]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/vmstat.c
Merge tag 'ceph-for-5.15-rc1' of git://github.com/ceph/ceph-client
[mirror_ubuntu-jammy-kernel.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #ifdef CONFIG_NUMA
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
39 {
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49 }
50
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
53 {
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58 }
59
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
62 {
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67 }
68
69 static void invalid_numa_statistics(void)
70 {
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73 }
74
75 static DEFINE_MUTEX(vm_numa_stat_lock);
76
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79 {
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100 out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103 }
104 #endif
105
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110 static void sum_vm_events(unsigned long *ret)
111 {
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123 }
124
125 /*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137
138 /*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144 void vm_events_fold_cpu(int cpu)
145 {
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153 }
154
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156
157 /*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167
168 #ifdef CONFIG_SMP
169
170 int calculate_pressure_threshold(struct zone *zone)
171 {
172 int threshold;
173 int watermark_distance;
174
175 /*
176 * As vmstats are not up to date, there is drift between the estimated
177 * and real values. For high thresholds and a high number of CPUs, it
178 * is possible for the min watermark to be breached while the estimated
179 * value looks fine. The pressure threshold is a reduced value such
180 * that even the maximum amount of drift will not accidentally breach
181 * the min watermark
182 */
183 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
184 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
185
186 /*
187 * Maximum threshold is 125
188 */
189 threshold = min(125, threshold);
190
191 return threshold;
192 }
193
194 int calculate_normal_threshold(struct zone *zone)
195 {
196 int threshold;
197 int mem; /* memory in 128 MB units */
198
199 /*
200 * The threshold scales with the number of processors and the amount
201 * of memory per zone. More memory means that we can defer updates for
202 * longer, more processors could lead to more contention.
203 * fls() is used to have a cheap way of logarithmic scaling.
204 *
205 * Some sample thresholds:
206 *
207 * Threshold Processors (fls) Zonesize fls(mem)+1
208 * ------------------------------------------------------------------
209 * 8 1 1 0.9-1 GB 4
210 * 16 2 2 0.9-1 GB 4
211 * 20 2 2 1-2 GB 5
212 * 24 2 2 2-4 GB 6
213 * 28 2 2 4-8 GB 7
214 * 32 2 2 8-16 GB 8
215 * 4 2 2 <128M 1
216 * 30 4 3 2-4 GB 5
217 * 48 4 3 8-16 GB 8
218 * 32 8 4 1-2 GB 4
219 * 32 8 4 0.9-1GB 4
220 * 10 16 5 <128M 1
221 * 40 16 5 900M 4
222 * 70 64 7 2-4 GB 5
223 * 84 64 7 4-8 GB 6
224 * 108 512 9 4-8 GB 6
225 * 125 1024 10 8-16 GB 8
226 * 125 1024 10 16-32 GB 9
227 */
228
229 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
230
231 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
232
233 /*
234 * Maximum threshold is 125
235 */
236 threshold = min(125, threshold);
237
238 return threshold;
239 }
240
241 /*
242 * Refresh the thresholds for each zone.
243 */
244 void refresh_zone_stat_thresholds(void)
245 {
246 struct pglist_data *pgdat;
247 struct zone *zone;
248 int cpu;
249 int threshold;
250
251 /* Zero current pgdat thresholds */
252 for_each_online_pgdat(pgdat) {
253 for_each_online_cpu(cpu) {
254 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
255 }
256 }
257
258 for_each_populated_zone(zone) {
259 struct pglist_data *pgdat = zone->zone_pgdat;
260 unsigned long max_drift, tolerate_drift;
261
262 threshold = calculate_normal_threshold(zone);
263
264 for_each_online_cpu(cpu) {
265 int pgdat_threshold;
266
267 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
268 = threshold;
269
270 /* Base nodestat threshold on the largest populated zone. */
271 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
272 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
273 = max(threshold, pgdat_threshold);
274 }
275
276 /*
277 * Only set percpu_drift_mark if there is a danger that
278 * NR_FREE_PAGES reports the low watermark is ok when in fact
279 * the min watermark could be breached by an allocation
280 */
281 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
282 max_drift = num_online_cpus() * threshold;
283 if (max_drift > tolerate_drift)
284 zone->percpu_drift_mark = high_wmark_pages(zone) +
285 max_drift;
286 }
287 }
288
289 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
290 int (*calculate_pressure)(struct zone *))
291 {
292 struct zone *zone;
293 int cpu;
294 int threshold;
295 int i;
296
297 for (i = 0; i < pgdat->nr_zones; i++) {
298 zone = &pgdat->node_zones[i];
299 if (!zone->percpu_drift_mark)
300 continue;
301
302 threshold = (*calculate_pressure)(zone);
303 for_each_online_cpu(cpu)
304 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
305 = threshold;
306 }
307 }
308
309 /*
310 * For use when we know that interrupts are disabled,
311 * or when we know that preemption is disabled and that
312 * particular counter cannot be updated from interrupt context.
313 */
314 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
315 long delta)
316 {
317 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
318 s8 __percpu *p = pcp->vm_stat_diff + item;
319 long x;
320 long t;
321
322 x = delta + __this_cpu_read(*p);
323
324 t = __this_cpu_read(pcp->stat_threshold);
325
326 if (unlikely(abs(x) > t)) {
327 zone_page_state_add(x, zone, item);
328 x = 0;
329 }
330 __this_cpu_write(*p, x);
331 }
332 EXPORT_SYMBOL(__mod_zone_page_state);
333
334 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
335 long delta)
336 {
337 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
338 s8 __percpu *p = pcp->vm_node_stat_diff + item;
339 long x;
340 long t;
341
342 if (vmstat_item_in_bytes(item)) {
343 /*
344 * Only cgroups use subpage accounting right now; at
345 * the global level, these items still change in
346 * multiples of whole pages. Store them as pages
347 * internally to keep the per-cpu counters compact.
348 */
349 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
350 delta >>= PAGE_SHIFT;
351 }
352
353 x = delta + __this_cpu_read(*p);
354
355 t = __this_cpu_read(pcp->stat_threshold);
356
357 if (unlikely(abs(x) > t)) {
358 node_page_state_add(x, pgdat, item);
359 x = 0;
360 }
361 __this_cpu_write(*p, x);
362 }
363 EXPORT_SYMBOL(__mod_node_page_state);
364
365 /*
366 * Optimized increment and decrement functions.
367 *
368 * These are only for a single page and therefore can take a struct page *
369 * argument instead of struct zone *. This allows the inclusion of the code
370 * generated for page_zone(page) into the optimized functions.
371 *
372 * No overflow check is necessary and therefore the differential can be
373 * incremented or decremented in place which may allow the compilers to
374 * generate better code.
375 * The increment or decrement is known and therefore one boundary check can
376 * be omitted.
377 *
378 * NOTE: These functions are very performance sensitive. Change only
379 * with care.
380 *
381 * Some processors have inc/dec instructions that are atomic vs an interrupt.
382 * However, the code must first determine the differential location in a zone
383 * based on the processor number and then inc/dec the counter. There is no
384 * guarantee without disabling preemption that the processor will not change
385 * in between and therefore the atomicity vs. interrupt cannot be exploited
386 * in a useful way here.
