]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmstat.c
HID: wacom: fixup quirks setup for WACOM_DEVICETYPE_PAD
[mirror_ubuntu-artful-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
11 */
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
30
31 #include "internal.h"
32
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
37 static void sum_vm_events(unsigned long *ret)
38 {
39 int cpu;
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50 }
51
52 /*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56 */
57 void all_vm_events(unsigned long *ret)
58 {
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
62 }
63 EXPORT_SYMBOL_GPL(all_vm_events);
64
65 /*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71 void vm_events_fold_cpu(int cpu)
72 {
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80 }
81
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
83
84 /*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
89 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 EXPORT_SYMBOL(vm_stat);
91
92 #ifdef CONFIG_SMP
93
94 int calculate_pressure_threshold(struct zone *zone)
95 {
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116 }
117
118 int calculate_normal_threshold(struct zone *zone)
119 {
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163 }
164
165 /*
166 * Refresh the thresholds for each zone.
167 */
168 void refresh_zone_stat_thresholds(void)
169 {
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
174 for_each_populated_zone(zone) {
175 unsigned long max_drift, tolerate_drift;
176
177 threshold = calculate_normal_threshold(zone);
178
179 for_each_online_cpu(cpu)
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
193 }
194 }
195
196 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
198 {
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
209 threshold = (*calculate_pressure)(zone);
210 for_each_online_cpu(cpu)
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
214 }
215
216 /*
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
220 */
221 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 int delta)
223 {
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
226 long x;
227 long t;
228
229 x = delta + __this_cpu_read(*p);
230
231 t = __this_cpu_read(pcp->stat_threshold);
232
233 if (unlikely(x > t || x < -t)) {
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
237 __this_cpu_write(*p, x);
238 }
239 EXPORT_SYMBOL(__mod_zone_page_state);
240
241 /*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
264 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
265 {
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
269
270 v = __this_cpu_inc_return(*p);
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
274
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
277 }
278 }
279
280 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281 {
282 __inc_zone_state(page_zone(page), item);
283 }
284 EXPORT_SYMBOL(__inc_zone_page_state);
285
286 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
291
292 v = __this_cpu_dec_return(*p);
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
296
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
299 }
300 }
301
302 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303 {
304 __dec_zone_state(page_zone(page), item);
305 }
306 EXPORT_SYMBOL(__dec_zone_page_state);
307
308 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
309 /*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320 */
321 static inline void mod_state(struct zone *zone,
322 enum zone_stat_item item, int delta, int overstep_mode)
323 {
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357 }
358
359 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 int delta)
361 {
362 mod_state(zone, item, delta, 0);
363 }
364 EXPORT_SYMBOL(mod_zone_page_state);
365
366 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367 {
368 mod_state(zone, item, 1, 1);
369 }
370
371 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372 {
373 mod_state(page_zone(page), item, 1, 1);
374 }
375 EXPORT_SYMBOL(inc_zone_page_state);
376
377 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378 {
379 mod_state(page_zone(page), item, -1, -1);
380 }
381 EXPORT_SYMBOL(dec_zone_page_state);
382 #else
383 /*
384 * Use interrupt disable to serialize counter updates
385 */
386 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 int delta)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394 }
395 EXPORT_SYMBOL(mod_zone_page_state);
396
397 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398 {
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404 }
405
406 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407 {
408 unsigned long flags;
409 struct zone *zone;
410
411 zone = page_zone(page);
412 local_irq_save(flags);
413 __inc_zone_state(zone, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(inc_zone_page_state);
417
418 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 __dec_zone_page_state(page, item);
424 local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL(dec_zone_page_state);
427 #endif
428
429
430 /*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434 static int fold_diff(int *diff)
435 {
436 int i;
437 int changes = 0;
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
440 if (diff[i]) {
441 atomic_long_add(diff[i], &vm_stat[i]);
442 changes++;
443 }
444 return changes;
445 }
446
447 /*
448 * Update the zone counters for the current cpu.
449 *
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
460 *
461 * The function returns the number of global counters updated.
462 */
463 static int refresh_cpu_vm_stats(void)
464 {
465 struct zone *zone;
466 int i;
467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
468 int changes = 0;
469
470 for_each_populated_zone(zone) {
471 struct per_cpu_pageset __percpu *p = zone->pageset;
472
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
475
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
478
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
481 #ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
483 __this_cpu_write(p->expire, 3);
484 #endif
485 }
486 }
487 cond_resched();
488 #ifdef CONFIG_NUMA
489 /*
490 * Deal with draining the remote pageset of this
491 * processor
492 *
493 * Check if there are pages remaining in this pageset
494 * if not then there is nothing to expire.
495 */
496 if (!__this_cpu_read(p->expire) ||
497 !__this_cpu_read(p->pcp.count))
498 continue;
499
500 /*
501 * We never drain zones local to this processor.
502 */
503 if (zone_to_nid(zone) == numa_node_id()) {
504 __this_cpu_write(p->expire, 0);
505 continue;
506 }
507
508 if (__this_cpu_dec_return(p->expire))
509 continue;
510
511 if (__this_cpu_read(p->pcp.count)) {
512 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
513 changes++;
514 }
515 #endif
516 }
517 changes += fold_diff(global_diff);
518 return changes;
519 }
520
521 /*
522 * Fold the data for an offline cpu into the global array.
