]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmstat.c
mm/vmstat: make node_page_state() handles all zones by itself
[mirror_ubuntu-bionic-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50 }
51
52 /*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71 void vm_events_fold_cpu(int cpu)
72 {
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163 }
164
165 /*
166 * Refresh the thresholds for each zone.
167 */
168 void refresh_zone_stat_thresholds(void)
169 {
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198 {
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214 }
215
216 /*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 long delta)
223 {
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone, enum zone_stat_item item,
322 long delta, int overstep_mode)
323 {
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 long delta)
361 {
362 mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384 * Use interrupt disable to serialize counter updates
385 */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 long delta)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434 static int fold_diff(int *diff)
435 {
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445 }
446
447 /*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463 static int refresh_cpu_vm_stats(bool do_pagesets)
464 {
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
485 }
486 }
487 #ifdef CONFIG_NUMA
488 if (do_pagesets) {
489 cond_resched();
490 /*
491 * Deal with draining the remote pageset of this
492 * processor
493 *
494 * Check if there are pages remaining in this pageset
495 * if not then there is nothing to expire.
496 */
497 if (!__this_cpu_read(p->expire) ||
498 !__this_cpu_read(p->pcp.count))
499 continue;
500
501 /*
502 * We never drain zones local to this processor.
503 */
504 if (zone_to_nid(zone) == numa_node_id()) {
505 __this_cpu_write(p->expire, 0);
506 continue;
507 }
508
509 if (__this_cpu_dec_return(p->expire))
510 continue;
511
512 if (__this_cpu_read(p->pcp.count)) {
513 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
514 changes++;
515 }
516 }
517 #endif
518 }
519 changes += fold_diff(global_diff);
520 return changes;
521 }
522
523 /*
524 * Fold the data for an offline cpu into the global array.
525 * There cannot be any access by the offline cpu and therefore
526 * synchronization is simplified.
527 */
528 void cpu_vm_stats_fold(int cpu)
529 {
530 struct zone *zone;
531 int i;
532 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
533
534 for_each_populated_zone(zone) {
535 struct per_cpu_pageset *p;
536
537 p = per_cpu_ptr(zone->pageset, cpu);
538
539 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
540 if (p->vm_stat_diff[i]) {
541 int v;
542
543 v = p->vm_stat_diff[i];
544 p->vm_stat_diff[i] = 0;
545 atomic_long_add(v, &zone->vm_stat[i]);
546 global_diff[i] += v;
547 }
548 }
549
550 fold_diff(global_diff);
551 }
552
553 /*
554 * this is only called if !populated_zone(zone), which implies no other users of
555 * pset->vm_stat_diff[] exsist.
556 */
557 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
558 {
559 int i;
560
561 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
562 if (pset->vm_stat_diff[i]) {
563 int v = pset->vm_stat_diff[i];
564 pset->vm_stat_diff[i] = 0;
565 atomic_long_add(v, &zone->vm_stat[i]);
566 atomic_long_add(v, &vm_stat[i]);
567 }
568 }
569 #endif
570
571 #ifdef CONFIG_NUMA
572 /*
573 * zonelist = the list of zones passed to the allocator
574 * z = the zone from which the allocation occurred.
575 *
576 * Must be called with interrupts disabled.
577 *
578 * When __GFP_OTHER_NODE is set assume the node of the preferred
579 * zone is the local node. This is useful for daemons who allocate
580 * memory on behalf of other processes.
581 */
582 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
583 {
584 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
585 __inc_zone_state(z, NUMA_HIT);
586 } else {
587 __inc_zone_state(z, NUMA_MISS);
588 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
589 }
590 if (z->node == ((flags & __GFP_OTHER_NODE) ?
591 preferred_zone->node : numa_node_id()))
592 __inc_zone_state(z, NUMA_LOCAL);
593 else
594 __inc_zone_state(z, NUMA_OTHER);
595 }
596
597 /*
598 * Determine the per node value of a stat item.
