valid(pfn)) {
1071 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1072 continue;
1073 }
1074
1075 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1076 block_end_pfn = min(block_end_pfn, end_pfn);
1077
1078 page = pfn_to_page(pfn);
1079 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1080
1081 for (; pfn < block_end_pfn; pfn++) {
1082 if (!pfn_valid_within(pfn))
1083 continue;
1084
1085 page = pfn_to_page(pfn);
1086 if (PageBuddy(page)) {
1087 pfn += (1UL << page_order(page)) - 1;
1088 continue;
1089 }
1090
1091 if (PageReserved(page))
1092 continue;
1093
1094 page_ext = lookup_page_ext(page);
1095 if (unlikely(!page_ext))
1096 continue;
1097
1098 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1099 continue;
1100
1101 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1102 if (pageblock_mt != page_mt) {
1103 if (is_migrate_cma(pageblock_mt))
1104 count[MIGRATE_MOVABLE]++;
1105 else
1106 count[pageblock_mt]++;
1107
1108 pfn = block_end_pfn;
1109 break;
1110 }
1111 pfn += (1UL << page_ext->order) - 1;
1112 }
1113 }
1114
1115 /* Print counts */
1116 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1117 for (i = 0; i < MIGRATE_TYPES; i++)
1118 seq_printf(m, "%12lu ", count[i]);
1119 seq_putc(m, '\n');
1120 }
1121 #endif /* CONFIG_PAGE_OWNER */
1122
1123 /*
1124 * Print out the number of pageblocks for each migratetype that contain pages
1125 * of other types. This gives an indication of how well fallbacks are being
1126 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1127 * to determine what is going on
1128 */
1129 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1130 {
1131 #ifdef CONFIG_PAGE_OWNER
1132 int mtype;
1133
1134 if (!page_owner_inited)
1135 return;
1136
1137 drain_all_pages(NULL);
1138
1139 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1140 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1141 seq_printf(m, "%12s ", migratetype_names[mtype]);
1142 seq_putc(m, '\n');
1143
1144 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1145 #endif /* CONFIG_PAGE_OWNER */
1146 }
1147
1148 /*
1149 * This prints out statistics in relation to grouping pages by mobility.
1150 * It is expensive to collect so do not constantly read the file.
1151 */
1152 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1153 {
1154 pg_data_t *pgdat = (pg_data_t *)arg;
1155
1156 /* check memoryless node */
1157 if (!node_state(pgdat->node_id, N_MEMORY))
1158 return 0;
1159
1160 seq_printf(m, "Page block order: %d\n", pageblock_order);
1161 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1162 seq_putc(m, '\n');
1163 pagetypeinfo_showfree(m, pgdat);
1164 pagetypeinfo_showblockcount(m, pgdat);
1165 pagetypeinfo_showmixedcount(m, pgdat);
1166
1167 return 0;
1168 }
1169
1170 static const struct seq_operations fragmentation_op = {
1171 .start = frag_start,
1172 .next = frag_next,
1173 .stop = frag_stop,
1174 .show = frag_show,
1175 };
1176
1177 static int fragmentation_open(struct inode *inode, struct file *file)
1178 {
1179 return seq_open(file, &fragmentation_op);
1180 }
1181
1182 static const struct file_operations fragmentation_file_operations = {
1183 .open = fragmentation_open,
1184 .read = seq_read,
1185 .llseek = seq_lseek,
1186 .release = seq_release,
1187 };
1188
1189 static const struct seq_operations pagetypeinfo_op = {
1190 .start = frag_start,
1191 .next = frag_next,
1192 .stop = frag_stop,
1193 .show = pagetypeinfo_show,
1194 };
1195
1196 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1197 {