523 * There cannot be any access by the offline cpu and therefore
524 * synchronization is simplified.
525 */
526 void cpu_vm_stats_fold(int cpu)
527 {
528 struct zone *zone;
529 int i;
530 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
531
532 for_each_populated_zone(zone) {
533 struct per_cpu_pageset *p;
534
535 p = per_cpu_ptr(zone->pageset, cpu);
536
537 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
538 if (p->vm_stat_diff[i]) {
539 int v;
540
541 v = p->vm_stat_diff[i];
542 p->vm_stat_diff[i] = 0;
543 atomic_long_add(v, &zone->vm_stat[i]);
544 global_diff[i] += v;
545 }
546 }
547
548 fold_diff(global_diff);
549 }
550
551 /*
552 * this is only called if !populated_zone(zone), which implies no other users of
553 * pset->vm_stat_diff[] exsist.
554 */
555 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
556 {
557 int i;
558
559 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
560 if (pset->vm_stat_diff[i]) {
561 int v = pset->vm_stat_diff[i];
562 pset->vm_stat_diff[i] = 0;
563 atomic_long_add(v, &zone->vm_stat[i]);
564 atomic_long_add(v, &vm_stat[i]);
565 }
566 }
567 #endif
568
569 #ifdef CONFIG_NUMA
570 /*
571 * zonelist = the list of zones passed to the allocator
572 * z = the zone from which the allocation occurred.
573 *
574 * Must be called with interrupts disabled.
575 *
576 * When __GFP_OTHER_NODE is set assume the node of the preferred
577 * zone is the local node. This is useful for daemons who allocate
578 * memory on behalf of other processes.
579 */
580 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
581 {
582 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
583 __inc_zone_state(z, NUMA_HIT);
584 } else {
585 __inc_zone_state(z, NUMA_MISS);
586 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
587 }
588 if (z->node == ((flags & __GFP_OTHER_NODE) ?
589 preferred_zone->node : numa_node_id()))
590 __inc_zone_state(z, NUMA_LOCAL);
591 else
592 __inc_zone_state(z, NUMA_OTHER);
593 }
594
595 /*
596 * Determine the per node value of a stat item.
597 */
598 unsigned long node_page_state(int node, enum zone_stat_item item)
599 {
600 struct zone *zones = NODE_DATA(node)->node_zones;
601
602 return
603 #ifdef CONFIG_ZONE_DMA
604 zone_page_state(&zones[ZONE_DMA], item) +
605 #endif
606 #ifdef CONFIG_ZONE_DMA32
607 zone_page_state(&zones[ZONE_DMA32], item) +
608 #endif
609 #ifdef CONFIG_HIGHMEM
610 zone_page_state(&zones[ZONE_HIGHMEM], item) +
611 #endif
612 zone_page_state(&zones[ZONE_NORMAL], item) +
613 zone_page_state(&zones[ZONE_MOVABLE], item);
614 }
615
616 #endif
617
618 #ifdef CONFIG_COMPACTION
619
620 struct contig_page_info {
621 unsigned long free_pages;
622 unsigned long free_blocks_total;
623 unsigned long free_blocks_suitable;
624 };
625
626 /*
627 * Calculate the number of free pages in a zone, how many contiguous
628 * pages are free and how many are large enough to satisfy an allocation of
629 * the target size. Note that this function makes no attempt to estimate
630 * how many suitable free blocks there *might* be if MOVABLE pages were
631 * migrated. Calculating that is possible, but expensive and can be
632 * figured out from userspace
633 */
634 static void fill_contig_page_info(struct zone *zone,
635 unsigned int suitable_order,
636 struct contig_page_info *info)
637 {
638 unsigned int order;
639
640 info->free_pages = 0;
641 info->free_blocks_total = 0;
642 info->free_blocks_suitable = 0;
643
644 for (order = 0; order < MAX_ORDER; order++) {
645 unsigned long blocks;
646
647 /* Count number of free blocks */
648 blocks = zone->free_area[order].nr_free;
649 info->free_blocks_total += blocks;
650
651 /* Count free base pages */
652 info->free_pages += blocks << order;
653
654 /* Count the suitable free blocks */
655 if (order >= suitable_order)
656 info->free_blocks_suitable += blocks <<
657 (order - suitable_order);
658 }
659 }
660
661 /*
662 * A fragmentation index only makes sense if an allocation of a requested
663 * size would fail. If that is true, the fragmentation index indicates
664 * whether external fragmentation or a lack of memory was the problem.
