]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmstat.c
Input: elantech - fix touchpad initialization on Gigabyte U2442
[mirror_ubuntu-artful-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23
24 #include "internal.h"
25
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
30 static void sum_vm_events(unsigned long *ret)
31 {
32 int cpu;
33 int i;
34
35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
37 for_each_online_cpu(cpu) {
38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 ret[i] += this->event[i];
42 }
43 }
44
45 /*
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52 get_online_cpus();
53 sum_vm_events(ret);
54 put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57
58 /*
59 * Fold the foreign cpu events into our own.
60 *
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
63 */
64 void vm_events_fold_cpu(int cpu)
65 {
66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 int i;
68
69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 count_vm_events(i, fold_state->event[i]);
71 fold_state->event[i] = 0;
72 }
73 }
74
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76
77 /*
78 * Manage combined zone based / global counters
79 *
80 * vm_stat contains the global counters
81 */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84
85 #ifdef CONFIG_SMP
86
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89 int threshold;
90 int watermark_distance;
91
92 /*
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
98 * the min watermark
99 */
100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103 /*
104 * Maximum threshold is 125
105 */
106 threshold = min(125, threshold);
107
108 return threshold;
109 }
110
111 int calculate_normal_threshold(struct zone *zone)
112 {
113 int threshold;
114 int mem; /* memory in 128 MB units */
115
116 /*
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
121 *
122 * Some sample thresholds:
123 *
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
126 * 8 1 1 0.9-1 GB 4
127 * 16 2 2 0.9-1 GB 4
128 * 20 2 2 1-2 GB 5
129 * 24 2 2 2-4 GB 6
130 * 28 2 2 4-8 GB 7
131 * 32 2 2 8-16 GB 8
132 * 4 2 2 <128M 1
133 * 30 4 3 2-4 GB 5
134 * 48 4 3 8-16 GB 8
135 * 32 8 4 1-2 GB 4
136 * 32 8 4 0.9-1GB 4
137 * 10 16 5 <128M 1
138 * 40 16 5 900M 4
139 * 70 64 7 2-4 GB 5
140 * 84 64 7 4-8 GB 6
141 * 108 512 9 4-8 GB 6
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
144 */
145
146 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147
148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150 /*
151 * Maximum threshold is 125
152 */
153 threshold = min(125, threshold);
154
155 return threshold;
156 }
157
158 /*
159 * Refresh the thresholds for each zone.
160 */
161 void refresh_zone_stat_thresholds(void)
162 {
163 struct zone *zone;
164 int cpu;
165 int threshold;
166
167 for_each_populated_zone(zone) {
168 unsigned long max_drift, tolerate_drift;
169
170 threshold = calculate_normal_threshold(zone);
171
172 for_each_online_cpu(cpu)
173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 = threshold;
175
176 /*
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
180 */
181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 max_drift = num_online_cpus() * threshold;
183 if (max_drift > tolerate_drift)
184 zone->percpu_drift_mark = high_wmark_pages(zone) +
185 max_drift;
186 }
187 }
188
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 int (*calculate_pressure)(struct zone *))
191 {
192 struct zone *zone;
193 int cpu;
194 int threshold;
195 int i;
196
197 for (i = 0; i < pgdat->nr_zones; i++) {
198 zone = &pgdat->node_zones[i];
199 if (!zone->percpu_drift_mark)
200 continue;
201
202 threshold = (*calculate_pressure)(zone);
203 for_each_possible_cpu(cpu)
204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 = threshold;
206 }
207 }
208
209 /*
210 * For use when we know that interrupts are disabled.
211 */
212 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
213 int delta)
214 {
215 struct per_cpu_pageset __percpu *pcp = zone->pageset;
216 s8 __percpu *p = pcp->vm_stat_diff + item;
217 long x;
218 long t;
219
220 x = delta + __this_cpu_read(*p);
221
222 t = __this_cpu_read(pcp->stat_threshold);
223
224 if (unlikely(x > t || x < -t)) {
225 zone_page_state_add(x, zone, item);
226 x = 0;
227 }
228 __this_cpu_write(*p, x);
229 }
230 EXPORT_SYMBOL(__mod_zone_page_state);
231
232 /*
233 * Optimized increment and decrement functions.
234 *
235 * These are only for a single page and therefore can take a struct page *
236 * argument instead of struct zone *. This allows the inclusion of the code
237 * generated for page_zone(page) into the optimized functions.
238 *
239 * No overflow check is necessary and therefore the differential can be
240 * incremented or decremented in place which may allow the compilers to
241 * generate better code.
242 * The increment or decrement is known and therefore one boundary check can
243 * be omitted.
244 *
245 * NOTE: These functions are very performance sensitive. Change only
246 * with care.
247 *
248 * Some processors have inc/dec instructions that are atomic vs an interrupt.
249 * However, the code must first determine the differential location in a zone
250 * based on the processor number and then inc/dec the counter. There is no
251 * guarantee without disabling preemption that the processor will not change
252 * in between and therefore the atomicity vs. interrupt cannot be exploited
253 * in a useful way here.
