]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmstat.c
PCI: aardvark: Fix support for PME requester on emulated bridge
[mirror_ubuntu-jammy-kernel.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49 }
50
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
69 static void invalid_numa_statistics(void)
70 {
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79 {
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100 out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110 static void sum_vm_events(unsigned long *ret)
111 {
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123 }
124
125 /*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144 void vm_events_fold_cpu(int cpu)
145 {
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_SMP
169
170 int calculate_pressure_threshold(struct zone *zone)
171 {
172 int threshold;
173 int watermark_distance;
174
175 /*
176 * As vmstats are not up to date, there is drift between the estimated
177 * and real values. For high thresholds and a high number of CPUs, it
178 * is possible for the min watermark to be breached while the estimated
179 * value looks fine. The pressure threshold is a reduced value such
180 * that even the maximum amount of drift will not accidentally breach
181 * the min watermark
182 */
183 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
185
186 /*
187 * Maximum threshold is 125
188 */
189 threshold = min(125, threshold);
190
191 return threshold;
192 }
193
194 int calculate_normal_threshold(struct zone *zone)
195 {
196 int threshold;
197 int mem; /* memory in 128 MB units */
198
199 /*
200 * The threshold scales with the number of processors and the amount
201 * of memory per zone. More memory means that we can defer updates for
202 * longer, more processors could lead to more contention.
203 * fls() is used to have a cheap way of logarithmic scaling.
204 *
205 * Some sample thresholds:
206 *
207 * Threshold Processors (fls) Zonesize fls(mem)+1
208 * ------------------------------------------------------------------
209 * 8 1 1 0.9-1 GB 4
210 * 16 2 2 0.9-1 GB 4
211 * 20 2 2 1-2 GB 5
212 * 24 2 2 2-4 GB 6
213 * 28 2 2 4-8 GB 7
214 * 32 2 2 8-16 GB 8
215 * 4 2 2 <128M 1
216 * 30 4 3 2-4 GB 5
217 * 48 4 3 8-16 GB 8
218 * 32 8 4 1-2 GB 4
219 * 32 8 4 0.9-1GB 4
220 * 10 16 5 <128M 1
221 * 40 16 5 900M 4
222 * 70 64 7 2-4 GB 5
223 * 84 64 7 4-8 GB 6
224 * 108 512 9 4-8 GB 6
225 * 125 1024 10 8-16 GB 8
226 * 125 1024 10 16-32 GB 9
227 */
228
229 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
230
231 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
232
233 /*
234 * Maximum threshold is 125
235 */
236 threshold = min(125, threshold);
237
238 return threshold;
239 }
240
241 /*
242 * Refresh the thresholds for each zone.
243 */
244 void refresh_zone_stat_thresholds(void)
245 {
246 struct pglist_data *pgdat;
247 struct zone *zone;
248 int cpu;
249 int threshold;
250
251 /* Zero current pgdat thresholds */
252 for_each_online_pgdat(pgdat) {
253 for_each_online_cpu(cpu) {
254 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
255 }
256 }
257
258 for_each_populated_zone(zone) {
259 struct pglist_data *pgdat = zone->zone_pgdat;
260 unsigned long max_drift, tolerate_drift;
261
262 threshold = calculate_normal_threshold(zone);
263
264 for_each_online_cpu(cpu) {
265 int pgdat_threshold;
266
267 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
268 = threshold;
269
270 /* Base nodestat threshold on the largest populated zone. */
271 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 = max(threshold, pgdat_threshold);
274 }
275
276 /*
277 * Only set percpu_drift_mark if there is a danger that
278 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 * the min watermark could be breached by an allocation
280 */
281 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 max_drift = num_online_cpus() * threshold;
283 if (max_drift > tolerate_drift)
284 zone->percpu_drift_mark = high_wmark_pages(zone) +
285 max_drift;
286 }
287 }
288
289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 int (*calculate_pressure)(struct zone *))
291 {
292 struct zone *zone;
293 int cpu;
294 int threshold;
295 int i;
296
297 for (i = 0; i < pgdat->nr_zones; i++) {
298 zone = &pgdat->node_zones[i];
299 if (!zone->percpu_drift_mark)
300 continue;
301
302 threshold = (*calculate_pressure)(zone);
303 for_each_online_cpu(cpu)
304 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
305 = threshold;
306 }
307 }
308
309 /*
310 * For use when we know that interrupts are disabled,
311 * or when we know that preemption is disabled and that
312 * particular counter cannot be updated from interrupt context.
313 */
314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
315 long delta)
316 {
317 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 s8 __percpu *p = pcp->vm_stat_diff + item;
319 long x;
320 long t;
321
322 /*
323 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
324 * atomicity is provided by IRQs being disabled -- either explicitly
325 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
326 * CPU migrations and preemption potentially corrupts a counter so
327 * disable preemption.
328 */
329 if (IS_ENABLED(CONFIG_PREEMPT_RT))
330 preempt_disable();
331
332 x = delta + __this_cpu_read(*p);
333
334 t = __this_cpu_read(pcp->stat_threshold);
335
336 if (unlikely(abs(x) > t)) {
337 zone_page_state_add(x, zone, item);
338 x = 0;
339 }
340 __this_cpu_write(*p, x);
341
342 if (IS_ENABLED(CONFIG_PREEMPT_RT))
343 preempt_enable();
344 }
345 EXPORT_SYMBOL(__mod_zone_page_state);
346
347 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
348 long delta)
349 {
350 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
351 s8 __percpu *p = pcp->vm_node_stat_diff + item;
352 long x;
353 long t;
354
355 if (vmstat_item_in_bytes(item)) {
356 /*
357 * Only cgroups use subpage accounting right now; at
358 * the global level, these items still change in
359 * multiples of whole pages. Store them as pages
360 * internally to keep the per-cpu counters compact.
361 */
362 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
363 delta >>= PAGE_SHIFT;
364 }
365
366 /* See __mod_node_page_state */
367 if (IS_ENABLED(CONFIG_PREEMPT_RT))
368 preempt_disable();
369
370 x = delta + __this_cpu_read(*p);
371
372 t = __this_cpu_read(pcp->stat_threshold);
373
374 if (unlikely(abs(x) > t)) {
375 node_page_state_add(x, pgdat, item);
376 x = 0;
377 }
378 __this_cpu_write(*p, x);
379
380 if (IS_ENABLED(CONFIG_PREEMPT_RT))
381 preempt_enable();
382 }
383 EXPORT_SYMBOL(__mod_node_page_state);
384
385 /*
386 * Optimized increment and decrement functions.
387 *
388 * These are only for a single page and therefore can take a struct page *
389 * argument instead of struct zone *. This allows the inclusion of the code
390 * generated for page_zone(page) into the optimized functions.
391 *
392 * No overflow check is necessary and therefore the differential can be
393 * incremented or decremented in place which may allow the compilers to
394 * generate better code.
395 * The increment or decrement is known and therefore one boundary check can
396 * be omitted.
397 *
398 * NOTE: These functions are very performance sensitive. Change only
399 * with care.
400 *
401 * Some processors have inc/dec instructions that are atomic vs an interrupt.
402 * However, the code must first determine the differential location in a zone
403 * based on the processor number and then inc/dec the counter. There is no
404 * guarantee without disabling preemption that the processor will not change
405 * in between and therefore the atomicity vs. interrupt cannot be exploited
406 * in a useful way here.