665 * The value can be used to determine if page reclaim or compaction
666 * should be used
667 */
668 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
669 {
670 unsigned long requested = 1UL << order;
671
672 if (!info->free_blocks_total)
673 return 0;
674
675 /* Fragmentation index only makes sense when a request would fail */
676 if (info->free_blocks_suitable)
677 return -1000;
678
679 /*
680 * Index is between 0 and 1 so return within 3 decimal places
681 *
682 * 0 => allocation would fail due to lack of memory
683 * 1 => allocation would fail due to fragmentation
684 */
685 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
686 }
687
688 /* Same as __fragmentation index but allocs contig_page_info on stack */
689 int fragmentation_index(struct zone *zone, unsigned int order)
690 {
691 struct contig_page_info info;
692
693 fill_contig_page_info(zone, order, &info);
694 return __fragmentation_index(order, &info);
695 }
696 #endif
697
698 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
699 #ifdef CONFIG_ZONE_DMA
700 #define TEXT_FOR_DMA(xx) xx "_dma",
701 #else
702 #define TEXT_FOR_DMA(xx)
703 #endif
704
705 #ifdef CONFIG_ZONE_DMA32
706 #define TEXT_FOR_DMA32(xx) xx "_dma32",
707 #else
708 #define TEXT_FOR_DMA32(xx)
709 #endif
710
711 #ifdef CONFIG_HIGHMEM
712 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
713 #else
714 #define TEXT_FOR_HIGHMEM(xx)
715 #endif
716
717 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
718 TEXT_FOR_HIGHMEM(xx) xx "_movable",
719
720 const char * const vmstat_text[] = {
721 /* enum zone_stat_item countes */
722 "nr_free_pages",
723 "nr_alloc_batch",
724 "nr_inactive_anon",
725 "nr_active_anon",
726 "nr_inactive_file",
727 "nr_active_file",
728 "nr_unevictable",
729 "nr_mlock",
730 "nr_anon_pages",
731 "nr_mapped",
732 "nr_file_pages",
733 "nr_dirty",
734 "nr_writeback",
735 "nr_slab_reclaimable",
736 "nr_slab_unreclaimable",
737 "nr_page_table_pages",
738 "nr_kernel_stack",
739 "nr_unstable",
740 "nr_bounce",
741 "nr_vmscan_write",
742 "nr_vmscan_immediate_reclaim",
743 "nr_writeback_temp",
744 "nr_isolated_anon",
745 "nr_isolated_file",
746 "nr_shmem",
747 "nr_dirtied",
748 "nr_written",
749 "nr_pages_scanned",
750
751 #ifdef CONFIG_NUMA
752 "numa_hit",
753 "numa_miss",
754 "numa_foreign",
755 "numa_interleave",
756 "numa_local",
757 "numa_other",
758 #endif
759 "workingset_refault",
760 "workingset_activate",
761 "workingset_nodereclaim",
762 "nr_anon_transparent_hugepages",
763 "nr_free_cma",
764
765 /* enum writeback_stat_item counters */
766 "nr_dirty_threshold",
767 "nr_dirty_background_threshold",
768
769 #ifdef CONFIG_VM_EVENT_COUNTERS
770 /* enum vm_event_item counters */
771 "pgpgin",
772 "pgpgout",
773 "pswpin",
774 "pswpout",
775
776 TEXTS_FOR_ZONES("pgalloc")
777
778 "pgfree",
779 "pgactivate",
780 "pgdeactivate",
781
782 "pgfault",
783 "pgmajfault",
784
785 TEXTS_FOR_ZONES("pgrefill")
786 TEXTS_FOR_ZONES("pgsteal_kswapd")
787 TEXTS_FOR_ZONES("pgsteal_direct")
788 TEXTS_FOR_ZONES("pgscan_kswapd")
789 TEXTS_FOR_ZONES("pgscan_direct")
790 "pgscan_direct_throttle",
791
792 #ifdef CONFIG_NUMA
793 "zone_reclaim_failed",
794 #endif
795 "pginodesteal",
796 "slabs_scanned",
797 "kswapd_inodesteal",
798 "kswapd_low_wmark_hit_quickly",
799 "kswapd_high_wmark_hit_quickly",
800 "pageoutrun",
801 "allocstall",
802
803 "pgrotated",
804
805 "drop_pagecache",
806 "drop_slab",
807
808 #ifdef CONFIG_NUMA_BALANCING
809 "numa_pte_updates",
810 "numa_huge_pte_updates",
811 "numa_hint_faults",
812 "numa_hint_faults_local",
813 "numa_pages_migrated",
814 #endif
815 #ifdef CONFIG_MIGRATION
816 "pgmigrate_success",
817 "pgmigrate_fail",
818 #endif
819 #ifdef CONFIG_COMPACTION
820 "compact_migrate_scanned",
821 "compact_free_scanned",
822 "compact_isolated",
823 "compact_stall",
824 "compact_fail",
825 "compact_success",
826 #endif
827
828 #ifdef CONFIG_HUGETLB_PAGE
829 "htlb_buddy_alloc_success",
830 "htlb_buddy_alloc_fail",
831 #endif
832 "unevictable_pgs_culled",
833 "unevictable_pgs_scanned",
834 "unevictable_pgs_rescued",
835 "unevictable_pgs_mlocked",
836 "unevictable_pgs_munlocked",
837 "unevictable_pgs_cleared",
838 "unevictable_pgs_stranded",
839
840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
841 "thp_fault_alloc",
842 "thp_fault_fallback",
843 "thp_collapse_alloc",
844 "thp_collapse_alloc_failed",
845 "thp_split",
846 "thp_zero_page_alloc",
847 "thp_zero_page_alloc_failed",
848 #endif
849 #ifdef CONFIG_MEMORY_BALLOON
850 "balloon_inflate",
851 "balloon_deflate",
852 #ifdef CONFIG_BALLOON_COMPACTION
853 "balloon_migrate",
854 #endif
855 #endif /* CONFIG_MEMORY_BALLOON */
856 #ifdef CONFIG_DEBUG_TLBFLUSH
857 #ifdef CONFIG_SMP
858 "nr_tlb_remote_flush",
859 "nr_tlb_remote_flush_received",
860 #endif /* CONFIG_SMP */
861 "nr_tlb_local_flush_all",
