]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmstat.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
23
24 #include "internal.h"
25
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
30 static void sum_vm_events(unsigned long *ret)
31 {
32 int cpu;
33 int i;
34
35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
37 for_each_online_cpu(cpu) {
38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41 ret[i] += this->event[i];
42 }
43 }
44
45 /*
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
49 */
50 void all_vm_events(unsigned long *ret)
51 {
52 get_online_cpus();
53 sum_vm_events(ret);
54 put_online_cpus();
55 }
56 EXPORT_SYMBOL_GPL(all_vm_events);
57
58 /*
59 * Fold the foreign cpu events into our own.
60 *
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
63 */
64 void vm_events_fold_cpu(int cpu)
65 {
66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67 int i;
68
69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70 count_vm_events(i, fold_state->event[i]);
71 fold_state->event[i] = 0;
72 }
73 }
74
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
76
77 /*
78 * Manage combined zone based / global counters
79 *
80 * vm_stat contains the global counters
81 */
82 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83 EXPORT_SYMBOL(vm_stat);
84
85 #ifdef CONFIG_SMP
86
87 int calculate_pressure_threshold(struct zone *zone)
88 {
89 int threshold;
90 int watermark_distance;
91
92 /*
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
98 * the min watermark
99 */
100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103 /*
104 * Maximum threshold is 125
105 */
106 threshold = min(125, threshold);
107
108 return threshold;
109 }
110
111 int calculate_normal_threshold(struct zone *zone)
112 {
113 int threshold;
114 int mem; /* memory in 128 MB units */
115
116 /*
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
121 *
122 * Some sample thresholds:
123 *
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
126 * 8 1 1 0.9-1 GB 4
127 * 16 2 2 0.9-1 GB 4
128 * 20 2 2 1-2 GB 5
129 * 24 2 2 2-4 GB 6
130 * 28 2 2 4-8 GB 7
131 * 32 2 2 8-16 GB 8
132 * 4 2 2 <128M 1
133 * 30 4 3 2-4 GB 5
134 * 48 4 3 8-16 GB 8
135 * 32 8 4 1-2 GB 4
136 * 32 8 4 0.9-1GB 4
137 * 10 16 5 <128M 1
138 * 40 16 5 900M 4
139 * 70 64 7 2-4 GB 5
140 * 84 64 7 4-8 GB 6
141 * 108 512 9 4-8 GB 6
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
144 */
145
146 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147
148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150 /*
151 * Maximum threshold is 125
152 */
153 threshold = min(125, threshold);
154
155 return threshold;
156 }
157
158 /*
159 * Refresh the thresholds for each zone.
160 */
161 void refresh_zone_stat_thresholds(void)
162 {
163 struct zone *zone;
164 int cpu;
165 int threshold;
166
167 for_each_populated_zone(zone) {
168 unsigned long max_drift, tolerate_drift;
169
170 threshold = calculate_normal_threshold(zone);
171
172 for_each_online_cpu(cpu)
173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174 = threshold;
175
176 /*
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
180 */
181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182 max_drift = num_online_cpus() * threshold;
183 if (max_drift > tolerate_drift)
184 zone->percpu_drift_mark = high_wmark_pages(zone) +
185 max_drift;
186 }
187 }
188
189 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190 int (*calculate_pressure)(struct zone *))
191 {
192 struct zone *zone;
193 int cpu;
194 int threshold;
195 int i;
196
197 for (i = 0; i < pgdat->nr_zones; i++) {
198 zone = &pgdat->node_zones[i];
199 if (!zone->percpu_drift_mark)
200 continue;
201
202 threshold = (*calculate_pressure)(zone);
203 for_each_possible_cpu(cpu)
204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205 = threshold;
206 }
207 }
208
209 /*
210 * For use when we know that interrupts are disabled,
211 * or when we know that preemption is disabled and that
212 * particular counter cannot be updated from interrupt context.
213 */
214 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
215 int delta)
216 {
217 struct per_cpu_pageset __percpu *pcp = zone->pageset;
218 s8 __percpu *p = pcp->vm_stat_diff + item;
219 long x;
220 long t;
221
222 x = delta + __this_cpu_read(*p);
223
224 t = __this_cpu_read(pcp->stat_threshold);
225
226 if (unlikely(x > t || x < -t)) {
227 zone_page_state_add(x, zone, item);
228 x = 0;
229 }
230 __this_cpu_write(*p, x);
231 }
232 EXPORT_SYMBOL(__mod_zone_page_state);
233
234 /*
235 * Optimized increment and decrement functions.
236 *
237 * These are only for a single page and therefore can take a struct page *
238 * argument instead of struct zone *. This allows the inclusion of the code
239 * generated for page_zone(page) into the optimized functions.
240 *
241 * No overflow check is necessary and therefore the differential can be
242 * incremented or decremented in place which may allow the compilers to
243 * generate better code.
244 * The increment or decrement is known and therefore one boundary check can
245 * be omitted.
246 *
247 * NOTE: These functions are very performance sensitive. Change only
248 * with care.
249 *
250 * Some processors have inc/dec instructions that are atomic vs an interrupt.
251 * However, the code must first determine the differential location in a zone
252 * based on the processor number and then inc/dec the counter. There is no
253 * guarantee without disabling preemption that the processor will not change
254 * in between and therefore the atomicity vs. interrupt cannot be exploited
255 * in a useful way here.