254 */
255 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256 {
257 struct per_cpu_pageset __percpu *pcp = zone->pageset;
258 s8 __percpu *p = pcp->vm_stat_diff + item;
259 s8 v, t;
260
261 v = __this_cpu_inc_return(*p);
262 t = __this_cpu_read(pcp->stat_threshold);
263 if (unlikely(v > t)) {
264 s8 overstep = t >> 1;
265
266 zone_page_state_add(v + overstep, zone, item);
267 __this_cpu_write(*p, -overstep);
268 }
269 }
270
271 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272 {
273 __inc_zone_state(page_zone(page), item);
274 }
275 EXPORT_SYMBOL(__inc_zone_page_state);
276
277 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278 {
279 struct per_cpu_pageset __percpu *pcp = zone->pageset;
280 s8 __percpu *p = pcp->vm_stat_diff + item;
281 s8 v, t;
282
283 v = __this_cpu_dec_return(*p);
284 t = __this_cpu_read(pcp->stat_threshold);
285 if (unlikely(v < - t)) {
286 s8 overstep = t >> 1;
287
288 zone_page_state_add(v - overstep, zone, item);
289 __this_cpu_write(*p, overstep);
290 }
291 }
292
293 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294 {
295 __dec_zone_state(page_zone(page), item);
296 }
297 EXPORT_SYMBOL(__dec_zone_page_state);
298
299 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300 /*
301 * If we have cmpxchg_local support then we do not need to incur the overhead
302 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 *
304 * mod_state() modifies the zone counter state through atomic per cpu
305 * operations.
306 *
307 * Overstep mode specifies how overstep should handled:
308 * 0 No overstepping
309 * 1 Overstepping half of threshold
310 * -1 Overstepping minus half of threshold
311 */
312 static inline void mod_state(struct zone *zone,
313 enum zone_stat_item item, int delta, int overstep_mode)
314 {
315 struct per_cpu_pageset __percpu *pcp = zone->pageset;
316 s8 __percpu *p = pcp->vm_stat_diff + item;
317 long o, n, t, z;
318
319 do {
320 z = 0; /* overflow to zone counters */
321
322 /*
323 * The fetching of the stat_threshold is racy. We may apply
324 * a counter threshold to the wrong the cpu if we get
325 * rescheduled while executing here. However, the next
326 * counter update will apply the threshold again and
327 * therefore bring the counter under the threshold again.
328 *
329 * Most of the time the thresholds are the same anyways
330 * for all cpus in a zone.
331 */
332 t = this_cpu_read(pcp->stat_threshold);
333
334 o = this_cpu_read(*p);
335 n = delta + o;
336
337 if (n > t || n < -t) {
338 int os = overstep_mode * (t >> 1) ;
339
340 /* Overflow must be added to zone counters */
341 z = n + os;
342 n = -os;
343 }
344 } while (this_cpu_cmpxchg(*p, o, n) != o);
345
346 if (z)
347 zone_page_state_add(z, zone, item);
348 }
349
350 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
351 int delta)
352 {
353 mod_state(zone, item, delta, 0);
354 }
355 EXPORT_SYMBOL(mod_zone_page_state);
356
357 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
358 {
359 mod_state(zone, item, 1, 1);
360 }
361
362 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
363 {
364 mod_state(page_zone(page), item, 1, 1);
365 }
366 EXPORT_SYMBOL(inc_zone_page_state);
367
368 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
369 {
370 mod_state(page_zone(page), item, -1, -1);
371 }
372 EXPORT_SYMBOL(dec_zone_page_state);
373 #else
374 /*
375 * Use interrupt disable to serialize counter updates
376 */
377 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
378 int delta)
379 {
380 unsigned long flags;
381
382 local_irq_save(flags);
383 __mod_zone_page_state(zone, item, delta);
384 local_irq_restore(flags);
385 }
386 EXPORT_SYMBOL(mod_zone_page_state);
387
388 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
389 {
390 unsigned long flags;
391
392 local_irq_save(flags);
393 __inc_zone_state(zone, item);
394 local_irq_restore(flags);
395 }
396
397 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
398 {
399 unsigned long flags;
400 struct zone *zone;
401
402 zone = page_zone(page);
403 local_irq_save(flags);
404 __inc_zone_state(zone, item);
405 local_irq_restore(flags);
406 }
407 EXPORT_SYMBOL(inc_zone_page_state);
408
409 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
410 {
411 unsigned long flags;
412
413 local_irq_save(flags);
414 __dec_zone_page_state(page, item);
415 local_irq_restore(flags);
416 }
417 EXPORT_SYMBOL(dec_zone_page_state);
418 #endif
419
420 static inline void fold_diff(int *diff)
421 {
422 int i;
423
424 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
425 if (diff[i])
426 atomic_long_add(diff[i], &vm_stat[i]);
427 }
428
429 /*
430 * Update the zone counters for the current cpu.
431 *
432 * Note that refresh_cpu_vm_stats strives to only access
433 * node local memory. The per cpu pagesets on remote zones are placed
434 * in the memory local to the processor using that pageset. So the
435 * loop over all zones will access a series of cachelines local to
436 * the processor.
437 *
438 * The call to zone_page_state_add updates the cachelines with the
439 * statistics in the remote zone struct as well as the global cachelines
440 * with the global counters. These could cause remote node cache line
441 * bouncing and will have to be only done when necessary.