1198 return seq_open(file, &pagetypeinfo_op);
1199 }
1200
1201 static const struct file_operations pagetypeinfo_file_ops = {
1202 .open = pagetypeinfo_open,
1203 .read = seq_read,
1204 .llseek = seq_lseek,
1205 .release = seq_release,
1206 };
1207
1208 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1209 struct zone *zone)
1210 {
1211 int i;
1212 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1213 seq_printf(m,
1214 "\n pages free %lu"
1215 "\n min %lu"
1216 "\n low %lu"
1217 "\n high %lu"
1218 "\n scanned %lu"
1219 "\n spanned %lu"
1220 "\n present %lu"
1221 "\n managed %lu",
1222 zone_page_state(zone, NR_FREE_PAGES),
1223 min_wmark_pages(zone),
1224 low_wmark_pages(zone),
1225 high_wmark_pages(zone),
1226 zone_page_state(zone, NR_PAGES_SCANNED),
1227 zone->spanned_pages,
1228 zone->present_pages,
1229 zone->managed_pages);
1230
1231 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1232 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1233 zone_page_state(zone, i));
1234
1235 seq_printf(m,
1236 "\n protection: (%ld",
1237 zone->lowmem_reserve[0]);
1238 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1239 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1240 seq_printf(m,
1241 ")"
1242 "\n pagesets");
1243 for_each_online_cpu(i) {
1244 struct per_cpu_pageset *pageset;
1245
1246 pageset = per_cpu_ptr(zone->pageset, i);
1247 seq_printf(m,
1248 "\n cpu: %i"
1249 "\n count: %i"
1250 "\n high: %i"
1251 "\n batch: %i",
1252 i,
1253 pageset->pcp.count,
1254 pageset->pcp.high,
1255 pageset->pcp.batch);
1256 #ifdef CONFIG_SMP
1257 seq_printf(m, "\n vm stats threshold: %d",
1258 pageset->stat_threshold);
1259 #endif
1260 }
1261 seq_printf(m,
1262 "\n all_unreclaimable: %u"
1263 "\n start_pfn: %lu"
1264 "\n inactive_ratio: %u",
1265 !zone_reclaimable(zone),
1266 zone->zone_start_pfn,
1267 zone->inactive_ratio);
1268 seq_putc(m, '\n');
1269 }
1270
1271 /*
1272 * Output information about zones in @pgdat.
1273 */
1274 static int zoneinfo_show(struct seq_file *m, void *arg)
1275 {
1276 pg_data_t *pgdat = (pg_data_t *)arg;
1277 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1278 return 0;
1279 }
1280
1281 static const struct seq_operations zoneinfo_op = {
1282 .start = frag_start, /* iterate over all zones. The same as in
1283 * fragmentation. */
1284 .next = frag_next,
1285 .stop = frag_stop,
1286 .show = zoneinfo_show,
1287 };
1288
1289 static int zoneinfo_open(struct inode *inode, struct file *file)
1290 {
1291 return seq_open(file, &zoneinfo_op);
1292 }
1293
1294 static const struct file_operations proc_zoneinfo_file_operations = {
1295 .open = zoneinfo_open,
1296 .read = seq_read,
1297 .llseek = seq_lseek,
1298 .release = seq_release,
1299 };
1300
1301 enum writeback_stat_item {
1302 NR_DIRTY_THRESHOLD,
1303 NR_DIRTY_BG_THRESHOLD,
1304 NR_VM_WRITEBACK_STAT_ITEMS,
1305 };
1306
1307 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1308 {
1309 unsigned long *v;
1310 int i, stat_items_size;
1311
1312 if (*pos >= ARRAY_SIZE(vmstat_text))
1313 return NULL;
1314 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1315 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1316
1317 #ifdef CONFIG_VM_EVENT_COUNTERS
1318 stat_items_size += sizeof(struct vm_event_state);
1319 #endif
1320
1321 v = kmalloc(stat_items_size, GFP_KERNEL);
1322 m->private = v;
1323 if (!v)
1324 return ERR_PTR(-ENOMEM);
1325 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1326 v[i] = global_page_state(i);
1327 v += NR_VM_ZONE_STAT_ITEMS;
1328