407 */
408 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
409 {
410 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
411 s8 __percpu *p = pcp->vm_stat_diff + item;
412 s8 v, t;
413
414 /* See __mod_node_page_state */
415 if (IS_ENABLED(CONFIG_PREEMPT_RT))
416 preempt_disable();
417
418 v = __this_cpu_inc_return(*p);
419 t = __this_cpu_read(pcp->stat_threshold);
420 if (unlikely(v > t)) {
421 s8 overstep = t >> 1;
422
423 zone_page_state_add(v + overstep, zone, item);
424 __this_cpu_write(*p, -overstep);
425 }
426
427 if (IS_ENABLED(CONFIG_PREEMPT_RT))
428 preempt_enable();
429 }
430
431 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
432 {
433 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
434 s8 __percpu *p = pcp->vm_node_stat_diff + item;
435 s8 v, t;
436
437 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
438
439 /* See __mod_node_page_state */
440 if (IS_ENABLED(CONFIG_PREEMPT_RT))
441 preempt_disable();
442
443 v = __this_cpu_inc_return(*p);
444 t = __this_cpu_read(pcp->stat_threshold);
445 if (unlikely(v > t)) {
446 s8 overstep = t >> 1;
447
448 node_page_state_add(v + overstep, pgdat, item);
449 __this_cpu_write(*p, -overstep);
450 }
451
452 if (IS_ENABLED(CONFIG_PREEMPT_RT))
453 preempt_enable();
454 }
455
456 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
457 {
458 __inc_zone_state(page_zone(page), item);
459 }
460 EXPORT_SYMBOL(__inc_zone_page_state);
461
462 void __inc_node_page_state(struct page *page, enum node_stat_item item)
463 {
464 __inc_node_state(page_pgdat(page), item);
465 }
466 EXPORT_SYMBOL(__inc_node_page_state);
467
468 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
469 {
470 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
471 s8 __percpu *p = pcp->vm_stat_diff + item;
472 s8 v, t;
473
474 /* See __mod_node_page_state */
475 if (IS_ENABLED(CONFIG_PREEMPT_RT))
476 preempt_disable();
477
478 v = __this_cpu_dec_return(*p);
479 t = __this_cpu_read(pcp->stat_threshold);
480 if (unlikely(v < - t)) {
481 s8 overstep = t >> 1;
482
483 zone_page_state_add(v - overstep, zone, item);
484 __this_cpu_write(*p, overstep);
485 }
486
487 if (IS_ENABLED(CONFIG_PREEMPT_RT))
488 preempt_enable();
489 }
490
491 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
492 {
493 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
494 s8 __percpu *p = pcp->vm_node_stat_diff + item;
495 s8 v, t;
496
497 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
498
499 /* See __mod_node_page_state */
500 if (IS_ENABLED(CONFIG_PREEMPT_RT))
501 preempt_disable();
502
503 v = __this_cpu_dec_return(*p);
504 t = __this_cpu_read(pcp->stat_threshold);
505 if (unlikely(v < - t)) {
506 s8 overstep = t >> 1;
507
508 node_page_state_add(v - overstep, pgdat, item);
509 __this_cpu_write(*p, overstep);
510 }
511
512 if (IS_ENABLED(CONFIG_PREEMPT_RT))
513 preempt_enable();
514 }
515
516 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
517 {
518 __dec_zone_state(page_zone(page), item);
519 }
520 EXPORT_SYMBOL(__dec_zone_page_state);
521
522 void __dec_node_page_state(struct page *page, enum node_stat_item item)
523 {
524 __dec_node_state(page_pgdat(page), item);
525 }
526 EXPORT_SYMBOL(__dec_node_page_state);
527
528 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
529 /*
530 * If we have cmpxchg_local support then we do not need to incur the overhead
531 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
532 *
533 * mod_state() modifies the zone counter state through atomic per cpu
534 * operations.
535 *
536 * Overstep mode specifies how overstep should handled:
537 * 0 No overstepping
538 * 1 Overstepping half of threshold
539 * -1 Overstepping minus half of threshold
540 */
541 static inline void mod_zone_state(struct zone *zone,
542 enum zone_stat_item item, long delta, int overstep_mode)
543 {
544 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
545 s8 __percpu *p = pcp->vm_stat_diff + item;
546 long o, n, t, z;
547
548 do {
549 z = 0; /* overflow to zone counters */
550
551 /*
552 * The fetching of the stat_threshold is racy. We may apply
553 * a counter threshold to the wrong the cpu if we get
554 * rescheduled while executing here. However, the next
555 * counter update will apply the threshold again and
556 * therefore bring the counter under the threshold again.
557 *
558 * Most of the time the thresholds are the same anyways
559 * for all cpus in a zone.
560 */
561 t = this_cpu_read(pcp->stat_threshold);
562
563 o = this_cpu_read(*p);
564 n = delta + o;
565
566 if (abs(n) > t) {
567 int os = overstep_mode * (t >> 1) ;
568
569 /* Overflow must be added to zone counters */
570 z = n + os;
571 n = -os;
572 }
573 } while (this_cpu_cmpxchg(*p, o, n) != o);
574
575 if (z)
576 zone_page_state_add(z, zone, item);
577 }
578
579 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
580 long delta)
581 {
582 mod_zone_state(zone, item, delta, 0);
583 }
584 EXPORT_SYMBOL(mod_zone_page_state);
585
586 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
587 {
588 mod_zone_state(page_zone(page), item, 1, 1);
589 }
590 EXPORT_SYMBOL(inc_zone_page_state);
591
592 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
593 {
594 mod_zone_state(page_zone(page), item, -1, -1);
595 }
596 EXPORT_SYMBOL(dec_zone_page_state);
597
598 static inline void mod_node_state(struct pglist_data *pgdat,
599 enum node_stat_item item, int delta, int overstep_mode)
600 {
601 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
602 s8 __percpu *p = pcp->vm_node_stat_diff + item;
603 long o, n, t, z;
604
605 if (vmstat_item_in_bytes(item)) {
606 /*
607 * Only cgroups use subpage accounting right now; at
608 * the global level, these items still change in
609 * multiples of whole pages. Store them as pages
610 * internally to keep the per-cpu counters compact.
611 */
612 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
613 delta >>= PAGE_SHIFT;
614 }
615
616 do {
617 z = 0; /* overflow to node counters */
618
619 /*
620 * The fetching of the stat_threshold is racy. We may apply
621 * a counter threshold to the wrong the cpu if we get
622 * rescheduled while executing here. However, the next
623 * counter update will apply the threshold again and
624 * therefore bring the counter under the threshold again.
625 *
626 * Most of the time the thresholds are the same anyways
627 * for all cpus in a node.