442 */
443 static void refresh_cpu_vm_stats(void)
444 {
445 struct zone *zone;
446 int i;
447 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
448
449 for_each_populated_zone(zone) {
450 struct per_cpu_pageset __percpu *p = zone->pageset;
451
452 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
453 int v;
454
455 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
456 if (v) {
457
458 atomic_long_add(v, &zone->vm_stat[i]);
459 global_diff[i] += v;
460 #ifdef CONFIG_NUMA
461 /* 3 seconds idle till flush */
462 __this_cpu_write(p->expire, 3);
463 #endif
464 }
465 }
466 cond_resched();
467 #ifdef CONFIG_NUMA
468 /*
469 * Deal with draining the remote pageset of this
470 * processor
471 *
472 * Check if there are pages remaining in this pageset
473 * if not then there is nothing to expire.
474 */
475 if (!__this_cpu_read(p->expire) ||
476 !__this_cpu_read(p->pcp.count))
477 continue;
478
479 /*
480 * We never drain zones local to this processor.
481 */
482 if (zone_to_nid(zone) == numa_node_id()) {
483 __this_cpu_write(p->expire, 0);
484 continue;
485 }
486
487
488 if (__this_cpu_dec_return(p->expire))
489 continue;
490
491 if (__this_cpu_read(p->pcp.count))
492 drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
493 #endif
494 }
495 fold_diff(global_diff);
496 }
497
498 /*
499 * Fold the data for an offline cpu into the global array.
500 * There cannot be any access by the offline cpu and therefore
501 * synchronization is simplified.
502 */
503 void cpu_vm_stats_fold(int cpu)
504 {
505 struct zone *zone;
506 int i;
507 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
508
509 for_each_populated_zone(zone) {
510 struct per_cpu_pageset *p;
511
512 p = per_cpu_ptr(zone->pageset, cpu);
513
514 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
515 if (p->vm_stat_diff[i]) {
516 int v;
517
518 v = p->vm_stat_diff[i];
519 p->vm_stat_diff[i] = 0;
520 atomic_long_add(v, &zone->vm_stat[i]);
521 global_diff[i] += v;
522 }
523 }
524
525 fold_diff(global_diff);
526 }
527
528 /*
529 * this is only called if !populated_zone(zone), which implies no other users of
530 * pset->vm_stat_diff[] exsist.
531 */
532 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
533 {
534 int i;
535
536 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
537 if (pset->vm_stat_diff[i]) {
538 int v = pset->vm_stat_diff[i];
539 pset->vm_stat_diff[i] = 0;
540 atomic_long_add(v, &zone->vm_stat[i]);
541 atomic_long_add(v, &vm_stat[i]);
542 }
543 }
544 #endif
545
546 #ifdef CONFIG_NUMA
547 /*
548 * zonelist = the list of zones passed to the allocator
549 * z = the zone from which the allocation occurred.
550 *
551 * Must be called with interrupts disabled.
552 *
553 * When __GFP_OTHER_NODE is set assume the node of the preferred
554 * zone is the local node. This is useful for daemons who allocate
555 * memory on behalf of other processes.
556 */
557 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
558 {
559 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
560 __inc_zone_state(z, NUMA_HIT);
561 } else {
562 __inc_zone_state(z, NUMA_MISS);
563 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
564 }
565 if (z->node == ((flags & __GFP_OTHER_NODE) ?
566 preferred_zone->node : numa_node_id()))
567 __inc_zone_state(z, NUMA_LOCAL);
568 else
569 __inc_zone_state(z, NUMA_OTHER);
570 }
571 #endif
572
573 #ifdef CONFIG_COMPACTION
574
575 struct contig_page_info {
576 unsigned long free_pages;
577 unsigned long free_blocks_total;
578 unsigned long free_blocks_suitable;
579 };
580
581 /*
582 * Calculate the number of free pages in a zone, how many contiguous
583 * pages are free and how many are large enough to satisfy an allocation of
584 * the target size. Note that this function makes no attempt to estimate
585 * how many suitable free blocks there *might* be if MOVABLE pages were
586 * migrated. Calculating that is possible, but expensive and can be
587 * figured out from userspace
588 */
589 static void fill_contig_page_info(struct zone *zone,
590 unsigned int suitable_order,
591 struct contig_page_info *info)
592 {
593 unsigned int order;
594
595 info->free_pages = 0;
596 info->free_blocks_total = 0;
597 info->free_blocks_suitable = 0;
598
599 for (order = 0; order < MAX_ORDER; order++) {
600 unsigned long blocks;
601
602 /* Count number of free blocks */
603 blocks = zone->free_area[order].nr_free;
604 info->free_blocks_total += blocks;
605
606 /* Count free base pages */
607 info->free_pages += blocks << order;
608
609 /* Count the suitable free blocks */
610 if (order >= suitable_order)
611 info->free_blocks_suitable += blocks <<
612 (order - suitable_order);
613 }
614 }
615
616 /*
617 * A fragmentation index only makes sense if an allocation of a requested
618 * size would fail. If that is true, the fragmentation index indicates
619 * whether external fragmentation or a lack of memory was the problem.
