]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmstat.c
kfence: use error_report_end tracepoint
[mirror_ubuntu-jammy-kernel.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50 }
51
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
54 {
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59 }
60
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
63 {
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68 }
69
70 static void invalid_numa_statistics(void)
71 {
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74 }
75
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
80 {
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101 out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104 }
105 #endif
106
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
111 static void sum_vm_events(unsigned long *ret)
112 {
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124 }
125
126 /*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130 */
131 void all_vm_events(unsigned long *ret)
132 {
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138
139 /*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145 void vm_events_fold_cpu(int cpu)
146 {
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154 }
155
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157
158 /*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
169
170 #ifdef CONFIG_SMP
171
172 int calculate_pressure_threshold(struct zone *zone)
173 {
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194 }
195
196 int calculate_normal_threshold(struct zone *zone)
197 {
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241 }
242
243 /*
244 * Refresh the thresholds for each zone.
245 */
246 void refresh_zone_stat_thresholds(void)
247 {
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289 }
290
291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293 {
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309 }
310
311 /*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318 {
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(abs(x) > t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333 }
334 EXPORT_SYMBOL(__mod_zone_page_state);
335
336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338 {
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 if (vmstat_item_in_bytes(item)) {
345 /*
346 * Only cgroups use subpage accounting right now; at
347 * the global level, these items still change in
348 * multiples of whole pages. Store them as pages
349 * internally to keep the per-cpu counters compact.
350 */
351 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
352 delta >>= PAGE_SHIFT;
353 }
354
355 x = delta + __this_cpu_read(*p);
356
357 t = __this_cpu_read(pcp->stat_threshold);
358
359 if (unlikely(abs(x) > t)) {
360 node_page_state_add(x, pgdat, item);
361 x = 0;
362 }
363 __this_cpu_write(*p, x);
364 }
365 EXPORT_SYMBOL(__mod_node_page_state);
366
367 /*
368 * Optimized increment and decrement functions.
369 *
370 * These are only for a single page and therefore can take a struct page *
371 * argument instead of struct zone *. This allows the inclusion of the code
372 * generated for page_zone(page) into the optimized functions.
373 *
374 * No overflow check is necessary and therefore the differential can be
375 * incremented or decremented in place which may allow the compilers to
376 * generate better code.
377 * The increment or decrement is known and therefore one boundary check can
378 * be omitted.
379 *
380 * NOTE: These functions are very performance sensitive. Change only
381 * with care.
382 *
383 * Some processors have inc/dec instructions that are atomic vs an interrupt.
384 * However, the code must first determine the differential location in a zone
385 * based on the processor number and then inc/dec the counter. There is no
386 * guarantee without disabling preemption that the processor will not change
387 * in between and therefore the atomicity vs. interrupt cannot be exploited
388 * in a useful way here.
389 */
390 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392 struct per_cpu_pageset __percpu *pcp = zone->pageset;
393 s8 __percpu *p = pcp->vm_stat_diff + item;
394 s8 v, t;
395
396 v = __this_cpu_inc_return(*p);
397 t = __this_cpu_read(pcp->stat_threshold);
398 if (unlikely(v > t)) {
399 s8 overstep = t >> 1;
400
401 zone_page_state_add(v + overstep, zone, item);
402 __this_cpu_write(*p, -overstep);
403 }
404 }
405
406 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
407 {
408 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
409 s8 __percpu *p = pcp->vm_node_stat_diff + item;
410 s8 v, t;
411
412 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
413
414 v = __this_cpu_inc_return(*p);
415 t = __this_cpu_read(pcp->stat_threshold);
416 if (unlikely(v > t)) {
417 s8 overstep = t >> 1;
418
419 node_page_state_add(v + overstep, pgdat, item);
420 __this_cpu_write(*p, -overstep);
421 }
422 }
423
424 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
425 {
426 __inc_zone_state(page_zone(page), item);
427 }
428 EXPORT_SYMBOL(__inc_zone_page_state);
429
430 void __inc_node_page_state(struct page *page, enum node_stat_item item)
431 {
432 __inc_node_state(page_pgdat(page), item);
433 }
434 EXPORT_SYMBOL(__inc_node_page_state);
435
436 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
437 {
438 struct per_cpu_pageset __percpu *pcp = zone->pageset;
439 s8 __percpu *p = pcp->vm_stat_diff + item;
440 s8 v, t;
441
442 v = __this_cpu_dec_return(*p);
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v < - t)) {
445 s8 overstep = t >> 1;
446
447 zone_page_state_add(v - overstep, zone, item);
448 __this_cpu_write(*p, overstep);
449 }
450 }
451
452 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
453 {
454 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
455 s8 __percpu *p = pcp->vm_node_stat_diff + item;
456 s8 v, t;
457
458 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
459
460 v = __this_cpu_dec_return(*p);
461 t = __this_cpu_read(pcp->stat_threshold);
462 if (unlikely(v < - t)) {
463 s8 overstep = t >> 1;
464
465 node_page_state_add(v - overstep, pgdat, item);
466 __this_cpu_write(*p, overstep);
467 }
468 }
469
470 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
471 {
472 __dec_zone_state(page_zone(page), item);
473 }
474 EXPORT_SYMBOL(__dec_zone_page_state);
475
476 void __dec_node_page_state(struct page *page, enum node_stat_item item)
477 {
478 __dec_node_state(page_pgdat(page), item);
479 }
480 EXPORT_SYMBOL(__dec_node_page_state);
481
482 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
483 /*
484 * If we have cmpxchg_local support then we do not need to incur the overhead
485 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
486 *
487 * mod_state() modifies the zone counter state through atomic per cpu
488 * operations.
489 *
490 * Overstep mode specifies how overstep should handled:
491 * 0 No overstepping
492 * 1 Overstepping half of threshold
493 * -1 Overstepping minus half of threshold
494 */
495 static inline void mod_zone_state(struct zone *zone,
496 enum zone_stat_item item, long delta, int overstep_mode)
497 {
498 struct per_cpu_pageset __percpu *pcp = zone->pageset;
499 s8 __percpu *p = pcp->vm_stat_diff + item;
500 long o, n, t, z;
501
502 do {
503 z = 0; /* overflow to zone counters */
504
505 /*
506 * The fetching of the stat_threshold is racy. We may apply
507 * a counter threshold to the wrong the cpu if we get
508 * rescheduled while executing here. However, the next
509 * counter update will apply the threshold again and
510 * therefore bring the counter under the threshold again.
511 *
512 * Most of the time the thresholds are the same anyways
513 * for all cpus in a zone.