256 */
257 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
258 {
259 struct per_cpu_pageset __percpu *pcp = zone->pageset;
260 s8 __percpu *p = pcp->vm_stat_diff + item;
261 s8 v, t;
262
263 v = __this_cpu_inc_return(*p);
264 t = __this_cpu_read(pcp->stat_threshold);
265 if (unlikely(v > t)) {
266 s8 overstep = t >> 1;
267
268 zone_page_state_add(v + overstep, zone, item);
269 __this_cpu_write(*p, -overstep);
270 }
271 }
272
273 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
274 {
275 __inc_zone_state(page_zone(page), item);
276 }
277 EXPORT_SYMBOL(__inc_zone_page_state);
278
279 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
280 {
281 struct per_cpu_pageset __percpu *pcp = zone->pageset;
282 s8 __percpu *p = pcp->vm_stat_diff + item;
283 s8 v, t;
284
285 v = __this_cpu_dec_return(*p);
286 t = __this_cpu_read(pcp->stat_threshold);
287 if (unlikely(v < - t)) {
288 s8 overstep = t >> 1;
289
290 zone_page_state_add(v - overstep, zone, item);
291 __this_cpu_write(*p, overstep);
292 }
293 }
294
295 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
296 {
297 __dec_zone_state(page_zone(page), item);
298 }
299 EXPORT_SYMBOL(__dec_zone_page_state);
300
301 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
302 /*
303 * If we have cmpxchg_local support then we do not need to incur the overhead
304 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
305 *
306 * mod_state() modifies the zone counter state through atomic per cpu
307 * operations.
308 *
309 * Overstep mode specifies how overstep should handled:
310 * 0 No overstepping
311 * 1 Overstepping half of threshold
312 * -1 Overstepping minus half of threshold
313 */
314 static inline void mod_state(struct zone *zone,
315 enum zone_stat_item item, int delta, int overstep_mode)
316 {
317 struct per_cpu_pageset __percpu *pcp = zone->pageset;
318 s8 __percpu *p = pcp->vm_stat_diff + item;
319 long o, n, t, z;
320
321 do {
322 z = 0; /* overflow to zone counters */
323
324 /*
325 * The fetching of the stat_threshold is racy. We may apply
326 * a counter threshold to the wrong the cpu if we get
327 * rescheduled while executing here. However, the next
328 * counter update will apply the threshold again and
329 * therefore bring the counter under the threshold again.
330 *
331 * Most of the time the thresholds are the same anyways
332 * for all cpus in a zone.
333 */
334 t = this_cpu_read(pcp->stat_threshold);
335
336 o = this_cpu_read(*p);
337 n = delta + o;
338
339 if (n > t || n < -t) {
340 int os = overstep_mode * (t >> 1) ;
341
342 /* Overflow must be added to zone counters */
343 z = n + os;
344 n = -os;
345 }
346 } while (this_cpu_cmpxchg(*p, o, n) != o);
347
348 if (z)
349 zone_page_state_add(z, zone, item);
350 }
351
352 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
353 int delta)
354 {
355 mod_state(zone, item, delta, 0);
356 }
357 EXPORT_SYMBOL(mod_zone_page_state);
358
359 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
360 {
361 mod_state(zone, item, 1, 1);
362 }
363
364 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
365 {
366 mod_state(page_zone(page), item, 1, 1);
367 }
368 EXPORT_SYMBOL(inc_zone_page_state);
369
370 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
371 {
372 mod_state(page_zone(page), item, -1, -1);
373 }
374 EXPORT_SYMBOL(dec_zone_page_state);
375 #else
376 /*
377 * Use interrupt disable to serialize counter updates
378 */
379 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
380 int delta)
381 {
382 unsigned long flags;
383
384 local_irq_save(flags);
385 __mod_zone_page_state(zone, item, delta);
386 local_irq_restore(flags);
387 }
388 EXPORT_SYMBOL(mod_zone_page_state);
389
390 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
391 {
392 unsigned long flags;
393
394 local_irq_save(flags);
395 __inc_zone_state(zone, item);
396 local_irq_restore(flags);
397 }
398
399 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
400 {
401 unsigned long flags;
402 struct zone *zone;
403
404 zone = page_zone(page);
405 local_irq_save(flags);
406 __inc_zone_state(zone, item);
407 local_irq_restore(flags);
408 }
409 EXPORT_SYMBOL(inc_zone_page_state);
410
411 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
412 {
413 unsigned long flags;
414
415 local_irq_save(flags);
416 __dec_zone_page_state(page, item);
417 local_irq_restore(flags);
418 }
419 EXPORT_SYMBOL(dec_zone_page_state);
420 #endif
421
422 static inline void fold_diff(int *diff)
423 {
424 int i;
425
426 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
427 if (diff[i])
428 atomic_long_add(diff[i], &vm_stat[i]);
429 }
430
431 /*
432 * Update the zone counters for the current cpu.
433 *
434 * Note that refresh_cpu_vm_stats strives to only access
435 * node local memory. The per cpu pagesets on remote zones are placed
436 * in the memory local to the processor using that pageset. So the
437 * loop over all zones will access a series of cachelines local to
438 * the processor.