620 * The value can be used to determine if page reclaim or compaction
621 * should be used
622 */
623 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
624 {
625 unsigned long requested = 1UL << order;
626
627 if (!info->free_blocks_total)
628 return 0;
629
630 /* Fragmentation index only makes sense when a request would fail */
631 if (info->free_blocks_suitable)
632 return -1000;
633
634 /*
635 * Index is between 0 and 1 so return within 3 decimal places
636 *
637 * 0 => allocation would fail due to lack of memory
638 * 1 => allocation would fail due to fragmentation
639 */
640 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
641 }
642
643 /* Same as __fragmentation index but allocs contig_page_info on stack */
644 int fragmentation_index(struct zone *zone, unsigned int order)
645 {
646 struct contig_page_info info;
647
648 fill_contig_page_info(zone, order, &info);
649 return __fragmentation_index(order, &info);
650 }
651 #endif
652
653 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
654 #include <linux/proc_fs.h>
655 #include <linux/seq_file.h>
656
657 static char * const migratetype_names[MIGRATE_TYPES] = {
658 "Unmovable",
659 "Reclaimable",
660 "Movable",
661 "Reserve",
662 #ifdef CONFIG_CMA
663 "CMA",
664 #endif
665 #ifdef CONFIG_MEMORY_ISOLATION
666 "Isolate",
667 #endif
668 };
669
670 static void *frag_start(struct seq_file *m, loff_t *pos)
671 {
672 pg_data_t *pgdat;
673 loff_t node = *pos;
674 for (pgdat = first_online_pgdat();
675 pgdat && node;
676 pgdat = next_online_pgdat(pgdat))
677 --node;
678
679 return pgdat;
680 }
681
682 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
683 {
684 pg_data_t *pgdat = (pg_data_t *)arg;
685
686 (*pos)++;
687 return next_online_pgdat(pgdat);
688 }
689
690 static void frag_stop(struct seq_file *m, void *arg)
691 {
692 }
693
694 /* Walk all the zones in a node and print using a callback */
695 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
696 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
697 {
698 struct zone *zone;
699 struct zone *node_zones = pgdat->node_zones;
700 unsigned long flags;
701
702 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
703 if (!populated_zone(zone))
704 continue;
705
706 spin_lock_irqsave(&zone->lock, flags);
707 print(m, pgdat, zone);
708 spin_unlock_irqrestore(&zone->lock, flags);
709 }
710 }
711 #endif
712
713 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
714 #ifdef CONFIG_ZONE_DMA
715 #define TEXT_FOR_DMA(xx) xx "_dma",
716 #else
717 #define TEXT_FOR_DMA(xx)
718 #endif
719
720 #ifdef CONFIG_ZONE_DMA32
721 #define TEXT_FOR_DMA32(xx) xx "_dma32",
722 #else
723 #define TEXT_FOR_DMA32(xx)
724 #endif
725
726 #ifdef CONFIG_HIGHMEM
727 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
728 #else
729 #define TEXT_FOR_HIGHMEM(xx)
730 #endif
731
732 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
733 TEXT_FOR_HIGHMEM(xx) xx "_movable",
734
735 const char * const vmstat_text[] = {
736 /* Zoned VM counters */
737 "nr_free_pages",
738 "nr_alloc_batch",
739 "nr_inactive_anon",
740 "nr_active_anon",
741 "nr_inactive_file",
742 "nr_active_file",
743 "nr_unevictable",
744 "nr_mlock",
745 "nr_anon_pages",
746 "nr_mapped",
747 "nr_file_pages",
748 "nr_dirty",
749 "nr_writeback",
750 "nr_slab_reclaimable",
751 "nr_slab_unreclaimable",
752 "nr_page_table_pages",
753 "nr_kernel_stack",
754 "nr_unstable",
755 "nr_bounce",
756 "nr_vmscan_write",
757 "nr_vmscan_immediate_reclaim",
758 "nr_writeback_temp",
759 "nr_isolated_anon",
760 "nr_isolated_file",
761 "nr_shmem",
762 "nr_dirtied",
763 "nr_written",
764
765 #ifdef CONFIG_NUMA
766 "numa_hit",
767 "numa_miss",
768 "numa_foreign",
769 "numa_interleave",
770 "numa_local",
771 "numa_other",
772 #endif
773 "nr_anon_transparent_hugepages",
774 "nr_free_cma",
775 "nr_dirty_threshold",
776 "nr_dirty_background_threshold",
777
778 #ifdef CONFIG_VM_EVENT_COUNTERS
779 "pgpgin",
780 "pgpgout",
781 "pswpin",
782 "pswpout",
783
784 TEXTS_FOR_ZONES("pgalloc")
785
786 "pgfree",
787 "pgactivate",
788 "pgdeactivate",
789
790 "pgfault",
791 "pgmajfault",
792
793 TEXTS_FOR_ZONES("pgrefill")
794 TEXTS_FOR_ZONES("pgsteal_kswapd")
795 TEXTS_FOR_ZONES("pgsteal_direct")
796 TEXTS_FOR_ZONES("pgscan_kswapd")
797 TEXTS_FOR_ZONES("pgscan_direct")
798 "pgscan_direct_throttle",
799
800 #ifdef CONFIG_NUMA
801 "zone_reclaim_failed",
802 #endif
803 "pginodesteal",
804 "slabs_scanned",
805 "kswapd_inodesteal",
806 "kswapd_low_wmark_hit_quickly",
807 "kswapd_high_wmark_hit_quickly",
808 "pageoutrun",
809 "allocstall",
810
811 "pgrotated",