862 "nr_tlb_local_flush_one",
863 #endif /* CONFIG_DEBUG_TLBFLUSH */
864
865 #ifdef CONFIG_DEBUG_VM_VMACACHE
866 "vmacache_find_calls",
867 "vmacache_find_hits",
868 "vmacache_full_flushes",
869 #endif
870 #endif /* CONFIG_VM_EVENTS_COUNTERS */
871 };
872 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
873
874
875 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
876 defined(CONFIG_PROC_FS)
877 static void *frag_start(struct seq_file *m, loff_t *pos)
878 {
879 pg_data_t *pgdat;
880 loff_t node = *pos;
881
882 for (pgdat = first_online_pgdat();
883 pgdat && node;
884 pgdat = next_online_pgdat(pgdat))
885 --node;
886
887 return pgdat;
888 }
889
890 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
891 {
892 pg_data_t *pgdat = (pg_data_t *)arg;
893
894 (*pos)++;
895 return next_online_pgdat(pgdat);
896 }
897
898 static void frag_stop(struct seq_file *m, void *arg)
899 {
900 }
901
902 /* Walk all the zones in a node and print using a callback */
903 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
904 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
905 {
906 struct zone *zone;
907 struct zone *node_zones = pgdat->node_zones;
908 unsigned long flags;
909
910 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
911 if (!populated_zone(zone))
912 continue;
913
914 spin_lock_irqsave(&zone->lock, flags);
915 print(m, pgdat, zone);
916 spin_unlock_irqrestore(&zone->lock, flags);
917 }
918 }
919 #endif
920
921 #ifdef CONFIG_PROC_FS
922 static char * const migratetype_names[MIGRATE_TYPES] = {
923 "Unmovable",
924 "Reclaimable",
925 "Movable",
926 "Reserve",
927 #ifdef CONFIG_CMA
928 "CMA",
929 #endif
930 #ifdef CONFIG_MEMORY_ISOLATION
931 "Isolate",
932 #endif
933 };
934
935 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
936 struct zone *zone)
937 {
938 int order;
939
940 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
941 for (order = 0; order < MAX_ORDER; ++order)
942 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
943 seq_putc(m, '\n');
944 }
945
946 /*
947 * This walks the free areas for each zone.
948 */
949 static int frag_show(struct seq_file *m, void *arg)
950 {
951 pg_data_t *pgdat = (pg_data_t *)arg;
952 walk_zones_in_node(m, pgdat, frag_show_print);
953 return 0;
954 }
955
956 static void pagetypeinfo_showfree_print(struct seq_file *m,
957 pg_data_t *pgdat, struct zone *zone)
958 {
959 int order, mtype;
960
961 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
962 seq_printf(m, "Node %4d, zone %8s, type %12s ",
963 pgdat->node_id,
964 zone->name,
965 migratetype_names[mtype]);
966 for (order = 0; order < MAX_ORDER; ++order) {
967 unsigned long freecount = 0;
968 struct free_area *area;
969 struct list_head *curr;
970
971 area = &(zone->free_area[order]);
972
973 list_for_each(curr, &area->free_list[mtype])
974 freecount++;
975 seq_printf(m, "%6lu ", freecount);
976 }
977 seq_putc(m, '\n');
978 }
979 }
980
981 /* Print out the free pages at each order for each migatetype */
982 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
983 {
984 int order;
985 pg_data_t *pgdat = (pg_data_t *)arg;
986
987 /* Print header */
988 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
989 for (order = 0; order < MAX_ORDER; ++order)
990 seq_printf(m, "%6d ", order);
991 seq_putc(m, '\n');
992
993 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
994
995 return 0;
996 }
997
998 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
999 pg_data_t *pgdat, struct zone *zone)
1000 {
1001 int mtype;
1002 unsigned long pfn;
1003 unsigned long start_pfn = zone->zone_start_pfn;
1004 unsigned long end_pfn = zone_end_pfn(zone);
1005 unsigned long count[MIGRATE_TYPES] = { 0, };
1006
1007 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1008 struct page *page;
1009
1010 if (!pfn_valid(pfn))
1011 continue;
1012
1013 page = pfn_to_page(pfn);
1014
1015 /* Watch for unexpected holes punched in the memmap */
1016 if (!memmap_valid_within(pfn, page, zone))
1017 continue;
1018
1019 mtype = get_pageblock_migratetype(page);
1020
1021 if (mtype < MIGRATE_TYPES)
1022 count[mtype]++;
1023 }
1024
1025 /* Print counts */
1026 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1027 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1028 seq_printf(m, "%12lu ", count[mtype]);
1029 seq_putc(m, '\n');
1030 }
1031
1032 /* Print out the free pages at each order for each migratetype */
1033 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1034 {
1035 int mtype;
1036 pg_data_t *pgdat = (pg_data_t *)arg;
1037
1038 seq_printf(m, "\n%-23s", "Number of blocks type ");
1039 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1040 seq_printf(m, "%12s ", migratetype_names[mtype]);
1041 seq_putc(m, '\n');
1042 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1043
1044 return 0;
1045 }