387 */
388 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
389 {
390 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
391 s8 __percpu *p = pcp->vm_stat_diff + item;
392 s8 v, t;
393
394 v = __this_cpu_inc_return(*p);
395 t = __this_cpu_read(pcp->stat_threshold);
396 if (unlikely(v > t)) {
397 s8 overstep = t >> 1;
398
399 zone_page_state_add(v + overstep, zone, item);
400 __this_cpu_write(*p, -overstep);
401 }
402 }
403
404 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
405 {
406 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
407 s8 __percpu *p = pcp->vm_node_stat_diff + item;
408 s8 v, t;
409
410 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
411
412 v = __this_cpu_inc_return(*p);
413 t = __this_cpu_read(pcp->stat_threshold);
414 if (unlikely(v > t)) {
415 s8 overstep = t >> 1;
416
417 node_page_state_add(v + overstep, pgdat, item);
418 __this_cpu_write(*p, -overstep);
419 }
420 }
421
422 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
423 {
424 __inc_zone_state(page_zone(page), item);
425 }
426 EXPORT_SYMBOL(__inc_zone_page_state);
427
428 void __inc_node_page_state(struct page *page, enum node_stat_item item)
429 {
430 __inc_node_state(page_pgdat(page), item);
431 }
432 EXPORT_SYMBOL(__inc_node_page_state);
433
434 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
435 {
436 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
437 s8 __percpu *p = pcp->vm_stat_diff + item;
438 s8 v, t;
439
440 v = __this_cpu_dec_return(*p);
441 t = __this_cpu_read(pcp->stat_threshold);
442 if (unlikely(v < - t)) {
443 s8 overstep = t >> 1;
444
445 zone_page_state_add(v - overstep, zone, item);
446 __this_cpu_write(*p, overstep);
447 }
448 }
449
450 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
451 {
452 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
453 s8 __percpu *p = pcp->vm_node_stat_diff + item;
454 s8 v, t;
455
456 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
457
458 v = __this_cpu_dec_return(*p);
459 t = __this_cpu_read(pcp->stat_threshold);
460 if (unlikely(v < - t)) {
461 s8 overstep = t >> 1;
462
463 node_page_state_add(v - overstep, pgdat, item);
464 __this_cpu_write(*p, overstep);
465 }
466 }
467
468 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
469 {
470 __dec_zone_state(page_zone(page), item);
471 }
472 EXPORT_SYMBOL(__dec_zone_page_state);
473
474 void __dec_node_page_state(struct page *page, enum node_stat_item item)
475 {
476 __dec_node_state(page_pgdat(page), item);
477 }
478 EXPORT_SYMBOL(__dec_node_page_state);
479
480 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
481 /*
482 * If we have cmpxchg_local support then we do not need to incur the overhead
483 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
484 *
485 * mod_state() modifies the zone counter state through atomic per cpu
486 * operations.
487 *
488 * Overstep mode specifies how overstep should handled:
489 * 0 No overstepping
490 * 1 Overstepping half of threshold
491 * -1 Overstepping minus half of threshold
492 */
493 static inline void mod_zone_state(struct zone *zone,
494 enum zone_stat_item item, long delta, int overstep_mode)
495 {
496 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
497 s8 __percpu *p = pcp->vm_stat_diff + item;
498 long o, n, t, z;
499
500 do {
501 z = 0; /* overflow to zone counters */
502
503 /*
504 * The fetching of the stat_threshold is racy. We may apply
505 * a counter threshold to the wrong the cpu if we get
506 * rescheduled while executing here. However, the next
507 * counter update will apply the threshold again and
508 * therefore bring the counter under the threshold again.
509 *
510 * Most of the time the thresholds are the same anyways
511 * for all cpus in a zone.
512 */
513 t = this_cpu_read(pcp->stat_threshold);
514
515 o = this_cpu_read(*p);
516 n = delta + o;
517
518 if (abs(n) > t) {
519 int os = overstep_mode * (t >> 1) ;
520
521 /* Overflow must be added to zone counters */
522 z = n + os;
523 n = -os;
524 }
525 } while (this_cpu_cmpxchg(*p, o, n) != o);
526
527 if (z)
528 zone_page_state_add(z, zone, item);
529 }
530
531 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
532 long delta)
533 {
534 mod_zone_state(zone, item, delta, 0);
535 }
536 EXPORT_SYMBOL(mod_zone_page_state);
537
538 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
539 {
540 mod_zone_state(page_zone(page), item, 1, 1);
541 }
542 EXPORT_SYMBOL(inc_zone_page_state);
543
544 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
545 {
546 mod_zone_state(page_zone(page), item, -1, -1);
547 }
548 EXPORT_SYMBOL(dec_zone_page_state);
549
550 static inline void mod_node_state(struct pglist_data *pgdat,
551 enum node_stat_item item, int delta, int overstep_mode)
552 {
553 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
554 s8 __percpu *p = pcp->vm_node_stat_diff + item;
555 long o, n, t, z;
556
557 if (vmstat_item_in_bytes(item)) {
558 /*
559 * Only cgroups use subpage accounting right now; at
560 * the global level, these items still change in
561 * multiples of whole pages. Store them as pages
562 * internally to keep the per-cpu counters compact.
563 */
564 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
565 delta >>= PAGE_SHIFT;
566 }
567
568 do {
569 z = 0; /* overflow to node counters */
570
571 /*
572 * The fetching of the stat_threshold is racy. We may apply
573 * a counter threshold to the wrong the cpu if we get
574 * rescheduled while executing here. However, the next
575 * counter update will apply the threshold again and
576 * therefore bring the counter under the threshold again.
577 *
578 * Most of the time the thresholds are the same anyways
579 * for all cpus in a node.
580 */
581 t = this_cpu_read(pcp->stat_threshold);
582
583 o = this_cpu_read(*p);
584 n = delta + o;
585
586 if (abs(n) > t) {
587 int os = overstep_mode * (t >> 1) ;
588
589 /* Overflow must be added to node counters */
590 z = n + os;
591 n = -os;
592 }
593 } while (this_cpu_cmpxchg(*p, o, n) != o);
594
595 if (z)
596 node_page_state_add(z, pgdat, item);
597 }
598
599 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
600 long delta)
601 {
602 mod_node_state(pgdat, item, delta, 0);
603 }
604 EXPORT_SYMBOL(mod_node_page_state);
605
606 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
607 {
608 mod_node_state(pgdat, item, 1, 1);
609 }
610
611 void inc_node_page_state(struct page *page, enum node_stat_item item)
612 {
613 mod_node_state(page_pgdat(page), item, 1, 1);
614 }
615 EXPORT_SYMBOL(inc_node_page_state);
616
617 void dec_node_page_state(struct page *page, enum node_stat_item item)
618 {
619 mod_node_state(page_pgdat(page), item, -1, -1);
620 }
621 EXPORT_SYMBOL(dec_node_page_state);
622 #else
623 /*
624 * Use interrupt disable to serialize counter updates
625 */
626 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
627 long delta)
628 {
629 unsigned long flags;
630
631 local_irq_save(flags);
632 __mod_zone_page_state(zone, item, delta);
633 local_irq_restore(flags);
634 }
635 EXPORT_SYMBOL(mod_zone_page_state);
636
637 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
638 {
639 unsigned long flags;
640 struct zone *zone;
641
642 zone = page_zone(page);
643 local_irq_save(flags);
644 __inc_zone_state(zone, item);
645 local_irq_restore(flags);
646 }
647 EXPORT_SYMBOL(inc_zone_page_state);
648
649 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
650 {
651 unsigned long flags;
652
653 local_irq_save(flags);
654 __dec_zone_page_state(page, item);
655 local_irq_restore(flags);
656 }
657 EXPORT_SYMBOL(dec_zone_page_state);
658
659 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
660 {
661 unsigned long flags;
662
663 local_irq_save(flags);
664 __inc_node_state(pgdat, item);
665 local_irq_restore(flags);
666 }
667 EXPORT_SYMBOL(inc_node_state);
668
669 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
670 long delta)
671 {
672 unsigned long flags;
673
674 local_irq_save(flags);
675 __mod_node_page_state(pgdat, item, delta);
676 local_irq_restore(flags);
677 }
678 EXPORT_SYMBOL(mod_node_page_state);
679
680 void inc_node_page_state(struct page *page, enum node_stat_item item)
681 {
682 unsigned long flags;
683 struct pglist_data *pgdat;
684
685 pgdat = page_pgdat(page);
686 local_irq_save(flags);
687 __inc_node_state(pgdat, item);
688 local_irq_restore(flags);
689 }
690 EXPORT_SYMBOL(inc_node_page_state);
691
692 void dec_node_page_state(struct page *page, enum node_stat_item item)
693 {
694 unsigned long flags;
695
696 local_irq_save(flags);
697 __dec_node_page_state(page, item);
698 local_irq_restore(flags);
699 }
700 EXPORT_SYMBOL(dec_node_page_state);
701 #endif
702
703 /*
704 * Fold a differential into the global counters.
