]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/vmstat.c
mm: memcg: prepare for byte-sized vmstat items
[mirror_ubuntu-hirsute-kernel.git] / mm / vmstat.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
31
32 #include "internal.h"
33
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36 #ifdef CONFIG_NUMA
37 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone *zone)
41 {
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50 }
51
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
54 {
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59 }
60
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
63 {
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68 }
69
70 static void invalid_numa_statistics(void)
71 {
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74 }
75
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77
78 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
80 {
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101 out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104 }
105 #endif
106
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
111 static void sum_vm_events(unsigned long *ret)
112 {
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124 }
125
126 /*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130 */
131 void all_vm_events(unsigned long *ret)
132 {
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138
139 /*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145 void vm_events_fold_cpu(int cpu)
146 {
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154 }
155
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157
158 /*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_numa_stat);
168 EXPORT_SYMBOL(vm_node_stat);
169
170 #ifdef CONFIG_SMP
171
172 int calculate_pressure_threshold(struct zone *zone)
173 {
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194 }
195
196 int calculate_normal_threshold(struct zone *zone)
197 {
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241 }
242
243 /*
244 * Refresh the thresholds for each zone.
245 */
246 void refresh_zone_stat_thresholds(void)
247 {
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289 }
290
291 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293 {
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309 }
310
311 /*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
316 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318 {
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(x > t || x < -t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333 }
334 EXPORT_SYMBOL(__mod_zone_page_state);
335
336 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338 {
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 if (vmstat_item_in_bytes(item)) {
345 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
346 delta >>= PAGE_SHIFT;
347 }
348
349 x = delta + __this_cpu_read(*p);
350
351 t = __this_cpu_read(pcp->stat_threshold);
352
353 if (unlikely(x > t || x < -t)) {
354 node_page_state_add(x, pgdat, item);
355 x = 0;
356 }
357 __this_cpu_write(*p, x);
358 }
359 EXPORT_SYMBOL(__mod_node_page_state);
360
361 /*
362 * Optimized increment and decrement functions.
363 *
364 * These are only for a single page and therefore can take a struct page *
365 * argument instead of struct zone *. This allows the inclusion of the code
366 * generated for page_zone(page) into the optimized functions.
367 *
368 * No overflow check is necessary and therefore the differential can be
369 * incremented or decremented in place which may allow the compilers to
370 * generate better code.
371 * The increment or decrement is known and therefore one boundary check can
372 * be omitted.
373 *
374 * NOTE: These functions are very performance sensitive. Change only
375 * with care.
376 *
377 * Some processors have inc/dec instructions that are atomic vs an interrupt.
378 * However, the code must first determine the differential location in a zone
379 * based on the processor number and then inc/dec the counter. There is no
380 * guarantee without disabling preemption that the processor will not change
381 * in between and therefore the atomicity vs. interrupt cannot be exploited
382 * in a useful way here.
383 */
384 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
385 {
386 struct per_cpu_pageset __percpu *pcp = zone->pageset;
387 s8 __percpu *p = pcp->vm_stat_diff + item;
388 s8 v, t;
389
390 v = __this_cpu_inc_return(*p);
391 t = __this_cpu_read(pcp->stat_threshold);
392 if (unlikely(v > t)) {
393 s8 overstep = t >> 1;
394
395 zone_page_state_add(v + overstep, zone, item);
396 __this_cpu_write(*p, -overstep);
397 }
398 }
399
400 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
401 {
402 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
403 s8 __percpu *p = pcp->vm_node_stat_diff + item;
404 s8 v, t;
405
406 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
407
408 v = __this_cpu_inc_return(*p);
409 t = __this_cpu_read(pcp->stat_threshold);
410 if (unlikely(v > t)) {
411 s8 overstep = t >> 1;
412
413 node_page_state_add(v + overstep, pgdat, item);
414 __this_cpu_write(*p, -overstep);
415 }
416 }
417
418 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
419 {
420 __inc_zone_state(page_zone(page), item);
421 }
422 EXPORT_SYMBOL(__inc_zone_page_state);
423
424 void __inc_node_page_state(struct page *page, enum node_stat_item item)
425 {
426 __inc_node_state(page_pgdat(page), item);
427 }
428 EXPORT_SYMBOL(__inc_node_page_state);
429
430 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
431 {
432 struct per_cpu_pageset __percpu *pcp = zone->pageset;
433 s8 __percpu *p = pcp->vm_stat_diff + item;
434 s8 v, t;
435
436 v = __this_cpu_dec_return(*p);
437 t = __this_cpu_read(pcp->stat_threshold);
438 if (unlikely(v < - t)) {
439 s8 overstep = t >> 1;
440
441 zone_page_state_add(v - overstep, zone, item);
442 __this_cpu_write(*p, overstep);
443 }
444 }
445
446 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
447 {
448 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
449 s8 __percpu *p = pcp->vm_node_stat_diff + item;
450 s8 v, t;
451
452 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
453
454 v = __this_cpu_dec_return(*p);
455 t = __this_cpu_read(pcp->stat_threshold);
456 if (unlikely(v < - t)) {
457 s8 overstep = t >> 1;
458
459 node_page_state_add(v - overstep, pgdat, item);
460 __this_cpu_write(*p, overstep);
461 }
462 }
463
464 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
465 {
466 __dec_zone_state(page_zone(page), item);
467 }
468 EXPORT_SYMBOL(__dec_zone_page_state);
469
470 void __dec_node_page_state(struct page *page, enum node_stat_item item)
471 {
472 __dec_node_state(page_pgdat(page), item);
473 }
474 EXPORT_SYMBOL(__dec_node_page_state);
475
476 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
477 /*
478 * If we have cmpxchg_local support then we do not need to incur the overhead
479 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
480 *
481 * mod_state() modifies the zone counter state through atomic per cpu
482 * operations.
483 *
484 * Overstep mode specifies how overstep should handled:
485 * 0 No overstepping
486 * 1 Overstepping half of threshold
487 * -1 Overstepping minus half of threshold
488 */
489 static inline void mod_zone_state(struct zone *zone,
490 enum zone_stat_item item, long delta, int overstep_mode)
491 {
492 struct per_cpu_pageset __percpu *pcp = zone->pageset;
493 s8 __percpu *p = pcp->vm_stat_diff + item;
494 long o, n, t, z;
495
496 do {
497 z = 0; /* overflow to zone counters */
498
499 /*
500 * The fetching of the stat_threshold is racy. We may apply
501 * a counter threshold to the wrong the cpu if we get
502 * rescheduled while executing here. However, the next
503 * counter update will apply the threshold again and
504 * therefore bring the counter under the threshold again.
505 *
506 * Most of the time the thresholds are the same anyways
507 * for all cpus in a zone.