812
813 #ifdef CONFIG_NUMA_BALANCING
814 "numa_pte_updates",
815 "numa_huge_pte_updates",
816 "numa_hint_faults",
817 "numa_hint_faults_local",
818 "numa_pages_migrated",
819 #endif
820 #ifdef CONFIG_MIGRATION
821 "pgmigrate_success",
822 "pgmigrate_fail",
823 #endif
824 #ifdef CONFIG_COMPACTION
825 "compact_migrate_scanned",
826 "compact_free_scanned",
827 "compact_isolated",
828 "compact_stall",
829 "compact_fail",
830 "compact_success",
831 #endif
832
833 #ifdef CONFIG_HUGETLB_PAGE
834 "htlb_buddy_alloc_success",
835 "htlb_buddy_alloc_fail",
836 #endif
837 "unevictable_pgs_culled",
838 "unevictable_pgs_scanned",
839 "unevictable_pgs_rescued",
840 "unevictable_pgs_mlocked",
841 "unevictable_pgs_munlocked",
842 "unevictable_pgs_cleared",
843 "unevictable_pgs_stranded",
844
845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
846 "thp_fault_alloc",
847 "thp_fault_fallback",
848 "thp_collapse_alloc",
849 "thp_collapse_alloc_failed",
850 "thp_split",
851 "thp_zero_page_alloc",
852 "thp_zero_page_alloc_failed",
853 #endif
854 #ifdef CONFIG_DEBUG_TLBFLUSH
855 #ifdef CONFIG_SMP
856 "nr_tlb_remote_flush",
857 "nr_tlb_remote_flush_received",
858 #endif /* CONFIG_SMP */
859 "nr_tlb_local_flush_all",
860 "nr_tlb_local_flush_one",
861 #endif /* CONFIG_DEBUG_TLBFLUSH */
862
863 #endif /* CONFIG_VM_EVENTS_COUNTERS */
864 };
865 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
866
867
868 #ifdef CONFIG_PROC_FS
869 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
870 struct zone *zone)
871 {
872 int order;
873
874 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
875 for (order = 0; order < MAX_ORDER; ++order)
876 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
877 seq_putc(m, '\n');
878 }
879
880 /*
881 * This walks the free areas for each zone.
882 */
883 static int frag_show(struct seq_file *m, void *arg)
884 {
885 pg_data_t *pgdat = (pg_data_t *)arg;
886 walk_zones_in_node(m, pgdat, frag_show_print);
887 return 0;
888 }
889
890 static void pagetypeinfo_showfree_print(struct seq_file *m,
891 pg_data_t *pgdat, struct zone *zone)
892 {
893 int order, mtype;
894
895 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
896 seq_printf(m, "Node %4d, zone %8s, type %12s ",
897 pgdat->node_id,
898 zone->name,
899 migratetype_names[mtype]);
900 for (order = 0; order < MAX_ORDER; ++order) {
901 unsigned long freecount = 0;
902 struct free_area *area;
903 struct list_head *curr;
904
905 area = &(zone->free_area[order]);
906
907 list_for_each(curr, &area->free_list[mtype])
908 freecount++;
909 seq_printf(m, "%6lu ", freecount);
910 }
911 seq_putc(m, '\n');
912 }
913 }
914
915 /* Print out the free pages at each order for each migatetype */
916 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
917 {
918 int order;
919 pg_data_t *pgdat = (pg_data_t *)arg;
920
921 /* Print header */
922 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
923 for (order = 0; order < MAX_ORDER; ++order)
924 seq_printf(m, "%6d ", order);
925 seq_putc(m, '\n');
926
927 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
928
929 return 0;
930 }
931
932 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
933 pg_data_t *pgdat, struct zone *zone)
934 {
935 int mtype;
936 unsigned long pfn;
937 unsigned long start_pfn = zone->zone_start_pfn;
938 unsigned long end_pfn = zone_end_pfn(zone);
939 unsigned long count[MIGRATE_TYPES] = { 0, };
940
941 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
942 struct page *page;
943
944 if (!pfn_valid(pfn))
945 continue;
946
947 page = pfn_to_page(pfn);
948
949 /* Watch for unexpected holes punched in the memmap */
950 if (!memmap_valid_within(pfn, page, zone))
951 continue;
952
953 mtype = get_pageblock_migratetype(page);
954
955 if (mtype < MIGRATE_TYPES)
956 count[mtype]++;
957 }
958
959 /* Print counts */
960 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
961 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
962 seq_printf(m, "%12lu ", count[mtype]);
963 seq_putc(m, '\n');
964 }
965
966 /* Print out the free pages at each order for each migratetype */
967 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
968 {
969 int mtype;
970 pg_data_t *pgdat = (pg_data_t *)arg;
971
972 seq_printf(m, "\n%-23s", "Number of blocks type ");
973 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
974 seq_printf(m, "%12s ", migratetype_names[mtype]);
975 seq_putc(m, '\n');
976 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
977
978 return 0;
979 }
980
981 /*
982 * This prints out statistics in relation to grouping pages by mobility.