439 *
440 * The call to zone_page_state_add updates the cachelines with the
441 * statistics in the remote zone struct as well as the global cachelines
442 * with the global counters. These could cause remote node cache line
443 * bouncing and will have to be only done when necessary.
444 */
445 static void refresh_cpu_vm_stats(void)
446 {
447 struct zone *zone;
448 int i;
449 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
450
451 for_each_populated_zone(zone) {
452 struct per_cpu_pageset __percpu *p = zone->pageset;
453
454 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
455 int v;
456
457 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
458 if (v) {
459
460 atomic_long_add(v, &zone->vm_stat[i]);
461 global_diff[i] += v;
462 #ifdef CONFIG_NUMA
463 /* 3 seconds idle till flush */
464 __this_cpu_write(p->expire, 3);
465 #endif
466 }
467 }
468 cond_resched();
469 #ifdef CONFIG_NUMA
470 /*
471 * Deal with draining the remote pageset of this
472 * processor
473 *
474 * Check if there are pages remaining in this pageset
475 * if not then there is nothing to expire.
476 */
477 if (!__this_cpu_read(p->expire) ||
478 !__this_cpu_read(p->pcp.count))
479 continue;
480
481 /*
482 * We never drain zones local to this processor.
483 */
484 if (zone_to_nid(zone) == numa_node_id()) {
485 __this_cpu_write(p->expire, 0);
486 continue;
487 }
488
489
490 if (__this_cpu_dec_return(p->expire))
491 continue;
492
493 if (__this_cpu_read(p->pcp.count))
494 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
495 #endif
496 }
497 fold_diff(global_diff);
498 }
499
500 /*
501 * Fold the data for an offline cpu into the global array.
502 * There cannot be any access by the offline cpu and therefore
503 * synchronization is simplified.
504 */
505 void cpu_vm_stats_fold(int cpu)
506 {
507 struct zone *zone;
508 int i;
509 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
510
511 for_each_populated_zone(zone) {
512 struct per_cpu_pageset *p;
513
514 p = per_cpu_ptr(zone->pageset, cpu);
515
516 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
517 if (p->vm_stat_diff[i]) {
518 int v;
519
520 v = p->vm_stat_diff[i];
521 p->vm_stat_diff[i] = 0;
522 atomic_long_add(v, &zone->vm_stat[i]);
523 global_diff[i] += v;
524 }
525 }
526
527 fold_diff(global_diff);
528 }
529
530 /*
531 * this is only called if !populated_zone(zone), which implies no other users of
532 * pset->vm_stat_diff[] exsist.
533 */
534 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
535 {
536 int i;
537
538 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
539 if (pset->vm_stat_diff[i]) {
540 int v = pset->vm_stat_diff[i];
541 pset->vm_stat_diff[i] = 0;
542 atomic_long_add(v, &zone->vm_stat[i]);
543 atomic_long_add(v, &vm_stat[i]);
544 }
545 }
546 #endif
547
548 #ifdef CONFIG_NUMA
549 /*
550 * zonelist = the list of zones passed to the allocator
551 * z = the zone from which the allocation occurred.
552 *
553 * Must be called with interrupts disabled.
554 *
555 * When __GFP_OTHER_NODE is set assume the node of the preferred
556 * zone is the local node. This is useful for daemons who allocate
557 * memory on behalf of other processes.
558 */
559 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
560 {
561 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
562 __inc_zone_state(z, NUMA_HIT);
563 } else {
564 __inc_zone_state(z, NUMA_MISS);
565 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
566 }
567 if (z->node == ((flags & __GFP_OTHER_NODE) ?
568 preferred_zone->node : numa_node_id()))
569 __inc_zone_state(z, NUMA_LOCAL);
570 else
571 __inc_zone_state(z, NUMA_OTHER);
572 }
573 #endif
574
575 #ifdef CONFIG_COMPACTION
576
577 struct contig_page_info {
578 unsigned long free_pages;
579 unsigned long free_blocks_total;
580 unsigned long free_blocks_suitable;
581 };
582
583 /*
584 * Calculate the number of free pages in a zone, how many contiguous
585 * pages are free and how many are large enough to satisfy an allocation of
586 * the target size. Note that this function makes no attempt to estimate
587 * how many suitable free blocks there *might* be if MOVABLE pages were
588 * migrated. Calculating that is possible, but expensive and can be
589 * figured out from userspace
590 */
591 static void fill_contig_page_info(struct zone *zone,
592 unsigned int suitable_order,
593 struct contig_page_info *info)
594 {
595 unsigned int order;
596
597 info->free_pages = 0;
598 info->free_blocks_total = 0;
599 info->free_blocks_suitable = 0;
600
601 for (order = 0; order < MAX_ORDER; order++) {
602 unsigned long blocks;
603
604 /* Count number of free blocks */
605 blocks = zone->free_area[order].nr_free;
606 info->free_blocks_total += blocks;
607
608 /* Count free base pages */
609 info->free_pages += blocks << order;
610
611 /* Count the suitable free blocks */
612 if (order >= suitable_order)
613 info->free_blocks_suitable += blocks <<
614 (order - suitable_order);
615 }
616 }
617
618 /*
619 * A fragmentation index only makes sense if an allocation of a requested
620 * size would fail. If that is true, the fragmentation index indicates
621 * whether external fragmentation or a lack of memory was the problem.