508 */
509 t = this_cpu_read(pcp->stat_threshold);
510
511 o = this_cpu_read(*p);
512 n = delta + o;
513
514 if (n > t || n < -t) {
515 int os = overstep_mode * (t >> 1) ;
516
517 /* Overflow must be added to zone counters */
518 z = n + os;
519 n = -os;
520 }
521 } while (this_cpu_cmpxchg(*p, o, n) != o);
522
523 if (z)
524 zone_page_state_add(z, zone, item);
525 }
526
527 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
528 long delta)
529 {
530 mod_zone_state(zone, item, delta, 0);
531 }
532 EXPORT_SYMBOL(mod_zone_page_state);
533
534 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
535 {
536 mod_zone_state(page_zone(page), item, 1, 1);
537 }
538 EXPORT_SYMBOL(inc_zone_page_state);
539
540 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
541 {
542 mod_zone_state(page_zone(page), item, -1, -1);
543 }
544 EXPORT_SYMBOL(dec_zone_page_state);
545
546 static inline void mod_node_state(struct pglist_data *pgdat,
547 enum node_stat_item item, int delta, int overstep_mode)
548 {
549 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
550 s8 __percpu *p = pcp->vm_node_stat_diff + item;
551 long o, n, t, z;
552
553 if (vmstat_item_in_bytes(item)) {
554 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
555 delta >>= PAGE_SHIFT;
556 }
557
558 do {
559 z = 0; /* overflow to node counters */
560
561 /*
562 * The fetching of the stat_threshold is racy. We may apply
563 * a counter threshold to the wrong the cpu if we get
564 * rescheduled while executing here. However, the next
565 * counter update will apply the threshold again and
566 * therefore bring the counter under the threshold again.
567 *
568 * Most of the time the thresholds are the same anyways
569 * for all cpus in a node.
570 */
571 t = this_cpu_read(pcp->stat_threshold);
572
573 o = this_cpu_read(*p);
574 n = delta + o;
575
576 if (n > t || n < -t) {
577 int os = overstep_mode * (t >> 1) ;
578
579 /* Overflow must be added to node counters */
580 z = n + os;
581 n = -os;
582 }
583 } while (this_cpu_cmpxchg(*p, o, n) != o);
584
585 if (z)
586 node_page_state_add(z, pgdat, item);
587 }
588
589 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
590 long delta)
591 {
592 mod_node_state(pgdat, item, delta, 0);
593 }
594 EXPORT_SYMBOL(mod_node_page_state);
595
596 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
597 {
598 mod_node_state(pgdat, item, 1, 1);
599 }
600
601 void inc_node_page_state(struct page *page, enum node_stat_item item)
602 {
603 mod_node_state(page_pgdat(page), item, 1, 1);
604 }
605 EXPORT_SYMBOL(inc_node_page_state);
606
607 void dec_node_page_state(struct page *page, enum node_stat_item item)
608 {
609 mod_node_state(page_pgdat(page), item, -1, -1);
610 }
611 EXPORT_SYMBOL(dec_node_page_state);
612 #else
613 /*
614 * Use interrupt disable to serialize counter updates
615 */
616 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
617 long delta)
618 {
619 unsigned long flags;
620
621 local_irq_save(flags);
622 __mod_zone_page_state(zone, item, delta);
623 local_irq_restore(flags);
624 }
625 EXPORT_SYMBOL(mod_zone_page_state);
626
627 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
628 {
629 unsigned long flags;
630 struct zone *zone;
631
632 zone = page_zone(page);
633 local_irq_save(flags);
634 __inc_zone_state(zone, item);
635 local_irq_restore(flags);
636 }
637 EXPORT_SYMBOL(inc_zone_page_state);
638
639 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
640 {
641 unsigned long flags;
642
643 local_irq_save(flags);
644 __dec_zone_page_state(page, item);
645 local_irq_restore(flags);
646 }
647 EXPORT_SYMBOL(dec_zone_page_state);
648
649 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
650 {
651 unsigned long flags;
652
653 local_irq_save(flags);
654 __inc_node_state(pgdat, item);
655 local_irq_restore(flags);
656 }
657 EXPORT_SYMBOL(inc_node_state);
658
659 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
660 long delta)
661 {
662 unsigned long flags;
663
664 local_irq_save(flags);
665 __mod_node_page_state(pgdat, item, delta);
666 local_irq_restore(flags);
667 }
668 EXPORT_SYMBOL(mod_node_page_state);
669
670 void inc_node_page_state(struct page *page, enum node_stat_item item)
671 {
672 unsigned long flags;
673 struct pglist_data *pgdat;
674
675 pgdat = page_pgdat(page);
676 local_irq_save(flags);
677 __inc_node_state(pgdat, item);
678 local_irq_restore(flags);
679 }
680 EXPORT_SYMBOL(inc_node_page_state);
681
682 void dec_node_page_state(struct page *page, enum node_stat_item item)
683 {
684 unsigned long flags;
685
686 local_irq_save(flags);
687 __dec_node_page_state(page, item);
688 local_irq_restore(flags);
689 }
690 EXPORT_SYMBOL(dec_node_page_state);
691 #endif
692
693 /*
694 * Fold a differential into the global counters.
695 * Returns the number of counters updated.
696 */
697 #ifdef CONFIG_NUMA
698 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
699 {
700 int i;
701 int changes = 0;
702
703 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
704 if (zone_diff[i]) {
705 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
706 changes++;
707 }
708
709 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
710 if (numa_diff[i]) {
711 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
712 changes++;
713 }
714
715 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
716 if (node_diff[i]) {
717 atomic_long_add(node_diff[i], &vm_node_stat[i]);
718 changes++;
719 }
720 return changes;
721 }
722 #else
723 static int fold_diff(int *zone_diff, int *node_diff)
724 {
725 int i;
726 int changes = 0;
727
728 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
729 if (zone_diff[i]) {
730 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
731 changes++;
732 }
733
734 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
735 if (node_diff[i]) {
736 atomic_long_add(node_diff[i], &vm_node_stat[i]);
737 changes++;
738 }
739 return changes;
740 }
741 #endif /* CONFIG_NUMA */
742
743 /*
744 * Update the zone counters for the current cpu.
745 *
746 * Note that refresh_cpu_vm_stats strives to only access
747 * node local memory. The per cpu pagesets on remote zones are placed
748 * in the memory local to the processor using that pageset. So the
749 * loop over all zones will access a series of cachelines local to
750 * the processor.
751 *
752 * The call to zone_page_state_add updates the cachelines with the
753 * statistics in the remote zone struct as well as the global cachelines
754 * with the global counters. These could cause remote node cache line
755 * bouncing and will have to be only done when necessary.
756 *
757 * The function returns the number of global counters updated.