1329 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1330 v + NR_DIRTY_THRESHOLD);
1331 v += NR_VM_WRITEBACK_STAT_ITEMS;
1332
1333 #ifdef CONFIG_VM_EVENT_COUNTERS
1334 all_vm_events(v);
1335 v[PGPGIN] /= 2; /* sectors -> kbytes */
1336 v[PGPGOUT] /= 2;
1337 #endif
1338 return (unsigned long *)m->private + *pos;
1339 }
1340
1341 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1342 {
1343 (*pos)++;
1344 if (*pos >= ARRAY_SIZE(vmstat_text))
1345 return NULL;
1346 return (unsigned long *)m->private + *pos;
1347 }
1348
1349 static int vmstat_show(struct seq_file *m, void *arg)
1350 {
1351 unsigned long *l = arg;
1352 unsigned long off = l - (unsigned long *)m->private;
1353
1354 seq_puts(m, vmstat_text[off]);
1355 seq_put_decimal_ull(m, ' ', *l);
1356 seq_putc(m, '\n');
1357 return 0;
1358 }
1359
1360 static void vmstat_stop(struct seq_file *m, void *arg)
1361 {
1362 kfree(m->private);
1363 m->private = NULL;
1364 }
1365
1366 static const struct seq_operations vmstat_op = {
1367 .start = vmstat_start,
1368 .next = vmstat_next,
1369 .stop = vmstat_stop,
1370 .show = vmstat_show,
1371 };
1372
1373 static int vmstat_open(struct inode *inode, struct file *file)
1374 {
1375 return seq_open(file, &vmstat_op);
1376 }
1377
1378 static const struct file_operations proc_vmstat_file_operations = {
1379 .open = vmstat_open,
1380 .read = seq_read,
1381 .llseek = seq_lseek,
1382 .release = seq_release,
1383 };
1384 #endif /* CONFIG_PROC_FS */
1385
1386 #ifdef CONFIG_SMP
1387 static struct workqueue_struct *vmstat_wq;
1388 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1389 int sysctl_stat_interval __read_mostly = HZ;
1390 static cpumask_var_t cpu_stat_off;
1391
1392 static void vmstat_update(struct work_struct *w)
1393 {
1394 if (refresh_cpu_vm_stats()) {
1395 /*
1396 * Counters were updated so we expect more updates
1397 * to occur in the future. Keep on running the
1398 * update worker thread.
1399 */
1400 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1401 this_cpu_ptr(&vmstat_work),
1402 round_jiffies_relative(sysctl_stat_interval));
1403 } else {
1404 /*
1405 * We did not update any counters so the app may be in
1406 * a mode where it does not cause counter updates.
1407 * We may be uselessly running vmstat_update.
1408 * Defer the checking for differentials to the
1409 * shepherd thread on a different processor.
1410 */
1411 int r;
1412 /*
1413 * Shepherd work thread does not race since it never
1414 * changes the bit if its zero but the cpu
1415 * online / off line code may race if
1416 * worker threads are still allowed during
1417 * shutdown / startup.
1418 */
1419 r = cpumask_test_and_set_cpu(smp_processor_id(),
1420 cpu_stat_off);
1421 VM_BUG_ON(r);
1422 }
1423 }
1424
1425 /*
1426 * Check if the diffs for a certain cpu indicate that
1427 * an update is needed.
1428 */
1429 static bool need_update(int cpu)
1430 {
1431 struct zone *zone;
1432
1433 for_each_populated_zone(zone) {
1434 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1435
1436 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1437 /*
1438 * The fast way of checking if there are any vmstat diffs.
1439 * This works because the diffs are byte sized items.
1440 */
1441 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1442 return true;
1443
1444 }
1445 return false;
1446 }
1447
1448
1449 /*
1450 * Shepherd worker thread that checks the
1451 * differentials of processors that have their worker
1452 * threads for vm statistics updates disabled because of
1453 * inactivity.