628 */
629 t = this_cpu_read(pcp->stat_threshold);
630
631 o = this_cpu_read(*p);
632 n = delta + o;
633
634 if (abs(n) > t) {
635 int os = overstep_mode * (t >> 1) ;
636
637 /* Overflow must be added to node counters */
638 z = n + os;
639 n = -os;
640 }
641 } while (this_cpu_cmpxchg(*p, o, n) != o);
642
643 if (z)
644 node_page_state_add(z, pgdat, item);
645 }
646
647 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
648 long delta)
649 {
650 mod_node_state(pgdat, item, delta, 0);
651 }
652 EXPORT_SYMBOL(mod_node_page_state);
653
654 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
655 {
656 mod_node_state(pgdat, item, 1, 1);
657 }
658
659 void inc_node_page_state(struct page *page, enum node_stat_item item)
660 {
661 mod_node_state(page_pgdat(page), item, 1, 1);
662 }
663 EXPORT_SYMBOL(inc_node_page_state);
664
665 void dec_node_page_state(struct page *page, enum node_stat_item item)
666 {
667 mod_node_state(page_pgdat(page), item, -1, -1);
668 }
669 EXPORT_SYMBOL(dec_node_page_state);
670 #else
671 /*
672 * Use interrupt disable to serialize counter updates
673 */
674 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
675 long delta)
676 {
677 unsigned long flags;
678
679 local_irq_save(flags);
680 __mod_zone_page_state(zone, item, delta);
681 local_irq_restore(flags);
682 }
683 EXPORT_SYMBOL(mod_zone_page_state);
684
685 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
686 {
687 unsigned long flags;
688 struct zone *zone;
689
690 zone = page_zone(page);
691 local_irq_save(flags);
692 __inc_zone_state(zone, item);
693 local_irq_restore(flags);
694 }
695 EXPORT_SYMBOL(inc_zone_page_state);
696
697 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
698 {
699 unsigned long flags;
700
701 local_irq_save(flags);
702 __dec_zone_page_state(page, item);
703 local_irq_restore(flags);
704 }
705 EXPORT_SYMBOL(dec_zone_page_state);
706
707 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
708 {
709 unsigned long flags;
710
711 local_irq_save(flags);
712 __inc_node_state(pgdat, item);
713 local_irq_restore(flags);
714 }
715 EXPORT_SYMBOL(inc_node_state);
716
717 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
718 long delta)
719 {
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __mod_node_page_state(pgdat, item, delta);
724 local_irq_restore(flags);
725 }
726 EXPORT_SYMBOL(mod_node_page_state);
727
728 void inc_node_page_state(struct page *page, enum node_stat_item item)
729 {
730 unsigned long flags;
731 struct pglist_data *pgdat;
732
733 pgdat = page_pgdat(page);
734 local_irq_save(flags);
735 __inc_node_state(pgdat, item);
736 local_irq_restore(flags);
737 }
738 EXPORT_SYMBOL(inc_node_page_state);
739
740 void dec_node_page_state(struct page *page, enum node_stat_item item)
741 {
742 unsigned long flags;
743
744 local_irq_save(flags);
745 __dec_node_page_state(page, item);
746 local_irq_restore(flags);
747 }
748 EXPORT_SYMBOL(dec_node_page_state);
749 #endif
750
751 /*
752 * Fold a differential into the global counters.
753 * Returns the number of counters updated.
754 */
755 static int fold_diff(int *zone_diff, int *node_diff)
756 {
757 int i;
758 int changes = 0;
759
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
761 if (zone_diff[i]) {
762 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
763 changes++;
764 }
765
766 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
767 if (node_diff[i]) {
768 atomic_long_add(node_diff[i], &vm_node_stat[i]);
769 changes++;
770 }
771 return changes;
772 }
773
774 #ifdef CONFIG_NUMA
775 static void fold_vm_zone_numa_events(struct zone *zone)
776 {
777 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
778 int cpu;
779 enum numa_stat_item item;
780
781 for_each_online_cpu(cpu) {
782 struct per_cpu_zonestat *pzstats;
783
784 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
785 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
786 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
787 }
788
789 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
790 zone_numa_event_add(zone_numa_events[item], zone, item);
791 }
792
793 void fold_vm_numa_events(void)
794 {
795 struct zone *zone;
796
797 for_each_populated_zone(zone)
798 fold_vm_zone_numa_events(zone);
799 }
800 #endif
801
802 /*
803 * Update the zone counters for the current cpu.
804 *
805 * Note that refresh_cpu_vm_stats strives to only access
806 * node local memory. The per cpu pagesets on remote zones are placed
807 * in the memory local to the processor using that pageset. So the
808 * loop over all zones will access a series of cachelines local to
809 * the processor.
810 *
811 * The call to zone_page_state_add updates the cachelines with the
812 * statistics in the remote zone struct as well as the global cachelines
813 * with the global counters. These could cause remote node cache line
814 * bouncing and will have to be only done when necessary.
815 *
816 * The function returns the number of global counters updated.
817 */
818 static int refresh_cpu_vm_stats(bool do_pagesets)
819 {
820 struct pglist_data *pgdat;
821 struct zone *zone;
822 int i;
823 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
825 int changes = 0;
826
827 for_each_populated_zone(zone) {
828 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
829 #ifdef CONFIG_NUMA
830 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
831 #endif
832
833 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
834 int v;
835
836 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
837 if (v) {
838
839 atomic_long_add(v, &zone->vm_stat[i]);
840 global_zone_diff[i] += v;
841 #ifdef CONFIG_NUMA
842 /* 3 seconds idle till flush */
843 __this_cpu_write(pcp->expire, 3);
844 #endif
845 }
846 }
847 #ifdef CONFIG_NUMA
848
849 if (do_pagesets) {
850 cond_resched();
851 /*
852 * Deal with draining the remote pageset of this
853 * processor
854 *
855 * Check if there are pages remaining in this pageset
856 * if not then there is nothing to expire.
857 */
858 if (!__this_cpu_read(pcp->expire) ||
859 !__this_cpu_read(pcp->count))
860 continue;
861
862 /*
863 * We never drain zones local to this processor.
864 */
865 if (zone_to_nid(zone) == numa_node_id()) {
866 __this_cpu_write(pcp->expire, 0);
867 continue;
868 }
869
870 if (__this_cpu_dec_return(pcp->expire))
871 continue;
872
873 if (__this_cpu_read(pcp->count)) {
874 drain_zone_pages(zone, this_cpu_ptr(pcp));
875 changes++;
876 }
877 }
878 #endif
879 }
880
881 for_each_online_pgdat(pgdat) {
882 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
883
884 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
885 int v;
886
887 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
888 if (v) {
889 atomic_long_add(v, &pgdat->vm_stat[i]);
890 global_node_diff[i] += v;
891 }
892 }
893 }
894
895 changes += fold_diff(global_zone_diff, global_node_diff);
896 return changes;
897 }
898
899 /*
900 * Fold the data for an offline cpu into the global array.
901 * There cannot be any access by the offline cpu and therefore
902 * synchronization is simplified.
903 */
904 void cpu_vm_stats_fold(int cpu)
905 {
906 struct pglist_data *pgdat;
907 struct zone *zone;
908 int i;
909 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
911
912 for_each_populated_zone(zone) {
913 struct per_cpu_zonestat *pzstats;
914
915 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 if (pzstats->vm_stat_diff[i]) {
919 int v;
920
921 v = pzstats->vm_stat_diff[i];
922 pzstats->vm_stat_diff[i] = 0;
923 atomic_long_add(v, &zone->vm_stat[i]);
924 global_zone_diff[i] += v;
925 }
926 }
927 #ifdef CONFIG_NUMA
928 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 if (pzstats->vm_numa_event[i]) {
930 unsigned long v;
931
932 v = pzstats->vm_numa_event[i];
933 pzstats->vm_numa_event[i] = 0;
934 zone_numa_event_add(v, zone, i);
935 }
936 }
937 #endif
938 }
939
940 for_each_online_pgdat(pgdat) {
941 struct per_cpu_nodestat *p;
942
943 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
944
945 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 if (p->vm_node_stat_diff[i]) {
947 int v;
948
949 v = p->vm_node_stat_diff[i];
950 p->vm_node_stat_diff[i] = 0;
951 atomic_long_add(v, &pgdat->vm_stat[i]);
952 global_node_diff[i] += v;
953 }
954 }
955
956 fold_diff(global_zone_diff, global_node_diff);
957 }
958
959 /*
960 * this is only called if !populated_zone(zone), which implies no other users of
961 * pset->vm_stat_diff[] exist.