758 */
759 static int refresh_cpu_vm_stats(bool do_pagesets)
760 {
761 struct pglist_data *pgdat;
762 struct zone *zone;
763 int i;
764 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
765 #ifdef CONFIG_NUMA
766 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
767 #endif
768 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
769 int changes = 0;
770
771 for_each_populated_zone(zone) {
772 struct per_cpu_pageset __percpu *p = zone->pageset;
773
774 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
775 int v;
776
777 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
778 if (v) {
779
780 atomic_long_add(v, &zone->vm_stat[i]);
781 global_zone_diff[i] += v;
782 #ifdef CONFIG_NUMA
783 /* 3 seconds idle till flush */
784 __this_cpu_write(p->expire, 3);
785 #endif
786 }
787 }
788 #ifdef CONFIG_NUMA
789 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
790 int v;
791
792 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
793 if (v) {
794
795 atomic_long_add(v, &zone->vm_numa_stat[i]);
796 global_numa_diff[i] += v;
797 __this_cpu_write(p->expire, 3);
798 }
799 }
800
801 if (do_pagesets) {
802 cond_resched();
803 /*
804 * Deal with draining the remote pageset of this
805 * processor
806 *
807 * Check if there are pages remaining in this pageset
808 * if not then there is nothing to expire.
809 */
810 if (!__this_cpu_read(p->expire) ||
811 !__this_cpu_read(p->pcp.count))
812 continue;
813
814 /*
815 * We never drain zones local to this processor.
816 */
817 if (zone_to_nid(zone) == numa_node_id()) {
818 __this_cpu_write(p->expire, 0);
819 continue;
820 }
821
822 if (__this_cpu_dec_return(p->expire))
823 continue;
824
825 if (__this_cpu_read(p->pcp.count)) {
826 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
827 changes++;
828 }
829 }
830 #endif
831 }
832
833 for_each_online_pgdat(pgdat) {
834 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
835
836 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
837 int v;
838
839 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
840 if (v) {
841 atomic_long_add(v, &pgdat->vm_stat[i]);
842 global_node_diff[i] += v;
843 }
844 }
845 }
846
847 #ifdef CONFIG_NUMA
848 changes += fold_diff(global_zone_diff, global_numa_diff,
849 global_node_diff);
850 #else
851 changes += fold_diff(global_zone_diff, global_node_diff);
852 #endif
853 return changes;
854 }
855
856 /*
857 * Fold the data for an offline cpu into the global array.
858 * There cannot be any access by the offline cpu and therefore
859 * synchronization is simplified.
860 */
861 void cpu_vm_stats_fold(int cpu)
862 {
863 struct pglist_data *pgdat;
864 struct zone *zone;
865 int i;
866 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
867 #ifdef CONFIG_NUMA
868 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
869 #endif
870 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
871
872 for_each_populated_zone(zone) {
873 struct per_cpu_pageset *p;
874
875 p = per_cpu_ptr(zone->pageset, cpu);
876
877 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
878 if (p->vm_stat_diff[i]) {
879 int v;
880
881 v = p->vm_stat_diff[i];
882 p->vm_stat_diff[i] = 0;
883 atomic_long_add(v, &zone->vm_stat[i]);
884 global_zone_diff[i] += v;
885 }
886
887 #ifdef CONFIG_NUMA
888 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
889 if (p->vm_numa_stat_diff[i]) {
890 int v;
891
892 v = p->vm_numa_stat_diff[i];
893 p->vm_numa_stat_diff[i] = 0;
894 atomic_long_add(v, &zone->vm_numa_stat[i]);
895 global_numa_diff[i] += v;
896 }
897 #endif
898 }
899
900 for_each_online_pgdat(pgdat) {
901 struct per_cpu_nodestat *p;
902
903 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
904
905 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
906 if (p->vm_node_stat_diff[i]) {
907 int v;
908
909 v = p->vm_node_stat_diff[i];
910 p->vm_node_stat_diff[i] = 0;
911 atomic_long_add(v, &pgdat->vm_stat[i]);
912 global_node_diff[i] += v;
913 }
914 }
915
916 #ifdef CONFIG_NUMA
917 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
918 #else
919 fold_diff(global_zone_diff, global_node_diff);
920 #endif
921 }
922
923 /*
924 * this is only called if !populated_zone(zone), which implies no other users of
925 * pset->vm_stat_diff[] exsist.
926 */
927 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
928 {
929 int i;
930
931 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
932 if (pset->vm_stat_diff[i]) {
933 int v = pset->vm_stat_diff[i];
934 pset->vm_stat_diff[i] = 0;
935 atomic_long_add(v, &zone->vm_stat[i]);
936 atomic_long_add(v, &vm_zone_stat[i]);
937 }
938
939 #ifdef CONFIG_NUMA
940 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
941 if (pset->vm_numa_stat_diff[i]) {
942 int v = pset->vm_numa_stat_diff[i];
943
944 pset->vm_numa_stat_diff[i] = 0;
945 atomic_long_add(v, &zone->vm_numa_stat[i]);
946 atomic_long_add(v, &vm_numa_stat[i]);
947 }
948 #endif
949 }
950 #endif
951
952 #ifdef CONFIG_NUMA
953 void __inc_numa_state(struct zone *zone,
954 enum numa_stat_item item)
955 {
956 struct per_cpu_pageset __percpu *pcp = zone->pageset;
957 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
958 u16 v;
959
960 v = __this_cpu_inc_return(*p);
961
962 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
963 zone_numa_state_add(v, zone, item);
964 __this_cpu_write(*p, 0);
965 }
966 }
967
968 /*
969 * Determine the per node value of a stat item. This function
970 * is called frequently in a NUMA machine, so try to be as
971 * frugal as possible.
972 */
973 unsigned long sum_zone_node_page_state(int node,
974 enum zone_stat_item item)
975 {
976 struct zone *zones = NODE_DATA(node)->node_zones;
977 int i;
978 unsigned long count = 0;
979
980 for (i = 0; i < MAX_NR_ZONES; i++)
981 count += zone_page_state(zones + i, item);
982
983 return count;
984 }
985
986 /*
987 * Determine the per node value of a numa stat item. To avoid deviation,
988 * the per cpu stat number in vm_numa_stat_diff[] is also included.
989 */
990 unsigned long sum_zone_numa_state(int node,
991 enum numa_stat_item item)
992 {
993 struct zone *zones = NODE_DATA(node)->node_zones;
994 int i;
995 unsigned long count = 0;
996
997 for (i = 0; i < MAX_NR_ZONES; i++)
998 count += zone_numa_state_snapshot(zones + i, item);
999
1000 return count;
1001 }
1002
1003 /*
1004 * Determine the per node value of a stat item.