1046
1047 #ifdef CONFIG_PAGE_OWNER
1048 static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1049 pg_data_t *pgdat,
1050 struct zone *zone)
1051 {
1052 struct page *page;
1053 struct page_ext *page_ext;
1054 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1055 unsigned long end_pfn = pfn + zone->spanned_pages;
1056 unsigned long count[MIGRATE_TYPES] = { 0, };
1057 int pageblock_mt, page_mt;
1058 int i;
1059
1060 /* Scan block by block. First and last block may be incomplete */
1061 pfn = zone->zone_start_pfn;
1062
1063 /*
1064 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1065 * a zone boundary, it will be double counted between zones. This does
1066 * not matter as the mixed block count will still be correct
1067 */
1068 for (; pfn < end_pfn; ) {
1069 if (!pfn_valid(pfn)) {
1070 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1071 continue;
1072 }
1073
1074 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1075 block_end_pfn = min(block_end_pfn, end_pfn);
1076
1077 page = pfn_to_page(pfn);
1078 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1079
1080 for (; pfn < block_end_pfn; pfn++) {
1081 if (!pfn_valid_within(pfn))
1082 continue;
1083
1084 page = pfn_to_page(pfn);
1085 if (PageBuddy(page)) {
1086 pfn += (1UL << page_order(page)) - 1;
1087 continue;
1088 }
1089
1090 if (PageReserved(page))
1091 continue;
1092
1093 page_ext = lookup_page_ext(page);
1094
1095 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1096 continue;
1097
1098 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1099 if (pageblock_mt != page_mt) {
1100 if (is_migrate_cma(pageblock_mt))
1101 count[MIGRATE_MOVABLE]++;
1102 else
1103 count[pageblock_mt]++;
1104
1105 pfn = block_end_pfn;
1106 break;
1107 }
1108 pfn += (1UL << page_ext->order) - 1;
1109 }
1110 }
1111
1112 /* Print counts */
1113 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1114 for (i = 0; i < MIGRATE_TYPES; i++)
1115 seq_printf(m, "%12lu ", count[i]);
1116 seq_putc(m, '\n');
1117 }
1118 #endif /* CONFIG_PAGE_OWNER */
1119
1120 /*
1121 * Print out the number of pageblocks for each migratetype that contain pages
1122 * of other types. This gives an indication of how well fallbacks are being
1123 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1124 * to determine what is going on
1125 */
1126 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1127 {
1128 #ifdef CONFIG_PAGE_OWNER
1129 int mtype;
1130
1131 if (!page_owner_inited)
1132 return;
1133
1134 drain_all_pages(NULL);
1135
1136 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1137 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1138 seq_printf(m, "%12s ", migratetype_names[mtype]);
1139 seq_putc(m, '\n');
1140
1141 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1142 #endif /* CONFIG_PAGE_OWNER */
1143 }
1144
1145 /*
1146 * This prints out statistics in relation to grouping pages by mobility.
1147 * It is expensive to collect so do not constantly read the file.
1148 */
1149 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1150 {
1151 pg_data_t *pgdat = (pg_data_t *)arg;
1152
1153 /* check memoryless node */
1154 if (!node_state(pgdat->node_id, N_MEMORY))
1155 return 0;
1156
1157 seq_printf(m, "Page block order: %d\n", pageblock_order);
1158 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1159 seq_putc(m, '\n');
1160 pagetypeinfo_showfree(m, pgdat);
1161 pagetypeinfo_showblockcount(m, pgdat);
1162 pagetypeinfo_showmixedcount(m, pgdat);
1163
1164 return 0;
1165 }
1166
1167 static const struct seq_operations fragmentation_op = {
1168 .start = frag_start,
1169 .next = frag_next,
1170 .stop = frag_stop,
1171 .show = frag_show,
1172 };
1173
1174 static int fragmentation_open(struct inode *inode, struct file *file)
1175 {
1176 return seq_open(file, &fragmentation_op);
1177 }
1178
1179 static const struct file_operations fragmentation_file_operations = {
1180 .open = fragmentation_open,
1181 .read = seq_read,
1182 .llseek = seq_lseek,
1183 .release = seq_release,
1184 };
1185
1186 static const struct seq_operations pagetypeinfo_op = {
1187 .start = frag_start,
1188 .next = frag_next,
1189 .stop = frag_stop,
1190 .show = pagetypeinfo_show,
1191 };
1192
1193 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1194 {
1195 return seq_open(file, &pagetypeinfo_op);
1196 }
1197
1198 static const struct file_operations pagetypeinfo_file_ops = {
1199 .open = pagetypeinfo_open,
1200 .read = seq_read,
1201 .llseek = seq_lseek,
1202 .release = seq_release,
1203 };
1204
1205 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1206 struct zone *zone)
1207 {
1208 int i;
1209 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1210 seq_printf(m,
1211 "\n pages free %lu"
1212 "\n min %lu"
1213 "\n low %lu"
1214 "\n high %lu"
1215 "\n scanned %lu"
1216 "\n spanned %lu"