514 */
515 t = this_cpu_read(pcp->stat_threshold);
516
517 o = this_cpu_read(*p);
518 n = delta + o;
519
520 if (abs(n) > t) {
521 int os = overstep_mode * (t >> 1) ;
522
523 /* Overflow must be added to zone counters */
524 z = n + os;
525 n = -os;
526 }
527 } while (this_cpu_cmpxchg(*p, o, n) != o);
528
529 if (z)
530 zone_page_state_add(z, zone, item);
531 }
532
533 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
534 long delta)
535 {
536 mod_zone_state(zone, item, delta, 0);
537 }
538 EXPORT_SYMBOL(mod_zone_page_state);
539
540 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
541 {
542 mod_zone_state(page_zone(page), item, 1, 1);
543 }
544 EXPORT_SYMBOL(inc_zone_page_state);
545
546 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
547 {
548 mod_zone_state(page_zone(page), item, -1, -1);
549 }
550 EXPORT_SYMBOL(dec_zone_page_state);
551
552 static inline void mod_node_state(struct pglist_data *pgdat,
553 enum node_stat_item item, int delta, int overstep_mode)
554 {
555 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
556 s8 __percpu *p = pcp->vm_node_stat_diff + item;
557 long o, n, t, z;
558
559 if (vmstat_item_in_bytes(item)) {
560 /*
561 * Only cgroups use subpage accounting right now; at
562 * the global level, these items still change in
563 * multiples of whole pages. Store them as pages
564 * internally to keep the per-cpu counters compact.
565 */
566 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
567 delta >>= PAGE_SHIFT;
568 }
569
570 do {
571 z = 0; /* overflow to node counters */
572
573 /*
574 * The fetching of the stat_threshold is racy. We may apply
575 * a counter threshold to the wrong the cpu if we get
576 * rescheduled while executing here. However, the next
577 * counter update will apply the threshold again and
578 * therefore bring the counter under the threshold again.
579 *
580 * Most of the time the thresholds are the same anyways
581 * for all cpus in a node.
582 */
583 t = this_cpu_read(pcp->stat_threshold);
584
585 o = this_cpu_read(*p);
586 n = delta + o;
587
588 if (abs(n) > t) {
589 int os = overstep_mode * (t >> 1) ;
590
591 /* Overflow must be added to node counters */
592 z = n + os;
593 n = -os;
594 }
595 } while (this_cpu_cmpxchg(*p, o, n) != o);
596
597 if (z)
598 node_page_state_add(z, pgdat, item);
599 }
600
601 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
602 long delta)
603 {
604 mod_node_state(pgdat, item, delta, 0);
605 }
606 EXPORT_SYMBOL(mod_node_page_state);
607
608 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
609 {
610 mod_node_state(pgdat, item, 1, 1);
611 }
612
613 void inc_node_page_state(struct page *page, enum node_stat_item item)
614 {
615 mod_node_state(page_pgdat(page), item, 1, 1);
616 }
617 EXPORT_SYMBOL(inc_node_page_state);
618
619 void dec_node_page_state(struct page *page, enum node_stat_item item)
620 {
621 mod_node_state(page_pgdat(page), item, -1, -1);
622 }
623 EXPORT_SYMBOL(dec_node_page_state);
624 #else
625 /*
626 * Use interrupt disable to serialize counter updates
627 */
628 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
629 long delta)
630 {
631 unsigned long flags;
632
633 local_irq_save(flags);
634 __mod_zone_page_state(zone, item, delta);
635 local_irq_restore(flags);
636 }
637 EXPORT_SYMBOL(mod_zone_page_state);
638
639 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
640 {
641 unsigned long flags;
642 struct zone *zone;
643
644 zone = page_zone(page);
645 local_irq_save(flags);
646 __inc_zone_state(zone, item);
647 local_irq_restore(flags);
648 }
649 EXPORT_SYMBOL(inc_zone_page_state);
650
651 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
652 {
653 unsigned long flags;
654
655 local_irq_save(flags);
656 __dec_zone_page_state(page, item);
657 local_irq_restore(flags);
658 }
659 EXPORT_SYMBOL(dec_zone_page_state);
660
661 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
662 {
663 unsigned long flags;
664
665 local_irq_save(flags);
666 __inc_node_state(pgdat, item);
667 local_irq_restore(flags);
668 }
669 EXPORT_SYMBOL(inc_node_state);
670
671 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
672 long delta)
673 {
674 unsigned long flags;
675
676 local_irq_save(flags);
677 __mod_node_page_state(pgdat, item, delta);
678 local_irq_restore(flags);
679 }
680 EXPORT_SYMBOL(mod_node_page_state);
681
682 void inc_node_page_state(struct page *page, enum node_stat_item item)
683 {
684 unsigned long flags;
685 struct pglist_data *pgdat;
686
687 pgdat = page_pgdat(page);
688 local_irq_save(flags);
689 __inc_node_state(pgdat, item);
690 local_irq_restore(flags);
691 }
692 EXPORT_SYMBOL(inc_node_page_state);
693
694 void dec_node_page_state(struct page *page, enum node_stat_item item)
695 {
696 unsigned long flags;
697
698 local_irq_save(flags);
699 __dec_node_page_state(page, item);
700 local_irq_restore(flags);
701 }
702 EXPORT_SYMBOL(dec_node_page_state);
703 #endif
704
705 /*
706 * Fold a differential into the global counters.
707 * Returns the number of counters updated.
708 */
709 #ifdef CONFIG_NUMA
710 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
711 {
712 int i;
713 int changes = 0;
714
715 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
716 if (zone_diff[i]) {
717 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
718 changes++;
719 }
720
721 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
722 if (numa_diff[i]) {
723 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
724 changes++;
725 }
726
727 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
728 if (node_diff[i]) {
729 atomic_long_add(node_diff[i], &vm_node_stat[i]);
730 changes++;
731 }
732 return changes;
733 }
734 #else
735 static int fold_diff(int *zone_diff, int *node_diff)
736 {
737 int i;
738 int changes = 0;
739
740 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
741 if (zone_diff[i]) {
742 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
743 changes++;
744 }
745
746 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
747 if (node_diff[i]) {
748 atomic_long_add(node_diff[i], &vm_node_stat[i]);
749 changes++;
750 }
751 return changes;
752 }
753 #endif /* CONFIG_NUMA */
754
755 /*
756 * Update the zone counters for the current cpu.
757 *
758 * Note that refresh_cpu_vm_stats strives to only access
759 * node local memory. The per cpu pagesets on remote zones are placed
760 * in the memory local to the processor using that pageset. So the
761 * loop over all zones will access a series of cachelines local to
762 * the processor.
763 *
764 * The call to zone_page_state_add updates the cachelines with the
765 * statistics in the remote zone struct as well as the global cachelines
766 * with the global counters. These could cause remote node cache line
767 * bouncing and will have to be only done when necessary.
768 *
769 * The function returns the number of global counters updated.
770 */
771 static int refresh_cpu_vm_stats(bool do_pagesets)
772 {
773 struct pglist_data *pgdat;
774 struct zone *zone;
775 int i;
776 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
777 #ifdef CONFIG_NUMA
778 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
779 #endif
780 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
781 int changes = 0;
782
783 for_each_populated_zone(zone) {
784 struct per_cpu_pageset __percpu *p = zone->pageset;
785
786 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
787 int v;
788
789 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
790 if (v) {
791
792 atomic_long_add(v, &zone->vm_stat[i]);
793 global_zone_diff[i] += v;
794 #ifdef CONFIG_NUMA
795 /* 3 seconds idle till flush */
796 __this_cpu_write(p->expire, 3);
797 #endif
798 }
799 }
800 #ifdef CONFIG_NUMA
801 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
802 int v;
803
804 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
805 if (v) {
806
807 atomic_long_add(v, &zone->vm_numa_stat[i]);
808 global_numa_diff[i] += v;
809 __this_cpu_write(p->expire, 3);
810 }
811 }
812
813 if (do_pagesets) {
814 cond_resched();
815 /*
816 * Deal with draining the remote pageset of this
817 * processor
818 *
819 * Check if there are pages remaining in this pageset
820 * if not then there is nothing to expire.