599 */
600 unsigned long node_page_state(int node, enum zone_stat_item item)
601 {
602 struct zone *zones = NODE_DATA(node)->node_zones;
603 int i;
604 unsigned long count = 0;
605
606 for (i = 0; i < MAX_NR_ZONES; i++)
607 count += zone_page_state(zones + i, item);
608
609 return count;
610 }
611
612 #endif
613
614 #ifdef CONFIG_COMPACTION
615
616 struct contig_page_info {
617 unsigned long free_pages;
618 unsigned long free_blocks_total;
619 unsigned long free_blocks_suitable;
620 };
621
622 /*
623 * Calculate the number of free pages in a zone, how many contiguous
624 * pages are free and how many are large enough to satisfy an allocation of
625 * the target size. Note that this function makes no attempt to estimate
626 * how many suitable free blocks there *might* be if MOVABLE pages were
627 * migrated. Calculating that is possible, but expensive and can be
628 * figured out from userspace
629 */
630 static void fill_contig_page_info(struct zone *zone,
631 unsigned int suitable_order,
632 struct contig_page_info *info)
633 {
634 unsigned int order;
635
636 info->free_pages = 0;
637 info->free_blocks_total = 0;
638 info->free_blocks_suitable = 0;
639
640 for (order = 0; order < MAX_ORDER; order++) {
641 unsigned long blocks;
642
643 /* Count number of free blocks */
644 blocks = zone->free_area[order].nr_free;
645 info->free_blocks_total += blocks;
646
647 /* Count free base pages */
648 info->free_pages += blocks << order;
649
650 /* Count the suitable free blocks */
651 if (order >= suitable_order)
652 info->free_blocks_suitable += blocks <<
653 (order - suitable_order);
654 }
655 }
656
657 /*
658 * A fragmentation index only makes sense if an allocation of a requested
659 * size would fail. If that is true, the fragmentation index indicates
660 * whether external fragmentation or a lack of memory was the problem.
661 * The value can be used to determine if page reclaim or compaction
662 * should be used
663 */
664 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
665 {
666 unsigned long requested = 1UL << order;
667
668 if (!info->free_blocks_total)
669 return 0;
670
671 /* Fragmentation index only makes sense when a request would fail */
672 if (info->free_blocks_suitable)
673 return -1000;
674
675 /*
676 * Index is between 0 and 1 so return within 3 decimal places
677 *
678 * 0 => allocation would fail due to lack of memory
679 * 1 => allocation would fail due to fragmentation
680 */
681 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
682 }
683
684 /* Same as __fragmentation index but allocs contig_page_info on stack */
685 int fragmentation_index(struct zone *zone, unsigned int order)
686 {
687 struct contig_page_info info;
688
689 fill_contig_page_info(zone, order, &info);
690 return __fragmentation_index(order, &info);
691 }
692 #endif
693
694 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
695 #ifdef CONFIG_ZONE_DMA
696 #define TEXT_FOR_DMA(xx) xx "_dma",
697 #else
698 #define TEXT_FOR_DMA(xx)
699 #endif
700
701 #ifdef CONFIG_ZONE_DMA32
702 #define TEXT_FOR_DMA32(xx) xx "_dma32",
703 #else
704 #define TEXT_FOR_DMA32(xx)
705 #endif
706
707 #ifdef CONFIG_HIGHMEM
708 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
709 #else
710 #define TEXT_FOR_HIGHMEM(xx)
711 #endif
712
713 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
714 TEXT_FOR_HIGHMEM(xx) xx "_movable",
715
716 const char * const vmstat_text[] = {
717 /* enum zone_stat_item countes */
718 "nr_free_pages",
719 "nr_alloc_batch",
720 "nr_inactive_anon",
721 "nr_active_anon",
722 "nr_inactive_file",
723 "nr_active_file",
724 "nr_unevictable",
725 "nr_mlock",
726 "nr_anon_pages",
727 "nr_mapped",
728 "nr_file_pages",
729 "nr_dirty",
730 "nr_writeback",
731 "nr_slab_reclaimable",
732 "nr_slab_unreclaimable",
733 "nr_page_table_pages",
734 "nr_kernel_stack",
735 "nr_unstable",
736 "nr_bounce",
737 "nr_vmscan_write",
738 "nr_vmscan_immediate_reclaim",
739 "nr_writeback_temp",
740 "nr_isolated_anon",
741 "nr_isolated_file",
742 "nr_shmem",
743 "nr_dirtied",
744 "nr_written",
745 "nr_pages_scanned",
746
747 #ifdef CONFIG_NUMA
748 "numa_hit",
749 "numa_miss",
750 "numa_foreign",
751 "numa_interleave",
752 "numa_local",
753 "numa_other",
754 #endif
755 "workingset_refault",
756 "workingset_activate",
757 "workingset_nodereclaim",