1005 */
1006 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1007 enum node_stat_item item)
1008 {
1009 long x = atomic_long_read(&pgdat->vm_stat[item]);
1010 #ifdef CONFIG_SMP
1011 if (x < 0)
1012 x = 0;
1013 #endif
1014 return x;
1015 }
1016
1017 unsigned long node_page_state(struct pglist_data *pgdat,
1018 enum node_stat_item item)
1019 {
1020 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1021
1022 return node_page_state_pages(pgdat, item);
1023 }
1024 #endif
1025
1026 #ifdef CONFIG_COMPACTION
1027
1028 struct contig_page_info {
1029 unsigned long free_pages;
1030 unsigned long free_blocks_total;
1031 unsigned long free_blocks_suitable;
1032 };
1033
1034 /*
1035 * Calculate the number of free pages in a zone, how many contiguous
1036 * pages are free and how many are large enough to satisfy an allocation of
1037 * the target size. Note that this function makes no attempt to estimate
1038 * how many suitable free blocks there *might* be if MOVABLE pages were
1039 * migrated. Calculating that is possible, but expensive and can be
1040 * figured out from userspace
1041 */
1042 static void fill_contig_page_info(struct zone *zone,
1043 unsigned int suitable_order,
1044 struct contig_page_info *info)
1045 {
1046 unsigned int order;
1047
1048 info->free_pages = 0;
1049 info->free_blocks_total = 0;
1050 info->free_blocks_suitable = 0;
1051
1052 for (order = 0; order < MAX_ORDER; order++) {
1053 unsigned long blocks;
1054
1055 /* Count number of free blocks */
1056 blocks = zone->free_area[order].nr_free;
1057 info->free_blocks_total += blocks;
1058
1059 /* Count free base pages */
1060 info->free_pages += blocks << order;
1061
1062 /* Count the suitable free blocks */
1063 if (order >= suitable_order)
1064 info->free_blocks_suitable += blocks <<
1065 (order - suitable_order);
1066 }
1067 }
1068
1069 /*
1070 * A fragmentation index only makes sense if an allocation of a requested
1071 * size would fail. If that is true, the fragmentation index indicates
1072 * whether external fragmentation or a lack of memory was the problem.
1073 * The value can be used to determine if page reclaim or compaction
1074 * should be used
1075 */
1076 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1077 {
1078 unsigned long requested = 1UL << order;
1079
1080 if (WARN_ON_ONCE(order >= MAX_ORDER))
1081 return 0;
1082
1083 if (!info->free_blocks_total)
1084 return 0;
1085
1086 /* Fragmentation index only makes sense when a request would fail */
1087 if (info->free_blocks_suitable)
1088 return -1000;
1089
1090 /*
1091 * Index is between 0 and 1 so return within 3 decimal places
1092 *
1093 * 0 => allocation would fail due to lack of memory
1094 * 1 => allocation would fail due to fragmentation
1095 */
1096 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1097 }
1098
1099 /* Same as __fragmentation index but allocs contig_page_info on stack */
1100 int fragmentation_index(struct zone *zone, unsigned int order)
1101 {
1102 struct contig_page_info info;
1103
1104 fill_contig_page_info(zone, order, &info);
1105 return __fragmentation_index(order, &info);
1106 }
1107 #endif
1108
1109 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1110 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1111 #ifdef CONFIG_ZONE_DMA
1112 #define TEXT_FOR_DMA(xx) xx "_dma",
1113 #else
1114 #define TEXT_FOR_DMA(xx)
1115 #endif
1116
1117 #ifdef CONFIG_ZONE_DMA32
1118 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1119 #else
1120 #define TEXT_FOR_DMA32(xx)
1121 #endif
1122
1123 #ifdef CONFIG_HIGHMEM
1124 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1125 #else
1126 #define TEXT_FOR_HIGHMEM(xx)
1127 #endif
1128
1129 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1130 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1131
1132 const char * const vmstat_text[] = {
1133 /* enum zone_stat_item counters */
1134 "nr_free_pages",
1135 "nr_zone_inactive_anon",
1136 "nr_zone_active_anon",
1137 "nr_zone_inactive_file",
1138 "nr_zone_active_file",
1139 "nr_zone_unevictable",
1140 "nr_zone_write_pending",
1141 "nr_mlock",
1142 "nr_page_table_pages",
1143 "nr_kernel_stack",
1144 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1145 "nr_shadow_call_stack",
1146 #endif
1147 "nr_bounce",
1148 #if IS_ENABLED(CONFIG_ZSMALLOC)
1149 "nr_zspages",
1150 #endif
1151 "nr_free_cma",
1152
1153 /* enum numa_stat_item counters */
1154 #ifdef CONFIG_NUMA
1155 "numa_hit",
1156 "numa_miss",
1157 "numa_foreign",
1158 "numa_interleave",
1159 "numa_local",
1160 "numa_other",
1161 #endif
1162
1163 /* enum node_stat_item counters */
1164 "nr_inactive_anon",
1165 "nr_active_anon",
1166 "nr_inactive_file",
1167 "nr_active_file",
1168 "nr_unevictable",
1169 "nr_slab_reclaimable",
1170 "nr_slab_unreclaimable",
1171 "nr_isolated_anon",
1172 "nr_isolated_file",
1173 "workingset_nodes",
1174 "workingset_refault",
1175 "workingset_activate",
1176 "workingset_restore",
1177 "workingset_nodereclaim",
1178 "nr_anon_pages",
1179 "nr_mapped",
1180 "nr_file_pages",
1181 "nr_dirty",
1182 "nr_writeback",
1183 "nr_writeback_temp",
1184 "nr_shmem",
1185 "nr_shmem_hugepages",
1186 "nr_shmem_pmdmapped",
1187 "nr_file_hugepages",
1188 "nr_file_pmdmapped",
1189 "nr_anon_transparent_hugepages",
1190 "nr_vmscan_write",
1191 "nr_vmscan_immediate_reclaim",
1192 "nr_dirtied",
1193 "nr_written",
1194 "nr_kernel_misc_reclaimable",
1195 "nr_foll_pin_acquired",
1196 "nr_foll_pin_released",
1197
1198 /* enum writeback_stat_item counters */
1199 "nr_dirty_threshold",
1200 "nr_dirty_background_threshold",
1201
1202 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1203 /* enum vm_event_item counters */
1204 "pgpgin",
1205 "pgpgout",
1206 "pswpin",
1207 "pswpout",
1208
1209 TEXTS_FOR_ZONES("pgalloc")
1210 TEXTS_FOR_ZONES("allocstall")
1211 TEXTS_FOR_ZONES("pgskip")
1212