1217 "\n present %lu"
1218 "\n managed %lu",
1219 zone_page_state(zone, NR_FREE_PAGES),
1220 min_wmark_pages(zone),
1221 low_wmark_pages(zone),
1222 high_wmark_pages(zone),
1223 zone_page_state(zone, NR_PAGES_SCANNED),
1224 zone->spanned_pages,
1225 zone->present_pages,
1226 zone->managed_pages);
1227
1228 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1229 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1230 zone_page_state(zone, i));
1231
1232 seq_printf(m,
1233 "\n protection: (%ld",
1234 zone->lowmem_reserve[0]);
1235 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1236 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1237 seq_printf(m,
1238 ")"
1239 "\n pagesets");
1240 for_each_online_cpu(i) {
1241 struct per_cpu_pageset *pageset;
1242
1243 pageset = per_cpu_ptr(zone->pageset, i);
1244 seq_printf(m,
1245 "\n cpu: %i"
1246 "\n count: %i"
1247 "\n high: %i"
1248 "\n batch: %i",
1249 i,
1250 pageset->pcp.count,
1251 pageset->pcp.high,
1252 pageset->pcp.batch);
1253 #ifdef CONFIG_SMP
1254 seq_printf(m, "\n vm stats threshold: %d",
1255 pageset->stat_threshold);
1256 #endif
1257 }
1258 seq_printf(m,
1259 "\n all_unreclaimable: %u"
1260 "\n start_pfn: %lu"
1261 "\n inactive_ratio: %u",
1262 !zone_reclaimable(zone),
1263 zone->zone_start_pfn,
1264 zone->inactive_ratio);
1265 seq_putc(m, '\n');
1266 }
1267
1268 /*
1269 * Output information about zones in @pgdat.
1270 */
1271 static int zoneinfo_show(struct seq_file *m, void *arg)
1272 {
1273 pg_data_t *pgdat = (pg_data_t *)arg;
1274 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1275 return 0;
1276 }
1277
1278 static const struct seq_operations zoneinfo_op = {
1279 .start = frag_start, /* iterate over all zones. The same as in
1280 * fragmentation. */
1281 .next = frag_next,
1282 .stop = frag_stop,
1283 .show = zoneinfo_show,
1284 };
1285
1286 static int zoneinfo_open(struct inode *inode, struct file *file)
1287 {
1288 return seq_open(file, &zoneinfo_op);
1289 }
1290
1291 static const struct file_operations proc_zoneinfo_file_operations = {
1292 .open = zoneinfo_open,
1293 .read = seq_read,
1294 .llseek = seq_lseek,
1295 .release = seq_release,
1296 };
1297
1298 enum writeback_stat_item {
1299 NR_DIRTY_THRESHOLD,
1300 NR_DIRTY_BG_THRESHOLD,
1301 NR_VM_WRITEBACK_STAT_ITEMS,
1302 };
1303
1304 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1305 {
1306 unsigned long *v;
1307 int i, stat_items_size;
1308
1309 if (*pos >= ARRAY_SIZE(vmstat_text))
1310 return NULL;
1311 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1312 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1313
1314 #ifdef CONFIG_VM_EVENT_COUNTERS
1315 stat_items_size += sizeof(struct vm_event_state);
1316 #endif
1317
1318 v = kmalloc(stat_items_size, GFP_KERNEL);
1319 m->private = v;
1320 if (!v)
1321 return ERR_PTR(-ENOMEM);
1322 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1323 v[i] = global_page_state(i);
1324 v += NR_VM_ZONE_STAT_ITEMS;
1325
1326 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1327 v + NR_DIRTY_THRESHOLD);
1328 v += NR_VM_WRITEBACK_STAT_ITEMS;
1329
1330 #ifdef CONFIG_VM_EVENT_COUNTERS
1331 all_vm_events(v);
1332 v[PGPGIN] /= 2; /* sectors -> kbytes */
1333 v[PGPGOUT] /= 2;
1334 #endif
1335 return (unsigned long *)m->private + *pos;
1336 }
1337
1338 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1339 {
1340 (*pos)++;
1341 if (*pos >= ARRAY_SIZE(vmstat_text))
1342 return NULL;
1343 return (unsigned long *)m->private + *pos;
1344 }
1345
1346 static int vmstat_show(struct seq_file *m, void *arg)
1347 {
1348 unsigned long *l = arg;
1349 unsigned long off = l - (unsigned long *)m->private;
1350
1351 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1352 return 0;
1353 }
1354
1355 static void vmstat_stop(struct seq_file *m, void *arg)
1356 {
1357 kfree(m->private);
1358 m->private = NULL;
1359 }
1360
1361 static const struct seq_operations vmstat_op = {
1362 .start = vmstat_start,
1363 .next = vmstat_next,
1364 .stop = vmstat_stop,
1365 .show = vmstat_show,
1366 };
1367
1368 static int vmstat_open(struct inode *inode, struct file *file)
1369 {
1370 return seq_open(file, &vmstat_op);
1371 }
1372
1373 static const struct file_operations proc_vmstat_file_operations = {
1374 .open = vmstat_open,
1375 .read = seq_read,
1376 .llseek = seq_lseek,
1377 .release = seq_release,
1378 };
1379 #endif /* CONFIG_PROC_FS */
1380
1381 #ifdef CONFIG_SMP
1382 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1383 int sysctl_stat_interval __read_mostly = HZ;
1384 static cpumask_var_t cpu_stat_off;
1385
1386 static void vmstat_update(struct work_struct *w)
1387 {
1388 if (refresh_cpu_vm_stats()) {
1389 /*
1390 * Counters were updated so we expect more updates
1391 * to occur in the future. Keep on running the
1392 * update worker thread.