705 * Returns the number of counters updated.
706 */
707 static int fold_diff(int *zone_diff, int *node_diff)
708 {
709 int i;
710 int changes = 0;
711
712 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
713 if (zone_diff[i]) {
714 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
715 changes++;
716 }
717
718 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
719 if (node_diff[i]) {
720 atomic_long_add(node_diff[i], &vm_node_stat[i]);
721 changes++;
722 }
723 return changes;
724 }
725
726 #ifdef CONFIG_NUMA
727 static void fold_vm_zone_numa_events(struct zone *zone)
728 {
729 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
730 int cpu;
731 enum numa_stat_item item;
732
733 for_each_online_cpu(cpu) {
734 struct per_cpu_zonestat *pzstats;
735
736 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
737 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
738 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
739 }
740
741 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
742 zone_numa_event_add(zone_numa_events[item], zone, item);
743 }
744
745 void fold_vm_numa_events(void)
746 {
747 struct zone *zone;
748
749 for_each_populated_zone(zone)
750 fold_vm_zone_numa_events(zone);
751 }
752 #endif
753
754 /*
755 * Update the zone counters for the current cpu.
756 *
757 * Note that refresh_cpu_vm_stats strives to only access
758 * node local memory. The per cpu pagesets on remote zones are placed
759 * in the memory local to the processor using that pageset. So the
760 * loop over all zones will access a series of cachelines local to
761 * the processor.
762 *
763 * The call to zone_page_state_add updates the cachelines with the
764 * statistics in the remote zone struct as well as the global cachelines
765 * with the global counters. These could cause remote node cache line
766 * bouncing and will have to be only done when necessary.
767 *
768 * The function returns the number of global counters updated.
769 */
770 static int refresh_cpu_vm_stats(bool do_pagesets)
771 {
772 struct pglist_data *pgdat;
773 struct zone *zone;
774 int i;
775 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
776 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
777 int changes = 0;
778
779 for_each_populated_zone(zone) {
780 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
781 #ifdef CONFIG_NUMA
782 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
783 #endif
784
785 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
786 int v;
787
788 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
789 if (v) {
790
791 atomic_long_add(v, &zone->vm_stat[i]);
792 global_zone_diff[i] += v;
793 #ifdef CONFIG_NUMA
794 /* 3 seconds idle till flush */
795 __this_cpu_write(pcp->expire, 3);
796 #endif
797 }
798 }
799 #ifdef CONFIG_NUMA
800
801 if (do_pagesets) {
802 cond_resched();
803 /*
804 * Deal with draining the remote pageset of this
805 * processor
806 *
807 * Check if there are pages remaining in this pageset
808 * if not then there is nothing to expire.
809 */
810 if (!__this_cpu_read(pcp->expire) ||
811 !__this_cpu_read(pcp->count))
812 continue;
813
814 /*
815 * We never drain zones local to this processor.
816 */
817 if (zone_to_nid(zone) == numa_node_id()) {
818 __this_cpu_write(pcp->expire, 0);
819 continue;
820 }
821
822 if (__this_cpu_dec_return(pcp->expire))
823 continue;
824
825 if (__this_cpu_read(pcp->count)) {
826 drain_zone_pages(zone, this_cpu_ptr(pcp));
827 changes++;
828 }
829 }
830 #endif
831 }
832
833 for_each_online_pgdat(pgdat) {
834 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
835
836 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
837 int v;
838
839 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
840 if (v) {
841 atomic_long_add(v, &pgdat->vm_stat[i]);
842 global_node_diff[i] += v;
843 }
844 }
845 }
846
847 changes += fold_diff(global_zone_diff, global_node_diff);
848 return changes;
849 }
850
851 /*
852 * Fold the data for an offline cpu into the global array.
853 * There cannot be any access by the offline cpu and therefore
854 * synchronization is simplified.
855 */
856 void cpu_vm_stats_fold(int cpu)
857 {
858 struct pglist_data *pgdat;
859 struct zone *zone;
860 int i;
861 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
862 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
863
864 for_each_populated_zone(zone) {
865 struct per_cpu_zonestat *pzstats;
866
867 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
868
869 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
870 if (pzstats->vm_stat_diff[i]) {
871 int v;
872
873 v = pzstats->vm_stat_diff[i];
874 pzstats->vm_stat_diff[i] = 0;
875 atomic_long_add(v, &zone->vm_stat[i]);
876 global_zone_diff[i] += v;
877 }
878 }
879 #ifdef CONFIG_NUMA
880 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
881 if (pzstats->vm_numa_event[i]) {
882 unsigned long v;
883
884 v = pzstats->vm_numa_event[i];
885 pzstats->vm_numa_event[i] = 0;
886 zone_numa_event_add(v, zone, i);
887 }
888 }
889 #endif
890 }
891
892 for_each_online_pgdat(pgdat) {
893 struct per_cpu_nodestat *p;
894
895 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
896
897 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
898 if (p->vm_node_stat_diff[i]) {
899 int v;
900
901 v = p->vm_node_stat_diff[i];
902 p->vm_node_stat_diff[i] = 0;
903 atomic_long_add(v, &pgdat->vm_stat[i]);
904 global_node_diff[i] += v;
905 }
906 }
907
908 fold_diff(global_zone_diff, global_node_diff);
909 }
910
911 /*
912 * this is only called if !populated_zone(zone), which implies no other users of
913 * pset->vm_stat_diff[] exist.
914 */
915 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
916 {
917 unsigned long v;
918 int i;
919
920 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
921 if (pzstats->vm_stat_diff[i]) {
922 v = pzstats->vm_stat_diff[i];
923 pzstats->vm_stat_diff[i] = 0;
924 zone_page_state_add(v, zone, i);
925 }
926 }
927
928 #ifdef CONFIG_NUMA
929 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
930 if (pzstats->vm_numa_event[i]) {
931 v = pzstats->vm_numa_event[i];
932 pzstats->vm_numa_event[i] = 0;
933 zone_numa_event_add(v, zone, i);
934 }
935 }
936 #endif
937 }
938 #endif
939
940 #ifdef CONFIG_NUMA
941 /*
942 * Determine the per node value of a stat item. This function
943 * is called frequently in a NUMA machine, so try to be as
944 * frugal as possible.