758 "nr_anon_transparent_hugepages",
759 "nr_free_cma",
760
761 /* enum writeback_stat_item counters */
762 "nr_dirty_threshold",
763 "nr_dirty_background_threshold",
764
765 #ifdef CONFIG_VM_EVENT_COUNTERS
766 /* enum vm_event_item counters */
767 "pgpgin",
768 "pgpgout",
769 "pswpin",
770 "pswpout",
771
772 TEXTS_FOR_ZONES("pgalloc")
773
774 "pgfree",
775 "pgactivate",
776 "pgdeactivate",
777
778 "pgfault",
779 "pgmajfault",
780 "pglazyfreed",
781
782 TEXTS_FOR_ZONES("pgrefill")
783 TEXTS_FOR_ZONES("pgsteal_kswapd")
784 TEXTS_FOR_ZONES("pgsteal_direct")
785 TEXTS_FOR_ZONES("pgscan_kswapd")
786 TEXTS_FOR_ZONES("pgscan_direct")
787 "pgscan_direct_throttle",
788
789 #ifdef CONFIG_NUMA
790 "zone_reclaim_failed",
791 #endif
792 "pginodesteal",
793 "slabs_scanned",
794 "kswapd_inodesteal",
795 "kswapd_low_wmark_hit_quickly",
796 "kswapd_high_wmark_hit_quickly",
797 "pageoutrun",
798 "allocstall",
799
800 "pgrotated",
801
802 "drop_pagecache",
803 "drop_slab",
804
805 #ifdef CONFIG_NUMA_BALANCING
806 "numa_pte_updates",
807 "numa_huge_pte_updates",
808 "numa_hint_faults",
809 "numa_hint_faults_local",
810 "numa_pages_migrated",
811 #endif
812 #ifdef CONFIG_MIGRATION
813 "pgmigrate_success",
814 "pgmigrate_fail",
815 #endif
816 #ifdef CONFIG_COMPACTION
817 "compact_migrate_scanned",
818 "compact_free_scanned",
819 "compact_isolated",
820 "compact_stall",
821 "compact_fail",
822 "compact_success",
823 "compact_daemon_wake",
824 #endif
825
826 #ifdef CONFIG_HUGETLB_PAGE
827 "htlb_buddy_alloc_success",
828 "htlb_buddy_alloc_fail",
829 #endif
830 "unevictable_pgs_culled",
831 "unevictable_pgs_scanned",
832 "unevictable_pgs_rescued",
833 "unevictable_pgs_mlocked",
834 "unevictable_pgs_munlocked",
835 "unevictable_pgs_cleared",
836 "unevictable_pgs_stranded",
837
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 "thp_fault_alloc",
840 "thp_fault_fallback",
841 "thp_collapse_alloc",
842 "thp_collapse_alloc_failed",
843 "thp_split_page",
844 "thp_split_page_failed",
845 "thp_deferred_split_page",
846 "thp_split_pmd",
847 "thp_zero_page_alloc",
848 "thp_zero_page_alloc_failed",
849 #endif
850 #ifdef CONFIG_MEMORY_BALLOON
851 "balloon_inflate",
852 "balloon_deflate",
853 #ifdef CONFIG_BALLOON_COMPACTION
854 "balloon_migrate",
855 #endif
856 #endif /* CONFIG_MEMORY_BALLOON */
857 #ifdef CONFIG_DEBUG_TLBFLUSH
858 #ifdef CONFIG_SMP
859 "nr_tlb_remote_flush",
860 "nr_tlb_remote_flush_received",
861 #endif /* CONFIG_SMP */
862 "nr_tlb_local_flush_all",
863 "nr_tlb_local_flush_one",
864 #endif /* CONFIG_DEBUG_TLBFLUSH */
865
866 #ifdef CONFIG_DEBUG_VM_VMACACHE
867 "vmacache_find_calls",
868 "vmacache_find_hits",
869 "vmacache_full_flushes",
870 #endif
871 #endif /* CONFIG_VM_EVENTS_COUNTERS */
872 };
873 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
874
875
876 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
877 defined(CONFIG_PROC_FS)
878 static void *frag_start(struct seq_file *m, loff_t *pos)
879 {
880 pg_data_t *pgdat;
881 loff_t node = *pos;
882
883 for (pgdat = first_online_pgdat();
884 pgdat && node;
885 pgdat = next_online_pgdat(pgdat))
886 --node;
887
888 return pgdat;
889 }
890
891 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
892 {
893 pg_data_t *pgdat = (pg_data_t *)arg;
894
895 (*pos)++;
896 return next_online_pgdat(pgdat);
897 }
898
899 static void frag_stop(struct seq_file *m, void *arg)
900 {
901 }
902
903 /* Walk all the zones in a node and print using a callback */
904 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
905 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
906 {
907 struct zone *zone;
908 struct zone *node_zones = pgdat->node_zones;
909 unsigned long flags;
910
911 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
912 if (!populated_zone(zone))
913 continue;
914
915 spin_lock_irqsave(&zone->lock, flags);
916 print(m, pgdat, zone);
917 spin_unlock_irqrestore(&zone->lock, flags);
918 }
919 }
920 #endif
921
922 #ifdef CONFIG_PROC_FS
923 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
924 struct zone *zone)
925 {
926 int order;
927
928 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
929 for (order = 0; order < MAX_ORDER; ++order)
930 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
931 seq_putc(m, '\n');
932 }
933
934 /*
935 * This walks the free areas for each zone.