962 */
963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
964 {
965 unsigned long v;
966 int i;
967
968 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 if (pzstats->vm_stat_diff[i]) {
970 v = pzstats->vm_stat_diff[i];
971 pzstats->vm_stat_diff[i] = 0;
972 zone_page_state_add(v, zone, i);
973 }
974 }
975
976 #ifdef CONFIG_NUMA
977 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 if (pzstats->vm_numa_event[i]) {
979 v = pzstats->vm_numa_event[i];
980 pzstats->vm_numa_event[i] = 0;
981 zone_numa_event_add(v, zone, i);
982 }
983 }
984 #endif
985 }
986 #endif
987
988 #ifdef CONFIG_NUMA
989 /*
990 * Determine the per node value of a stat item. This function
991 * is called frequently in a NUMA machine, so try to be as
992 * frugal as possible.
993 */
994 unsigned long sum_zone_node_page_state(int node,
995 enum zone_stat_item item)
996 {
997 struct zone *zones = NODE_DATA(node)->node_zones;
998 int i;
999 unsigned long count = 0;
1000
1001 for (i = 0; i < MAX_NR_ZONES; i++)
1002 count += zone_page_state(zones + i, item);
1003
1004 return count;
1005 }
1006
1007 /* Determine the per node value of a numa stat item. */
1008 unsigned long sum_zone_numa_event_state(int node,
1009 enum numa_stat_item item)
1010 {
1011 struct zone *zones = NODE_DATA(node)->node_zones;
1012 unsigned long count = 0;
1013 int i;
1014
1015 for (i = 0; i < MAX_NR_ZONES; i++)
1016 count += zone_numa_event_state(zones + i, item);
1017
1018 return count;
1019 }
1020
1021 /*
1022 * Determine the per node value of a stat item.
1023 */
1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1026 {
1027 long x = atomic_long_read(&pgdat->vm_stat[item]);
1028 #ifdef CONFIG_SMP
1029 if (x < 0)
1030 x = 0;
1031 #endif
1032 return x;
1033 }
1034
1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 enum node_stat_item item)
1037 {
1038 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1039
1040 return node_page_state_pages(pgdat, item);
1041 }
1042 #endif
1043
1044 #ifdef CONFIG_COMPACTION
1045
1046 struct contig_page_info {
1047 unsigned long free_pages;
1048 unsigned long free_blocks_total;
1049 unsigned long free_blocks_suitable;
1050 };
1051
1052 /*
1053 * Calculate the number of free pages in a zone, how many contiguous
1054 * pages are free and how many are large enough to satisfy an allocation of
1055 * the target size. Note that this function makes no attempt to estimate
1056 * how many suitable free blocks there *might* be if MOVABLE pages were
1057 * migrated. Calculating that is possible, but expensive and can be
1058 * figured out from userspace
1059 */
1060 static void fill_contig_page_info(struct zone *zone,
1061 unsigned int suitable_order,
1062 struct contig_page_info *info)
1063 {
1064 unsigned int order;
1065
1066 info->free_pages = 0;
1067 info->free_blocks_total = 0;
1068 info->free_blocks_suitable = 0;
1069
1070 for (order = 0; order < MAX_ORDER; order++) {
1071 unsigned long blocks;
1072
1073 /* Count number of free blocks */
1074 blocks = zone->free_area[order].nr_free;
1075 info->free_blocks_total += blocks;
1076
1077 /* Count free base pages */
1078 info->free_pages += blocks << order;
1079
1080 /* Count the suitable free blocks */
1081 if (order >= suitable_order)
1082 info->free_blocks_suitable += blocks <<
1083 (order - suitable_order);
1084 }
1085 }
1086
1087 /*
1088 * A fragmentation index only makes sense if an allocation of a requested
1089 * size would fail. If that is true, the fragmentation index indicates
1090 * whether external fragmentation or a lack of memory was the problem.
1091 * The value can be used to determine if page reclaim or compaction
1092 * should be used
1093 */
1094 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1095 {
1096 unsigned long requested = 1UL << order;
1097
1098 if (WARN_ON_ONCE(order >= MAX_ORDER))
1099 return 0;
1100
1101 if (!info->free_blocks_total)
1102 return 0;
1103
1104 /* Fragmentation index only makes sense when a request would fail */
1105 if (info->free_blocks_suitable)
1106 return -1000;
1107
1108 /*
1109 * Index is between 0 and 1 so return within 3 decimal places
1110 *
1111 * 0 => allocation would fail due to lack of memory
1112 * 1 => allocation would fail due to fragmentation
1113 */
1114 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1115 }
1116
1117 /*
1118 * Calculates external fragmentation within a zone wrt the given order.
1119 * It is defined as the percentage of pages found in blocks of size
1120 * less than 1 << order. It returns values in range [0, 100].
1121 */
1122 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1123 {
1124 struct contig_page_info info;
1125
1126 fill_contig_page_info(zone, order, &info);
1127 if (info.free_pages == 0)
1128 return 0;
1129
1130 return div_u64((info.free_pages -
1131 (info.free_blocks_suitable << order)) * 100,
1132 info.free_pages);
1133 }
1134
1135 /* Same as __fragmentation index but allocs contig_page_info on stack */
1136 int fragmentation_index(struct zone *zone, unsigned int order)
1137 {
1138 struct contig_page_info info;
1139
1140 fill_contig_page_info(zone, order, &info);
1141 return __fragmentation_index(order, &info);
1142 }
1143 #endif
1144
1145 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1146 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1147 #ifdef CONFIG_ZONE_DMA
1148 #define TEXT_FOR_DMA(xx) xx "_dma",
1149 #else
1150 #define TEXT_FOR_DMA(xx)
1151 #endif
1152
1153 #ifdef CONFIG_ZONE_DMA32
1154 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1155 #else
1156 #define TEXT_FOR_DMA32(xx)
1157 #endif
1158
1159 #ifdef CONFIG_HIGHMEM
1160 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1161 #else
1162 #define TEXT_FOR_HIGHMEM(xx)
1163 #endif
1164
1165 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1167
1168 const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1170 "nr_free_pages",
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1177 "nr_mlock",
1178 "nr_bounce",
1179 #if IS_ENABLED(CONFIG_ZSMALLOC)
1180 "nr_zspages",
1181 #endif
1182 "nr_free_cma",
1183
1184 /* enum numa_stat_item counters */
1185 #ifdef CONFIG_NUMA
1186 "numa_hit",
1187 "numa_miss",
1188 "numa_foreign",
1189 "numa_interleave",
1190 "numa_local",
1191 "numa_other",
1192 #endif
1193
1194 /* enum node_stat_item counters */
1195 "nr_inactive_anon",
1196 "nr_active_anon",
1197 "nr_inactive_file",
1198 "nr_active_file",
1199 "nr_unevictable",
1200 "nr_slab_reclaimable",