983 * It is expensive to collect so do not constantly read the file.
984 */
985 static int pagetypeinfo_show(struct seq_file *m, void *arg)
986 {
987 pg_data_t *pgdat = (pg_data_t *)arg;
988
989 /* check memoryless node */
990 if (!node_state(pgdat->node_id, N_MEMORY))
991 return 0;
992
993 seq_printf(m, "Page block order: %d\n", pageblock_order);
994 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
995 seq_putc(m, '\n');
996 pagetypeinfo_showfree(m, pgdat);
997 pagetypeinfo_showblockcount(m, pgdat);
998
999 return 0;
1000 }
1001
1002 static const struct seq_operations fragmentation_op = {
1003 .start = frag_start,
1004 .next = frag_next,
1005 .stop = frag_stop,
1006 .show = frag_show,
1007 };
1008
1009 static int fragmentation_open(struct inode *inode, struct file *file)
1010 {
1011 return seq_open(file, &fragmentation_op);
1012 }
1013
1014 static const struct file_operations fragmentation_file_operations = {
1015 .open = fragmentation_open,
1016 .read = seq_read,
1017 .llseek = seq_lseek,
1018 .release = seq_release,
1019 };
1020
1021 static const struct seq_operations pagetypeinfo_op = {
1022 .start = frag_start,
1023 .next = frag_next,
1024 .stop = frag_stop,
1025 .show = pagetypeinfo_show,
1026 };
1027
1028 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1029 {
1030 return seq_open(file, &pagetypeinfo_op);
1031 }
1032
1033 static const struct file_operations pagetypeinfo_file_ops = {
1034 .open = pagetypeinfo_open,
1035 .read = seq_read,
1036 .llseek = seq_lseek,
1037 .release = seq_release,
1038 };
1039
1040 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1041 struct zone *zone)
1042 {
1043 int i;
1044 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1045 seq_printf(m,
1046 "\n pages free %lu"
1047 "\n min %lu"
1048 "\n low %lu"
1049 "\n high %lu"
1050 "\n scanned %lu"
1051 "\n spanned %lu"
1052 "\n present %lu"
1053 "\n managed %lu",
1054 zone_page_state(zone, NR_FREE_PAGES),
1055 min_wmark_pages(zone),
1056 low_wmark_pages(zone),
1057 high_wmark_pages(zone),
1058 zone->pages_scanned,
1059 zone->spanned_pages,
1060 zone->present_pages,
1061 zone->managed_pages);
1062
1063 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1064 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1065 zone_page_state(zone, i));
1066
1067 seq_printf(m,
1068 "\n protection: (%lu",
1069 zone->lowmem_reserve[0]);
1070 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1071 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1072 seq_printf(m,
1073 ")"
1074 "\n pagesets");
1075 for_each_online_cpu(i) {
1076 struct per_cpu_pageset *pageset;
1077
1078 pageset = per_cpu_ptr(zone->pageset, i);
1079 seq_printf(m,
1080 "\n cpu: %i"
1081 "\n count: %i"
1082 "\n high: %i"
1083 "\n batch: %i",
1084 i,
1085 pageset->pcp.count,
1086 pageset->pcp.high,
1087 pageset->pcp.batch);
1088 #ifdef CONFIG_SMP
1089 seq_printf(m, "\n vm stats threshold: %d",
1090 pageset->stat_threshold);
1091 #endif
1092 }
1093 seq_printf(m,
1094 "\n all_unreclaimable: %u"
1095 "\n start_pfn: %lu"
1096 "\n inactive_ratio: %u",
1097 !zone_reclaimable(zone),
1098 zone->zone_start_pfn,
1099 zone->inactive_ratio);
1100 seq_putc(m, '\n');
1101 }
1102
1103 /*
1104 * Output information about zones in @pgdat.