1213 "pgfree",
1214 "pgactivate",
1215 "pgdeactivate",
1216 "pglazyfree",
1217
1218 "pgfault",
1219 "pgmajfault",
1220 "pglazyfreed",
1221
1222 "pgrefill",
1223 "pgsteal_kswapd",
1224 "pgsteal_direct",
1225 "pgscan_kswapd",
1226 "pgscan_direct",
1227 "pgscan_direct_throttle",
1228 "pgscan_anon",
1229 "pgscan_file",
1230 "pgsteal_anon",
1231 "pgsteal_file",
1232
1233 #ifdef CONFIG_NUMA
1234 "zone_reclaim_failed",
1235 #endif
1236 "pginodesteal",
1237 "slabs_scanned",
1238 "kswapd_inodesteal",
1239 "kswapd_low_wmark_hit_quickly",
1240 "kswapd_high_wmark_hit_quickly",
1241 "pageoutrun",
1242
1243 "pgrotated",
1244
1245 "drop_pagecache",
1246 "drop_slab",
1247 "oom_kill",
1248
1249 #ifdef CONFIG_NUMA_BALANCING
1250 "numa_pte_updates",
1251 "numa_huge_pte_updates",
1252 "numa_hint_faults",
1253 "numa_hint_faults_local",
1254 "numa_pages_migrated",
1255 #endif
1256 #ifdef CONFIG_MIGRATION
1257 "pgmigrate_success",
1258 "pgmigrate_fail",
1259 #endif
1260 #ifdef CONFIG_COMPACTION
1261 "compact_migrate_scanned",
1262 "compact_free_scanned",
1263 "compact_isolated",
1264 "compact_stall",
1265 "compact_fail",
1266 "compact_success",
1267 "compact_daemon_wake",
1268 "compact_daemon_migrate_scanned",
1269 "compact_daemon_free_scanned",
1270 #endif
1271
1272 #ifdef CONFIG_HUGETLB_PAGE
1273 "htlb_buddy_alloc_success",
1274 "htlb_buddy_alloc_fail",
1275 #endif
1276 "unevictable_pgs_culled",
1277 "unevictable_pgs_scanned",
1278 "unevictable_pgs_rescued",
1279 "unevictable_pgs_mlocked",
1280 "unevictable_pgs_munlocked",
1281 "unevictable_pgs_cleared",
1282 "unevictable_pgs_stranded",
1283
1284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1285 "thp_fault_alloc",
1286 "thp_fault_fallback",
1287 "thp_fault_fallback_charge",
1288 "thp_collapse_alloc",
1289 "thp_collapse_alloc_failed",
1290 "thp_file_alloc",
1291 "thp_file_fallback",
1292 "thp_file_fallback_charge",
1293 "thp_file_mapped",
1294 "thp_split_page",
1295 "thp_split_page_failed",
1296 "thp_deferred_split_page",
1297 "thp_split_pmd",
1298 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1299 "thp_split_pud",
1300 #endif
1301 "thp_zero_page_alloc",
1302 "thp_zero_page_alloc_failed",
1303 "thp_swpout",
1304 "thp_swpout_fallback",
1305 #endif
1306 #ifdef CONFIG_MEMORY_BALLOON
1307 "balloon_inflate",
1308 "balloon_deflate",
1309 #ifdef CONFIG_BALLOON_COMPACTION
1310 "balloon_migrate",
1311 #endif
1312 #endif /* CONFIG_MEMORY_BALLOON */
1313 #ifdef CONFIG_DEBUG_TLBFLUSH
1314 "nr_tlb_remote_flush",
1315 "nr_tlb_remote_flush_received",
1316 "nr_tlb_local_flush_all",
1317 "nr_tlb_local_flush_one",
1318 #endif /* CONFIG_DEBUG_TLBFLUSH */
1319
1320 #ifdef CONFIG_DEBUG_VM_VMACACHE
1321 "vmacache_find_calls",
1322 "vmacache_find_hits",
1323 #endif
1324 #ifdef CONFIG_SWAP
1325 "swap_ra",
1326 "swap_ra_hit",
1327 #endif
1328 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1329 };
1330 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1331
1332 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1333 defined(CONFIG_PROC_FS)
1334 static void *frag_start(struct seq_file *m, loff_t *pos)
1335 {
1336 pg_data_t *pgdat;
1337 loff_t node = *pos;
1338
1339 for (pgdat = first_online_pgdat();
1340 pgdat && node;
1341 pgdat = next_online_pgdat(pgdat))
1342 --node;
1343
1344 return pgdat;
1345 }
1346
1347 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1348 {
1349 pg_data_t *pgdat = (pg_data_t *)arg;
1350
1351 (*pos)++;
1352 return next_online_pgdat(pgdat);
1353 }
1354
1355 static void frag_stop(struct seq_file *m, void *arg)
1356 {
1357 }
1358
1359 /*
1360 * Walk zones in a node and print using a callback.
1361 * If @assert_populated is true, only use callback for zones that are populated.
1362 */
1363 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1364 bool assert_populated, bool nolock,
1365 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1366 {
1367 struct zone *zone;
1368 struct zone *node_zones = pgdat->node_zones;
1369 unsigned long flags;
1370
1371 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1372 if (assert_populated && !populated_zone(zone))
1373 continue;
1374
1375 if (!nolock)
1376 spin_lock_irqsave(&zone->lock, flags);
1377 print(m, pgdat, zone);
1378 if (!nolock)
1379 spin_unlock_irqrestore(&zone->lock, flags);
1380 }
1381 }
1382 #endif
1383
1384 #ifdef CONFIG_PROC_FS
1385 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1386 struct zone *zone)
1387 {
1388 int order;
1389
1390 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1391 for (order = 0; order < MAX_ORDER; ++order)
1392 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1393 seq_putc(m, '\n');
1394 }
1395
1396 /*
1397 * This walks the free areas for each zone.
1398 */
1399 static int frag_show(struct seq_file *m, void *arg)
1400 {
1401 pg_data_t *pgdat = (pg_data_t *)arg;
1402 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1403 return 0;
1404 }
1405
1406 static void pagetypeinfo_showfree_print(struct seq_file *m,
1407 pg_data_t *pgdat, struct zone *zone)
1408 {
1409 int order, mtype;
1410
1411 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1412 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1413 pgdat->node_id,
1414 zone->name,
1415 migratetype_names[mtype]);
1416 for (order = 0; order < MAX_ORDER; ++order) {
1417 unsigned long freecount = 0;
1418 struct free_area *area;
1419 struct list_head *curr;
1420 bool overflow = false;
1421
1422 area = &(zone->free_area[order]);
1423
1424 list_for_each(curr, &area->free_list[mtype]) {
1425 /*
1426 * Cap the free_list iteration because it might
1427 * be really large and we are under a spinlock
1428 * so a long time spent here could trigger a
1429 * hard lockup detector. Anyway this is a
1430 * debugging tool so knowing there is a handful
1431 * of pages of this order should be more than
1432 * sufficient.