821 */
822 if (!__this_cpu_read(p->expire) ||
823 !__this_cpu_read(p->pcp.count))
824 continue;
825
826 /*
827 * We never drain zones local to this processor.
828 */
829 if (zone_to_nid(zone) == numa_node_id()) {
830 __this_cpu_write(p->expire, 0);
831 continue;
832 }
833
834 if (__this_cpu_dec_return(p->expire))
835 continue;
836
837 if (__this_cpu_read(p->pcp.count)) {
838 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
839 changes++;
840 }
841 }
842 #endif
843 }
844
845 for_each_online_pgdat(pgdat) {
846 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
847
848 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
849 int v;
850
851 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
852 if (v) {
853 atomic_long_add(v, &pgdat->vm_stat[i]);
854 global_node_diff[i] += v;
855 }
856 }
857 }
858
859 #ifdef CONFIG_NUMA
860 changes += fold_diff(global_zone_diff, global_numa_diff,
861 global_node_diff);
862 #else
863 changes += fold_diff(global_zone_diff, global_node_diff);
864 #endif
865 return changes;
866 }
867
868 /*
869 * Fold the data for an offline cpu into the global array.
870 * There cannot be any access by the offline cpu and therefore
871 * synchronization is simplified.
872 */
873 void cpu_vm_stats_fold(int cpu)
874 {
875 struct pglist_data *pgdat;
876 struct zone *zone;
877 int i;
878 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
879 #ifdef CONFIG_NUMA
880 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
881 #endif
882 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
883
884 for_each_populated_zone(zone) {
885 struct per_cpu_pageset *p;
886
887 p = per_cpu_ptr(zone->pageset, cpu);
888
889 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
890 if (p->vm_stat_diff[i]) {
891 int v;
892
893 v = p->vm_stat_diff[i];
894 p->vm_stat_diff[i] = 0;
895 atomic_long_add(v, &zone->vm_stat[i]);
896 global_zone_diff[i] += v;
897 }
898
899 #ifdef CONFIG_NUMA
900 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
901 if (p->vm_numa_stat_diff[i]) {
902 int v;
903
904 v = p->vm_numa_stat_diff[i];
905 p->vm_numa_stat_diff[i] = 0;
906 atomic_long_add(v, &zone->vm_numa_stat[i]);
907 global_numa_diff[i] += v;
908 }
909 #endif
910 }
911
912 for_each_online_pgdat(pgdat) {
913 struct per_cpu_nodestat *p;
914
915 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
916
917 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
918 if (p->vm_node_stat_diff[i]) {
919 int v;
920
921 v = p->vm_node_stat_diff[i];
922 p->vm_node_stat_diff[i] = 0;
923 atomic_long_add(v, &pgdat->vm_stat[i]);
924 global_node_diff[i] += v;
925 }
926 }
927
928 #ifdef CONFIG_NUMA
929 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
930 #else
931 fold_diff(global_zone_diff, global_node_diff);
932 #endif
933 }
934
935 /*
936 * this is only called if !populated_zone(zone), which implies no other users of
937 * pset->vm_stat_diff[] exsist.
938 */
939 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
940 {
941 int i;
942
943 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
944 if (pset->vm_stat_diff[i]) {
945 int v = pset->vm_stat_diff[i];
946 pset->vm_stat_diff[i] = 0;
947 atomic_long_add(v, &zone->vm_stat[i]);
948 atomic_long_add(v, &vm_zone_stat[i]);
949 }
950
951 #ifdef CONFIG_NUMA
952 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
953 if (pset->vm_numa_stat_diff[i]) {
954 int v = pset->vm_numa_stat_diff[i];
955
956 pset->vm_numa_stat_diff[i] = 0;
957 atomic_long_add(v, &zone->vm_numa_stat[i]);
958 atomic_long_add(v, &vm_numa_stat[i]);
959 }
960 #endif
961 }
962 #endif
963
964 #ifdef CONFIG_NUMA
965 void __inc_numa_state(struct zone *zone,
966 enum numa_stat_item item)
967 {
968 struct per_cpu_pageset __percpu *pcp = zone->pageset;
969 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
970 u16 v;
971
972 v = __this_cpu_inc_return(*p);
973
974 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
975 zone_numa_state_add(v, zone, item);
976 __this_cpu_write(*p, 0);
977 }
978 }
979
980 /*
981 * Determine the per node value of a stat item. This function
982 * is called frequently in a NUMA machine, so try to be as
983 * frugal as possible.
984 */
985 unsigned long sum_zone_node_page_state(int node,
986 enum zone_stat_item item)
987 {
988 struct zone *zones = NODE_DATA(node)->node_zones;
989 int i;
990 unsigned long count = 0;
991
992 for (i = 0; i < MAX_NR_ZONES; i++)
993 count += zone_page_state(zones + i, item);
994
995 return count;
996 }
997
998 /*
999 * Determine the per node value of a numa stat item. To avoid deviation,
1000 * the per cpu stat number in vm_numa_stat_diff[] is also included.
1001 */
1002 unsigned long sum_zone_numa_state(int node,
1003 enum numa_stat_item item)
1004 {
1005 struct zone *zones = NODE_DATA(node)->node_zones;
1006 int i;
1007 unsigned long count = 0;
1008
1009 for (i = 0; i < MAX_NR_ZONES; i++)
1010 count += zone_numa_state_snapshot(zones + i, item);
1011
1012 return count;
1013 }
1014
1015 /*
1016 * Determine the per node value of a stat item.