1105 */
1106 static int zoneinfo_show(struct seq_file *m, void *arg)
1107 {
1108 pg_data_t *pgdat = (pg_data_t *)arg;
1109 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1110 return 0;
1111 }
1112
1113 static const struct seq_operations zoneinfo_op = {
1114 .start = frag_start, /* iterate over all zones. The same as in
1115 * fragmentation. */
1116 .next = frag_next,
1117 .stop = frag_stop,
1118 .show = zoneinfo_show,
1119 };
1120
1121 static int zoneinfo_open(struct inode *inode, struct file *file)
1122 {
1123 return seq_open(file, &zoneinfo_op);
1124 }
1125
1126 static const struct file_operations proc_zoneinfo_file_operations = {
1127 .open = zoneinfo_open,
1128 .read = seq_read,
1129 .llseek = seq_lseek,
1130 .release = seq_release,
1131 };
1132
1133 enum writeback_stat_item {
1134 NR_DIRTY_THRESHOLD,
1135 NR_DIRTY_BG_THRESHOLD,
1136 NR_VM_WRITEBACK_STAT_ITEMS,
1137 };
1138
1139 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1140 {
1141 unsigned long *v;
1142 int i, stat_items_size;
1143
1144 if (*pos >= ARRAY_SIZE(vmstat_text))
1145 return NULL;
1146 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1147 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1148
1149 #ifdef CONFIG_VM_EVENT_COUNTERS
1150 stat_items_size += sizeof(struct vm_event_state);
1151 #endif
1152
1153 v = kmalloc(stat_items_size, GFP_KERNEL);
1154 m->private = v;
1155 if (!v)
1156 return ERR_PTR(-ENOMEM);
1157 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1158 v[i] = global_page_state(i);
1159 v += NR_VM_ZONE_STAT_ITEMS;
1160
1161 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1162 v + NR_DIRTY_THRESHOLD);
1163 v += NR_VM_WRITEBACK_STAT_ITEMS;
1164
1165 #ifdef CONFIG_VM_EVENT_COUNTERS
1166 all_vm_events(v);
1167 v[PGPGIN] /= 2; /* sectors -> kbytes */
1168 v[PGPGOUT] /= 2;
1169 #endif
1170 return (unsigned long *)m->private + *pos;
1171 }
1172
1173 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1174 {
1175 (*pos)++;
1176 if (*pos >= ARRAY_SIZE(vmstat_text))
1177 return NULL;
1178 return (unsigned long *)m->private + *pos;
1179 }
1180
1181 static int vmstat_show(struct seq_file *m, void *arg)
1182 {
1183 unsigned long *l = arg;
1184 unsigned long off = l - (unsigned long *)m->private;
1185
1186 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1187 return 0;
1188 }
1189
1190 static void vmstat_stop(struct seq_file *m, void *arg)
1191 {
1192 kfree(m->private);
1193 m->private = NULL;
1194 }
1195
1196 static const struct seq_operations vmstat_op = {
1197 .start = vmstat_start,
1198 .next = vmstat_next,
1199 .stop = vmstat_stop,
1200 .show = vmstat_show,
1201 };
1202
1203 static int vmstat_open(struct inode *inode, struct file *file)
1204 {
1205 return seq_open(file, &vmstat_op);
1206 }
1207
1208 static const struct file_operations proc_vmstat_file_operations = {
1209 .open = vmstat_open,
1210 .read = seq_read,
1211 .llseek = seq_lseek,
1212 .release = seq_release,
1213 };
1214 #endif /* CONFIG_PROC_FS */
1215
1216 #ifdef CONFIG_SMP
1217 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1218 int sysctl_stat_interval __read_mostly = HZ;
1219
1220 static void vmstat_update(struct work_struct *w)
1221 {
1222 refresh_cpu_vm_stats();
1223 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1224 round_jiffies_relative(sysctl_stat_interval));
1225 }
1226
1227 static void start_cpu_timer(int cpu)
1228 {
1229 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1230
1231 INIT_DEFERRABLE_WORK(work, vmstat_update);
1232 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1233 }
1234
1235 static void vmstat_cpu_dead(int node)
1236 {
1237 int cpu;
1238
1239 get_online_cpus();
1240 for_each_online_cpu(cpu)
1241 if (cpu_to_node(cpu) == node)
1242 goto end;
1243
1244 node_clear_state(node, N_CPU);
1245 end:
1246 put_online_cpus();
1247 }
1248
1249 /*
1250 * Use the cpu notifier to insure that the thresholds are recalculated
1251 * when necessary.
1252 */
1253 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1254 unsigned long action,
1255 void *hcpu)
1256 {
1257 long cpu = (long)hcpu;
1258
1259 switch (action) {
1260 case CPU_ONLINE:
1261 case CPU_ONLINE_FROZEN:
1262 refresh_zone_stat_thresholds();
1263 start_cpu_timer(cpu);
1264 node_set_state(cpu_to_node(cpu), N_CPU);
1265 break;
1266 case CPU_DOWN_PREPARE:
1267 case CPU_DOWN_PREPARE_FROZEN:
1268 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1269 per_cpu(vmstat_work, cpu).work.func = NULL;
1270 break;
1271 case CPU_DOWN_FAILED:
1272 case CPU_DOWN_FAILED_FROZEN:
1273 start_cpu_timer(cpu);
1274 break;
1275 case CPU_DEAD:
1276 case CPU_DEAD_FROZEN:
1277 refresh_zone_stat_thresholds();
1278 vmstat_cpu_dead(cpu_to_node(cpu));
1279 break;
1280 default:
1281 break;
1282 }
1283 return NOTIFY_OK;
1284 }
1285
1286 static struct notifier_block vmstat_notifier =
1287 { &vmstat_cpuup_callback, NULL, 0 };
1288 #endif
1289
1290 static int __init setup_vmstat(void)
1291 {
1292 #ifdef CONFIG_SMP
1293 int cpu;
1294
1295 register_cpu_notifier(&vmstat_notifier);
1296
1297 get_online_cpus();
1298 for_each_online_cpu(cpu) {
1299 start_cpu_timer(cpu);
1300 node_set_state(cpu_to_node(cpu), N_CPU);
1301 }
1302 put_online_cpus();
1303 #endif
1304 #ifdef CONFIG_PROC_FS
1305 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1306 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1307 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1308 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1309 #endif
1310 return 0;
1311 }
1312 module_init(setup_vmstat)
1313
1314 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1315 #include <linux/debugfs.h>
1316
1317
1318 /*
1319 * Return an index indicating how much of the available free memory is
1320 * unusable for an allocation of the requested size.