1201 "nr_slab_unreclaimable",
1202 "nr_isolated_anon",
1203 "nr_isolated_file",
1204 "workingset_nodes",
1205 "workingset_refault_anon",
1206 "workingset_refault_file",
1207 "workingset_activate_anon",
1208 "workingset_activate_file",
1209 "workingset_restore_anon",
1210 "workingset_restore_file",
1211 "workingset_nodereclaim",
1212 "nr_anon_pages",
1213 "nr_mapped",
1214 "nr_file_pages",
1215 "nr_dirty",
1216 "nr_writeback",
1217 "nr_writeback_temp",
1218 "nr_shmem",
1219 "nr_shmem_hugepages",
1220 "nr_shmem_pmdmapped",
1221 "nr_file_hugepages",
1222 "nr_file_pmdmapped",
1223 "nr_anon_transparent_hugepages",
1224 "nr_vmscan_write",
1225 "nr_vmscan_immediate_reclaim",
1226 "nr_dirtied",
1227 "nr_written",
1228 "nr_kernel_misc_reclaimable",
1229 "nr_foll_pin_acquired",
1230 "nr_foll_pin_released",
1231 "nr_kernel_stack",
1232 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1233 "nr_shadow_call_stack",
1234 #endif
1235 "nr_page_table_pages",
1236 #ifdef CONFIG_SWAP
1237 "nr_swapcached",
1238 #endif
1239
1240 /* enum writeback_stat_item counters */
1241 "nr_dirty_threshold",
1242 "nr_dirty_background_threshold",
1243
1244 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1245 /* enum vm_event_item counters */
1246 "pgpgin",
1247 "pgpgout",
1248 "pswpin",
1249 "pswpout",
1250
1251 TEXTS_FOR_ZONES("pgalloc")
1252 TEXTS_FOR_ZONES("allocstall")
1253 TEXTS_FOR_ZONES("pgskip")
1254
1255 "pgfree",
1256 "pgactivate",
1257 "pgdeactivate",
1258 "pglazyfree",
1259
1260 "pgfault",
1261 "pgmajfault",
1262 "pglazyfreed",
1263
1264 "pgrefill",
1265 "pgreuse",
1266 "pgsteal_kswapd",
1267 "pgsteal_direct",
1268 "pgdemote_kswapd",
1269 "pgdemote_direct",
1270 "pgscan_kswapd",
1271 "pgscan_direct",
1272 "pgscan_direct_throttle",
1273 "pgscan_anon",
1274 "pgscan_file",
1275 "pgsteal_anon",
1276 "pgsteal_file",
1277
1278 #ifdef CONFIG_NUMA
1279 "zone_reclaim_failed",
1280 #endif
1281 "pginodesteal",
1282 "slabs_scanned",
1283 "kswapd_inodesteal",
1284 "kswapd_low_wmark_hit_quickly",
1285 "kswapd_high_wmark_hit_quickly",
1286 "pageoutrun",
1287
1288 "pgrotated",
1289
1290 "drop_pagecache",
1291 "drop_slab",
1292 "oom_kill",
1293
1294 #ifdef CONFIG_NUMA_BALANCING
1295 "numa_pte_updates",
1296 "numa_huge_pte_updates",
1297 "numa_hint_faults",
1298 "numa_hint_faults_local",
1299 "numa_pages_migrated",
1300 #endif
1301 #ifdef CONFIG_MIGRATION
1302 "pgmigrate_success",
1303 "pgmigrate_fail",
1304 "thp_migration_success",
1305 "thp_migration_fail",
1306 "thp_migration_split",
1307 #endif
1308 #ifdef CONFIG_COMPACTION
1309 "compact_migrate_scanned",
1310 "compact_free_scanned",
1311 "compact_isolated",
1312 "compact_stall",
1313 "compact_fail",
1314 "compact_success",
1315 "compact_daemon_wake",
1316 "compact_daemon_migrate_scanned",
1317 "compact_daemon_free_scanned",
1318 #endif
1319
1320 #ifdef CONFIG_HUGETLB_PAGE
1321 "htlb_buddy_alloc_success",
1322 "htlb_buddy_alloc_fail",
1323 #endif
1324 #ifdef CONFIG_CMA
1325 "cma_alloc_success",
1326 "cma_alloc_fail",
1327 #endif
1328 "unevictable_pgs_culled",
1329 "unevictable_pgs_scanned",
1330 "unevictable_pgs_rescued",
1331 "unevictable_pgs_mlocked",
1332 "unevictable_pgs_munlocked",
1333 "unevictable_pgs_cleared",
1334 "unevictable_pgs_stranded",
1335
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 "thp_fault_alloc",
1338 "thp_fault_fallback",
1339 "thp_fault_fallback_charge",
1340 "thp_collapse_alloc",
1341 "thp_collapse_alloc_failed",
1342 "thp_file_alloc",
1343 "thp_file_fallback",
1344 "thp_file_fallback_charge",
1345 "thp_file_mapped",
1346 "thp_split_page",
1347 "thp_split_page_failed",
1348 "thp_deferred_split_page",
1349 "thp_split_pmd",
1350 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1351 "thp_split_pud",
1352 #endif
1353 "thp_zero_page_alloc",
1354 "thp_zero_page_alloc_failed",
1355 "thp_swpout",
1356 "thp_swpout_fallback",
1357 #endif
1358 #ifdef CONFIG_MEMORY_BALLOON
1359 "balloon_inflate",
1360 "balloon_deflate",
1361 #ifdef CONFIG_BALLOON_COMPACTION
1362 "balloon_migrate",
1363 #endif
1364 #endif /* CONFIG_MEMORY_BALLOON */
1365 #ifdef CONFIG_DEBUG_TLBFLUSH
1366 "nr_tlb_remote_flush",
1367 "nr_tlb_remote_flush_received",
1368 "nr_tlb_local_flush_all",
1369 "nr_tlb_local_flush_one",
1370 #endif /* CONFIG_DEBUG_TLBFLUSH */
1371
1372 #ifdef CONFIG_DEBUG_VM_VMACACHE
1373 "vmacache_find_calls",
1374 "vmacache_find_hits",
1375 #endif
1376 #ifdef CONFIG_SWAP
1377 "swap_ra",
1378 "swap_ra_hit",
1379 #endif
1380 #ifdef CONFIG_X86
1381 "direct_map_level2_splits",
1382 "direct_map_level3_splits",
1383 #endif
1384 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1385 };
1386 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1387
1388 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1389 defined(CONFIG_PROC_FS)
1390 static void *frag_start(struct seq_file *m, loff_t *pos)
1391 {
1392 pg_data_t *pgdat;
1393 loff_t node = *pos;
1394
1395 for (pgdat = first_online_pgdat();
1396 pgdat && node;
1397 pgdat = next_online_pgdat(pgdat))
1398 --node;
1399
1400 return pgdat;
1401 }
1402
1403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1404 {
1405 pg_data_t *pgdat = (pg_data_t *)arg;
1406
1407 (*pos)++;
1408 return next_online_pgdat(pgdat);
1409 }
1410
1411 static void frag_stop(struct seq_file *m, void *arg)
1412 {
1413 }
1414
1415 /*
1416 * Walk zones in a node and print using a callback.
1417 * If @assert_populated is true, only use callback for zones that are populated.
1418 */
1419 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1420 bool assert_populated, bool nolock,
1421 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1422 {
1423 struct zone *zone;
1424 struct zone *node_zones = pgdat->node_zones;
1425 unsigned long flags;
1426
1427 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1428 if (assert_populated && !populated_zone(zone))
1429 continue;
1430
1431 if (!nolock)
1432 spin_lock_irqsave(&zone->lock, flags);
1433 print(m, pgdat, zone);
1434 if (!nolock)
1435 spin_unlock_irqrestore(&zone->lock, flags);
1436 }
1437 }
1438 #endif
1439
1440 #ifdef CONFIG_PROC_FS
1441 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1442 struct zone *zone)
1443 {
1444 int order;
1445
1446 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1447 for (order = 0; order < MAX_ORDER; ++order)
1448 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1449 seq_putc(m, '\n');
1450 }
1451
1452 /*
1453 * This walks the free areas for each zone.