945 */
946 unsigned long sum_zone_node_page_state(int node,
947 enum zone_stat_item item)
948 {
949 struct zone *zones = NODE_DATA(node)->node_zones;
950 int i;
951 unsigned long count = 0;
952
953 for (i = 0; i < MAX_NR_ZONES; i++)
954 count += zone_page_state(zones + i, item);
955
956 return count;
957 }
958
959 /* Determine the per node value of a numa stat item. */
960 unsigned long sum_zone_numa_event_state(int node,
961 enum numa_stat_item item)
962 {
963 struct zone *zones = NODE_DATA(node)->node_zones;
964 unsigned long count = 0;
965 int i;
966
967 for (i = 0; i < MAX_NR_ZONES; i++)
968 count += zone_numa_event_state(zones + i, item);
969
970 return count;
971 }
972
973 /*
974 * Determine the per node value of a stat item.
975 */
976 unsigned long node_page_state_pages(struct pglist_data *pgdat,
977 enum node_stat_item item)
978 {
979 long x = atomic_long_read(&pgdat->vm_stat[item]);
980 #ifdef CONFIG_SMP
981 if (x < 0)
982 x = 0;
983 #endif
984 return x;
985 }
986
987 unsigned long node_page_state(struct pglist_data *pgdat,
988 enum node_stat_item item)
989 {
990 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
991
992 return node_page_state_pages(pgdat, item);
993 }
994 #endif
995
996 #ifdef CONFIG_COMPACTION
997
998 struct contig_page_info {
999 unsigned long free_pages;
1000 unsigned long free_blocks_total;
1001 unsigned long free_blocks_suitable;
1002 };
1003
1004 /*
1005 * Calculate the number of free pages in a zone, how many contiguous
1006 * pages are free and how many are large enough to satisfy an allocation of
1007 * the target size. Note that this function makes no attempt to estimate
1008 * how many suitable free blocks there *might* be if MOVABLE pages were
1009 * migrated. Calculating that is possible, but expensive and can be
1010 * figured out from userspace
1011 */
1012 static void fill_contig_page_info(struct zone *zone,
1013 unsigned int suitable_order,
1014 struct contig_page_info *info)
1015 {
1016 unsigned int order;
1017
1018 info->free_pages = 0;
1019 info->free_blocks_total = 0;
1020 info->free_blocks_suitable = 0;
1021
1022 for (order = 0; order < MAX_ORDER; order++) {
1023 unsigned long blocks;
1024
1025 /* Count number of free blocks */
1026 blocks = zone->free_area[order].nr_free;
1027 info->free_blocks_total += blocks;
1028
1029 /* Count free base pages */
1030 info->free_pages += blocks << order;
1031
1032 /* Count the suitable free blocks */
1033 if (order >= suitable_order)
1034 info->free_blocks_suitable += blocks <<
1035 (order - suitable_order);
1036 }
1037 }
1038
1039 /*
1040 * A fragmentation index only makes sense if an allocation of a requested
1041 * size would fail. If that is true, the fragmentation index indicates
1042 * whether external fragmentation or a lack of memory was the problem.
1043 * The value can be used to determine if page reclaim or compaction
1044 * should be used
1045 */
1046 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1047 {
1048 unsigned long requested = 1UL << order;
1049
1050 if (WARN_ON_ONCE(order >= MAX_ORDER))
1051 return 0;
1052
1053 if (!info->free_blocks_total)
1054 return 0;
1055
1056 /* Fragmentation index only makes sense when a request would fail */
1057 if (info->free_blocks_suitable)
1058 return -1000;
1059
1060 /*
1061 * Index is between 0 and 1 so return within 3 decimal places
1062 *
1063 * 0 => allocation would fail due to lack of memory
1064 * 1 => allocation would fail due to fragmentation
1065 */
1066 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1067 }
1068
1069 /*
1070 * Calculates external fragmentation within a zone wrt the given order.
1071 * It is defined as the percentage of pages found in blocks of size
1072 * less than 1 << order. It returns values in range [0, 100].
1073 */
1074 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1075 {
1076 struct contig_page_info info;
1077
1078 fill_contig_page_info(zone, order, &info);
1079 if (info.free_pages == 0)
1080 return 0;
1081
1082 return div_u64((info.free_pages -
1083 (info.free_blocks_suitable << order)) * 100,
1084 info.free_pages);
1085 }
1086
1087 /* Same as __fragmentation index but allocs contig_page_info on stack */
1088 int fragmentation_index(struct zone *zone, unsigned int order)
1089 {
1090 struct contig_page_info info;
1091
1092 fill_contig_page_info(zone, order, &info);
1093 return __fragmentation_index(order, &info);
1094 }
1095 #endif
1096
1097 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1098 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1099 #ifdef CONFIG_ZONE_DMA
1100 #define TEXT_FOR_DMA(xx) xx "_dma",
1101 #else
1102 #define TEXT_FOR_DMA(xx)
1103 #endif
1104
1105 #ifdef CONFIG_ZONE_DMA32
1106 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1107 #else
1108 #define TEXT_FOR_DMA32(xx)
1109 #endif
1110
1111 #ifdef CONFIG_HIGHMEM
1112 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1113 #else
1114 #define TEXT_FOR_HIGHMEM(xx)
1115 #endif
1116
1117 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1118 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1119
1120 const char * const vmstat_text[] = {
1121 /* enum zone_stat_item counters */
1122 "nr_free_pages",
1123 "nr_zone_inactive_anon",
1124 "nr_zone_active_anon",
1125 "nr_zone_inactive_file",
1126 "nr_zone_active_file",
1127 "nr_zone_unevictable",
1128 "nr_zone_write_pending",
1129 "nr_mlock",
1130 "nr_bounce",
1131 #if IS_ENABLED(CONFIG_ZSMALLOC)
1132 "nr_zspages",
1133 #endif
1134 "nr_free_cma",
1135
1136 /* enum numa_stat_item counters */
1137 #ifdef CONFIG_NUMA
1138 "numa_hit",
1139 "numa_miss",
1140 "numa_foreign",
1141 "numa_interleave",
1142 "numa_local",
1143 "numa_other",
1144 #endif
1145
1146 /* enum node_stat_item counters */
1147 "nr_inactive_anon",
1148 "nr_active_anon",
1149 "nr_inactive_file",
1150 "nr_active_file",
1151 "nr_unevictable",
1152 "nr_slab_reclaimable",
1153 "nr_slab_unreclaimable",
1154 "nr_isolated_anon",
1155 "nr_isolated_file",
1156 "workingset_nodes",
1157 "workingset_refault_anon",
1158 "workingset_refault_file",
1159 "workingset_activate_anon",
1160 "workingset_activate_file",
1161 "workingset_restore_anon",