1433 */
1434 if (++freecount >= 100000) {
1435 overflow = true;
1436 break;
1437 }
1438 }
1439 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1440 spin_unlock_irq(&zone->lock);
1441 cond_resched();
1442 spin_lock_irq(&zone->lock);
1443 }
1444 seq_putc(m, '\n');
1445 }
1446 }
1447
1448 /* Print out the free pages at each order for each migatetype */
1449 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1450 {
1451 int order;
1452 pg_data_t *pgdat = (pg_data_t *)arg;
1453
1454 /* Print header */
1455 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1456 for (order = 0; order < MAX_ORDER; ++order)
1457 seq_printf(m, "%6d ", order);
1458 seq_putc(m, '\n');
1459
1460 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1461
1462 return 0;
1463 }
1464
1465 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1466 pg_data_t *pgdat, struct zone *zone)
1467 {
1468 int mtype;
1469 unsigned long pfn;
1470 unsigned long start_pfn = zone->zone_start_pfn;
1471 unsigned long end_pfn = zone_end_pfn(zone);
1472 unsigned long count[MIGRATE_TYPES] = { 0, };
1473
1474 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1475 struct page *page;
1476
1477 page = pfn_to_online_page(pfn);
1478 if (!page)
1479 continue;
1480
1481 /* Watch for unexpected holes punched in the memmap */
1482 if (!memmap_valid_within(pfn, page, zone))
1483 continue;
1484
1485 if (page_zone(page) != zone)
1486 continue;
1487
1488 mtype = get_pageblock_migratetype(page);
1489
1490 if (mtype < MIGRATE_TYPES)
1491 count[mtype]++;
1492 }
1493
1494 /* Print counts */
1495 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1496 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1497 seq_printf(m, "%12lu ", count[mtype]);
1498 seq_putc(m, '\n');
1499 }
1500
1501 /* Print out the number of pageblocks for each migratetype */
1502 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1503 {
1504 int mtype;
1505 pg_data_t *pgdat = (pg_data_t *)arg;
1506
1507 seq_printf(m, "\n%-23s", "Number of blocks type ");
1508 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1509 seq_printf(m, "%12s ", migratetype_names[mtype]);
1510 seq_putc(m, '\n');
1511 walk_zones_in_node(m, pgdat, true, false,
1512 pagetypeinfo_showblockcount_print);
1513
1514 return 0;
1515 }
1516
1517 /*
1518 * Print out the number of pageblocks for each migratetype that contain pages
1519 * of other types. This gives an indication of how well fallbacks are being
1520 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1521 * to determine what is going on
1522 */
1523 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1524 {
1525 #ifdef CONFIG_PAGE_OWNER
1526 int mtype;
1527
1528 if (!static_branch_unlikely(&page_owner_inited))
1529 return;
1530
1531 drain_all_pages(NULL);
1532
1533 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1534 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1535 seq_printf(m, "%12s ", migratetype_names[mtype]);
1536 seq_putc(m, '\n');
1537
1538 walk_zones_in_node(m, pgdat, true, true,
1539 pagetypeinfo_showmixedcount_print);
1540 #endif /* CONFIG_PAGE_OWNER */
1541 }
1542
1543 /*
1544 * This prints out statistics in relation to grouping pages by mobility.
1545 * It is expensive to collect so do not constantly read the file.
1546 */
1547 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1548 {
1549 pg_data_t *pgdat = (pg_data_t *)arg;
1550
1551 /* check memoryless node */
1552 if (!node_state(pgdat->node_id, N_MEMORY))
1553 return 0;
1554
1555 seq_printf(m, "Page block order: %d\n", pageblock_order);
1556 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1557 seq_putc(m, '\n');
1558 pagetypeinfo_showfree(m, pgdat);
1559 pagetypeinfo_showblockcount(m, pgdat);
1560 pagetypeinfo_showmixedcount(m, pgdat);
1561
1562 return 0;
1563 }
1564
1565 static const struct seq_operations fragmentation_op = {
1566 .start = frag_start,
1567 .next = frag_next,
1568 .stop = frag_stop,
1569 .show = frag_show,
1570 };
1571
1572 static const struct seq_operations pagetypeinfo_op = {
1573 .start = frag_start,
1574 .next = frag_next,
1575 .stop = frag_stop,
1576 .show = pagetypeinfo_show,
1577 };
1578
1579 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1580 {
1581 int zid;
1582
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 struct zone *compare = &pgdat->node_zones[zid];
1585
1586 if (populated_zone(compare))
1587 return zone == compare;
1588 }
1589
1590 return false;
1591 }
1592
1593 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1594 struct zone *zone)
1595 {
1596 int i;
1597 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1598 if (is_zone_first_populated(pgdat, zone)) {
1599 seq_printf(m, "\n per-node stats");
1600 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1601 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1602 node_page_state_pages(pgdat, i));
1603 }
1604 }
1605 seq_printf(m,
1606 "\n pages free %lu"
1607 "\n min %lu"
1608 "\n low %lu"
1609 "\n high %lu"
1610 "\n spanned %lu"
1611 "\n present %lu"
1612 "\n managed %lu",
1613 zone_page_state(zone, NR_FREE_PAGES),
1614 min_wmark_pages(zone),
1615 low_wmark_pages(zone),
1616 high_wmark_pages(zone),
1617 zone->spanned_pages,
1618 zone->present_pages,
1619 zone_managed_pages(zone));
1620
1621 /* If unpopulated, no other information is useful */
1622 if (!populated_zone(zone)) {
1623 seq_putc(m, '\n');
1624 return;
1625 }
1626
1627 seq_printf(m,
1628 "\n protection: (%ld",
1629 zone->lowmem_reserve[0]);
1630 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1631 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1632 seq_putc(m, ')');
1633
1634 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1635 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1636 zone_page_state(zone, i));
1637
1638 #ifdef CONFIG_NUMA
1639 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1640 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1641 zone_numa_state_snapshot(zone, i));
1642 #endif
1643
1644 seq_printf(m, "\n pagesets");
1645 for_each_online_cpu(i) {
1646 struct per_cpu_pageset *pageset;
1647
1648 pageset = per_cpu_ptr(zone->pageset, i);
1649 seq_printf(m,
1650 "\n cpu: %i"
1651 "\n count: %i"
1652 "\n high: %i"
1653 "\n batch: %i",
1654 i,
1655 pageset->pcp.count,
1656 pageset->pcp.high,
1657 pageset->pcp.batch);
1658 #ifdef CONFIG_SMP
1659 seq_printf(m, "\n vm stats threshold: %d",
1660 pageset->stat_threshold);
1661 #endif
1662 }
1663 seq_printf(m,
1664 "\n node_unreclaimable: %u"
1665 "\n start_pfn: %lu",
1666 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1667 zone->zone_start_pfn);
1668 seq_putc(m, '\n');
1669 }
1670
1671 /*
1672 * Output information about zones in @pgdat. All zones are printed regardless
1673 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1674 * set of all zones and userspace would not be aware of such zones if they are