622 * The value can be used to determine if page reclaim or compaction
623 * should be used
624 */
625 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
626 {
627 unsigned long requested = 1UL << order;
628
629 if (!info->free_blocks_total)
630 return 0;
631
632 /* Fragmentation index only makes sense when a request would fail */
633 if (info->free_blocks_suitable)
634 return -1000;
635
636 /*
637 * Index is between 0 and 1 so return within 3 decimal places
638 *
639 * 0 => allocation would fail due to lack of memory
640 * 1 => allocation would fail due to fragmentation
641 */
642 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
643 }
644
645 /* Same as __fragmentation index but allocs contig_page_info on stack */
646 int fragmentation_index(struct zone *zone, unsigned int order)
647 {
648 struct contig_page_info info;
649
650 fill_contig_page_info(zone, order, &info);
651 return __fragmentation_index(order, &info);
652 }
653 #endif
654
655 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656 #include <linux/proc_fs.h>
657 #include <linux/seq_file.h>
658
659 static char * const migratetype_names[MIGRATE_TYPES] = {
660 "Unmovable",
661 "Reclaimable",
662 "Movable",
663 "Reserve",
664 #ifdef CONFIG_CMA
665 "CMA",
666 #endif
667 #ifdef CONFIG_MEMORY_ISOLATION
668 "Isolate",
669 #endif
670 };
671
672 static void *frag_start(struct seq_file *m, loff_t *pos)
673 {
674 pg_data_t *pgdat;
675 loff_t node = *pos;
676 for (pgdat = first_online_pgdat();
677 pgdat && node;
678 pgdat = next_online_pgdat(pgdat))
679 --node;
680
681 return pgdat;
682 }
683
684 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
685 {
686 pg_data_t *pgdat = (pg_data_t *)arg;
687
688 (*pos)++;
689 return next_online_pgdat(pgdat);
690 }
691
692 static void frag_stop(struct seq_file *m, void *arg)
693 {
694 }
695
696 /* Walk all the zones in a node and print using a callback */
697 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
698 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
699 {
700 struct zone *zone;
701 struct zone *node_zones = pgdat->node_zones;
702 unsigned long flags;
703
704 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
705 if (!populated_zone(zone))
706 continue;
707
708 spin_lock_irqsave(&zone->lock, flags);
709 print(m, pgdat, zone);
710 spin_unlock_irqrestore(&zone->lock, flags);
711 }
712 }
713 #endif
714
715 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 #ifdef CONFIG_ZONE_DMA
717 #define TEXT_FOR_DMA(xx) xx "_dma",
718 #else
719 #define TEXT_FOR_DMA(xx)
720 #endif
721
722 #ifdef CONFIG_ZONE_DMA32
723 #define TEXT_FOR_DMA32(xx) xx "_dma32",
724 #else
725 #define TEXT_FOR_DMA32(xx)
726 #endif
727
728 #ifdef CONFIG_HIGHMEM
729 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
730 #else
731 #define TEXT_FOR_HIGHMEM(xx)
732 #endif
733
734 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735 TEXT_FOR_HIGHMEM(xx) xx "_movable",
736
737 const char * const vmstat_text[] = {
738 /* Zoned VM counters */
739 "nr_free_pages",
740 "nr_alloc_batch",
741 "nr_inactive_anon",
742 "nr_active_anon",
743 "nr_inactive_file",
744 "nr_active_file",
745 "nr_unevictable",
746 "nr_mlock",
747 "nr_anon_pages",
748 "nr_mapped",
749 "nr_file_pages",
750 "nr_dirty",
751 "nr_writeback",
752 "nr_slab_reclaimable",
753 "nr_slab_unreclaimable",
754 "nr_page_table_pages",
755 "nr_kernel_stack",
756 "nr_unstable",
757 "nr_bounce",
758 "nr_vmscan_write",
759 "nr_vmscan_immediate_reclaim",
760 "nr_writeback_temp",
761 "nr_isolated_anon",
762 "nr_isolated_file",
763 "nr_shmem",
764 "nr_dirtied",
765 "nr_written",
766
767 #ifdef CONFIG_NUMA
768 "numa_hit",
769 "numa_miss",
770 "numa_foreign",
771 "numa_interleave",
772 "numa_local",
773 "numa_other",
774 #endif
775 "workingset_refault",
776 "workingset_activate",
777 "workingset_nodereclaim",
778 "nr_anon_transparent_hugepages",
779 "nr_free_cma",
780 "nr_dirty_threshold",
781 "nr_dirty_background_threshold",
782
783 #ifdef CONFIG_VM_EVENT_COUNTERS
784 "pgpgin",
785 "pgpgout",
786 "pswpin",
787 "pswpout",
788
789 TEXTS_FOR_ZONES("pgalloc")
790
791 "pgfree",
792 "pgactivate",
793 "pgdeactivate",
794
795 "pgfault",
796 "pgmajfault",
797
798 TEXTS_FOR_ZONES("pgrefill")
799 TEXTS_FOR_ZONES("pgsteal_kswapd")
800 TEXTS_FOR_ZONES("pgsteal_direct")
801 TEXTS_FOR_ZONES("pgscan_kswapd")
802 TEXTS_FOR_ZONES("pgscan_direct")
803 "pgscan_direct_throttle",
804
805 #ifdef CONFIG_NUMA
806 "zone_reclaim_failed",
807 #endif
808 "pginodesteal",
809 "slabs_scanned",
810 "kswapd_inodesteal",
811 "kswapd_low_wmark_hit_quickly",
812 "kswapd_high_wmark_hit_quickly",
813 "pageoutrun",
814 "allocstall",
815
816 "pgrotated",
817
818 "drop_pagecache",