1162 "workingset_restore_file",
1163 "workingset_nodereclaim",
1164 "nr_anon_pages",
1165 "nr_mapped",
1166 "nr_file_pages",
1167 "nr_dirty",
1168 "nr_writeback",
1169 "nr_writeback_temp",
1170 "nr_shmem",
1171 "nr_shmem_hugepages",
1172 "nr_shmem_pmdmapped",
1173 "nr_file_hugepages",
1174 "nr_file_pmdmapped",
1175 "nr_anon_transparent_hugepages",
1176 "nr_vmscan_write",
1177 "nr_vmscan_immediate_reclaim",
1178 "nr_dirtied",
1179 "nr_written",
1180 "nr_kernel_misc_reclaimable",
1181 "nr_foll_pin_acquired",
1182 "nr_foll_pin_released",
1183 "nr_kernel_stack",
1184 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1185 "nr_shadow_call_stack",
1186 #endif
1187 "nr_page_table_pages",
1188 #ifdef CONFIG_SWAP
1189 "nr_swapcached",
1190 #endif
1191
1192 /* enum writeback_stat_item counters */
1193 "nr_dirty_threshold",
1194 "nr_dirty_background_threshold",
1195
1196 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1197 /* enum vm_event_item counters */
1198 "pgpgin",
1199 "pgpgout",
1200 "pswpin",
1201 "pswpout",
1202
1203 TEXTS_FOR_ZONES("pgalloc")
1204 TEXTS_FOR_ZONES("allocstall")
1205 TEXTS_FOR_ZONES("pgskip")
1206
1207 "pgfree",
1208 "pgactivate",
1209 "pgdeactivate",
1210 "pglazyfree",
1211
1212 "pgfault",
1213 "pgmajfault",
1214 "pglazyfreed",
1215
1216 "pgrefill",
1217 "pgreuse",
1218 "pgsteal_kswapd",
1219 "pgsteal_direct",
1220 "pgdemote_kswapd",
1221 "pgdemote_direct",
1222 "pgscan_kswapd",
1223 "pgscan_direct",
1224 "pgscan_direct_throttle",
1225 "pgscan_anon",
1226 "pgscan_file",
1227 "pgsteal_anon",
1228 "pgsteal_file",
1229
1230 #ifdef CONFIG_NUMA
1231 "zone_reclaim_failed",
1232 #endif
1233 "pginodesteal",
1234 "slabs_scanned",
1235 "kswapd_inodesteal",
1236 "kswapd_low_wmark_hit_quickly",
1237 "kswapd_high_wmark_hit_quickly",
1238 "pageoutrun",
1239
1240 "pgrotated",
1241
1242 "drop_pagecache",
1243 "drop_slab",
1244 "oom_kill",
1245
1246 #ifdef CONFIG_NUMA_BALANCING
1247 "numa_pte_updates",
1248 "numa_huge_pte_updates",
1249 "numa_hint_faults",
1250 "numa_hint_faults_local",
1251 "numa_pages_migrated",
1252 #endif
1253 #ifdef CONFIG_MIGRATION
1254 "pgmigrate_success",
1255 "pgmigrate_fail",
1256 "thp_migration_success",
1257 "thp_migration_fail",
1258 "thp_migration_split",
1259 #endif
1260 #ifdef CONFIG_COMPACTION
1261 "compact_migrate_scanned",
1262 "compact_free_scanned",
1263 "compact_isolated",
1264 "compact_stall",
1265 "compact_fail",
1266 "compact_success",
1267 "compact_daemon_wake",
1268 "compact_daemon_migrate_scanned",
1269 "compact_daemon_free_scanned",
1270 #endif
1271
1272 #ifdef CONFIG_HUGETLB_PAGE
1273 "htlb_buddy_alloc_success",
1274 "htlb_buddy_alloc_fail",
1275 #endif
1276 #ifdef CONFIG_CMA
1277 "cma_alloc_success",
1278 "cma_alloc_fail",
1279 #endif
1280 "unevictable_pgs_culled",
1281 "unevictable_pgs_scanned",
1282 "unevictable_pgs_rescued",
1283 "unevictable_pgs_mlocked",
1284 "unevictable_pgs_munlocked",
1285 "unevictable_pgs_cleared",
1286 "unevictable_pgs_stranded",
1287
1288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1289 "thp_fault_alloc",
1290 "thp_fault_fallback",
1291 "thp_fault_fallback_charge",
1292 "thp_collapse_alloc",
1293 "thp_collapse_alloc_failed",
1294 "thp_file_alloc",
1295 "thp_file_fallback",
1296 "thp_file_fallback_charge",
1297 "thp_file_mapped",
1298 "thp_split_page",
1299 "thp_split_page_failed",
1300 "thp_deferred_split_page",
1301 "thp_split_pmd",
1302 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1303 "thp_split_pud",
1304 #endif
1305 "thp_zero_page_alloc",
1306 "thp_zero_page_alloc_failed",
1307 "thp_swpout",
1308 "thp_swpout_fallback",
1309 #endif
1310 #ifdef CONFIG_MEMORY_BALLOON
1311 "balloon_inflate",
1312 "balloon_deflate",
1313 #ifdef CONFIG_BALLOON_COMPACTION
1314 "balloon_migrate",
1315 #endif
1316 #endif /* CONFIG_MEMORY_BALLOON */
1317 #ifdef CONFIG_DEBUG_TLBFLUSH
1318 "nr_tlb_remote_flush",
1319 "nr_tlb_remote_flush_received",
1320 "nr_tlb_local_flush_all",
1321 "nr_tlb_local_flush_one",
1322 #endif /* CONFIG_DEBUG_TLBFLUSH */
1323
1324 #ifdef CONFIG_DEBUG_VM_VMACACHE
1325 "vmacache_find_calls",
1326 "vmacache_find_hits",
1327 #endif
1328 #ifdef CONFIG_SWAP
1329 "swap_ra",
1330 "swap_ra_hit",
1331 #endif
1332 #ifdef CONFIG_X86
1333 "direct_map_level2_splits",
1334 "direct_map_level3_splits",
1335 #endif
1336 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1337 };
1338 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1339
1340 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1341 defined(CONFIG_PROC_FS)
1342 static void *frag_start(struct seq_file *m, loff_t *pos)
1343 {
1344 pg_data_t *pgdat;
1345 loff_t node = *pos;
1346
1347 for (pgdat = first_online_pgdat();
1348 pgdat && node;
1349 pgdat = next_online_pgdat(pgdat))
1350 --node;
1351
1352 return pgdat;
1353 }
1354
1355 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1356 {
1357 pg_data_t *pgdat = (pg_data_t *)arg;
1358
1359 (*pos)++;
1360 return next_online_pgdat(pgdat);
1361 }
1362
1363 static void frag_stop(struct seq_file *m, void *arg)
1364 {
1365 }
1366
1367 /*
1368 * Walk zones in a node and print using a callback.
1369 * If @assert_populated is true, only use callback for zones that are populated.
1370 */
1371 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1372 bool assert_populated, bool nolock,
1373 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1374 {
1375 struct zone *zone;
1376 struct zone *node_zones = pgdat->node_zones;
1377 unsigned long flags;
1378
1379 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1380 if (assert_populated && !populated_zone(zone))
1381 continue;
1382
1383 if (!nolock)
1384 spin_lock_irqsave(&zone->lock, flags);
1385 print(m, pgdat, zone);
1386 if (!nolock)
1387 spin_unlock_irqrestore(&zone->lock, flags);
1388 }
1389 }
1390 #endif
1391
1392 #ifdef CONFIG_PROC_FS
1393 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1394 struct zone *zone)
1395 {
1396 int order;
1397
1398 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1399 for (order = 0; order < MAX_ORDER; ++order)
1400 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1401 seq_putc(m, '\n');
1402 }
1403
1404 /*
1405 * This walks the free areas for each zone.