1675 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1676 */
1677 static int zoneinfo_show(struct seq_file *m, void *arg)
1678 {
1679 pg_data_t *pgdat = (pg_data_t *)arg;
1680 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1681 return 0;
1682 }
1683
1684 static const struct seq_operations zoneinfo_op = {
1685 .start = frag_start, /* iterate over all zones. The same as in
1686 * fragmentation. */
1687 .next = frag_next,
1688 .stop = frag_stop,
1689 .show = zoneinfo_show,
1690 };
1691
1692 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1693 NR_VM_NUMA_STAT_ITEMS + \
1694 NR_VM_NODE_STAT_ITEMS + \
1695 NR_VM_WRITEBACK_STAT_ITEMS + \
1696 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1697 NR_VM_EVENT_ITEMS : 0))
1698
1699 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1700 {
1701 unsigned long *v;
1702 int i;
1703
1704 if (*pos >= NR_VMSTAT_ITEMS)
1705 return NULL;
1706
1707 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1708 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1709 m->private = v;
1710 if (!v)
1711 return ERR_PTR(-ENOMEM);
1712 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1713 v[i] = global_zone_page_state(i);
1714 v += NR_VM_ZONE_STAT_ITEMS;
1715
1716 #ifdef CONFIG_NUMA
1717 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1718 v[i] = global_numa_state(i);
1719 v += NR_VM_NUMA_STAT_ITEMS;
1720 #endif
1721
1722 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1723 v[i] = global_node_page_state_pages(i);
1724 v += NR_VM_NODE_STAT_ITEMS;
1725
1726 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1727 v + NR_DIRTY_THRESHOLD);
1728 v += NR_VM_WRITEBACK_STAT_ITEMS;
1729
1730 #ifdef CONFIG_VM_EVENT_COUNTERS
1731 all_vm_events(v);
1732 v[PGPGIN] /= 2; /* sectors -> kbytes */
1733 v[PGPGOUT] /= 2;
1734 #endif
1735 return (unsigned long *)m->private + *pos;
1736 }
1737
1738 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1739 {
1740 (*pos)++;
1741 if (*pos >= NR_VMSTAT_ITEMS)
1742 return NULL;
1743 return (unsigned long *)m->private + *pos;
1744 }
1745
1746 static int vmstat_show(struct seq_file *m, void *arg)
1747 {
1748 unsigned long *l = arg;
1749 unsigned long off = l - (unsigned long *)m->private;
1750
1751 seq_puts(m, vmstat_text[off]);
1752 seq_put_decimal_ull(m, " ", *l);
1753 seq_putc(m, '\n');
1754
1755 if (off == NR_VMSTAT_ITEMS - 1) {
1756 /*
1757 * We've come to the end - add any deprecated counters to avoid
1758 * breaking userspace which might depend on them being present.
1759 */
1760 seq_puts(m, "nr_unstable 0\n");
1761 }
1762 return 0;
1763 }
1764
1765 static void vmstat_stop(struct seq_file *m, void *arg)
1766 {
1767 kfree(m->private);
1768 m->private = NULL;
1769 }
1770
1771 static const struct seq_operations vmstat_op = {
1772 .start = vmstat_start,
1773 .next = vmstat_next,
1774 .stop = vmstat_stop,
1775 .show = vmstat_show,
1776 };
1777 #endif /* CONFIG_PROC_FS */
1778
1779 #ifdef CONFIG_SMP
1780 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1781 int sysctl_stat_interval __read_mostly = HZ;
1782
1783 #ifdef CONFIG_PROC_FS
1784 static void refresh_vm_stats(struct work_struct *work)
1785 {
1786 refresh_cpu_vm_stats(true);
1787 }
1788
1789 int vmstat_refresh(struct ctl_table *table, int write,
1790 void *buffer, size_t *lenp, loff_t *ppos)
1791 {
1792 long val;
1793 int err;
1794 int i;
1795
1796 /*
1797 * The regular update, every sysctl_stat_interval, may come later
1798 * than expected: leaving a significant amount in per_cpu buckets.
1799 * This is particularly misleading when checking a quantity of HUGE
1800 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1801 * which can equally be echo'ed to or cat'ted from (by root),
1802 * can be used to update the stats just before reading them.
1803 *
1804 * Oh, and since global_zone_page_state() etc. are so careful to hide
1805 * transiently negative values, report an error here if any of
1806 * the stats is negative, so we know to go looking for imbalance.
1807 */
1808 err = schedule_on_each_cpu(refresh_vm_stats);
1809 if (err)
1810 return err;
1811 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1812 val = atomic_long_read(&vm_zone_stat[i]);
1813 if (val < 0) {
1814 pr_warn("%s: %s %ld\n",
1815 __func__, zone_stat_name(i), val);
1816 err = -EINVAL;
1817 }
1818 }
1819 #ifdef CONFIG_NUMA
1820 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1821 val = atomic_long_read(&vm_numa_stat[i]);
1822 if (val < 0) {
1823 pr_warn("%s: %s %ld\n",
1824 __func__, numa_stat_name(i), val);
1825 err = -EINVAL;
1826 }
1827 }
1828 #endif
1829 if (err)
1830 return err;
1831 if (write)
1832 *ppos += *lenp;
1833 else
1834 *lenp = 0;
1835 return 0;
1836 }
1837 #endif /* CONFIG_PROC_FS */
1838
1839 static void vmstat_update(struct work_struct *w)
1840 {
1841 if (refresh_cpu_vm_stats(true)) {
1842 /*
1843 * Counters were updated so we expect more updates
1844 * to occur in the future. Keep on running the
1845 * update worker thread.
1846 */
1847 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1848 this_cpu_ptr(&vmstat_work),
1849 round_jiffies_relative(sysctl_stat_interval));
1850 }
1851 }
1852
1853 /*
1854 * Switch off vmstat processing and then fold all the remaining differentials
1855 * until the diffs stay at zero. The function is used by NOHZ and can only be
1856 * invoked when tick processing is not active.
1857 */
1858 /*
1859 * Check if the diffs for a certain cpu indicate that
1860 * an update is needed.
1861 */
1862 static bool need_update(int cpu)
1863 {
1864 struct zone *zone;
1865
1866 for_each_populated_zone(zone) {
1867 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1868
1869 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1870 #ifdef CONFIG_NUMA
1871 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1872 #endif
1873
1874 /*
1875 * The fast way of checking if there are any vmstat diffs.
1876 */
1877 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1878 sizeof(p->vm_stat_diff[0])))
1879 return true;
1880 #ifdef CONFIG_NUMA
1881 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1882 sizeof(p->vm_numa_stat_diff[0])))
1883 return true;
1884 #endif
1885 }
1886 return false;
1887 }
1888
1889 /*
1890 * Switch off vmstat processing and then fold all the remaining differentials
1891 * until the diffs stay at zero. The function is used by NOHZ and can only be
1892 * invoked when tick processing is not active.
1893 */
1894 void quiet_vmstat(void)
1895 {
1896 if (system_state != SYSTEM_RUNNING)
1897 return;
1898
1899 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1900 return;
1901
1902 if (!need_update(smp_processor_id()))
1903 return;
1904
1905 /*
1906 * Just refresh counters and do not care about the pending delayed
1907 * vmstat_update. It doesn't fire that often to matter and canceling
1908 * it would be too expensive from this path.
1909 * vmstat_shepherd will take care about that for us.