1454 */
1455 static void vmstat_shepherd(struct work_struct *w);
1456
1457 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1458
1459 static void vmstat_shepherd(struct work_struct *w)
1460 {
1461 int cpu;
1462
1463 get_online_cpus();
1464 /* Check processors whose vmstat worker threads have been disabled */
1465 for_each_cpu(cpu, cpu_stat_off)
1466 if (need_update(cpu) &&
1467 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1468
1469 queue_delayed_work_on(cpu, vmstat_wq,
1470 &per_cpu(vmstat_work, cpu), 0);
1471
1472 put_online_cpus();
1473
1474 schedule_delayed_work(&shepherd,
1475 round_jiffies_relative(sysctl_stat_interval));
1476
1477 }
1478
1479 static void __init start_shepherd_timer(void)
1480 {
1481 int cpu;
1482
1483 for_each_possible_cpu(cpu)
1484 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1485 vmstat_update);
1486
1487 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1488 BUG();
1489 cpumask_copy(cpu_stat_off, cpu_online_mask);
1490
1491 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1492 schedule_delayed_work(&shepherd,
1493 round_jiffies_relative(sysctl_stat_interval));
1494 }
1495
1496 static void vmstat_cpu_dead(int node)
1497 {
1498 int cpu;
1499
1500 get_online_cpus();
1501 for_each_online_cpu(cpu)
1502 if (cpu_to_node(cpu) == node)
1503 goto end;
1504
1505 node_clear_state(node, N_CPU);
1506 end:
1507 put_online_cpus();
1508 }
1509
1510 /*
1511 * Use the cpu notifier to insure that the thresholds are recalculated
1512 * when necessary.
1513 */
1514 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1515 unsigned long action,
1516 void *hcpu)
1517 {
1518 long cpu = (long)hcpu;
1519
1520 switch (action) {
1521 case CPU_ONLINE:
1522 case CPU_ONLINE_FROZEN:
1523 refresh_zone_stat_thresholds();
1524 node_set_state(cpu_to_node(cpu), N_CPU);
1525 cpumask_set_cpu(cpu, cpu_stat_off);
1526 break;
1527 case CPU_DOWN_PREPARE:
1528 case CPU_DOWN_PREPARE_FROZEN:
1529 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1530 cpumask_clear_cpu(cpu, cpu_stat_off);
1531 break;
1532 case CPU_DOWN_FAILED:
1533 case CPU_DOWN_FAILED_FROZEN:
1534 cpumask_set_cpu(cpu, cpu_stat_off);
1535 break;
1536 case CPU_DEAD:
1537 case CPU_DEAD_FROZEN:
1538 refresh_zone_stat_thresholds();
1539 vmstat_cpu_dead(cpu_to_node(cpu));
1540 break;
1541 default:
1542 break;
1543 }
1544 return NOTIFY_OK;
1545 }
1546
1547 static struct notifier_block vmstat_notifier =
1548 { &vmstat_cpuup_callback, NULL, 0 };
1549 #endif
1550
1551 static int __init setup_vmstat(void)
1552 {
1553 #ifdef CONFIG_SMP
1554 cpu_notifier_register_begin();
1555 __register_cpu_notifier(&vmstat_notifier);
1556
1557 start_shepherd_timer();
1558 cpu_notifier_register_done();
1559 #endif
1560 #ifdef CONFIG_PROC_FS
1561 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1562 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1563 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1564 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1565 #endif
1566 return 0;
1567 }
1568 module_init(setup_vmstat)
1569
1570 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1571
1572 /*
1573 * Return an index indicating how much of the available free memory is
1574 * unusable for an allocation of the requested size.
1575 */
1576 static int unusable_free_index(unsigned int order,
1577 struct contig_page_info *info)
1578 {
1579 /* No free memory is interpreted as all free memory is unusable */
1580 if (info->free_pages == 0)
1581 return 1000;
1582
1583 /*
1584 * Index should be a value between 0 and 1. Return a value to 3
1585 * decimal places.