1017 */
1018 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1019 enum node_stat_item item)
1020 {
1021 long x = atomic_long_read(&pgdat->vm_stat[item]);
1022 #ifdef CONFIG_SMP
1023 if (x < 0)
1024 x = 0;
1025 #endif
1026 return x;
1027 }
1028
1029 unsigned long node_page_state(struct pglist_data *pgdat,
1030 enum node_stat_item item)
1031 {
1032 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1033
1034 return node_page_state_pages(pgdat, item);
1035 }
1036 #endif
1037
1038 #ifdef CONFIG_COMPACTION
1039
1040 struct contig_page_info {
1041 unsigned long free_pages;
1042 unsigned long free_blocks_total;
1043 unsigned long free_blocks_suitable;
1044 };
1045
1046 /*
1047 * Calculate the number of free pages in a zone, how many contiguous
1048 * pages are free and how many are large enough to satisfy an allocation of
1049 * the target size. Note that this function makes no attempt to estimate
1050 * how many suitable free blocks there *might* be if MOVABLE pages were
1051 * migrated. Calculating that is possible, but expensive and can be
1052 * figured out from userspace
1053 */
1054 static void fill_contig_page_info(struct zone *zone,
1055 unsigned int suitable_order,
1056 struct contig_page_info *info)
1057 {
1058 unsigned int order;
1059
1060 info->free_pages = 0;
1061 info->free_blocks_total = 0;
1062 info->free_blocks_suitable = 0;
1063
1064 for (order = 0; order < MAX_ORDER; order++) {
1065 unsigned long blocks;
1066
1067 /* Count number of free blocks */
1068 blocks = zone->free_area[order].nr_free;
1069 info->free_blocks_total += blocks;
1070
1071 /* Count free base pages */
1072 info->free_pages += blocks << order;
1073
1074 /* Count the suitable free blocks */
1075 if (order >= suitable_order)
1076 info->free_blocks_suitable += blocks <<
1077 (order - suitable_order);
1078 }
1079 }
1080
1081 /*
1082 * A fragmentation index only makes sense if an allocation of a requested
1083 * size would fail. If that is true, the fragmentation index indicates
1084 * whether external fragmentation or a lack of memory was the problem.
1085 * The value can be used to determine if page reclaim or compaction
1086 * should be used
1087 */
1088 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089 {
1090 unsigned long requested = 1UL << order;
1091
1092 if (WARN_ON_ONCE(order >= MAX_ORDER))
1093 return 0;
1094
1095 if (!info->free_blocks_total)
1096 return 0;
1097
1098 /* Fragmentation index only makes sense when a request would fail */
1099 if (info->free_blocks_suitable)
1100 return -1000;
1101
1102 /*
1103 * Index is between 0 and 1 so return within 3 decimal places
1104 *
1105 * 0 => allocation would fail due to lack of memory
1106 * 1 => allocation would fail due to fragmentation
1107 */
1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109 }
1110
1111 /*
1112 * Calculates external fragmentation within a zone wrt the given order.
1113 * It is defined as the percentage of pages found in blocks of size
1114 * less than 1 << order. It returns values in range [0, 100].
1115 */
1116 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117 {
1118 struct contig_page_info info;
1119
1120 fill_contig_page_info(zone, order, &info);
1121 if (info.free_pages == 0)
1122 return 0;
1123
1124 return div_u64((info.free_pages -
1125 (info.free_blocks_suitable << order)) * 100,
1126 info.free_pages);
1127 }
1128
1129 /* Same as __fragmentation index but allocs contig_page_info on stack */
1130 int fragmentation_index(struct zone *zone, unsigned int order)
1131 {
1132 struct contig_page_info info;
1133
1134 fill_contig_page_info(zone, order, &info);
1135 return __fragmentation_index(order, &info);
1136 }
1137 #endif
1138
1139 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141 #ifdef CONFIG_ZONE_DMA
1142 #define TEXT_FOR_DMA(xx) xx "_dma",
1143 #else
1144 #define TEXT_FOR_DMA(xx)
1145 #endif
1146
1147 #ifdef CONFIG_ZONE_DMA32
1148 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1149 #else
1150 #define TEXT_FOR_DMA32(xx)
1151 #endif
1152
1153 #ifdef CONFIG_HIGHMEM
1154 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155 #else
1156 #define TEXT_FOR_HIGHMEM(xx)
1157 #endif
1158
1159 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1160 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1161
1162 const char * const vmstat_text[] = {
1163 /* enum zone_stat_item counters */
1164 "nr_free_pages",
1165 "nr_zone_inactive_anon",
1166 "nr_zone_active_anon",
1167 "nr_zone_inactive_file",
1168 "nr_zone_active_file",
1169 "nr_zone_unevictable",
1170 "nr_zone_write_pending",
1171 "nr_mlock",
1172 "nr_bounce",
1173 #if IS_ENABLED(CONFIG_ZSMALLOC)
1174 "nr_zspages",
1175 #endif
1176 "nr_free_cma",
1177
1178 /* enum numa_stat_item counters */
1179 #ifdef CONFIG_NUMA
1180 "numa_hit",
1181 "numa_miss",
1182 "numa_foreign",
1183 "numa_interleave",
1184 "numa_local",
1185 "numa_other",
1186 #endif
1187
1188 /* enum node_stat_item counters */
1189 "nr_inactive_anon",
1190 "nr_active_anon",
1191 "nr_inactive_file",
1192 "nr_active_file",
1193 "nr_unevictable",
1194 "nr_slab_reclaimable",
1195 "nr_slab_unreclaimable",
1196 "nr_isolated_anon",
1197 "nr_isolated_file",
1198 "workingset_nodes",
1199 "workingset_refault_anon",
1200 "workingset_refault_file",
1201 "workingset_activate_anon",
1202 "workingset_activate_file",
1203 "workingset_restore_anon",
1204 "workingset_restore_file",
1205 "workingset_nodereclaim",
1206 "nr_anon_pages",
1207 "nr_mapped",
1208 "nr_file_pages",
1209 "nr_dirty",
1210 "nr_writeback",
1211 "nr_writeback_temp",
1212 "nr_shmem",
1213 "nr_shmem_hugepages",
1214 "nr_shmem_pmdmapped",
1215 "nr_file_hugepages",
1216 "nr_file_pmdmapped",
1217 "nr_anon_transparent_hugepages",
1218 "nr_vmscan_write",
1219 "nr_vmscan_immediate_reclaim",
1220 "nr_dirtied",
1221 "nr_written",
1222 "nr_kernel_misc_reclaimable",
1223 "nr_foll_pin_acquired",
1224 "nr_foll_pin_released",
1225 "nr_kernel_stack",
1226 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1227 "nr_shadow_call_stack",
1228 #endif
1229 "nr_page_table_pages",
1230 #ifdef CONFIG_SWAP
1231 "nr_swapcached",
1232 #endif
1233
1234 /* enum writeback_stat_item counters */
1235 "nr_dirty_threshold",
1236 "nr_dirty_background_threshold",