1910 */
1911 refresh_cpu_vm_stats(false);
1912 }
1913
1914 /*
1915 * Shepherd worker thread that checks the
1916 * differentials of processors that have their worker
1917 * threads for vm statistics updates disabled because of
1918 * inactivity.
1919 */
1920 static void vmstat_shepherd(struct work_struct *w);
1921
1922 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1923
1924 static void vmstat_shepherd(struct work_struct *w)
1925 {
1926 int cpu;
1927
1928 get_online_cpus();
1929 /* Check processors whose vmstat worker threads have been disabled */
1930 for_each_online_cpu(cpu) {
1931 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1932
1933 if (!delayed_work_pending(dw) && need_update(cpu))
1934 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1935 }
1936 put_online_cpus();
1937
1938 schedule_delayed_work(&shepherd,
1939 round_jiffies_relative(sysctl_stat_interval));
1940 }
1941
1942 static void __init start_shepherd_timer(void)
1943 {
1944 int cpu;
1945
1946 for_each_possible_cpu(cpu)
1947 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1948 vmstat_update);
1949
1950 schedule_delayed_work(&shepherd,
1951 round_jiffies_relative(sysctl_stat_interval));
1952 }
1953
1954 static void __init init_cpu_node_state(void)
1955 {
1956 int node;
1957
1958 for_each_online_node(node) {
1959 if (cpumask_weight(cpumask_of_node(node)) > 0)
1960 node_set_state(node, N_CPU);
1961 }
1962 }
1963
1964 static int vmstat_cpu_online(unsigned int cpu)
1965 {
1966 refresh_zone_stat_thresholds();
1967 node_set_state(cpu_to_node(cpu), N_CPU);
1968 return 0;
1969 }
1970
1971 static int vmstat_cpu_down_prep(unsigned int cpu)
1972 {
1973 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1974 return 0;
1975 }
1976
1977 static int vmstat_cpu_dead(unsigned int cpu)
1978 {
1979 const struct cpumask *node_cpus;
1980 int node;
1981
1982 node = cpu_to_node(cpu);
1983
1984 refresh_zone_stat_thresholds();
1985 node_cpus = cpumask_of_node(node);
1986 if (cpumask_weight(node_cpus) > 0)
1987 return 0;
1988
1989 node_clear_state(node, N_CPU);
1990 return 0;
1991 }
1992
1993 #endif
1994
1995 struct workqueue_struct *mm_percpu_wq;
1996
1997 void __init init_mm_internals(void)
1998 {
1999 int ret __maybe_unused;
2000
2001 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2002
2003 #ifdef CONFIG_SMP
2004 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2005 NULL, vmstat_cpu_dead);
2006 if (ret < 0)
2007 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2008
2009 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2010 vmstat_cpu_online,
2011 vmstat_cpu_down_prep);
2012 if (ret < 0)
2013 pr_err("vmstat: failed to register 'online' hotplug state\n");
2014
2015 get_online_cpus();
2016 init_cpu_node_state();
2017 put_online_cpus();
2018
2019 start_shepherd_timer();
2020 #endif
2021 #ifdef CONFIG_PROC_FS
2022 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2023 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2024 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2025 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2026 #endif
2027 }
2028
2029 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2030
2031 /*
2032 * Return an index indicating how much of the available free memory is
2033 * unusable for an allocation of the requested size.
2034 */
2035 static int unusable_free_index(unsigned int order,
2036 struct contig_page_info *info)
2037 {
2038 /* No free memory is interpreted as all free memory is unusable */
2039 if (info->free_pages == 0)
2040 return 1000;
2041
2042 /*
2043 * Index should be a value between 0 and 1. Return a value to 3
2044 * decimal places.
2045 *
2046 * 0 => no fragmentation
2047 * 1 => high fragmentation
2048 */
2049 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2050
2051 }
2052
2053 static void unusable_show_print(struct seq_file *m,
2054 pg_data_t *pgdat, struct zone *zone)
2055 {
2056 unsigned int order;
2057 int index;
2058 struct contig_page_info info;
2059
2060 seq_printf(m, "Node %d, zone %8s ",
2061 pgdat->node_id,
2062 zone->name);
2063 for (order = 0; order < MAX_ORDER; ++order) {
2064 fill_contig_page_info(zone, order, &info);
2065 index = unusable_free_index(order, &info);
2066 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2067 }
2068
2069 seq_putc(m, '\n');
2070 }
2071
2072 /*
2073 * Display unusable free space index
2074 *
2075 * The unusable free space index measures how much of the available free
2076 * memory cannot be used to satisfy an allocation of a given size and is a
2077 * value between 0 and 1. The higher the value, the more of free memory is
2078 * unusable and by implication, the worse the external fragmentation is. This
2079 * can be expressed as a percentage by multiplying by 100.
2080 */
2081 static int unusable_show(struct seq_file *m, void *arg)
2082 {
2083 pg_data_t *pgdat = (pg_data_t *)arg;
2084
2085 /* check memoryless node */
2086 if (!node_state(pgdat->node_id, N_MEMORY))
2087 return 0;
2088
2089 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2090
2091 return 0;
2092 }
2093
2094 static const struct seq_operations unusable_sops = {
2095 .start = frag_start,
2096 .next = frag_next,
2097 .stop = frag_stop,
2098 .show = unusable_show,
2099 };
2100
2101 DEFINE_SEQ_ATTRIBUTE(unusable);
2102
2103 static void extfrag_show_print(struct seq_file *m,
2104 pg_data_t *pgdat, struct zone *zone)
2105 {
2106 unsigned int order;
2107 int index;
2108
2109 /* Alloc on stack as interrupts are disabled for zone walk */
2110 struct contig_page_info info;
2111
2112 seq_printf(m, "Node %d, zone %8s ",
2113 pgdat->node_id,
2114 zone->name);
2115 for (order = 0; order < MAX_ORDER; ++order) {
2116 fill_contig_page_info(zone, order, &info);
2117 index = __fragmentation_index(order, &info);
2118 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2119 }
2120
2121 seq_putc(m, '\n');
2122 }
2123
2124 /*
2125 * Display fragmentation index for orders that allocations would fail for
2126 */
2127 static int extfrag_show(struct seq_file *m, void *arg)
2128 {
2129 pg_data_t *pgdat = (pg_data_t *)arg;
2130
2131 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2132
2133 return 0;
2134 }
2135
2136 static const struct seq_operations extfrag_sops = {
2137 .start = frag_start,
2138 .next = frag_next,
2139 .stop = frag_stop,
2140 .show = extfrag_show,
2141 };
2142
2143 DEFINE_SEQ_ATTRIBUTE(extfrag);
2144
2145 static int __init extfrag_debug_init(void)
2146 {
2147 struct dentry *extfrag_debug_root;
2148
2149 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2150
2151 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2152 &unusable_fops);
2153
2154 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2155 &extfrag_fops);
2156
2157 return 0;
2158 }
2159
2160 module_init(extfrag_debug_init);
2161 #endif