936 */
937 static int frag_show(struct seq_file *m, void *arg)
938 {
939 pg_data_t *pgdat = (pg_data_t *)arg;
940 walk_zones_in_node(m, pgdat, frag_show_print);
941 return 0;
942 }
943
944 static void pagetypeinfo_showfree_print(struct seq_file *m,
945 pg_data_t *pgdat, struct zone *zone)
946 {
947 int order, mtype;
948
949 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
950 seq_printf(m, "Node %4d, zone %8s, type %12s ",
951 pgdat->node_id,
952 zone->name,
953 migratetype_names[mtype]);
954 for (order = 0; order < MAX_ORDER; ++order) {
955 unsigned long freecount = 0;
956 struct free_area *area;
957 struct list_head *curr;
958
959 area = &(zone->free_area[order]);
960
961 list_for_each(curr, &area->free_list[mtype])
962 freecount++;
963 seq_printf(m, "%6lu ", freecount);
964 }
965 seq_putc(m, '\n');
966 }
967 }
968
969 /* Print out the free pages at each order for each migatetype */
970 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
971 {
972 int order;
973 pg_data_t *pgdat = (pg_data_t *)arg;
974
975 /* Print header */
976 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
977 for (order = 0; order < MAX_ORDER; ++order)
978 seq_printf(m, "%6d ", order);
979 seq_putc(m, '\n');
980
981 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
982
983 return 0;
984 }
985
986 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
987 pg_data_t *pgdat, struct zone *zone)
988 {
989 int mtype;
990 unsigned long pfn;
991 unsigned long start_pfn = zone->zone_start_pfn;
992 unsigned long end_pfn = zone_end_pfn(zone);
993 unsigned long count[MIGRATE_TYPES] = { 0, };
994
995 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
996 struct page *page;
997
998 if (!pfn_valid(pfn))
999 continue;
1000
1001 page = pfn_to_page(pfn);
1002
1003 /* Watch for unexpected holes punched in the memmap */
1004 if (!memmap_valid_within(pfn, page, zone))
1005 continue;
1006
1007 if (page_zone(page) != zone)
1008 continue;
1009
1010 mtype = get_pageblock_migratetype(page);
1011
1012 if (mtype < MIGRATE_TYPES)
1013 count[mtype]++;
1014 }
1015
1016 /* Print counts */
1017 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1018 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1019 seq_printf(m, "%12lu ", count[mtype]);
1020 seq_putc(m, '\n');
1021 }
1022
1023 /* Print out the free pages at each order for each migratetype */
1024 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1025 {
1026 int mtype;
1027 pg_data_t *pgdat = (pg_data_t *)arg;
1028
1029 seq_printf(m, "\n%-23s", "Number of blocks type ");
1030 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1031 seq_printf(m, "%12s ", migratetype_names[mtype]);
1032 seq_putc(m, '\n');
1033 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1034
1035 return 0;
1036 }
1037
1038 #ifdef CONFIG_PAGE_OWNER
1039 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1040 pg_data_t *pgdat,
1041 struct zone *zone)
1042 {
1043 struct page *page;
1044 struct page_ext *page_ext;
1045 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1046 unsigned long end_pfn = pfn + zone->spanned_pages;
1047 unsigned long count[MIGRATE_TYPES] = { 0, };
1048 int pageblock_mt, page_mt;
1049 int i;
1050
1051 /* Scan block by block. First and last block may be incomplete */
1052 pfn = zone->zone_start_pfn;
1053
1054 /*
1055 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1056 * a zone boundary, it will be double counted between zones. This does
1057 * not matter as the mixed block count will still be correct
1058 */
1059 for (; pfn < end_pfn; ) {
1060 if (!pfn_valid(pfn)) {
1061 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1062 continue;
1063 }
1064
1065 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1066 block_end_pfn = min(block_end_pfn, end_pfn);
1067
1068 page = pfn_to_page(pfn);
1069 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1070
1071 for (; pfn < block_end_pfn; pfn++) {
1072 if (!pfn_valid_within(pfn))
1073 continue;
1074
1075 page = pfn_to_page(pfn);
1076
1077 if (page_zone(page) != zone)
1078 continue;
1079
1080 if (PageBuddy(page)) {
1081 pfn += (1UL << page_order(page)) - 1;
1082 continue;
1083 }
1084
1085 if (PageReserved(page))
1086 continue;
1087
1088 page_ext = lookup_page_ext(page);
1089
1090 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1091 continue;
1092
1093 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1094 if (pageblock_mt != page_mt) {
1095 if (is_migrate_cma(pageblock_mt))
1096 count[MIGRATE_MOVABLE]++;
1097 else
1098 count[pageblock_mt]++;
1099
1100 pfn = block_end_pfn;
1101 break;
1102 }
1103 pfn += (1UL << page_ext->order) - 1;
1104 }
1105 }
1106
1107 /* Print counts */
1108 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1109 for (i = 0; i < MIGRATE_TYPES; i++)
1110 seq_printf(m, "%12lu ", count[i]);
1111 seq_putc(m, '\n');
1112 }
1113 #endif /* CONFIG_PAGE_OWNER */
1114
1115 /*
1116 * Print out the number of pageblocks for each migratetype that contain pages
1117 * of other types. This gives an indication of how well fallbacks are being
1118 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1119 * to determine what is going on
1120 */
1121 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1122 {
1123 #ifdef CONFIG_PAGE_OWNER
1124 int mtype;
1125
1126 if (!static_branch_unlikely(&page_owner_inited))
1127 return;
1128
1129 drain_all_pages(NULL);
1130
1131 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1132 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1133 seq_printf(m, "%12s ", migratetype_names[mtype]);
1134 seq_putc(m, '\n');
1135
1136 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1137 #endif /* CONFIG_PAGE_OWNER */
1138 }
1139
1140 /*
1141 * This prints out statistics in relation to grouping pages by mobility.