1237
1238 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1239 /* enum vm_event_item counters */
1240 "pgpgin",
1241 "pgpgout",
1242 "pswpin",
1243 "pswpout",
1244
1245 TEXTS_FOR_ZONES("pgalloc")
1246 TEXTS_FOR_ZONES("allocstall")
1247 TEXTS_FOR_ZONES("pgskip")
1248
1249 "pgfree",
1250 "pgactivate",
1251 "pgdeactivate",
1252 "pglazyfree",
1253
1254 "pgfault",
1255 "pgmajfault",
1256 "pglazyfreed",
1257
1258 "pgrefill",
1259 "pgreuse",
1260 "pgsteal_kswapd",
1261 "pgsteal_direct",
1262 "pgscan_kswapd",
1263 "pgscan_direct",
1264 "pgscan_direct_throttle",
1265 "pgscan_anon",
1266 "pgscan_file",
1267 "pgsteal_anon",
1268 "pgsteal_file",
1269
1270 #ifdef CONFIG_NUMA
1271 "zone_reclaim_failed",
1272 #endif
1273 "pginodesteal",
1274 "slabs_scanned",
1275 "kswapd_inodesteal",
1276 "kswapd_low_wmark_hit_quickly",
1277 "kswapd_high_wmark_hit_quickly",
1278 "pageoutrun",
1279
1280 "pgrotated",
1281
1282 "drop_pagecache",
1283 "drop_slab",
1284 "oom_kill",
1285
1286 #ifdef CONFIG_NUMA_BALANCING
1287 "numa_pte_updates",
1288 "numa_huge_pte_updates",
1289 "numa_hint_faults",
1290 "numa_hint_faults_local",
1291 "numa_pages_migrated",
1292 #endif
1293 #ifdef CONFIG_MIGRATION
1294 "pgmigrate_success",
1295 "pgmigrate_fail",
1296 "thp_migration_success",
1297 "thp_migration_fail",
1298 "thp_migration_split",
1299 #endif
1300 #ifdef CONFIG_COMPACTION
1301 "compact_migrate_scanned",
1302 "compact_free_scanned",
1303 "compact_isolated",
1304 "compact_stall",
1305 "compact_fail",
1306 "compact_success",
1307 "compact_daemon_wake",
1308 "compact_daemon_migrate_scanned",
1309 "compact_daemon_free_scanned",
1310 #endif
1311
1312 #ifdef CONFIG_HUGETLB_PAGE
1313 "htlb_buddy_alloc_success",
1314 "htlb_buddy_alloc_fail",
1315 #endif
1316 "unevictable_pgs_culled",
1317 "unevictable_pgs_scanned",
1318 "unevictable_pgs_rescued",
1319 "unevictable_pgs_mlocked",
1320 "unevictable_pgs_munlocked",
1321 "unevictable_pgs_cleared",
1322 "unevictable_pgs_stranded",
1323
1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 "thp_fault_alloc",
1326 "thp_fault_fallback",
1327 "thp_fault_fallback_charge",
1328 "thp_collapse_alloc",
1329 "thp_collapse_alloc_failed",
1330 "thp_file_alloc",
1331 "thp_file_fallback",
1332 "thp_file_fallback_charge",
1333 "thp_file_mapped",
1334 "thp_split_page",
1335 "thp_split_page_failed",
1336 "thp_deferred_split_page",
1337 "thp_split_pmd",
1338 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1339 "thp_split_pud",
1340 #endif
1341 "thp_zero_page_alloc",
1342 "thp_zero_page_alloc_failed",
1343 "thp_swpout",
1344 "thp_swpout_fallback",
1345 #endif
1346 #ifdef CONFIG_MEMORY_BALLOON
1347 "balloon_inflate",
1348 "balloon_deflate",
1349 #ifdef CONFIG_BALLOON_COMPACTION
1350 "balloon_migrate",
1351 #endif
1352 #endif /* CONFIG_MEMORY_BALLOON */
1353 #ifdef CONFIG_DEBUG_TLBFLUSH
1354 "nr_tlb_remote_flush",
1355 "nr_tlb_remote_flush_received",
1356 "nr_tlb_local_flush_all",
1357 "nr_tlb_local_flush_one",
1358 #endif /* CONFIG_DEBUG_TLBFLUSH */
1359
1360 #ifdef CONFIG_DEBUG_VM_VMACACHE
1361 "vmacache_find_calls",
1362 "vmacache_find_hits",
1363 #endif
1364 #ifdef CONFIG_SWAP
1365 "swap_ra",
1366 "swap_ra_hit",
1367 #endif
1368 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1369 };
1370 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1371
1372 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1373 defined(CONFIG_PROC_FS)
1374 static void *frag_start(struct seq_file *m, loff_t *pos)
1375 {
1376 pg_data_t *pgdat;
1377 loff_t node = *pos;
1378
1379 for (pgdat = first_online_pgdat();
1380 pgdat && node;
1381 pgdat = next_online_pgdat(pgdat))
1382 --node;
1383
1384 return pgdat;
1385 }
1386
1387 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1388 {
1389 pg_data_t *pgdat = (pg_data_t *)arg;
1390
1391 (*pos)++;
1392 return next_online_pgdat(pgdat);
1393 }
1394
1395 static void frag_stop(struct seq_file *m, void *arg)
1396 {
1397 }
1398
1399 /*
1400 * Walk zones in a node and print using a callback.
1401 * If @assert_populated is true, only use callback for zones that are populated.
1402 */
1403 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1404 bool assert_populated, bool nolock,
1405 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1406 {
1407 struct zone *zone;
1408 struct zone *node_zones = pgdat->node_zones;
1409 unsigned long flags;
1410
1411 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1412 if (assert_populated && !populated_zone(zone))
1413 continue;
1414
1415 if (!nolock)
1416 spin_lock_irqsave(&zone->lock, flags);
1417 print(m, pgdat, zone);
1418 if (!nolock)
1419 spin_unlock_irqrestore(&zone->lock, flags);
1420 }
1421 }
1422 #endif
1423
1424 #ifdef CONFIG_PROC_FS
1425 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1426 struct zone *zone)
1427 {
1428 int order;
1429
1430 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1431 for (order = 0; order < MAX_ORDER; ++order)
1432 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1433 seq_putc(m, '\n');
1434 }
1435
1436 /*
1437 * This walks the free areas for each zone.
1438 */
1439 static int frag_show(struct seq_file *m, void *arg)
1440 {
1441 pg_data_t *pgdat = (pg_data_t *)arg;
1442 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1443 return 0;
1444 }
1445
1446 static void pagetypeinfo_showfree_print(struct seq_file *m,
1447 pg_data_t *pgdat, struct zone *zone)
1448 {
1449 int order, mtype;
1450
1451 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1452 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1453 pgdat->node_id,
1454 zone->name,
1455 migratetype_names[mtype]);
1456 for (order = 0; order < MAX_ORDER; ++order) {
1457 unsigned long freecount = 0;
1458 struct free_area *area;
1459 struct list_head *curr;
1460 bool overflow = false;
1461
1462 area = &(zone->free_area[order]);
1463
1464 list_for_each(curr, &area->free_list[mtype]) {
1465 /*
1466 * Cap the free_list iteration because it might
1467 * be really large and we are under a spinlock
1468 * so a long time spent here could trigger a
1469 * hard lockup detector. Anyway this is a
1470 * debugging tool so knowing there is a handful
1471 * of pages of this order should be more than
1472 * sufficient.