1393 */
1394 schedule_delayed_work_on(smp_processor_id(),
1395 this_cpu_ptr(&vmstat_work),
1396 round_jiffies_relative(sysctl_stat_interval));
1397 } else {
1398 /*
1399 * We did not update any counters so the app may be in
1400 * a mode where it does not cause counter updates.
1401 * We may be uselessly running vmstat_update.
1402 * Defer the checking for differentials to the
1403 * shepherd thread on a different processor.
1404 */
1405 int r;
1406 /*
1407 * Shepherd work thread does not race since it never
1408 * changes the bit if its zero but the cpu
1409 * online / off line code may race if
1410 * worker threads are still allowed during
1411 * shutdown / startup.
1412 */
1413 r = cpumask_test_and_set_cpu(smp_processor_id(),
1414 cpu_stat_off);
1415 VM_BUG_ON(r);
1416 }
1417 }
1418
1419 /*
1420 * Check if the diffs for a certain cpu indicate that
1421 * an update is needed.
1422 */
1423 static bool need_update(int cpu)
1424 {
1425 struct zone *zone;
1426
1427 for_each_populated_zone(zone) {
1428 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1429
1430 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1431 /*
1432 * The fast way of checking if there are any vmstat diffs.
1433 * This works because the diffs are byte sized items.
1434 */
1435 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1436 return true;
1437
1438 }
1439 return false;
1440 }
1441
1442
1443 /*
1444 * Shepherd worker thread that checks the
1445 * differentials of processors that have their worker
1446 * threads for vm statistics updates disabled because of
1447 * inactivity.
1448 */
1449 static void vmstat_shepherd(struct work_struct *w);
1450
1451 static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1452
1453 static void vmstat_shepherd(struct work_struct *w)
1454 {
1455 int cpu;
1456
1457 get_online_cpus();
1458 /* Check processors whose vmstat worker threads have been disabled */
1459 for_each_cpu(cpu, cpu_stat_off)
1460 if (need_update(cpu) &&
1461 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1462
1463 schedule_delayed_work_on(cpu,
1464 &per_cpu(vmstat_work, cpu), 0);
1465
1466 put_online_cpus();
1467
1468 schedule_delayed_work(&shepherd,
1469 round_jiffies_relative(sysctl_stat_interval));
1470
1471 }
1472
1473 static void __init start_shepherd_timer(void)
1474 {
1475 int cpu;
1476
1477 for_each_possible_cpu(cpu)
1478 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
1479 vmstat_update);
1480
1481 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1482 BUG();
1483 cpumask_copy(cpu_stat_off, cpu_online_mask);
1484
1485 schedule_delayed_work(&shepherd,
1486 round_jiffies_relative(sysctl_stat_interval));
1487 }
1488
1489 static void vmstat_cpu_dead(int node)
1490 {
1491 int cpu;
1492
1493 get_online_cpus();
1494 for_each_online_cpu(cpu)
1495 if (cpu_to_node(cpu) == node)
1496 goto end;
1497
1498 node_clear_state(node, N_CPU);
1499 end:
1500 put_online_cpus();
1501 }
1502
1503 /*
1504 * Use the cpu notifier to insure that the thresholds are recalculated
1505 * when necessary.
1506 */
1507 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1508 unsigned long action,
1509 void *hcpu)
1510 {
1511 long cpu = (long)hcpu;
1512
1513 switch (action) {
1514 case CPU_ONLINE:
1515 case CPU_ONLINE_FROZEN:
1516 refresh_zone_stat_thresholds();
1517 node_set_state(cpu_to_node(cpu), N_CPU);
1518 cpumask_set_cpu(cpu, cpu_stat_off);
1519 break;
1520 case CPU_DOWN_PREPARE:
1521 case CPU_DOWN_PREPARE_FROZEN:
1522 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1523 cpumask_clear_cpu(cpu, cpu_stat_off);
1524 break;
1525 case CPU_DOWN_FAILED:
1526 case CPU_DOWN_FAILED_FROZEN:
1527 cpumask_set_cpu(cpu, cpu_stat_off);
1528 break;
1529 case CPU_DEAD:
1530 case CPU_DEAD_FROZEN:
1531 refresh_zone_stat_thresholds();
1532 vmstat_cpu_dead(cpu_to_node(cpu));
1533 break;
1534 default:
1535 break;
1536 }
1537 return NOTIFY_OK;
1538 }
1539
1540 static struct notifier_block vmstat_notifier =
1541 { &vmstat_cpuup_callback, NULL, 0 };
1542 #endif
1543
1544 static int __init setup_vmstat(void)
1545 {
1546 #ifdef CONFIG_SMP
1547 cpu_notifier_register_begin();
1548 __register_cpu_notifier(&vmstat_notifier);
1549
1550 start_shepherd_timer();
1551 cpu_notifier_register_done();
1552 #endif
1553 #ifdef CONFIG_PROC_FS
1554 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1555 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1556 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1557 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1558 #endif
1559 return 0;
1560 }
1561 module_init(setup_vmstat)
1562
1563 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1564
1565 /*
1566 * Return an index indicating how much of the available free memory is
1567 * unusable for an allocation of the requested size.