819 "drop_slab",
820
821 #ifdef CONFIG_NUMA_BALANCING
822 "numa_pte_updates",
823 "numa_huge_pte_updates",
824 "numa_hint_faults",
825 "numa_hint_faults_local",
826 "numa_pages_migrated",
827 #endif
828 #ifdef CONFIG_MIGRATION
829 "pgmigrate_success",
830 "pgmigrate_fail",
831 #endif
832 #ifdef CONFIG_COMPACTION
833 "compact_migrate_scanned",
834 "compact_free_scanned",
835 "compact_isolated",
836 "compact_stall",
837 "compact_fail",
838 "compact_success",
839 #endif
840
841 #ifdef CONFIG_HUGETLB_PAGE
842 "htlb_buddy_alloc_success",
843 "htlb_buddy_alloc_fail",
844 #endif
845 "unevictable_pgs_culled",
846 "unevictable_pgs_scanned",
847 "unevictable_pgs_rescued",
848 "unevictable_pgs_mlocked",
849 "unevictable_pgs_munlocked",
850 "unevictable_pgs_cleared",
851 "unevictable_pgs_stranded",
852
853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
854 "thp_fault_alloc",
855 "thp_fault_fallback",
856 "thp_collapse_alloc",
857 "thp_collapse_alloc_failed",
858 "thp_split",
859 "thp_zero_page_alloc",
860 "thp_zero_page_alloc_failed",
861 #endif
862 #ifdef CONFIG_DEBUG_TLBFLUSH
863 #ifdef CONFIG_SMP
864 "nr_tlb_remote_flush",
865 "nr_tlb_remote_flush_received",
866 #endif /* CONFIG_SMP */
867 "nr_tlb_local_flush_all",
868 "nr_tlb_local_flush_one",
869 #endif /* CONFIG_DEBUG_TLBFLUSH */
870
871 #ifdef CONFIG_DEBUG_VM_VMACACHE
872 "vmacache_find_calls",
873 "vmacache_find_hits",
874 #endif
875 #endif /* CONFIG_VM_EVENTS_COUNTERS */
876 };
877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
878
879
880 #ifdef CONFIG_PROC_FS
881 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
882 struct zone *zone)
883 {
884 int order;
885
886 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
887 for (order = 0; order < MAX_ORDER; ++order)
888 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
889 seq_putc(m, '\n');
890 }
891
892 /*
893 * This walks the free areas for each zone.
894 */
895 static int frag_show(struct seq_file *m, void *arg)
896 {
897 pg_data_t *pgdat = (pg_data_t *)arg;
898 walk_zones_in_node(m, pgdat, frag_show_print);
899 return 0;
900 }
901
902 static void pagetypeinfo_showfree_print(struct seq_file *m,
903 pg_data_t *pgdat, struct zone *zone)
904 {
905 int order, mtype;
906
907 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
908 seq_printf(m, "Node %4d, zone %8s, type %12s ",
909 pgdat->node_id,
910 zone->name,
911 migratetype_names[mtype]);
912 for (order = 0; order < MAX_ORDER; ++order) {
913 unsigned long freecount = 0;
914 struct free_area *area;
915 struct list_head *curr;
916
917 area = &(zone->free_area[order]);
918
919 list_for_each(curr, &area->free_list[mtype])
920 freecount++;
921 seq_printf(m, "%6lu ", freecount);
922 }
923 seq_putc(m, '\n');
924 }
925 }
926
927 /* Print out the free pages at each order for each migatetype */
928 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
929 {
930 int order;
931 pg_data_t *pgdat = (pg_data_t *)arg;
932
933 /* Print header */
934 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
935 for (order = 0; order < MAX_ORDER; ++order)
936 seq_printf(m, "%6d ", order);
937 seq_putc(m, '\n');
938
939 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
940
941 return 0;
942 }
943
944 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
945 pg_data_t *pgdat, struct zone *zone)
946 {
947 int mtype;
948 unsigned long pfn;
949 unsigned long start_pfn = zone->zone_start_pfn;
950 unsigned long end_pfn = zone_end_pfn(zone);
951 unsigned long count[MIGRATE_TYPES] = { 0, };
952
953 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
954 struct page *page;
955
956 if (!pfn_valid(pfn))
957 continue;
958
959 page = pfn_to_page(pfn);
960
961 /* Watch for unexpected holes punched in the memmap */
962 if (!memmap_valid_within(pfn, page, zone))
963 continue;
964
965 mtype = get_pageblock_migratetype(page);
966
967 if (mtype < MIGRATE_TYPES)
968 count[mtype]++;
969 }
970
971 /* Print counts */
972 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
973 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
974 seq_printf(m, "%12lu ", count[mtype]);
975 seq_putc(m, '\n');
976 }
977
978 /* Print out the free pages at each order for each migratetype */
979 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
980 {
981 int mtype;
982 pg_data_t *pgdat = (pg_data_t *)arg;
983
984 seq_printf(m, "\n%-23s", "Number of blocks type ");
985 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
986 seq_printf(m, "%12s ", migratetype_names[mtype]);
987 seq_putc(m, '\n');
988 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
989
990 return 0;
991 }
992
993 /*
994 * This prints out statistics in relation to grouping pages by mobility.