1473 */
1474 if (++freecount >= 100000) {
1475 overflow = true;
1476 break;
1477 }
1478 }
1479 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1480 spin_unlock_irq(&zone->lock);
1481 cond_resched();
1482 spin_lock_irq(&zone->lock);
1483 }
1484 seq_putc(m, '\n');
1485 }
1486 }
1487
1488 /* Print out the free pages at each order for each migatetype */
1489 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1490 {
1491 int order;
1492 pg_data_t *pgdat = (pg_data_t *)arg;
1493
1494 /* Print header */
1495 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1496 for (order = 0; order < MAX_ORDER; ++order)
1497 seq_printf(m, "%6d ", order);
1498 seq_putc(m, '\n');
1499
1500 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1501
1502 return 0;
1503 }
1504
1505 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1506 pg_data_t *pgdat, struct zone *zone)
1507 {
1508 int mtype;
1509 unsigned long pfn;
1510 unsigned long start_pfn = zone->zone_start_pfn;
1511 unsigned long end_pfn = zone_end_pfn(zone);
1512 unsigned long count[MIGRATE_TYPES] = { 0, };
1513
1514 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1515 struct page *page;
1516
1517 page = pfn_to_online_page(pfn);
1518 if (!page)
1519 continue;
1520
1521 if (page_zone(page) != zone)
1522 continue;
1523
1524 mtype = get_pageblock_migratetype(page);
1525
1526 if (mtype < MIGRATE_TYPES)
1527 count[mtype]++;
1528 }
1529
1530 /* Print counts */
1531 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1532 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1533 seq_printf(m, "%12lu ", count[mtype]);
1534 seq_putc(m, '\n');
1535 }
1536
1537 /* Print out the number of pageblocks for each migratetype */
1538 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1539 {
1540 int mtype;
1541 pg_data_t *pgdat = (pg_data_t *)arg;
1542
1543 seq_printf(m, "\n%-23s", "Number of blocks type ");
1544 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1545 seq_printf(m, "%12s ", migratetype_names[mtype]);
1546 seq_putc(m, '\n');
1547 walk_zones_in_node(m, pgdat, true, false,
1548 pagetypeinfo_showblockcount_print);
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * Print out the number of pageblocks for each migratetype that contain pages
1555 * of other types. This gives an indication of how well fallbacks are being
1556 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1557 * to determine what is going on
1558 */
1559 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1560 {
1561 #ifdef CONFIG_PAGE_OWNER
1562 int mtype;
1563
1564 if (!static_branch_unlikely(&page_owner_inited))
1565 return;
1566
1567 drain_all_pages(NULL);
1568
1569 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1570 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1571 seq_printf(m, "%12s ", migratetype_names[mtype]);
1572 seq_putc(m, '\n');
1573
1574 walk_zones_in_node(m, pgdat, true, true,
1575 pagetypeinfo_showmixedcount_print);
1576 #endif /* CONFIG_PAGE_OWNER */
1577 }
1578
1579 /*
1580 * This prints out statistics in relation to grouping pages by mobility.
1581 * It is expensive to collect so do not constantly read the file.
1582 */
1583 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1584 {
1585 pg_data_t *pgdat = (pg_data_t *)arg;
1586
1587 /* check memoryless node */
1588 if (!node_state(pgdat->node_id, N_MEMORY))
1589 return 0;
1590
1591 seq_printf(m, "Page block order: %d\n", pageblock_order);
1592 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1593 seq_putc(m, '\n');
1594 pagetypeinfo_showfree(m, pgdat);
1595 pagetypeinfo_showblockcount(m, pgdat);
1596 pagetypeinfo_showmixedcount(m, pgdat);
1597
1598 return 0;
1599 }
1600
1601 static const struct seq_operations fragmentation_op = {
1602 .start = frag_start,
1603 .next = frag_next,
1604 .stop = frag_stop,
1605 .show = frag_show,
1606 };
1607
1608 static const struct seq_operations pagetypeinfo_op = {
1609 .start = frag_start,
1610 .next = frag_next,
1611 .stop = frag_stop,
1612 .show = pagetypeinfo_show,
1613 };
1614
1615 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1616 {
1617 int zid;
1618
1619 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1620 struct zone *compare = &pgdat->node_zones[zid];
1621
1622 if (populated_zone(compare))
1623 return zone == compare;
1624 }
1625
1626 return false;
1627 }
1628
1629 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1630 struct zone *zone)
1631 {
1632 int i;
1633 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1634 if (is_zone_first_populated(pgdat, zone)) {
1635 seq_printf(m, "\n per-node stats");
1636 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1637 unsigned long pages = node_page_state_pages(pgdat, i);
1638
1639 if (vmstat_item_print_in_thp(i))
1640 pages /= HPAGE_PMD_NR;
1641 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1642 pages);
1643 }
1644 }
1645 seq_printf(m,
1646 "\n pages free %lu"
1647 "\n min %lu"
1648 "\n low %lu"
1649 "\n high %lu"
1650 "\n spanned %lu"
1651 "\n present %lu"
1652 "\n managed %lu"
1653 "\n cma %lu",
1654 zone_page_state(zone, NR_FREE_PAGES),
1655 min_wmark_pages(zone),
1656 low_wmark_pages(zone),
1657 high_wmark_pages(zone),
1658 zone->spanned_pages,
1659 zone->present_pages,
1660 zone_managed_pages(zone),
1661 zone_cma_pages(zone));
1662
1663 seq_printf(m,
1664 "\n protection: (%ld",
1665 zone->lowmem_reserve[0]);
1666 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1667 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1668 seq_putc(m, ')');
1669
1670 /* If unpopulated, no other information is useful */
1671 if (!populated_zone(zone)) {
1672 seq_putc(m, '\n');
1673 return;
1674 }
1675
1676 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1677 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1678 zone_page_state(zone, i));
1679
1680 #ifdef CONFIG_NUMA
1681 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1682 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1683 zone_numa_state_snapshot(zone, i));
1684 #endif
1685
1686 seq_printf(m, "\n pagesets");
1687 for_each_online_cpu(i) {
1688 struct per_cpu_pageset *pageset;
1689
1690 pageset = per_cpu_ptr(zone->pageset, i);
1691 seq_printf(m,
1692 "\n cpu: %i"
1693 "\n count: %i"
1694 "\n high: %i"
1695 "\n batch: %i",
1696 i,
1697 pageset->pcp.count,
1698 pageset->pcp.high,
1699 pageset->pcp.batch);
1700 #ifdef CONFIG_SMP
1701 seq_printf(m, "\n vm stats threshold: %d",
1702 pageset->stat_threshold);
1703 #endif
1704 }
1705 seq_printf(m,
1706 "\n node_unreclaimable: %u"
1707 "\n start_pfn: %lu",
1708 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1709 zone->zone_start_pfn);
1710 seq_putc(m, '\n');
1711 }
1712
1713 /*
1714 * Output information about zones in @pgdat. All zones are printed regardless
1715 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1716 * set of all zones and userspace would not be aware of such zones if they are
1717 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1718 */
1719 static int zoneinfo_show(struct seq_file *m, void *arg)