1406 */
1407 static int frag_show(struct seq_file *m, void *arg)
1408 {
1409 pg_data_t *pgdat = (pg_data_t *)arg;
1410 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1411 return 0;
1412 }
1413
1414 static void pagetypeinfo_showfree_print(struct seq_file *m,
1415 pg_data_t *pgdat, struct zone *zone)
1416 {
1417 int order, mtype;
1418
1419 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1420 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1421 pgdat->node_id,
1422 zone->name,
1423 migratetype_names[mtype]);
1424 for (order = 0; order < MAX_ORDER; ++order) {
1425 unsigned long freecount = 0;
1426 struct free_area *area;
1427 struct list_head *curr;
1428 bool overflow = false;
1429
1430 area = &(zone->free_area[order]);
1431
1432 list_for_each(curr, &area->free_list[mtype]) {
1433 /*
1434 * Cap the free_list iteration because it might
1435 * be really large and we are under a spinlock
1436 * so a long time spent here could trigger a
1437 * hard lockup detector. Anyway this is a
1438 * debugging tool so knowing there is a handful
1439 * of pages of this order should be more than
1440 * sufficient.
1441 */
1442 if (++freecount >= 100000) {
1443 overflow = true;
1444 break;
1445 }
1446 }
1447 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1448 spin_unlock_irq(&zone->lock);
1449 cond_resched();
1450 spin_lock_irq(&zone->lock);
1451 }
1452 seq_putc(m, '\n');
1453 }
1454 }
1455
1456 /* Print out the free pages at each order for each migatetype */
1457 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1458 {
1459 int order;
1460 pg_data_t *pgdat = (pg_data_t *)arg;
1461
1462 /* Print header */
1463 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1464 for (order = 0; order < MAX_ORDER; ++order)
1465 seq_printf(m, "%6d ", order);
1466 seq_putc(m, '\n');
1467
1468 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1469 }
1470
1471 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1472 pg_data_t *pgdat, struct zone *zone)
1473 {
1474 int mtype;
1475 unsigned long pfn;
1476 unsigned long start_pfn = zone->zone_start_pfn;
1477 unsigned long end_pfn = zone_end_pfn(zone);
1478 unsigned long count[MIGRATE_TYPES] = { 0, };
1479
1480 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1481 struct page *page;
1482
1483 page = pfn_to_online_page(pfn);
1484 if (!page)
1485 continue;
1486
1487 if (page_zone(page) != zone)
1488 continue;
1489
1490 mtype = get_pageblock_migratetype(page);
1491
1492 if (mtype < MIGRATE_TYPES)
1493 count[mtype]++;
1494 }
1495
1496 /* Print counts */
1497 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1498 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1499 seq_printf(m, "%12lu ", count[mtype]);
1500 seq_putc(m, '\n');
1501 }
1502
1503 /* Print out the number of pageblocks for each migratetype */
1504 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1505 {
1506 int mtype;
1507 pg_data_t *pgdat = (pg_data_t *)arg;
1508
1509 seq_printf(m, "\n%-23s", "Number of blocks type ");
1510 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1511 seq_printf(m, "%12s ", migratetype_names[mtype]);
1512 seq_putc(m, '\n');
1513 walk_zones_in_node(m, pgdat, true, false,
1514 pagetypeinfo_showblockcount_print);
1515 }
1516
1517 /*
1518 * Print out the number of pageblocks for each migratetype that contain pages
1519 * of other types. This gives an indication of how well fallbacks are being
1520 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1521 * to determine what is going on
1522 */
1523 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1524 {
1525 #ifdef CONFIG_PAGE_OWNER
1526 int mtype;
1527
1528 if (!static_branch_unlikely(&page_owner_inited))
1529 return;
1530
1531 drain_all_pages(NULL);
1532
1533 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1534 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1535 seq_printf(m, "%12s ", migratetype_names[mtype]);
1536 seq_putc(m, '\n');
1537
1538 walk_zones_in_node(m, pgdat, true, true,
1539 pagetypeinfo_showmixedcount_print);
1540 #endif /* CONFIG_PAGE_OWNER */
1541 }
1542
1543 /*
1544 * This prints out statistics in relation to grouping pages by mobility.
1545 * It is expensive to collect so do not constantly read the file.
1546 */
1547 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1548 {
1549 pg_data_t *pgdat = (pg_data_t *)arg;
1550
1551 /* check memoryless node */
1552 if (!node_state(pgdat->node_id, N_MEMORY))
1553 return 0;
1554
1555 seq_printf(m, "Page block order: %d\n", pageblock_order);
1556 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1557 seq_putc(m, '\n');
1558 pagetypeinfo_showfree(m, pgdat);
1559 pagetypeinfo_showblockcount(m, pgdat);
1560 pagetypeinfo_showmixedcount(m, pgdat);
1561
1562 return 0;
1563 }
1564
1565 static const struct seq_operations fragmentation_op = {
1566 .start = frag_start,
1567 .next = frag_next,
1568 .stop = frag_stop,
1569 .show = frag_show,
1570 };
1571
1572 static const struct seq_operations pagetypeinfo_op = {
1573 .start = frag_start,
1574 .next = frag_next,
1575 .stop = frag_stop,
1576 .show = pagetypeinfo_show,
1577 };
1578
1579 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1580 {
1581 int zid;
1582
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 struct zone *compare = &pgdat->node_zones[zid];
1585
1586 if (populated_zone(compare))
1587 return zone == compare;
1588 }
1589
1590 return false;
1591 }
1592
1593 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1594 struct zone *zone)
1595 {
1596 int i;
1597 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1598 if (is_zone_first_populated(pgdat, zone)) {
1599 seq_printf(m, "\n per-node stats");
1600 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1601 unsigned long pages = node_page_state_pages(pgdat, i);
1602
1603 if (vmstat_item_print_in_thp(i))
1604 pages /= HPAGE_PMD_NR;
1605 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1606 pages);
1607 }
1608 }
1609 seq_printf(m,
1610 "\n pages free %lu"
1611 "\n min %lu"
1612 "\n low %lu"
1613 "\n high %lu"
1614 "\n spanned %lu"
1615 "\n present %lu"
1616 "\n managed %lu"
1617 "\n cma %lu",
1618 zone_page_state(zone, NR_FREE_PAGES),
1619 min_wmark_pages(zone),
1620 low_wmark_pages(zone),
1621 high_wmark_pages(zone),
1622 zone->spanned_pages,
1623 zone->present_pages,
1624 zone_managed_pages(zone),
1625 zone_cma_pages(zone));
1626
1627 seq_printf(m,
1628 "\n protection: (%ld",
1629 zone->lowmem_reserve[0]);
1630 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1631 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1632 seq_putc(m, ')');
1633
1634 /* If unpopulated, no other information is useful */
1635 if (!populated_zone(zone)) {
1636 seq_putc(m, '\n');
1637 return;
1638 }
1639
1640 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1641 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1642 zone_page_state(zone, i));
1643
1644 #ifdef CONFIG_NUMA
1645 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1646 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1647 zone_numa_event_state(zone, i));
1648 #endif
1649
1650 seq_printf(m, "\n pagesets");
1651 for_each_online_cpu(i) {
1652 struct per_cpu_pages *pcp;
1653 struct per_cpu_zonestat __maybe_unused *pzstats;
1654