1142 * It is expensive to collect so do not constantly read the file.
1143 */
1144 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1145 {
1146 pg_data_t *pgdat = (pg_data_t *)arg;
1147
1148 /* check memoryless node */
1149 if (!node_state(pgdat->node_id, N_MEMORY))
1150 return 0;
1151
1152 seq_printf(m, "Page block order: %d\n", pageblock_order);
1153 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1154 seq_putc(m, '\n');
1155 pagetypeinfo_showfree(m, pgdat);
1156 pagetypeinfo_showblockcount(m, pgdat);
1157 pagetypeinfo_showmixedcount(m, pgdat);
1158
1159 return 0;
1160 }
1161
1162 static const struct seq_operations fragmentation_op = {
1163 .start = frag_start,
1164 .next = frag_next,
1165 .stop = frag_stop,
1166 .show = frag_show,
1167 };
1168
1169 static int fragmentation_open(struct inode *inode, struct file *file)
1170 {
1171 return seq_open(file, &fragmentation_op);
1172 }
1173
1174 static const struct file_operations fragmentation_file_operations = {
1175 .open = fragmentation_open,
1176 .read = seq_read,
1177 .llseek = seq_lseek,
1178 .release = seq_release,
1179 };
1180
1181 static const struct seq_operations pagetypeinfo_op = {
1182 .start = frag_start,
1183 .next = frag_next,
1184 .stop = frag_stop,
1185 .show = pagetypeinfo_show,
1186 };
1187
1188 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1189 {
1190 return seq_open(file, &pagetypeinfo_op);
1191 }
1192
1193 static const struct file_operations pagetypeinfo_file_ops = {
1194 .open = pagetypeinfo_open,
1195 .read = seq_read,
1196 .llseek = seq_lseek,
1197 .release = seq_release,
1198 };
1199
1200 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1201 struct zone *zone)
1202 {
1203 int i;
1204 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1205 seq_printf(m,
1206 "\n pages free %lu"
1207 "\n min %lu"
1208 "\n low %lu"
1209 "\n high %lu"
1210 "\n scanned %lu"
1211 "\n spanned %lu"
1212 "\n present %lu"
1213 "\n managed %lu",
1214 zone_page_state(zone, NR_FREE_PAGES),
1215 min_wmark_pages(zone),
1216 low_wmark_pages(zone),
1217 high_wmark_pages(zone),
1218 zone_page_state(zone, NR_PAGES_SCANNED),
1219 zone->spanned_pages,
1220 zone->present_pages,
1221 zone->managed_pages);
1222
1223 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1224 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1225 zone_page_state(zone, i));
1226
1227 seq_printf(m,
1228 "\n protection: (%ld",
1229 zone->lowmem_reserve[0]);
1230 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1231 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1232 seq_printf(m,
1233 ")"
1234 "\n pagesets");
1235 for_each_online_cpu(i) {
1236 struct per_cpu_pageset *pageset;
1237
1238 pageset = per_cpu_ptr(zone->pageset, i);
1239 seq_printf(m,
1240 "\n cpu: %i"
1241 "\n count: %i"
1242 "\n high: %i"
1243 "\n batch: %i",
1244 i,
1245 pageset->pcp.count,
1246 pageset->pcp.high,
1247 pageset->pcp.batch);
1248 #ifdef CONFIG_SMP
1249 seq_printf(m, "\n vm stats threshold: %d",
1250 pageset->stat_threshold);
1251 #endif
1252 }
1253 seq_printf(m,
1254 "\n all_unreclaimable: %u"
1255 "\n start_pfn: %lu"
1256 "\n inactive_ratio: %u",
1257 !zone_reclaimable(zone),
1258 zone->zone_start_pfn,
1259 zone->inactive_ratio);
1260 seq_putc(m, '\n');
1261 }
1262
1263 /*
1264 * Output information about zones in @pgdat.