995 * It is expensive to collect so do not constantly read the file.
996 */
997 static int pagetypeinfo_show(struct seq_file *m, void *arg)
998 {
999 pg_data_t *pgdat = (pg_data_t *)arg;
1000
1001 /* check memoryless node */
1002 if (!node_state(pgdat->node_id, N_MEMORY))
1003 return 0;
1004
1005 seq_printf(m, "Page block order: %d\n", pageblock_order);
1006 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1007 seq_putc(m, '\n');
1008 pagetypeinfo_showfree(m, pgdat);
1009 pagetypeinfo_showblockcount(m, pgdat);
1010
1011 return 0;
1012 }
1013
1014 static const struct seq_operations fragmentation_op = {
1015 .start = frag_start,
1016 .next = frag_next,
1017 .stop = frag_stop,
1018 .show = frag_show,
1019 };
1020
1021 static int fragmentation_open(struct inode *inode, struct file *file)
1022 {
1023 return seq_open(file, &fragmentation_op);
1024 }
1025
1026 static const struct file_operations fragmentation_file_operations = {
1027 .open = fragmentation_open,
1028 .read = seq_read,
1029 .llseek = seq_lseek,
1030 .release = seq_release,
1031 };
1032
1033 static const struct seq_operations pagetypeinfo_op = {
1034 .start = frag_start,
1035 .next = frag_next,
1036 .stop = frag_stop,
1037 .show = pagetypeinfo_show,
1038 };
1039
1040 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1041 {
1042 return seq_open(file, &pagetypeinfo_op);
1043 }
1044
1045 static const struct file_operations pagetypeinfo_file_ops = {
1046 .open = pagetypeinfo_open,
1047 .read = seq_read,
1048 .llseek = seq_lseek,
1049 .release = seq_release,
1050 };
1051
1052 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1053 struct zone *zone)
1054 {
1055 int i;
1056 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1057 seq_printf(m,
1058 "\n pages free %lu"
1059 "\n min %lu"
1060 "\n low %lu"
1061 "\n high %lu"
1062 "\n scanned %lu"
1063 "\n spanned %lu"
1064 "\n present %lu"
1065 "\n managed %lu",
1066 zone_page_state(zone, NR_FREE_PAGES),
1067 min_wmark_pages(zone),
1068 low_wmark_pages(zone),
1069 high_wmark_pages(zone),
1070 zone->pages_scanned,
1071 zone->spanned_pages,
1072 zone->present_pages,
1073 zone->managed_pages);
1074
1075 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1076 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1077 zone_page_state(zone, i));
1078
1079 seq_printf(m,
1080 "\n protection: (%lu",
1081 zone->lowmem_reserve[0]);
1082 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1083 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1084 seq_printf(m,
1085 ")"
1086 "\n pagesets");
1087 for_each_online_cpu(i) {
1088 struct per_cpu_pageset *pageset;
1089
1090 pageset = per_cpu_ptr(zone->pageset, i);
1091 seq_printf(m,
1092 "\n cpu: %i"
1093 "\n count: %i"
1094 "\n high: %i"
1095 "\n batch: %i",
1096 i,
1097 pageset->pcp.count,
1098 pageset->pcp.high,
1099 pageset->pcp.batch);
1100 #ifdef CONFIG_SMP
1101 seq_printf(m, "\n vm stats threshold: %d",
1102 pageset->stat_threshold);
1103 #endif
1104 }
1105 seq_printf(m,
1106 "\n all_unreclaimable: %u"
1107 "\n start_pfn: %lu"
1108 "\n inactive_ratio: %u",
1109 !zone_reclaimable(zone),
1110 zone->zone_start_pfn,
1111 zone->inactive_ratio);
1112 seq_putc(m, '\n');
1113 }
1114
1115 /*
1116 * Output information about zones in @pgdat.