1454 */
1455 static int frag_show(struct seq_file *m, void *arg)
1456 {
1457 pg_data_t *pgdat = (pg_data_t *)arg;
1458 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1459 return 0;
1460 }
1461
1462 static void pagetypeinfo_showfree_print(struct seq_file *m,
1463 pg_data_t *pgdat, struct zone *zone)
1464 {
1465 int order, mtype;
1466
1467 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1468 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1469 pgdat->node_id,
1470 zone->name,
1471 migratetype_names[mtype]);
1472 for (order = 0; order < MAX_ORDER; ++order) {
1473 unsigned long freecount = 0;
1474 struct free_area *area;
1475 struct list_head *curr;
1476 bool overflow = false;
1477
1478 area = &(zone->free_area[order]);
1479
1480 list_for_each(curr, &area->free_list[mtype]) {
1481 /*
1482 * Cap the free_list iteration because it might
1483 * be really large and we are under a spinlock
1484 * so a long time spent here could trigger a
1485 * hard lockup detector. Anyway this is a
1486 * debugging tool so knowing there is a handful
1487 * of pages of this order should be more than
1488 * sufficient.
1489 */
1490 if (++freecount >= 100000) {
1491 overflow = true;
1492 break;
1493 }
1494 }
1495 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1496 spin_unlock_irq(&zone->lock);
1497 cond_resched();
1498 spin_lock_irq(&zone->lock);
1499 }
1500 seq_putc(m, '\n');
1501 }
1502 }
1503
1504 /* Print out the free pages at each order for each migatetype */
1505 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1506 {
1507 int order;
1508 pg_data_t *pgdat = (pg_data_t *)arg;
1509
1510 /* Print header */
1511 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1512 for (order = 0; order < MAX_ORDER; ++order)
1513 seq_printf(m, "%6d ", order);
1514 seq_putc(m, '\n');
1515
1516 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1517 }
1518
1519 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1520 pg_data_t *pgdat, struct zone *zone)
1521 {
1522 int mtype;
1523 unsigned long pfn;
1524 unsigned long start_pfn = zone->zone_start_pfn;
1525 unsigned long end_pfn = zone_end_pfn(zone);
1526 unsigned long count[MIGRATE_TYPES] = { 0, };
1527
1528 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1529 struct page *page;
1530
1531 page = pfn_to_online_page(pfn);
1532 if (!page)
1533 continue;
1534
1535 if (page_zone(page) != zone)
1536 continue;
1537
1538 mtype = get_pageblock_migratetype(page);
1539
1540 if (mtype < MIGRATE_TYPES)
1541 count[mtype]++;
1542 }
1543
1544 /* Print counts */
1545 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1546 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1547 seq_printf(m, "%12lu ", count[mtype]);
1548 seq_putc(m, '\n');
1549 }
1550
1551 /* Print out the number of pageblocks for each migratetype */
1552 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1553 {
1554 int mtype;
1555 pg_data_t *pgdat = (pg_data_t *)arg;
1556
1557 seq_printf(m, "\n%-23s", "Number of blocks type ");
1558 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1559 seq_printf(m, "%12s ", migratetype_names[mtype]);
1560 seq_putc(m, '\n');
1561 walk_zones_in_node(m, pgdat, true, false,
1562 pagetypeinfo_showblockcount_print);
1563 }
1564
1565 /*
1566 * Print out the number of pageblocks for each migratetype that contain pages
1567 * of other types. This gives an indication of how well fallbacks are being
1568 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1569 * to determine what is going on
1570 */
1571 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1572 {
1573 #ifdef CONFIG_PAGE_OWNER
1574 int mtype;
1575
1576 if (!static_branch_unlikely(&page_owner_inited))
1577 return;
1578
1579 drain_all_pages(NULL);
1580
1581 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1582 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1583 seq_printf(m, "%12s ", migratetype_names[mtype]);
1584 seq_putc(m, '\n');
1585
1586 walk_zones_in_node(m, pgdat, true, true,
1587 pagetypeinfo_showmixedcount_print);
1588 #endif /* CONFIG_PAGE_OWNER */
1589 }
1590
1591 /*
1592 * This prints out statistics in relation to grouping pages by mobility.
1593 * It is expensive to collect so do not constantly read the file.
1594 */
1595 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1596 {
1597 pg_data_t *pgdat = (pg_data_t *)arg;
1598
1599 /* check memoryless node */
1600 if (!node_state(pgdat->node_id, N_MEMORY))
1601 return 0;
1602
1603 seq_printf(m, "Page block order: %d\n", pageblock_order);
1604 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1605 seq_putc(m, '\n');
1606 pagetypeinfo_showfree(m, pgdat);
1607 pagetypeinfo_showblockcount(m, pgdat);
1608 pagetypeinfo_showmixedcount(m, pgdat);
1609
1610 return 0;
1611 }
1612
1613 static const struct seq_operations fragmentation_op = {
1614 .start = frag_start,
1615 .next = frag_next,
1616 .stop = frag_stop,
1617 .show = frag_show,
1618 };
1619
1620 static const struct seq_operations pagetypeinfo_op = {
1621 .start = frag_start,
1622 .next = frag_next,
1623 .stop = frag_stop,
1624 .show = pagetypeinfo_show,
1625 };
1626
1627 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1628 {
1629 int zid;
1630
1631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1632 struct zone *compare = &pgdat->node_zones[zid];
1633
1634 if (populated_zone(compare))
1635 return zone == compare;
1636 }
1637
1638 return false;
1639 }
1640
1641 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1642 struct zone *zone)
1643 {
1644 int i;
1645 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1646 if (is_zone_first_populated(pgdat, zone)) {
1647 seq_printf(m, "\n per-node stats");
1648 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1649 unsigned long pages = node_page_state_pages(pgdat, i);
1650
1651 if (vmstat_item_print_in_thp(i))
1652 pages /= HPAGE_PMD_NR;
1653 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1654 pages);
1655 }
1656 }
1657 seq_printf(m,
1658 "\n pages free %lu"
1659 "\n min %lu"
1660 "\n low %lu"
1661 "\n high %lu"
1662 "\n spanned %lu"
1663 "\n present %lu"
1664 "\n managed %lu"
1665 "\n cma %lu",
1666 zone_page_state(zone, NR_FREE_PAGES),
1667 min_wmark_pages(zone),
1668 low_wmark_pages(zone),
1669 high_wmark_pages(zone),
1670 zone->spanned_pages,
1671 zone->present_pages,
1672 zone_managed_pages(zone),
1673 zone_cma_pages(zone));
1674
1675 seq_printf(m,
1676 "\n protection: (%ld",
1677 zone->lowmem_reserve[0]);
1678 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1679 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1680 seq_putc(m, ')');
1681
1682 /* If unpopulated, no other information is useful */
1683 if (!populated_zone(zone)) {
1684 seq_putc(m, '\n');
1685 return;
1686 }
1687
1688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1689 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1690 zone_page_state(zone, i));
1691
1692 #ifdef CONFIG_NUMA
1693 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1694 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1695 zone_numa_event_state(zone, i));
1696 #endif
1697
1698 seq_printf(m, "\n pagesets");
1699 for_each_online_cpu(i) {
1700 struct per_cpu_pages *pcp;
1701 struct per_cpu_zonestat __maybe_unused *pzstats;
1702