1568 */
1569 static int unusable_free_index(unsigned int order,
1570 struct contig_page_info *info)
1571 {
1572 /* No free memory is interpreted as all free memory is unusable */
1573 if (info->free_pages == 0)
1574 return 1000;
1575
1576 /*
1577 * Index should be a value between 0 and 1. Return a value to 3
1578 * decimal places.
1579 *
1580 * 0 => no fragmentation
1581 * 1 => high fragmentation
1582 */
1583 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1584
1585 }
1586
1587 static void unusable_show_print(struct seq_file *m,
1588 pg_data_t *pgdat, struct zone *zone)
1589 {
1590 unsigned int order;
1591 int index;
1592 struct contig_page_info info;
1593
1594 seq_printf(m, "Node %d, zone %8s ",
1595 pgdat->node_id,
1596 zone->name);
1597 for (order = 0; order < MAX_ORDER; ++order) {
1598 fill_contig_page_info(zone, order, &info);
1599 index = unusable_free_index(order, &info);
1600 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1601 }
1602
1603 seq_putc(m, '\n');
1604 }
1605
1606 /*
1607 * Display unusable free space index
1608 *
1609 * The unusable free space index measures how much of the available free
1610 * memory cannot be used to satisfy an allocation of a given size and is a
1611 * value between 0 and 1. The higher the value, the more of free memory is
1612 * unusable and by implication, the worse the external fragmentation is. This
1613 * can be expressed as a percentage by multiplying by 100.
1614 */
1615 static int unusable_show(struct seq_file *m, void *arg)
1616 {
1617 pg_data_t *pgdat = (pg_data_t *)arg;
1618
1619 /* check memoryless node */
1620 if (!node_state(pgdat->node_id, N_MEMORY))
1621 return 0;
1622
1623 walk_zones_in_node(m, pgdat, unusable_show_print);
1624
1625 return 0;
1626 }
1627
1628 static const struct seq_operations unusable_op = {
1629 .start = frag_start,
1630 .next = frag_next,
1631 .stop = frag_stop,
1632 .show = unusable_show,
1633 };
1634
1635 static int unusable_open(struct inode *inode, struct file *file)
1636 {
1637 return seq_open(file, &unusable_op);
1638 }
1639
1640 static const struct file_operations unusable_file_ops = {
1641 .open = unusable_open,
1642 .read = seq_read,
1643 .llseek = seq_lseek,
1644 .release = seq_release,
1645 };
1646
1647 static void extfrag_show_print(struct seq_file *m,
1648 pg_data_t *pgdat, struct zone *zone)
1649 {
1650 unsigned int order;
1651 int index;
1652
1653 /* Alloc on stack as interrupts are disabled for zone walk */
1654 struct contig_page_info info;
1655
1656 seq_printf(m, "Node %d, zone %8s ",
1657 pgdat->node_id,
1658 zone->name);
1659 for (order = 0; order < MAX_ORDER; ++order) {
1660 fill_contig_page_info(zone, order, &info);
1661 index = __fragmentation_index(order, &info);
1662 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1663 }
1664
1665 seq_putc(m, '\n');
1666 }
1667
1668 /*
1669 * Display fragmentation index for orders that allocations would fail for
1670 */
1671 static int extfrag_show(struct seq_file *m, void *arg)
1672 {
1673 pg_data_t *pgdat = (pg_data_t *)arg;
1674
1675 walk_zones_in_node(m, pgdat, extfrag_show_print);
1676
1677 return 0;
1678 }
1679
1680 static const struct seq_operations extfrag_op = {
1681 .start = frag_start,
1682 .next = frag_next,
1683 .stop = frag_stop,
1684 .show = extfrag_show,
1685 };
1686
1687 static int extfrag_open(struct inode *inode, struct file *file)
1688 {
1689 return seq_open(file, &extfrag_op);
1690 }
1691
1692 static const struct file_operations extfrag_file_ops = {
1693 .open = extfrag_open,
1694 .read = seq_read,
1695 .llseek = seq_lseek,
1696 .release = seq_release,
1697 };
1698
1699 static int __init extfrag_debug_init(void)
1700 {
1701 struct dentry *extfrag_debug_root;
1702
1703 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1704 if (!extfrag_debug_root)
1705 return -ENOMEM;
1706
1707 if (!debugfs_create_file("unusable_index", 0444,
1708 extfrag_debug_root, NULL, &unusable_file_ops))
1709 goto fail;
1710
1711 if (!debugfs_create_file("extfrag_index", 0444,
1712 extfrag_debug_root, NULL, &extfrag_file_ops))
1713 goto fail;
1714
1715 return 0;
1716 fail:
1717 debugfs_remove_recursive(extfrag_debug_root);
1718 return -ENOMEM;
1719 }
1720
1721 module_init(extfrag_debug_init);
1722 #endif