1117 */
1118 static int zoneinfo_show(struct seq_file *m, void *arg)
1119 {
1120 pg_data_t *pgdat = (pg_data_t *)arg;
1121 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1122 return 0;
1123 }
1124
1125 static const struct seq_operations zoneinfo_op = {
1126 .start = frag_start, /* iterate over all zones. The same as in
1127 * fragmentation. */
1128 .next = frag_next,
1129 .stop = frag_stop,
1130 .show = zoneinfo_show,
1131 };
1132
1133 static int zoneinfo_open(struct inode *inode, struct file *file)
1134 {
1135 return seq_open(file, &zoneinfo_op);
1136 }
1137
1138 static const struct file_operations proc_zoneinfo_file_operations = {
1139 .open = zoneinfo_open,
1140 .read = seq_read,
1141 .llseek = seq_lseek,
1142 .release = seq_release,
1143 };
1144
1145 enum writeback_stat_item {
1146 NR_DIRTY_THRESHOLD,
1147 NR_DIRTY_BG_THRESHOLD,
1148 NR_VM_WRITEBACK_STAT_ITEMS,
1149 };
1150
1151 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1152 {
1153 unsigned long *v;
1154 int i, stat_items_size;
1155
1156 if (*pos >= ARRAY_SIZE(vmstat_text))
1157 return NULL;
1158 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1159 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1160
1161 #ifdef CONFIG_VM_EVENT_COUNTERS
1162 stat_items_size += sizeof(struct vm_event_state);
1163 #endif
1164
1165 v = kmalloc(stat_items_size, GFP_KERNEL);
1166 m->private = v;
1167 if (!v)
1168 return ERR_PTR(-ENOMEM);
1169 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1170 v[i] = global_page_state(i);
1171 v += NR_VM_ZONE_STAT_ITEMS;
1172
1173 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1174 v + NR_DIRTY_THRESHOLD);
1175 v += NR_VM_WRITEBACK_STAT_ITEMS;
1176
1177 #ifdef CONFIG_VM_EVENT_COUNTERS
1178 all_vm_events(v);
1179 v[PGPGIN] /= 2; /* sectors -> kbytes */
1180 v[PGPGOUT] /= 2;
1181 #endif
1182 return (unsigned long *)m->private + *pos;
1183 }
1184
1185 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1186 {
1187 (*pos)++;
1188 if (*pos >= ARRAY_SIZE(vmstat_text))
1189 return NULL;
1190 return (unsigned long *)m->private + *pos;
1191 }
1192
1193 static int vmstat_show(struct seq_file *m, void *arg)
1194 {
1195 unsigned long *l = arg;
1196 unsigned long off = l - (unsigned long *)m->private;
1197
1198 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1199 return 0;
1200 }
1201
1202 static void vmstat_stop(struct seq_file *m, void *arg)
1203 {
1204 kfree(m->private);
1205 m->private = NULL;
1206 }
1207
1208 static const struct seq_operations vmstat_op = {
1209 .start = vmstat_start,
1210 .next = vmstat_next,
1211 .stop = vmstat_stop,
1212 .show = vmstat_show,
1213 };
1214
1215 static int vmstat_open(struct inode *inode, struct file *file)
1216 {
1217 return seq_open(file, &vmstat_op);
1218 }
1219
1220 static const struct file_operations proc_vmstat_file_operations = {
1221 .open = vmstat_open,
1222 .read = seq_read,
1223 .llseek = seq_lseek,
1224 .release = seq_release,
1225 };
1226 #endif /* CONFIG_PROC_FS */
1227
1228 #ifdef CONFIG_SMP
1229 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1230 int sysctl_stat_interval __read_mostly = HZ;
1231
1232 static void vmstat_update(struct work_struct *w)
1233 {
1234 refresh_cpu_vm_stats();
1235 schedule_delayed_work(this_cpu_ptr(&vmstat_work),
1236 round_jiffies_relative(sysctl_stat_interval));
1237 }
1238
1239 static void start_cpu_timer(int cpu)
1240 {
1241 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1242
1243 INIT_DEFERRABLE_WORK(work, vmstat_update);
1244 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1245 }
1246
1247 static void vmstat_cpu_dead(int node)
1248 {
1249 int cpu;
1250
1251 get_online_cpus();
1252 for_each_online_cpu(cpu)
1253 if (cpu_to_node(cpu) == node)
1254 goto end;
1255
1256 node_clear_state(node, N_CPU);
1257 end:
1258 put_online_cpus();
1259 }
1260
1261 /*
1262 * Use the cpu notifier to insure that the thresholds are recalculated
1263 * when necessary.
1264 */
1265 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1266 unsigned long action,
1267 void *hcpu)
1268 {
1269 long cpu = (long)hcpu;
1270
1271 switch (action) {
1272 case CPU_ONLINE:
1273 case CPU_ONLINE_FROZEN:
1274 refresh_zone_stat_thresholds();
1275 start_cpu_timer(cpu);
1276 node_set_state(cpu_to_node(cpu), N_CPU);
1277 break;
1278 case CPU_DOWN_PREPARE:
1279 case CPU_DOWN_PREPARE_FROZEN:
1280 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1281 per_cpu(vmstat_work, cpu).work.func = NULL;
1282 break;
1283 case CPU_DOWN_FAILED:
1284 case CPU_DOWN_FAILED_FROZEN:
1285 start_cpu_timer(cpu);
1286 break;
1287 case CPU_DEAD:
1288 case CPU_DEAD_FROZEN:
1289 refresh_zone_stat_thresholds();
1290 vmstat_cpu_dead(cpu_to_node(cpu));
1291 break;
1292 default:
1293 break;
1294 }
1295 return NOTIFY_OK;
1296 }
1297
1298 static struct notifier_block vmstat_notifier =
1299 { &vmstat_cpuup_callback, NULL, 0 };
1300 #endif
1301
1302 static int __init setup_vmstat(void)
1303 {
1304 #ifdef CONFIG_SMP
1305 int cpu;
1306
1307 cpu_notifier_register_begin();
1308 __register_cpu_notifier(&vmstat_notifier);
1309
1310 for_each_online_cpu(cpu) {
1311 start_cpu_timer(cpu);
1312 node_set_state(cpu_to_node(cpu), N_CPU);
1313 }
1314 cpu_notifier_register_done();
1315 #endif
1316 #ifdef CONFIG_PROC_FS
1317 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1318 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1319 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1320 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1321 #endif
1322 return 0;
1323 }
1324 module_init(setup_vmstat)
1325
1326 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1327 #include <linux/debugfs.h>
1328
1329
1330 /*
1331 * Return an index indicating how much of the available free memory is
1332 * unusable for an allocation of the requested size.