1703 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1704 seq_printf(m,
1705 "\n cpu: %i"
1706 "\n count: %i"
1707 "\n high: %i"
1708 "\n batch: %i",
1709 i,
1710 pcp->count,
1711 pcp->high,
1712 pcp->batch);
1713 #ifdef CONFIG_SMP
1714 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1715 seq_printf(m, "\n vm stats threshold: %d",
1716 pzstats->stat_threshold);
1717 #endif
1718 }
1719 seq_printf(m,
1720 "\n node_unreclaimable: %u"
1721 "\n start_pfn: %lu",
1722 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1723 zone->zone_start_pfn);
1724 seq_putc(m, '\n');
1725 }
1726
1727 /*
1728 * Output information about zones in @pgdat. All zones are printed regardless
1729 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1730 * set of all zones and userspace would not be aware of such zones if they are
1731 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1732 */
1733 static int zoneinfo_show(struct seq_file *m, void *arg)
1734 {
1735 pg_data_t *pgdat = (pg_data_t *)arg;
1736 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1737 return 0;
1738 }
1739
1740 static const struct seq_operations zoneinfo_op = {
1741 .start = frag_start, /* iterate over all zones. The same as in
1742 * fragmentation. */
1743 .next = frag_next,
1744 .stop = frag_stop,
1745 .show = zoneinfo_show,
1746 };
1747
1748 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1749 NR_VM_NUMA_EVENT_ITEMS + \
1750 NR_VM_NODE_STAT_ITEMS + \
1751 NR_VM_WRITEBACK_STAT_ITEMS + \
1752 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1753 NR_VM_EVENT_ITEMS : 0))
1754
1755 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1756 {
1757 unsigned long *v;
1758 int i;
1759
1760 if (*pos >= NR_VMSTAT_ITEMS)
1761 return NULL;
1762
1763 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1764 fold_vm_numa_events();
1765 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1766 m->private = v;
1767 if (!v)
1768 return ERR_PTR(-ENOMEM);
1769 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1770 v[i] = global_zone_page_state(i);
1771 v += NR_VM_ZONE_STAT_ITEMS;
1772
1773 #ifdef CONFIG_NUMA
1774 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1775 v[i] = global_numa_event_state(i);
1776 v += NR_VM_NUMA_EVENT_ITEMS;
1777 #endif
1778
1779 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1780 v[i] = global_node_page_state_pages(i);
1781 if (vmstat_item_print_in_thp(i))
1782 v[i] /= HPAGE_PMD_NR;
1783 }
1784 v += NR_VM_NODE_STAT_ITEMS;
1785
1786 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1787 v + NR_DIRTY_THRESHOLD);
1788 v += NR_VM_WRITEBACK_STAT_ITEMS;
1789
1790 #ifdef CONFIG_VM_EVENT_COUNTERS
1791 all_vm_events(v);
1792 v[PGPGIN] /= 2; /* sectors -> kbytes */
1793 v[PGPGOUT] /= 2;
1794 #endif
1795 return (unsigned long *)m->private + *pos;
1796 }
1797
1798 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1799 {
1800 (*pos)++;
1801 if (*pos >= NR_VMSTAT_ITEMS)
1802 return NULL;
1803 return (unsigned long *)m->private + *pos;
1804 }
1805
1806 static int vmstat_show(struct seq_file *m, void *arg)
1807 {
1808 unsigned long *l = arg;
1809 unsigned long off = l - (unsigned long *)m->private;
1810
1811 seq_puts(m, vmstat_text[off]);
1812 seq_put_decimal_ull(m, " ", *l);
1813 seq_putc(m, '\n');
1814
1815 if (off == NR_VMSTAT_ITEMS - 1) {
1816 /*
1817 * We've come to the end - add any deprecated counters to avoid
1818 * breaking userspace which might depend on them being present.
1819 */
1820 seq_puts(m, "nr_unstable 0\n");
1821 }
1822 return 0;
1823 }
1824
1825 static void vmstat_stop(struct seq_file *m, void *arg)
1826 {
1827 kfree(m->private);
1828 m->private = NULL;
1829 }
1830
1831 static const struct seq_operations vmstat_op = {
1832 .start = vmstat_start,
1833 .next = vmstat_next,
1834 .stop = vmstat_stop,
1835 .show = vmstat_show,
1836 };
1837 #endif /* CONFIG_PROC_FS */
1838
1839 #ifdef CONFIG_SMP
1840 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1841 int sysctl_stat_interval __read_mostly = HZ;
1842
1843 #ifdef CONFIG_PROC_FS
1844 static void refresh_vm_stats(struct work_struct *work)
1845 {
1846 refresh_cpu_vm_stats(true);
1847 }
1848
1849 int vmstat_refresh(struct ctl_table *table, int write,
1850 void *buffer, size_t *lenp, loff_t *ppos)
1851 {
1852 long val;
1853 int err;
1854 int i;
1855
1856 /*
1857 * The regular update, every sysctl_stat_interval, may come later
1858 * than expected: leaving a significant amount in per_cpu buckets.
1859 * This is particularly misleading when checking a quantity of HUGE
1860 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1861 * which can equally be echo'ed to or cat'ted from (by root),
1862 * can be used to update the stats just before reading them.
1863 *
1864 * Oh, and since global_zone_page_state() etc. are so careful to hide
1865 * transiently negative values, report an error here if any of
1866 * the stats is negative, so we know to go looking for imbalance.
1867 */
1868 err = schedule_on_each_cpu(refresh_vm_stats);
1869 if (err)
1870 return err;
1871 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1872 /*
1873 * Skip checking stats known to go negative occasionally.
1874 */
1875 switch (i) {
1876 case NR_ZONE_WRITE_PENDING:
1877 case NR_FREE_CMA_PAGES:
1878 continue;
1879 }
1880 val = atomic_long_read(&vm_zone_stat[i]);
1881 if (val < 0) {
1882 pr_warn("%s: %s %ld\n",
1883 __func__, zone_stat_name(i), val);
1884 }
1885 }
1886 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1887 /*
1888 * Skip checking stats known to go negative occasionally.
1889 */
1890 switch (i) {
1891 case NR_WRITEBACK:
1892 continue;
1893 }
1894 val = atomic_long_read(&vm_node_stat[i]);
1895 if (val < 0) {
1896 pr_warn("%s: %s %ld\n",
1897 __func__, node_stat_name(i), val);
1898 }
1899 }
1900 if (write)
1901 *ppos += *lenp;
1902 else
1903 *lenp = 0;
1904 return 0;
1905 }
1906 #endif /* CONFIG_PROC_FS */
1907
1908 static void vmstat_update(struct work_struct *w)
1909 {
1910 if (refresh_cpu_vm_stats(true)) {
1911 /*
1912 * Counters were updated so we expect more updates
1913 * to occur in the future. Keep on running the
1914 * update worker thread.
1915 */
1916 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1917 this_cpu_ptr(&vmstat_work),
1918 round_jiffies_relative(sysctl_stat_interval));
1919 }
1920 }
1921
1922 /*
1923 * Check if the diffs for a certain cpu indicate that
1924 * an update is needed.
1925 */
1926 static bool need_update(int cpu)
1927 {
1928 pg_data_t *last_pgdat = NULL;
1929 struct zone *zone;
1930
1931 for_each_populated_zone(zone) {
1932 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1933 struct per_cpu_nodestat *n;
1934
1935 /*
1936 * The fast way of checking if there are any vmstat diffs.
1937 */
1938 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1939 return true;
1940
1941 if (last_pgdat == zone->zone_pgdat)
1942 continue;
1943 last_pgdat = zone->zone_pgdat;
1944 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1945 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1946 return true;
1947 }
1948 return false;
1949 }
1950
1951 /*
1952 * Switch off vmstat processing and then fold all the remaining differentials
1953 * until the diffs stay at zero. The function is used by NOHZ and can only be
1954 * invoked when tick processing is not active.