1265 */
1266 static int zoneinfo_show(struct seq_file *m, void *arg)
1267 {
1268 pg_data_t *pgdat = (pg_data_t *)arg;
1269 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1270 return 0;
1271 }
1272
1273 static const struct seq_operations zoneinfo_op = {
1274 .start = frag_start, /* iterate over all zones. The same as in
1275 * fragmentation. */
1276 .next = frag_next,
1277 .stop = frag_stop,
1278 .show = zoneinfo_show,
1279 };
1280
1281 static int zoneinfo_open(struct inode *inode, struct file *file)
1282 {
1283 return seq_open(file, &zoneinfo_op);
1284 }
1285
1286 static const struct file_operations proc_zoneinfo_file_operations = {
1287 .open = zoneinfo_open,
1288 .read = seq_read,
1289 .llseek = seq_lseek,
1290 .release = seq_release,
1291 };
1292
1293 enum writeback_stat_item {
1294 NR_DIRTY_THRESHOLD,
1295 NR_DIRTY_BG_THRESHOLD,
1296 NR_VM_WRITEBACK_STAT_ITEMS,
1297 };
1298
1299 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1300 {
1301 unsigned long *v;
1302 int i, stat_items_size;
1303
1304 if (*pos >= ARRAY_SIZE(vmstat_text))
1305 return NULL;
1306 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1307 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1308
1309 #ifdef CONFIG_VM_EVENT_COUNTERS
1310 stat_items_size += sizeof(struct vm_event_state);
1311 #endif
1312
1313 v = kmalloc(stat_items_size, GFP_KERNEL);
1314 m->private = v;
1315 if (!v)
1316 return ERR_PTR(-ENOMEM);
1317 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1318 v[i] = global_page_state(i);
1319 v += NR_VM_ZONE_STAT_ITEMS;
1320
1321 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1322 v + NR_DIRTY_THRESHOLD);
1323 v += NR_VM_WRITEBACK_STAT_ITEMS;
1324
1325 #ifdef CONFIG_VM_EVENT_COUNTERS
1326 all_vm_events(v);
1327 v[PGPGIN] /= 2; /* sectors -> kbytes */
1328 v[PGPGOUT] /= 2;
1329 #endif
1330 return (unsigned long *)m->private + *pos;
1331 }
1332
1333 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1334 {
1335 (*pos)++;
1336 if (*pos >= ARRAY_SIZE(vmstat_text))
1337 return NULL;
1338 return (unsigned long *)m->private + *pos;
1339 }
1340
1341 static int vmstat_show(struct seq_file *m, void *arg)
1342 {
1343 unsigned long *l = arg;
1344 unsigned long off = l - (unsigned long *)m->private;
1345
1346 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1347 return 0;
1348 }
1349
1350 static void vmstat_stop(struct seq_file *m, void *arg)
1351 {
1352 kfree(m->private);
1353 m->private = NULL;
1354 }
1355
1356 static const struct seq_operations vmstat_op = {
1357 .start = vmstat_start,
1358 .next = vmstat_next,
1359 .stop = vmstat_stop,
1360 .show = vmstat_show,
1361 };
1362
1363 static int vmstat_open(struct inode *inode, struct file *file)
1364 {
1365 return seq_open(file, &vmstat_op);
1366 }
1367
1368 static const struct file_operations proc_vmstat_file_operations = {
1369 .open = vmstat_open,
1370 .read = seq_read,
1371 .llseek = seq_lseek,
1372 .release = seq_release,
1373 };
1374 #endif /* CONFIG_PROC_FS */
1375
1376 #ifdef CONFIG_SMP
1377 static struct workqueue_struct *vmstat_wq;
1378 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1379 int sysctl_stat_interval __read_mostly = HZ;
1380 static cpumask_var_t cpu_stat_off;
1381
1382 static void vmstat_update(struct work_struct *w)
1383 {
1384 if (refresh_cpu_vm_stats(true)) {
1385 /*
1386 * Counters were updated so we expect more updates
1387 * to occur in the future. Keep on running the
1388 * update worker thread.
1389 * If we were marked on cpu_stat_off clear the flag
1390 * so that vmstat_shepherd doesn't schedule us again.
1391 */
1392 if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1393 cpu_stat_off)) {
1394 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1395 this_cpu_ptr(&vmstat_work),
1396 round_jiffies_relative(sysctl_stat_interval));
1397 }
1398 } else {
1399 /*
1400 * We did not update any counters so the app may be in
1401 * a mode where it does not cause counter updates.
1402 * We may be uselessly running vmstat_update.
1403 * Defer the checking for differentials to the
1404 * shepherd thread on a different processor.
1405 */
1406 cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1407 }
1408 }
1409
1410 /*
1411 * Switch off vmstat processing and then fold all the remaining differentials
1412 * until the diffs stay at zero. The function is used by NOHZ and can only be
1413 * invoked when tick processing is not active.
1414 */
1415 /*
1416 * Check if the diffs for a certain cpu indicate that
1417 * an update is needed.