1655 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1656 seq_printf(m,
1657 "\n cpu: %i"
1658 "\n count: %i"
1659 "\n high: %i"
1660 "\n batch: %i",
1661 i,
1662 pcp->count,
1663 pcp->high,
1664 pcp->batch);
1665 #ifdef CONFIG_SMP
1666 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1667 seq_printf(m, "\n vm stats threshold: %d",
1668 pzstats->stat_threshold);
1669 #endif
1670 }
1671 seq_printf(m,
1672 "\n node_unreclaimable: %u"
1673 "\n start_pfn: %lu",
1674 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1675 zone->zone_start_pfn);
1676 seq_putc(m, '\n');
1677 }
1678
1679 /*
1680 * Output information about zones in @pgdat. All zones are printed regardless
1681 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1682 * set of all zones and userspace would not be aware of such zones if they are
1683 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1684 */
1685 static int zoneinfo_show(struct seq_file *m, void *arg)
1686 {
1687 pg_data_t *pgdat = (pg_data_t *)arg;
1688 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1689 return 0;
1690 }
1691
1692 static const struct seq_operations zoneinfo_op = {
1693 .start = frag_start, /* iterate over all zones. The same as in
1694 * fragmentation. */
1695 .next = frag_next,
1696 .stop = frag_stop,
1697 .show = zoneinfo_show,
1698 };
1699
1700 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1701 NR_VM_NUMA_EVENT_ITEMS + \
1702 NR_VM_NODE_STAT_ITEMS + \
1703 NR_VM_WRITEBACK_STAT_ITEMS + \
1704 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1705 NR_VM_EVENT_ITEMS : 0))
1706
1707 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1708 {
1709 unsigned long *v;
1710 int i;
1711
1712 if (*pos >= NR_VMSTAT_ITEMS)
1713 return NULL;
1714
1715 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1716 fold_vm_numa_events();
1717 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1718 m->private = v;
1719 if (!v)
1720 return ERR_PTR(-ENOMEM);
1721 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1722 v[i] = global_zone_page_state(i);
1723 v += NR_VM_ZONE_STAT_ITEMS;
1724
1725 #ifdef CONFIG_NUMA
1726 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1727 v[i] = global_numa_event_state(i);
1728 v += NR_VM_NUMA_EVENT_ITEMS;
1729 #endif
1730
1731 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1732 v[i] = global_node_page_state_pages(i);
1733 if (vmstat_item_print_in_thp(i))
1734 v[i] /= HPAGE_PMD_NR;
1735 }
1736 v += NR_VM_NODE_STAT_ITEMS;
1737
1738 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1739 v + NR_DIRTY_THRESHOLD);
1740 v += NR_VM_WRITEBACK_STAT_ITEMS;
1741
1742 #ifdef CONFIG_VM_EVENT_COUNTERS
1743 all_vm_events(v);
1744 v[PGPGIN] /= 2; /* sectors -> kbytes */
1745 v[PGPGOUT] /= 2;
1746 #endif
1747 return (unsigned long *)m->private + *pos;
1748 }
1749
1750 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1751 {
1752 (*pos)++;
1753 if (*pos >= NR_VMSTAT_ITEMS)
1754 return NULL;
1755 return (unsigned long *)m->private + *pos;
1756 }
1757
1758 static int vmstat_show(struct seq_file *m, void *arg)
1759 {
1760 unsigned long *l = arg;
1761 unsigned long off = l - (unsigned long *)m->private;
1762
1763 seq_puts(m, vmstat_text[off]);
1764 seq_put_decimal_ull(m, " ", *l);
1765 seq_putc(m, '\n');
1766
1767 if (off == NR_VMSTAT_ITEMS - 1) {
1768 /*
1769 * We've come to the end - add any deprecated counters to avoid
1770 * breaking userspace which might depend on them being present.
1771 */
1772 seq_puts(m, "nr_unstable 0\n");
1773 }
1774 return 0;
1775 }
1776
1777 static void vmstat_stop(struct seq_file *m, void *arg)
1778 {
1779 kfree(m->private);
1780 m->private = NULL;
1781 }
1782
1783 static const struct seq_operations vmstat_op = {
1784 .start = vmstat_start,
1785 .next = vmstat_next,
1786 .stop = vmstat_stop,
1787 .show = vmstat_show,
1788 };
1789 #endif /* CONFIG_PROC_FS */
1790
1791 #ifdef CONFIG_SMP
1792 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1793 int sysctl_stat_interval __read_mostly = HZ;
1794
1795 #ifdef CONFIG_PROC_FS
1796 static void refresh_vm_stats(struct work_struct *work)
1797 {
1798 refresh_cpu_vm_stats(true);
1799 }
1800
1801 int vmstat_refresh(struct ctl_table *table, int write,
1802 void *buffer, size_t *lenp, loff_t *ppos)
1803 {
1804 long val;
1805 int err;
1806 int i;
1807
1808 /*
1809 * The regular update, every sysctl_stat_interval, may come later
1810 * than expected: leaving a significant amount in per_cpu buckets.
1811 * This is particularly misleading when checking a quantity of HUGE
1812 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1813 * which can equally be echo'ed to or cat'ted from (by root),
1814 * can be used to update the stats just before reading them.
1815 *
1816 * Oh, and since global_zone_page_state() etc. are so careful to hide
1817 * transiently negative values, report an error here if any of
1818 * the stats is negative, so we know to go looking for imbalance.
1819 */
1820 err = schedule_on_each_cpu(refresh_vm_stats);
1821 if (err)
1822 return err;
1823 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1824 /*
1825 * Skip checking stats known to go negative occasionally.
1826 */
1827 switch (i) {
1828 case NR_ZONE_WRITE_PENDING:
1829 case NR_FREE_CMA_PAGES:
1830 continue;
1831 }
1832 val = atomic_long_read(&vm_zone_stat[i]);
1833 if (val < 0) {
1834 pr_warn("%s: %s %ld\n",
1835 __func__, zone_stat_name(i), val);
1836 }
1837 }
1838 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1839 /*
1840 * Skip checking stats known to go negative occasionally.
1841 */
1842 switch (i) {
1843 case NR_WRITEBACK:
1844 continue;
1845 }
1846 val = atomic_long_read(&vm_node_stat[i]);
1847 if (val < 0) {
1848 pr_warn("%s: %s %ld\n",
1849 __func__, node_stat_name(i), val);
1850 }
1851 }
1852 if (write)
1853 *ppos += *lenp;
1854 else
1855 *lenp = 0;
1856 return 0;
1857 }
1858 #endif /* CONFIG_PROC_FS */
1859
1860 static void vmstat_update(struct work_struct *w)
1861 {
1862 if (refresh_cpu_vm_stats(true)) {
1863 /*
1864 * Counters were updated so we expect more updates
1865 * to occur in the future. Keep on running the
1866 * update worker thread.
1867 */
1868 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1869 this_cpu_ptr(&vmstat_work),
1870 round_jiffies_relative(sysctl_stat_interval));
1871 }
1872 }
1873
1874 /*
1875 * Check if the diffs for a certain cpu indicate that
1876 * an update is needed.
1877 */
1878 static bool need_update(int cpu)
1879 {
1880 pg_data_t *last_pgdat = NULL;
1881 struct zone *zone;
1882
1883 for_each_populated_zone(zone) {
1884 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1885 struct per_cpu_nodestat *n;
1886
1887 /*
1888 * The fast way of checking if there are any vmstat diffs.
1889 */
1890 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1891 return true;
1892
1893 if (last_pgdat == zone->zone_pgdat)
1894 continue;
1895 last_pgdat = zone->zone_pgdat;
1896 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1897 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1898 return true;
1899 }
1900 return false;
1901 }
1902
1903 /*
1904 * Switch off vmstat processing and then fold all the remaining differentials
1905 * until the diffs stay at zero. The function is used by NOHZ and can only be
1906 * invoked when tick processing is not active.