1321 */
1322 static int unusable_free_index(unsigned int order,
1323 struct contig_page_info *info)
1324 {
1325 /* No free memory is interpreted as all free memory is unusable */
1326 if (info->free_pages == 0)
1327 return 1000;
1328
1329 /*
1330 * Index should be a value between 0 and 1. Return a value to 3
1331 * decimal places.
1332 *
1333 * 0 => no fragmentation
1334 * 1 => high fragmentation
1335 */
1336 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1337
1338 }
1339
1340 static void unusable_show_print(struct seq_file *m,
1341 pg_data_t *pgdat, struct zone *zone)
1342 {
1343 unsigned int order;
1344 int index;
1345 struct contig_page_info info;
1346
1347 seq_printf(m, "Node %d, zone %8s ",
1348 pgdat->node_id,
1349 zone->name);
1350 for (order = 0; order < MAX_ORDER; ++order) {
1351 fill_contig_page_info(zone, order, &info);
1352 index = unusable_free_index(order, &info);
1353 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1354 }
1355
1356 seq_putc(m, '\n');
1357 }
1358
1359 /*
1360 * Display unusable free space index
1361 *
1362 * The unusable free space index measures how much of the available free
1363 * memory cannot be used to satisfy an allocation of a given size and is a
1364 * value between 0 and 1. The higher the value, the more of free memory is
1365 * unusable and by implication, the worse the external fragmentation is. This
1366 * can be expressed as a percentage by multiplying by 100.
1367 */
1368 static int unusable_show(struct seq_file *m, void *arg)
1369 {
1370 pg_data_t *pgdat = (pg_data_t *)arg;
1371
1372 /* check memoryless node */
1373 if (!node_state(pgdat->node_id, N_MEMORY))
1374 return 0;
1375
1376 walk_zones_in_node(m, pgdat, unusable_show_print);
1377
1378 return 0;
1379 }
1380
1381 static const struct seq_operations unusable_op = {
1382 .start = frag_start,
1383 .next = frag_next,
1384 .stop = frag_stop,
1385 .show = unusable_show,
1386 };
1387
1388 static int unusable_open(struct inode *inode, struct file *file)
1389 {
1390 return seq_open(file, &unusable_op);
1391 }
1392
1393 static const struct file_operations unusable_file_ops = {
1394 .open = unusable_open,
1395 .read = seq_read,
1396 .llseek = seq_lseek,
1397 .release = seq_release,
1398 };
1399
1400 static void extfrag_show_print(struct seq_file *m,
1401 pg_data_t *pgdat, struct zone *zone)
1402 {
1403 unsigned int order;
1404 int index;
1405
1406 /* Alloc on stack as interrupts are disabled for zone walk */
1407 struct contig_page_info info;
1408
1409 seq_printf(m, "Node %d, zone %8s ",
1410 pgdat->node_id,
1411 zone->name);
1412 for (order = 0; order < MAX_ORDER; ++order) {
1413 fill_contig_page_info(zone, order, &info);
1414 index = __fragmentation_index(order, &info);
1415 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1416 }
1417
1418 seq_putc(m, '\n');
1419 }
1420
1421 /*
1422 * Display fragmentation index for orders that allocations would fail for
1423 */
1424 static int extfrag_show(struct seq_file *m, void *arg)
1425 {
1426 pg_data_t *pgdat = (pg_data_t *)arg;
1427
1428 walk_zones_in_node(m, pgdat, extfrag_show_print);
1429
1430 return 0;
1431 }
1432
1433 static const struct seq_operations extfrag_op = {
1434 .start = frag_start,
1435 .next = frag_next,
1436 .stop = frag_stop,
1437 .show = extfrag_show,
1438 };
1439
1440 static int extfrag_open(struct inode *inode, struct file *file)
1441 {
1442 return seq_open(file, &extfrag_op);
1443 }
1444
1445 static const struct file_operations extfrag_file_ops = {
1446 .open = extfrag_open,
1447 .read = seq_read,
1448 .llseek = seq_lseek,
1449 .release = seq_release,
1450 };
1451
1452 static int __init extfrag_debug_init(void)
1453 {
1454 struct dentry *extfrag_debug_root;
1455
1456 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1457 if (!extfrag_debug_root)
1458 return -ENOMEM;
1459
1460 if (!debugfs_create_file("unusable_index", 0444,
1461 extfrag_debug_root, NULL, &unusable_file_ops))
1462 goto fail;
1463
1464 if (!debugfs_create_file("extfrag_index", 0444,
1465 extfrag_debug_root, NULL, &extfrag_file_ops))
1466 goto fail;
1467
1468 return 0;
1469 fail:
1470 debugfs_remove_recursive(extfrag_debug_root);
1471 return -ENOMEM;
1472 }
1473
1474 module_init(extfrag_debug_init);
1475 #endif