1418 */
1419 static bool need_update(int cpu)
1420 {
1421 struct zone *zone;
1422
1423 for_each_populated_zone(zone) {
1424 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1425
1426 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1427 /*
1428 * The fast way of checking if there are any vmstat diffs.
1429 * This works because the diffs are byte sized items.
1430 */
1431 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1432 return true;
1433
1434 }
1435 return false;
1436 }
1437
1438 void quiet_vmstat(void)
1439 {
1440 if (system_state != SYSTEM_RUNNING)
1441 return;
1442
1443 /*
1444 * If we are already in hands of the shepherd then there
1445 * is nothing for us to do here.
1446 */
1447 if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1448 return;
1449
1450 if (!need_update(smp_processor_id()))
1451 return;
1452
1453 /*
1454 * Just refresh counters and do not care about the pending delayed
1455 * vmstat_update. It doesn't fire that often to matter and canceling
1456 * it would be too expensive from this path.
1457 * vmstat_shepherd will take care about that for us.
1458 */
1459 refresh_cpu_vm_stats(false);
1460 }
1461
1462
1463 /*
1464 * Shepherd worker thread that checks the
1465 * differentials of processors that have their worker
1466 * threads for vm statistics updates disabled because of
1467 * inactivity.
1468 */
1469 static void vmstat_shepherd(struct work_struct *w);
1470
1471 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1472
1473 static void vmstat_shepherd(struct work_struct *w)
1474 {
1475 int cpu;
1476
1477 get_online_cpus();
1478 /* Check processors whose vmstat worker threads have been disabled */
1479 for_each_cpu(cpu, cpu_stat_off) {
1480 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1481
1482 if (need_update(cpu)) {
1483 if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1484 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1485 } else {
1486 /*
1487 * Cancel the work if quiet_vmstat has put this
1488 * cpu on cpu_stat_off because the work item might
1489 * be still scheduled
1490 */
1491 cancel_delayed_work(dw);
1492 }
1493 }
1494 put_online_cpus();
1495
1496 schedule_delayed_work(&shepherd,
1497 round_jiffies_relative(sysctl_stat_interval));
1498 }
1499
1500 static void __init start_shepherd_timer(void)
1501 {
1502 int cpu;
1503
1504 for_each_possible_cpu(cpu)
1505 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1506 vmstat_update);
1507
1508 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1509 BUG();
1510 cpumask_copy(cpu_stat_off, cpu_online_mask);
1511
1512 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1513 schedule_delayed_work(&shepherd,
1514 round_jiffies_relative(sysctl_stat_interval));
1515 }
1516
1517 static void vmstat_cpu_dead(int node)
1518 {
1519 int cpu;
1520
1521 get_online_cpus();
1522 for_each_online_cpu(cpu)
1523 if (cpu_to_node(cpu) == node)
1524 goto end;
1525
1526 node_clear_state(node, N_CPU);
1527 end:
1528 put_online_cpus();
1529 }
1530
1531 /*
1532 * Use the cpu notifier to insure that the thresholds are recalculated
1533 * when necessary.
1534 */
1535 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1536 unsigned long action,
1537 void *hcpu)
1538 {
1539 long cpu = (long)hcpu;
1540
1541 switch (action) {
1542 case CPU_ONLINE:
1543 case CPU_ONLINE_FROZEN:
1544 refresh_zone_stat_thresholds();
1545 node_set_state(cpu_to_node(cpu), N_CPU);
1546 cpumask_set_cpu(cpu, cpu_stat_off);
1547 break;
1548 case CPU_DOWN_PREPARE:
1549 case CPU_DOWN_PREPARE_FROZEN:
1550 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1551 cpumask_clear_cpu(cpu, cpu_stat_off);
1552 break;
1553 case CPU_DOWN_FAILED:
1554 case CPU_DOWN_FAILED_FROZEN:
1555 cpumask_set_cpu(cpu, cpu_stat_off);
1556 break;
1557 case CPU_DEAD:
1558 case CPU_DEAD_FROZEN:
1559 refresh_zone_stat_thresholds();
1560 vmstat_cpu_dead(cpu_to_node(cpu));
1561 break;
1562 default:
1563 break;
1564 }
1565 return NOTIFY_OK;
1566 }
1567
1568 static struct notifier_block vmstat_notifier =
1569 { &vmstat_cpuup_callback, NULL, 0 };
1570 #endif
1571
1572 static int __init setup_vmstat(void)
1573 {
1574 #ifdef CONFIG_SMP
1575 cpu_notifier_register_begin();
1576 __register_cpu_notifier(&vmstat_notifier);
1577
1578 start_shepherd_timer();
1579 cpu_notifier_register_done();
1580 #endif
1581 #ifdef CONFIG_PROC_FS
1582 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1583 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1584 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1585 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1586 #endif
1587 return 0;
1588 }
1589 module_init(setup_vmstat)
1590
1591 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1592
1593 /*
1594 * Return an index indicating how much of the available free memory is
1595 * unusable for an allocation of the requested size.