1720 {
1721 pg_data_t *pgdat = (pg_data_t *)arg;
1722 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1723 return 0;
1724 }
1725
1726 static const struct seq_operations zoneinfo_op = {
1727 .start = frag_start, /* iterate over all zones. The same as in
1728 * fragmentation. */
1729 .next = frag_next,
1730 .stop = frag_stop,
1731 .show = zoneinfo_show,
1732 };
1733
1734 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1735 NR_VM_NUMA_STAT_ITEMS + \
1736 NR_VM_NODE_STAT_ITEMS + \
1737 NR_VM_WRITEBACK_STAT_ITEMS + \
1738 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1739 NR_VM_EVENT_ITEMS : 0))
1740
1741 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1742 {
1743 unsigned long *v;
1744 int i;
1745
1746 if (*pos >= NR_VMSTAT_ITEMS)
1747 return NULL;
1748
1749 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1750 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1751 m->private = v;
1752 if (!v)
1753 return ERR_PTR(-ENOMEM);
1754 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1755 v[i] = global_zone_page_state(i);
1756 v += NR_VM_ZONE_STAT_ITEMS;
1757
1758 #ifdef CONFIG_NUMA
1759 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1760 v[i] = global_numa_state(i);
1761 v += NR_VM_NUMA_STAT_ITEMS;
1762 #endif
1763
1764 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1765 v[i] = global_node_page_state_pages(i);
1766 if (vmstat_item_print_in_thp(i))
1767 v[i] /= HPAGE_PMD_NR;
1768 }
1769 v += NR_VM_NODE_STAT_ITEMS;
1770
1771 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1772 v + NR_DIRTY_THRESHOLD);
1773 v += NR_VM_WRITEBACK_STAT_ITEMS;
1774
1775 #ifdef CONFIG_VM_EVENT_COUNTERS
1776 all_vm_events(v);
1777 v[PGPGIN] /= 2; /* sectors -> kbytes */
1778 v[PGPGOUT] /= 2;
1779 #endif
1780 return (unsigned long *)m->private + *pos;
1781 }
1782
1783 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1784 {
1785 (*pos)++;
1786 if (*pos >= NR_VMSTAT_ITEMS)
1787 return NULL;
1788 return (unsigned long *)m->private + *pos;
1789 }
1790
1791 static int vmstat_show(struct seq_file *m, void *arg)
1792 {
1793 unsigned long *l = arg;
1794 unsigned long off = l - (unsigned long *)m->private;
1795
1796 seq_puts(m, vmstat_text[off]);
1797 seq_put_decimal_ull(m, " ", *l);
1798 seq_putc(m, '\n');
1799
1800 if (off == NR_VMSTAT_ITEMS - 1) {
1801 /*
1802 * We've come to the end - add any deprecated counters to avoid
1803 * breaking userspace which might depend on them being present.
1804 */
1805 seq_puts(m, "nr_unstable 0\n");
1806 }
1807 return 0;
1808 }
1809
1810 static void vmstat_stop(struct seq_file *m, void *arg)
1811 {
1812 kfree(m->private);
1813 m->private = NULL;
1814 }
1815
1816 static const struct seq_operations vmstat_op = {
1817 .start = vmstat_start,
1818 .next = vmstat_next,
1819 .stop = vmstat_stop,
1820 .show = vmstat_show,
1821 };
1822 #endif /* CONFIG_PROC_FS */
1823
1824 #ifdef CONFIG_SMP
1825 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1826 int sysctl_stat_interval __read_mostly = HZ;
1827
1828 #ifdef CONFIG_PROC_FS
1829 static void refresh_vm_stats(struct work_struct *work)
1830 {
1831 refresh_cpu_vm_stats(true);
1832 }
1833
1834 int vmstat_refresh(struct ctl_table *table, int write,
1835 void *buffer, size_t *lenp, loff_t *ppos)
1836 {
1837 long val;
1838 int err;
1839 int i;
1840
1841 /*
1842 * The regular update, every sysctl_stat_interval, may come later
1843 * than expected: leaving a significant amount in per_cpu buckets.
1844 * This is particularly misleading when checking a quantity of HUGE
1845 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1846 * which can equally be echo'ed to or cat'ted from (by root),
1847 * can be used to update the stats just before reading them.
1848 *
1849 * Oh, and since global_zone_page_state() etc. are so careful to hide
1850 * transiently negative values, report an error here if any of
1851 * the stats is negative, so we know to go looking for imbalance.
1852 */
1853 err = schedule_on_each_cpu(refresh_vm_stats);
1854 if (err)
1855 return err;
1856 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1857 val = atomic_long_read(&vm_zone_stat[i]);
1858 if (val < 0) {
1859 pr_warn("%s: %s %ld\n",
1860 __func__, zone_stat_name(i), val);
1861 err = -EINVAL;
1862 }
1863 }
1864 #ifdef CONFIG_NUMA
1865 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1866 val = atomic_long_read(&vm_numa_stat[i]);
1867 if (val < 0) {
1868 pr_warn("%s: %s %ld\n",
1869 __func__, numa_stat_name(i), val);
1870 err = -EINVAL;
1871 }
1872 }
1873 #endif
1874 if (err)
1875 return err;
1876 if (write)
1877 *ppos += *lenp;
1878 else
1879 *lenp = 0;
1880 return 0;
1881 }
1882 #endif /* CONFIG_PROC_FS */
1883
1884 static void vmstat_update(struct work_struct *w)
1885 {
1886 if (refresh_cpu_vm_stats(true)) {
1887 /*
1888 * Counters were updated so we expect more updates
1889 * to occur in the future. Keep on running the
1890 * update worker thread.
1891 */
1892 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1893 this_cpu_ptr(&vmstat_work),
1894 round_jiffies_relative(sysctl_stat_interval));
1895 }
1896 }
1897
1898 /*
1899 * Switch off vmstat processing and then fold all the remaining differentials
1900 * until the diffs stay at zero. The function is used by NOHZ and can only be
1901 * invoked when tick processing is not active.
1902 */
1903 /*
1904 * Check if the diffs for a certain cpu indicate that
1905 * an update is needed.
1906 */
1907 static bool need_update(int cpu)
1908 {
1909 pg_data_t *last_pgdat = NULL;
1910 struct zone *zone;
1911
1912 for_each_populated_zone(zone) {
1913 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1914 struct per_cpu_nodestat *n;
1915 /*
1916 * The fast way of checking if there are any vmstat diffs.
1917 */
1918 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1919 sizeof(p->vm_stat_diff[0])))
1920 return true;
1921 #ifdef CONFIG_NUMA
1922 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1923 sizeof(p->vm_numa_stat_diff[0])))
1924 return true;
1925 #endif
1926 if (last_pgdat == zone->zone_pgdat)
1927 continue;
1928 last_pgdat = zone->zone_pgdat;
1929 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1930 if (memchr_inv(n->vm_node_stat_diff, 0, NR_VM_NODE_STAT_ITEMS *
1931 sizeof(n->vm_node_stat_diff[0])))
1932 return true;
1933 }
1934 return false;
1935 }
1936
1937 /*
1938 * Switch off vmstat processing and then fold all the remaining differentials
1939 * until the diffs stay at zero. The function is used by NOHZ and can only be
1940 * invoked when tick processing is not active.
1941 */
1942 void quiet_vmstat(void)
1943 {
1944 if (system_state != SYSTEM_RUNNING)
1945 return;
1946
1947 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1948 return;
1949
1950 if (!need_update(smp_processor_id()))
1951 return;
1952
1953 /*
1954 * Just refresh counters and do not care about the pending delayed
1955 * vmstat_update. It doesn't fire that often to matter and canceling
1956 * it would be too expensive from this path.