1586 *
1587 * 0 => no fragmentation
1588 * 1 => high fragmentation
1589 */
1590 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1591
1592 }
1593
1594 static void unusable_show_print(struct seq_file *m,
1595 pg_data_t *pgdat, struct zone *zone)
1596 {
1597 unsigned int order;
1598 int index;
1599 struct contig_page_info info;
1600
1601 seq_printf(m, "Node %d, zone %8s ",
1602 pgdat->node_id,
1603 zone->name);
1604 for (order = 0; order < MAX_ORDER; ++order) {
1605 fill_contig_page_info(zone, order, &info);
1606 index = unusable_free_index(order, &info);
1607 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1608 }
1609
1610 seq_putc(m, '\n');
1611 }
1612
1613 /*
1614 * Display unusable free space index
1615 *
1616 * The unusable free space index measures how much of the available free
1617 * memory cannot be used to satisfy an allocation of a given size and is a
1618 * value between 0 and 1. The higher the value, the more of free memory is
1619 * unusable and by implication, the worse the external fragmentation is. This
1620 * can be expressed as a percentage by multiplying by 100.
1621 */
1622 static int unusable_show(struct seq_file *m, void *arg)
1623 {
1624 pg_data_t *pgdat = (pg_data_t *)arg;
1625
1626 /* check memoryless node */
1627 if (!node_state(pgdat->node_id, N_MEMORY))
1628 return 0;
1629
1630 walk_zones_in_node(m, pgdat, unusable_show_print);
1631
1632 return 0;
1633 }
1634
1635 static const struct seq_operations unusable_op = {
1636 .start = frag_start,
1637 .next = frag_next,
1638 .stop = frag_stop,
1639 .show = unusable_show,
1640 };
1641
1642 static int unusable_open(struct inode *inode, struct file *file)
1643 {
1644 return seq_open(file, &unusable_op);
1645 }
1646
1647 static const struct file_operations unusable_file_ops = {
1648 .open = unusable_open,
1649 .read = seq_read,
1650 .llseek = seq_lseek,
1651 .release = seq_release,
1652 };
1653
1654 static void extfrag_show_print(struct seq_file *m,
1655 pg_data_t *pgdat, struct zone *zone)
1656 {
1657 unsigned int order;
1658 int index;
1659
1660 /* Alloc on stack as interrupts are disabled for zone walk */
1661 struct contig_page_info info;
1662
1663 seq_printf(m, "Node %d, zone %8s ",
1664 pgdat->node_id,
1665 zone->name);
1666 for (order = 0; order < MAX_ORDER; ++order) {
1667 fill_contig_page_info(zone, order, &info);
1668 index = __fragmentation_index(order, &info);
1669 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1670 }
1671
1672 seq_putc(m, '\n');
1673 }
1674
1675 /*
1676 * Display fragmentation index for orders that allocations would fail for
1677 */
1678 static int extfrag_show(struct seq_file *m, void *arg)
1679 {
1680 pg_data_t *pgdat = (pg_data_t *)arg;
1681
1682 walk_zones_in_node(m, pgdat, extfrag_show_print);
1683
1684 return 0;
1685 }
1686
1687 static const struct seq_operations extfrag_op = {
1688 .start = frag_start,
1689 .next = frag_next,
1690 .stop = frag_stop,
1691 .show = extfrag_show,
1692 };
1693
1694 static int extfrag_open(struct inode *inode, struct file *file)
1695 {
1696 return seq_open(file, &extfrag_op);
1697 }
1698
1699 static const struct file_operations extfrag_file_ops = {
1700 .open = extfrag_open,
1701 .read = seq_read,
1702 .llseek = seq_lseek,
1703 .release = seq_release,
1704 };
1705
1706 static int __init extfrag_debug_init(void)
1707 {
1708 struct dentry *extfrag_debug_root;
1709
1710 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1711 if (!extfrag_debug_root)
1712 return -ENOMEM;
1713
1714 if (!debugfs_create_file("unusable_index", 0444,
1715 extfrag_debug_root, NULL, &unusable_file_ops))
1716 goto fail;
1717
1718 if (!debugfs_create_file("extfrag_index", 0444,
1719 extfrag_debug_root, NULL, &extfrag_file_ops))
1720 goto fail;
1721
1722 return 0;
1723 fail:
1724 debugfs_remove_recursive(extfrag_debug_root);
1725 return -ENOMEM;
1726 }
1727
1728 module_init(extfrag_debug_init);
1729 #endif