1596 */
1597 static int unusable_free_index(unsigned int order,
1598 struct contig_page_info *info)
1599 {
1600 /* No free memory is interpreted as all free memory is unusable */
1601 if (info->free_pages == 0)
1602 return 1000;
1603
1604 /*
1605 * Index should be a value between 0 and 1. Return a value to 3
1606 * decimal places.
1607 *
1608 * 0 => no fragmentation
1609 * 1 => high fragmentation
1610 */
1611 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1612
1613 }
1614
1615 static void unusable_show_print(struct seq_file *m,
1616 pg_data_t *pgdat, struct zone *zone)
1617 {
1618 unsigned int order;
1619 int index;
1620 struct contig_page_info info;
1621
1622 seq_printf(m, "Node %d, zone %8s ",
1623 pgdat->node_id,
1624 zone->name);
1625 for (order = 0; order < MAX_ORDER; ++order) {
1626 fill_contig_page_info(zone, order, &info);
1627 index = unusable_free_index(order, &info);
1628 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1629 }
1630
1631 seq_putc(m, '\n');
1632 }
1633
1634 /*
1635 * Display unusable free space index
1636 *
1637 * The unusable free space index measures how much of the available free
1638 * memory cannot be used to satisfy an allocation of a given size and is a
1639 * value between 0 and 1. The higher the value, the more of free memory is
1640 * unusable and by implication, the worse the external fragmentation is. This
1641 * can be expressed as a percentage by multiplying by 100.
1642 */
1643 static int unusable_show(struct seq_file *m, void *arg)
1644 {
1645 pg_data_t *pgdat = (pg_data_t *)arg;
1646
1647 /* check memoryless node */
1648 if (!node_state(pgdat->node_id, N_MEMORY))
1649 return 0;
1650
1651 walk_zones_in_node(m, pgdat, unusable_show_print);
1652
1653 return 0;
1654 }
1655
1656 static const struct seq_operations unusable_op = {
1657 .start = frag_start,
1658 .next = frag_next,
1659 .stop = frag_stop,
1660 .show = unusable_show,
1661 };
1662
1663 static int unusable_open(struct inode *inode, struct file *file)
1664 {
1665 return seq_open(file, &unusable_op);
1666 }
1667
1668 static const struct file_operations unusable_file_ops = {
1669 .open = unusable_open,
1670 .read = seq_read,
1671 .llseek = seq_lseek,
1672 .release = seq_release,
1673 };
1674
1675 static void extfrag_show_print(struct seq_file *m,
1676 pg_data_t *pgdat, struct zone *zone)
1677 {
1678 unsigned int order;
1679 int index;
1680
1681 /* Alloc on stack as interrupts are disabled for zone walk */
1682 struct contig_page_info info;
1683
1684 seq_printf(m, "Node %d, zone %8s ",
1685 pgdat->node_id,
1686 zone->name);
1687 for (order = 0; order < MAX_ORDER; ++order) {
1688 fill_contig_page_info(zone, order, &info);
1689 index = __fragmentation_index(order, &info);
1690 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1691 }
1692
1693 seq_putc(m, '\n');
1694 }
1695
1696 /*
1697 * Display fragmentation index for orders that allocations would fail for
1698 */
1699 static int extfrag_show(struct seq_file *m, void *arg)
1700 {
1701 pg_data_t *pgdat = (pg_data_t *)arg;
1702
1703 walk_zones_in_node(m, pgdat, extfrag_show_print);
1704
1705 return 0;
1706 }
1707
1708 static const struct seq_operations extfrag_op = {
1709 .start = frag_start,
1710 .next = frag_next,
1711 .stop = frag_stop,
1712 .show = extfrag_show,
1713 };
1714
1715 static int extfrag_open(struct inode *inode, struct file *file)
1716 {
1717 return seq_open(file, &extfrag_op);
1718 }
1719
1720 static const struct file_operations extfrag_file_ops = {
1721 .open = extfrag_open,
1722 .read = seq_read,
1723 .llseek = seq_lseek,
1724 .release = seq_release,
1725 };
1726
1727 static int __init extfrag_debug_init(void)
1728 {
1729 struct dentry *extfrag_debug_root;
1730
1731 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1732 if (!extfrag_debug_root)
1733 return -ENOMEM;
1734
1735 if (!debugfs_create_file("unusable_index", 0444,
1736 extfrag_debug_root, NULL, &unusable_file_ops))
1737 goto fail;
1738
1739 if (!debugfs_create_file("extfrag_index", 0444,
1740 extfrag_debug_root, NULL, &extfrag_file_ops))
1741 goto fail;
1742
1743 return 0;
1744 fail:
1745 debugfs_remove_recursive(extfrag_debug_root);
1746 return -ENOMEM;
1747 }
1748
1749 module_init(extfrag_debug_init);
1750 #endif