1957 * vmstat_shepherd will take care about that for us.
1958 */
1959 refresh_cpu_vm_stats(false);
1960 }
1961
1962 /*
1963 * Shepherd worker thread that checks the
1964 * differentials of processors that have their worker
1965 * threads for vm statistics updates disabled because of
1966 * inactivity.
1967 */
1968 static void vmstat_shepherd(struct work_struct *w);
1969
1970 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1971
1972 static void vmstat_shepherd(struct work_struct *w)
1973 {
1974 int cpu;
1975
1976 get_online_cpus();
1977 /* Check processors whose vmstat worker threads have been disabled */
1978 for_each_online_cpu(cpu) {
1979 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1980
1981 if (!delayed_work_pending(dw) && need_update(cpu))
1982 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1983
1984 cond_resched();
1985 }
1986 put_online_cpus();
1987
1988 schedule_delayed_work(&shepherd,
1989 round_jiffies_relative(sysctl_stat_interval));
1990 }
1991
1992 static void __init start_shepherd_timer(void)
1993 {
1994 int cpu;
1995
1996 for_each_possible_cpu(cpu)
1997 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1998 vmstat_update);
1999
2000 schedule_delayed_work(&shepherd,
2001 round_jiffies_relative(sysctl_stat_interval));
2002 }
2003
2004 static void __init init_cpu_node_state(void)
2005 {
2006 int node;
2007
2008 for_each_online_node(node) {
2009 if (cpumask_weight(cpumask_of_node(node)) > 0)
2010 node_set_state(node, N_CPU);
2011 }
2012 }
2013
2014 static int vmstat_cpu_online(unsigned int cpu)
2015 {
2016 refresh_zone_stat_thresholds();
2017 node_set_state(cpu_to_node(cpu), N_CPU);
2018 return 0;
2019 }
2020
2021 static int vmstat_cpu_down_prep(unsigned int cpu)
2022 {
2023 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2024 return 0;
2025 }
2026
2027 static int vmstat_cpu_dead(unsigned int cpu)
2028 {
2029 const struct cpumask *node_cpus;
2030 int node;
2031
2032 node = cpu_to_node(cpu);
2033
2034 refresh_zone_stat_thresholds();
2035 node_cpus = cpumask_of_node(node);
2036 if (cpumask_weight(node_cpus) > 0)
2037 return 0;
2038
2039 node_clear_state(node, N_CPU);
2040 return 0;
2041 }
2042
2043 #endif
2044
2045 struct workqueue_struct *mm_percpu_wq;
2046
2047 void __init init_mm_internals(void)
2048 {
2049 int ret __maybe_unused;
2050
2051 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2052
2053 #ifdef CONFIG_SMP
2054 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2055 NULL, vmstat_cpu_dead);
2056 if (ret < 0)
2057 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2058
2059 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2060 vmstat_cpu_online,
2061 vmstat_cpu_down_prep);
2062 if (ret < 0)
2063 pr_err("vmstat: failed to register 'online' hotplug state\n");
2064
2065 get_online_cpus();
2066 init_cpu_node_state();
2067 put_online_cpus();
2068
2069 start_shepherd_timer();
2070 #endif
2071 #ifdef CONFIG_PROC_FS
2072 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2073 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2074 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2075 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2076 #endif
2077 }
2078
2079 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2080
2081 /*
2082 * Return an index indicating how much of the available free memory is
2083 * unusable for an allocation of the requested size.
2084 */
2085 static int unusable_free_index(unsigned int order,
2086 struct contig_page_info *info)
2087 {
2088 /* No free memory is interpreted as all free memory is unusable */
2089 if (info->free_pages == 0)
2090 return 1000;
2091
2092 /*
2093 * Index should be a value between 0 and 1. Return a value to 3
2094 * decimal places.
2095 *
2096 * 0 => no fragmentation
2097 * 1 => high fragmentation
2098 */
2099 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2100
2101 }
2102
2103 static void unusable_show_print(struct seq_file *m,
2104 pg_data_t *pgdat, struct zone *zone)
2105 {
2106 unsigned int order;
2107 int index;
2108 struct contig_page_info info;
2109
2110 seq_printf(m, "Node %d, zone %8s ",
2111 pgdat->node_id,
2112 zone->name);
2113 for (order = 0; order < MAX_ORDER; ++order) {
2114 fill_contig_page_info(zone, order, &info);
2115 index = unusable_free_index(order, &info);
2116 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2117 }
2118
2119 seq_putc(m, '\n');
2120 }
2121
2122 /*
2123 * Display unusable free space index
2124 *
2125 * The unusable free space index measures how much of the available free
2126 * memory cannot be used to satisfy an allocation of a given size and is a
2127 * value between 0 and 1. The higher the value, the more of free memory is
2128 * unusable and by implication, the worse the external fragmentation is. This
2129 * can be expressed as a percentage by multiplying by 100.
2130 */
2131 static int unusable_show(struct seq_file *m, void *arg)
2132 {
2133 pg_data_t *pgdat = (pg_data_t *)arg;
2134
2135 /* check memoryless node */
2136 if (!node_state(pgdat->node_id, N_MEMORY))
2137 return 0;
2138
2139 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2140
2141 return 0;
2142 }
2143
2144 static const struct seq_operations unusable_sops = {
2145 .start = frag_start,
2146 .next = frag_next,
2147 .stop = frag_stop,
2148 .show = unusable_show,
2149 };
2150
2151 DEFINE_SEQ_ATTRIBUTE(unusable);
2152
2153 static void extfrag_show_print(struct seq_file *m,
2154 pg_data_t *pgdat, struct zone *zone)
2155 {
2156 unsigned int order;
2157 int index;
2158
2159 /* Alloc on stack as interrupts are disabled for zone walk */
2160 struct contig_page_info info;
2161
2162 seq_printf(m, "Node %d, zone %8s ",
2163 pgdat->node_id,
2164 zone->name);
2165 for (order = 0; order < MAX_ORDER; ++order) {
2166 fill_contig_page_info(zone, order, &info);
2167 index = __fragmentation_index(order, &info);
2168 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2169 }
2170
2171 seq_putc(m, '\n');
2172 }
2173
2174 /*
2175 * Display fragmentation index for orders that allocations would fail for
2176 */
2177 static int extfrag_show(struct seq_file *m, void *arg)
2178 {
2179 pg_data_t *pgdat = (pg_data_t *)arg;
2180
2181 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2182
2183 return 0;
2184 }
2185
2186 static const struct seq_operations extfrag_sops = {
2187 .start = frag_start,
2188 .next = frag_next,
2189 .stop = frag_stop,
2190 .show = extfrag_show,
2191 };
2192
2193 DEFINE_SEQ_ATTRIBUTE(extfrag);
2194
2195 static int __init extfrag_debug_init(void)
2196 {
2197 struct dentry *extfrag_debug_root;
2198
2199 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2200
2201 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2202 &unusable_fops);
2203
2204 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2205 &extfrag_fops);
2206
2207 return 0;
2208 }
2209
2210 module_init(extfrag_debug_init);
2211 #endif