1333 */
1334 static int unusable_free_index(unsigned int order,
1335 struct contig_page_info *info)
1336 {
1337 /* No free memory is interpreted as all free memory is unusable */
1338 if (info->free_pages == 0)
1339 return 1000;
1340
1341 /*
1342 * Index should be a value between 0 and 1. Return a value to 3
1343 * decimal places.
1344 *
1345 * 0 => no fragmentation
1346 * 1 => high fragmentation
1347 */
1348 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1349
1350 }
1351
1352 static void unusable_show_print(struct seq_file *m,
1353 pg_data_t *pgdat, struct zone *zone)
1354 {
1355 unsigned int order;
1356 int index;
1357 struct contig_page_info info;
1358
1359 seq_printf(m, "Node %d, zone %8s ",
1360 pgdat->node_id,
1361 zone->name);
1362 for (order = 0; order < MAX_ORDER; ++order) {
1363 fill_contig_page_info(zone, order, &info);
1364 index = unusable_free_index(order, &info);
1365 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1366 }
1367
1368 seq_putc(m, '\n');
1369 }
1370
1371 /*
1372 * Display unusable free space index
1373 *
1374 * The unusable free space index measures how much of the available free
1375 * memory cannot be used to satisfy an allocation of a given size and is a
1376 * value between 0 and 1. The higher the value, the more of free memory is
1377 * unusable and by implication, the worse the external fragmentation is. This
1378 * can be expressed as a percentage by multiplying by 100.
1379 */
1380 static int unusable_show(struct seq_file *m, void *arg)
1381 {
1382 pg_data_t *pgdat = (pg_data_t *)arg;
1383
1384 /* check memoryless node */
1385 if (!node_state(pgdat->node_id, N_MEMORY))
1386 return 0;
1387
1388 walk_zones_in_node(m, pgdat, unusable_show_print);
1389
1390 return 0;
1391 }
1392
1393 static const struct seq_operations unusable_op = {
1394 .start = frag_start,
1395 .next = frag_next,
1396 .stop = frag_stop,
1397 .show = unusable_show,
1398 };
1399
1400 static int unusable_open(struct inode *inode, struct file *file)
1401 {
1402 return seq_open(file, &unusable_op);
1403 }
1404
1405 static const struct file_operations unusable_file_ops = {
1406 .open = unusable_open,
1407 .read = seq_read,
1408 .llseek = seq_lseek,
1409 .release = seq_release,
1410 };
1411
1412 static void extfrag_show_print(struct seq_file *m,
1413 pg_data_t *pgdat, struct zone *zone)
1414 {
1415 unsigned int order;
1416 int index;
1417
1418 /* Alloc on stack as interrupts are disabled for zone walk */
1419 struct contig_page_info info;
1420
1421 seq_printf(m, "Node %d, zone %8s ",
1422 pgdat->node_id,
1423 zone->name);
1424 for (order = 0; order < MAX_ORDER; ++order) {
1425 fill_contig_page_info(zone, order, &info);
1426 index = __fragmentation_index(order, &info);
1427 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1428 }
1429
1430 seq_putc(m, '\n');
1431 }
1432
1433 /*
1434 * Display fragmentation index for orders that allocations would fail for
1435 */
1436 static int extfrag_show(struct seq_file *m, void *arg)
1437 {
1438 pg_data_t *pgdat = (pg_data_t *)arg;
1439
1440 walk_zones_in_node(m, pgdat, extfrag_show_print);
1441
1442 return 0;
1443 }
1444
1445 static const struct seq_operations extfrag_op = {
1446 .start = frag_start,
1447 .next = frag_next,
1448 .stop = frag_stop,
1449 .show = extfrag_show,
1450 };
1451
1452 static int extfrag_open(struct inode *inode, struct file *file)
1453 {
1454 return seq_open(file, &extfrag_op);
1455 }
1456
1457 static const struct file_operations extfrag_file_ops = {
1458 .open = extfrag_open,
1459 .read = seq_read,
1460 .llseek = seq_lseek,
1461 .release = seq_release,
1462 };
1463
1464 static int __init extfrag_debug_init(void)
1465 {
1466 struct dentry *extfrag_debug_root;
1467
1468 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1469 if (!extfrag_debug_root)
1470 return -ENOMEM;
1471
1472 if (!debugfs_create_file("unusable_index", 0444,
1473 extfrag_debug_root, NULL, &unusable_file_ops))
1474 goto fail;
1475
1476 if (!debugfs_create_file("extfrag_index", 0444,
1477 extfrag_debug_root, NULL, &extfrag_file_ops))
1478 goto fail;
1479
1480 return 0;
1481 fail:
1482 debugfs_remove_recursive(extfrag_debug_root);
1483 return -ENOMEM;
1484 }
1485
1486 module_init(extfrag_debug_init);
1487 #endif