1955 */
1956 void quiet_vmstat(void)
1957 {
1958 if (system_state != SYSTEM_RUNNING)
1959 return;
1960
1961 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1962 return;
1963
1964 if (!need_update(smp_processor_id()))
1965 return;
1966
1967 /*
1968 * Just refresh counters and do not care about the pending delayed
1969 * vmstat_update. It doesn't fire that often to matter and canceling
1970 * it would be too expensive from this path.
1971 * vmstat_shepherd will take care about that for us.
1972 */
1973 refresh_cpu_vm_stats(false);
1974 }
1975
1976 /*
1977 * Shepherd worker thread that checks the
1978 * differentials of processors that have their worker
1979 * threads for vm statistics updates disabled because of
1980 * inactivity.
1981 */
1982 static void vmstat_shepherd(struct work_struct *w);
1983
1984 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1985
1986 static void vmstat_shepherd(struct work_struct *w)
1987 {
1988 int cpu;
1989
1990 cpus_read_lock();
1991 /* Check processors whose vmstat worker threads have been disabled */
1992 for_each_online_cpu(cpu) {
1993 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1994
1995 if (!delayed_work_pending(dw) && need_update(cpu))
1996 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1997
1998 cond_resched();
1999 }
2000 cpus_read_unlock();
2001
2002 schedule_delayed_work(&shepherd,
2003 round_jiffies_relative(sysctl_stat_interval));
2004 }
2005
2006 static void __init start_shepherd_timer(void)
2007 {
2008 int cpu;
2009
2010 for_each_possible_cpu(cpu)
2011 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2012 vmstat_update);
2013
2014 schedule_delayed_work(&shepherd,
2015 round_jiffies_relative(sysctl_stat_interval));
2016 }
2017
2018 static void __init init_cpu_node_state(void)
2019 {
2020 int node;
2021
2022 for_each_online_node(node) {
2023 if (cpumask_weight(cpumask_of_node(node)) > 0)
2024 node_set_state(node, N_CPU);
2025 }
2026 }
2027
2028 static int vmstat_cpu_online(unsigned int cpu)
2029 {
2030 refresh_zone_stat_thresholds();
2031 node_set_state(cpu_to_node(cpu), N_CPU);
2032 return 0;
2033 }
2034
2035 static int vmstat_cpu_down_prep(unsigned int cpu)
2036 {
2037 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2038 return 0;
2039 }
2040
2041 static int vmstat_cpu_dead(unsigned int cpu)
2042 {
2043 const struct cpumask *node_cpus;
2044 int node;
2045
2046 node = cpu_to_node(cpu);
2047
2048 refresh_zone_stat_thresholds();
2049 node_cpus = cpumask_of_node(node);
2050 if (cpumask_weight(node_cpus) > 0)
2051 return 0;
2052
2053 node_clear_state(node, N_CPU);
2054 return 0;
2055 }
2056
2057 #endif
2058
2059 struct workqueue_struct *mm_percpu_wq;
2060
2061 void __init init_mm_internals(void)
2062 {
2063 int ret __maybe_unused;
2064
2065 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2066
2067 #ifdef CONFIG_SMP
2068 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2069 NULL, vmstat_cpu_dead);
2070 if (ret < 0)
2071 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2072
2073 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2074 vmstat_cpu_online,
2075 vmstat_cpu_down_prep);
2076 if (ret < 0)
2077 pr_err("vmstat: failed to register 'online' hotplug state\n");
2078
2079 cpus_read_lock();
2080 init_cpu_node_state();
2081 cpus_read_unlock();
2082
2083 start_shepherd_timer();
2084 #endif
2085 #ifdef CONFIG_PROC_FS
2086 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2087 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2088 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2089 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2090 #endif
2091 }
2092
2093 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2094
2095 /*
2096 * Return an index indicating how much of the available free memory is
2097 * unusable for an allocation of the requested size.
2098 */
2099 static int unusable_free_index(unsigned int order,
2100 struct contig_page_info *info)
2101 {
2102 /* No free memory is interpreted as all free memory is unusable */
2103 if (info->free_pages == 0)
2104 return 1000;
2105
2106 /*
2107 * Index should be a value between 0 and 1. Return a value to 3
2108 * decimal places.
2109 *
2110 * 0 => no fragmentation
2111 * 1 => high fragmentation
2112 */
2113 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2114
2115 }
2116
2117 static void unusable_show_print(struct seq_file *m,
2118 pg_data_t *pgdat, struct zone *zone)
2119 {
2120 unsigned int order;
2121 int index;
2122 struct contig_page_info info;
2123
2124 seq_printf(m, "Node %d, zone %8s ",
2125 pgdat->node_id,
2126 zone->name);
2127 for (order = 0; order < MAX_ORDER; ++order) {
2128 fill_contig_page_info(zone, order, &info);
2129 index = unusable_free_index(order, &info);
2130 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2131 }
2132
2133 seq_putc(m, '\n');
2134 }
2135
2136 /*
2137 * Display unusable free space index
2138 *
2139 * The unusable free space index measures how much of the available free
2140 * memory cannot be used to satisfy an allocation of a given size and is a
2141 * value between 0 and 1. The higher the value, the more of free memory is
2142 * unusable and by implication, the worse the external fragmentation is. This
2143 * can be expressed as a percentage by multiplying by 100.
2144 */
2145 static int unusable_show(struct seq_file *m, void *arg)
2146 {
2147 pg_data_t *pgdat = (pg_data_t *)arg;
2148
2149 /* check memoryless node */
2150 if (!node_state(pgdat->node_id, N_MEMORY))
2151 return 0;
2152
2153 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2154
2155 return 0;
2156 }
2157
2158 static const struct seq_operations unusable_sops = {
2159 .start = frag_start,
2160 .next = frag_next,
2161 .stop = frag_stop,
2162 .show = unusable_show,
2163 };
2164
2165 DEFINE_SEQ_ATTRIBUTE(unusable);
2166
2167 static void extfrag_show_print(struct seq_file *m,
2168 pg_data_t *pgdat, struct zone *zone)
2169 {
2170 unsigned int order;
2171 int index;
2172
2173 /* Alloc on stack as interrupts are disabled for zone walk */
2174 struct contig_page_info info;
2175
2176 seq_printf(m, "Node %d, zone %8s ",
2177 pgdat->node_id,
2178 zone->name);
2179 for (order = 0; order < MAX_ORDER; ++order) {
2180 fill_contig_page_info(zone, order, &info);
2181 index = __fragmentation_index(order, &info);
2182 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2183 }
2184
2185 seq_putc(m, '\n');
2186 }
2187
2188 /*
2189 * Display fragmentation index for orders that allocations would fail for
2190 */
2191 static int extfrag_show(struct seq_file *m, void *arg)
2192 {
2193 pg_data_t *pgdat = (pg_data_t *)arg;
2194
2195 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2196
2197 return 0;
2198 }
2199
2200 static const struct seq_operations extfrag_sops = {
2201 .start = frag_start,
2202 .next = frag_next,
2203 .stop = frag_stop,
2204 .show = extfrag_show,
2205 };
2206
2207 DEFINE_SEQ_ATTRIBUTE(extfrag);
2208
2209 static int __init extfrag_debug_init(void)
2210 {
2211 struct dentry *extfrag_debug_root;
2212
2213 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2214
2215 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2216 &unusable_fops);
2217
2218 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2219 &extfrag_fops);
2220
2221 return 0;
2222 }
2223
2224 module_init(extfrag_debug_init);
2225 #endif