1907 */
1908 void quiet_vmstat(void)
1909 {
1910 if (system_state != SYSTEM_RUNNING)
1911 return;
1912
1913 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1914 return;
1915
1916 if (!need_update(smp_processor_id()))
1917 return;
1918
1919 /*
1920 * Just refresh counters and do not care about the pending delayed
1921 * vmstat_update. It doesn't fire that often to matter and canceling
1922 * it would be too expensive from this path.
1923 * vmstat_shepherd will take care about that for us.
1924 */
1925 refresh_cpu_vm_stats(false);
1926 }
1927
1928 /*
1929 * Shepherd worker thread that checks the
1930 * differentials of processors that have their worker
1931 * threads for vm statistics updates disabled because of
1932 * inactivity.
1933 */
1934 static void vmstat_shepherd(struct work_struct *w);
1935
1936 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1937
1938 static void vmstat_shepherd(struct work_struct *w)
1939 {
1940 int cpu;
1941
1942 cpus_read_lock();
1943 /* Check processors whose vmstat worker threads have been disabled */
1944 for_each_online_cpu(cpu) {
1945 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1946
1947 if (!delayed_work_pending(dw) && need_update(cpu))
1948 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1949
1950 cond_resched();
1951 }
1952 cpus_read_unlock();
1953
1954 schedule_delayed_work(&shepherd,
1955 round_jiffies_relative(sysctl_stat_interval));
1956 }
1957
1958 static void __init start_shepherd_timer(void)
1959 {
1960 int cpu;
1961
1962 for_each_possible_cpu(cpu)
1963 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1964 vmstat_update);
1965
1966 schedule_delayed_work(&shepherd,
1967 round_jiffies_relative(sysctl_stat_interval));
1968 }
1969
1970 static void __init init_cpu_node_state(void)
1971 {
1972 int node;
1973
1974 for_each_online_node(node) {
1975 if (cpumask_weight(cpumask_of_node(node)) > 0)
1976 node_set_state(node, N_CPU);
1977 }
1978 }
1979
1980 static int vmstat_cpu_online(unsigned int cpu)
1981 {
1982 refresh_zone_stat_thresholds();
1983 node_set_state(cpu_to_node(cpu), N_CPU);
1984 return 0;
1985 }
1986
1987 static int vmstat_cpu_down_prep(unsigned int cpu)
1988 {
1989 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1990 return 0;
1991 }
1992
1993 static int vmstat_cpu_dead(unsigned int cpu)
1994 {
1995 const struct cpumask *node_cpus;
1996 int node;
1997
1998 node = cpu_to_node(cpu);
1999
2000 refresh_zone_stat_thresholds();
2001 node_cpus = cpumask_of_node(node);
2002 if (cpumask_weight(node_cpus) > 0)
2003 return 0;
2004
2005 node_clear_state(node, N_CPU);
2006 return 0;
2007 }
2008
2009 #endif
2010
2011 struct workqueue_struct *mm_percpu_wq;
2012
2013 void __init init_mm_internals(void)
2014 {
2015 int ret __maybe_unused;
2016
2017 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2018
2019 #ifdef CONFIG_SMP
2020 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2021 NULL, vmstat_cpu_dead);
2022 if (ret < 0)
2023 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2024
2025 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2026 vmstat_cpu_online,
2027 vmstat_cpu_down_prep);
2028 if (ret < 0)
2029 pr_err("vmstat: failed to register 'online' hotplug state\n");
2030
2031 cpus_read_lock();
2032 init_cpu_node_state();
2033 cpus_read_unlock();
2034
2035 start_shepherd_timer();
2036 #endif
2037 #ifdef CONFIG_PROC_FS
2038 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2039 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2040 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2041 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2042 #endif
2043 }
2044
2045 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2046
2047 /*
2048 * Return an index indicating how much of the available free memory is
2049 * unusable for an allocation of the requested size.
2050 */
2051 static int unusable_free_index(unsigned int order,
2052 struct contig_page_info *info)
2053 {
2054 /* No free memory is interpreted as all free memory is unusable */
2055 if (info->free_pages == 0)
2056 return 1000;
2057
2058 /*
2059 * Index should be a value between 0 and 1. Return a value to 3
2060 * decimal places.
2061 *
2062 * 0 => no fragmentation
2063 * 1 => high fragmentation
2064 */
2065 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2066
2067 }
2068
2069 static void unusable_show_print(struct seq_file *m,
2070 pg_data_t *pgdat, struct zone *zone)
2071 {
2072 unsigned int order;
2073 int index;
2074 struct contig_page_info info;
2075
2076 seq_printf(m, "Node %d, zone %8s ",
2077 pgdat->node_id,
2078 zone->name);
2079 for (order = 0; order < MAX_ORDER; ++order) {
2080 fill_contig_page_info(zone, order, &info);
2081 index = unusable_free_index(order, &info);
2082 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2083 }
2084
2085 seq_putc(m, '\n');
2086 }
2087
2088 /*
2089 * Display unusable free space index
2090 *
2091 * The unusable free space index measures how much of the available free
2092 * memory cannot be used to satisfy an allocation of a given size and is a
2093 * value between 0 and 1. The higher the value, the more of free memory is
2094 * unusable and by implication, the worse the external fragmentation is. This
2095 * can be expressed as a percentage by multiplying by 100.
2096 */
2097 static int unusable_show(struct seq_file *m, void *arg)
2098 {
2099 pg_data_t *pgdat = (pg_data_t *)arg;
2100
2101 /* check memoryless node */
2102 if (!node_state(pgdat->node_id, N_MEMORY))
2103 return 0;
2104
2105 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2106
2107 return 0;
2108 }
2109
2110 static const struct seq_operations unusable_sops = {
2111 .start = frag_start,
2112 .next = frag_next,
2113 .stop = frag_stop,
2114 .show = unusable_show,
2115 };
2116
2117 DEFINE_SEQ_ATTRIBUTE(unusable);
2118
2119 static void extfrag_show_print(struct seq_file *m,
2120 pg_data_t *pgdat, struct zone *zone)
2121 {
2122 unsigned int order;
2123 int index;
2124
2125 /* Alloc on stack as interrupts are disabled for zone walk */
2126 struct contig_page_info info;
2127
2128 seq_printf(m, "Node %d, zone %8s ",
2129 pgdat->node_id,
2130 zone->name);
2131 for (order = 0; order < MAX_ORDER; ++order) {
2132 fill_contig_page_info(zone, order, &info);
2133 index = __fragmentation_index(order, &info);
2134 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2135 }
2136
2137 seq_putc(m, '\n');
2138 }
2139
2140 /*
2141 * Display fragmentation index for orders that allocations would fail for
2142 */
2143 static int extfrag_show(struct seq_file *m, void *arg)
2144 {
2145 pg_data_t *pgdat = (pg_data_t *)arg;
2146
2147 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2148
2149 return 0;
2150 }
2151
2152 static const struct seq_operations extfrag_sops = {
2153 .start = frag_start,
2154 .next = frag_next,
2155 .stop = frag_stop,
2156 .show = extfrag_show,
2157 };
2158
2159 DEFINE_SEQ_ATTRIBUTE(extfrag);
2160
2161 static int __init extfrag_debug_init(void)
2162 {
2163 struct dentry *extfrag_debug_root;
2164
2165 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2166
2167 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2168 &unusable_fops);
2169
2170 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2171 &extfrag_fops);
2172
2173 return 0;
2174 }
2175
2176 module_init(extfrag_debug_init);
2177 #endif