]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/z3fold.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / z3fold.c
1 /*
2 * z3fold.c
3 *
4 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
5 * Copyright (C) 2016, Sony Mobile Communications Inc.
6 *
7 * This implementation is based on zbud written by Seth Jennings.
8 *
9 * z3fold is an special purpose allocator for storing compressed pages. It
10 * can store up to three compressed pages per page which improves the
11 * compression ratio of zbud while retaining its main concepts (e. g. always
12 * storing an integral number of objects per page) and simplicity.
13 * It still has simple and deterministic reclaim properties that make it
14 * preferable to a higher density approach (with no requirement on integral
15 * number of object per page) when reclaim is used.
16 *
17 * As in zbud, pages are divided into "chunks". The size of the chunks is
18 * fixed at compile time and is determined by NCHUNKS_ORDER below.
19 *
20 * z3fold doesn't export any API and is meant to be used via zpool API.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/atomic.h>
26 #include <linux/sched.h>
27 #include <linux/list.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/percpu.h>
31 #include <linux/preempt.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35 #include <linux/zpool.h>
36
37 /*****************
38 * Structures
39 *****************/
40 struct z3fold_pool;
41 struct z3fold_ops {
42 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
43 };
44
45 enum buddy {
46 HEADLESS = 0,
47 FIRST,
48 MIDDLE,
49 LAST,
50 BUDDIES_MAX
51 };
52
53 /*
54 * struct z3fold_header - z3fold page metadata occupying first chunks of each
55 * z3fold page, except for HEADLESS pages
56 * @buddy: links the z3fold page into the relevant list in the
57 * pool
58 * @page_lock: per-page lock
59 * @refcount: reference count for the z3fold page
60 * @work: work_struct for page layout optimization
61 * @pool: pointer to the pool which this page belongs to
62 * @cpu: CPU which this page "belongs" to
63 * @first_chunks: the size of the first buddy in chunks, 0 if free
64 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
65 * @last_chunks: the size of the last buddy in chunks, 0 if free
66 * @first_num: the starting number (for the first handle)
67 */
68 struct z3fold_header {
69 struct list_head buddy;
70 spinlock_t page_lock;
71 struct kref refcount;
72 struct work_struct work;
73 struct z3fold_pool *pool;
74 short cpu;
75 unsigned short first_chunks;
76 unsigned short middle_chunks;
77 unsigned short last_chunks;
78 unsigned short start_middle;
79 unsigned short first_num:2;
80 };
81
82 /*
83 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
84 * adjusting internal fragmentation. It also determines the number of
85 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
86 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
87 * in the beginning of an allocated page are occupied by z3fold header, so
88 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
89 * which shows the max number of free chunks in z3fold page, also there will
90 * be 63, or 62, respectively, freelists per pool.
91 */
92 #define NCHUNKS_ORDER 6
93
94 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
95 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
96 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
97 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
98 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
99 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
100
101 #define BUDDY_MASK (0x3)
102 #define BUDDY_SHIFT 2
103
104 /**
105 * struct z3fold_pool - stores metadata for each z3fold pool
106 * @name: pool name
107 * @lock: protects pool unbuddied/lru lists
108 * @stale_lock: protects pool stale page list
109 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
110 * buddies; the list each z3fold page is added to depends on
111 * the size of its free region.
112 * @lru: list tracking the z3fold pages in LRU order by most recently
113 * added buddy.
114 * @stale: list of pages marked for freeing
115 * @pages_nr: number of z3fold pages in the pool.
116 * @ops: pointer to a structure of user defined operations specified at
117 * pool creation time.
118 * @compact_wq: workqueue for page layout background optimization
119 * @release_wq: workqueue for safe page release
120 * @work: work_struct for safe page release
121 *
122 * This structure is allocated at pool creation time and maintains metadata
123 * pertaining to a particular z3fold pool.
124 */
125 struct z3fold_pool {
126 const char *name;
127 spinlock_t lock;
128 spinlock_t stale_lock;
129 struct list_head *unbuddied;
130 struct list_head lru;
131 struct list_head stale;
132 atomic64_t pages_nr;
133 const struct z3fold_ops *ops;
134 struct zpool *zpool;
135 const struct zpool_ops *zpool_ops;
136 struct workqueue_struct *compact_wq;
137 struct workqueue_struct *release_wq;
138 struct work_struct work;
139 };
140
141 /*
142 * Internal z3fold page flags
143 */
144 enum z3fold_page_flags {
145 PAGE_HEADLESS = 0,
146 MIDDLE_CHUNK_MAPPED,
147 NEEDS_COMPACTING,
148 PAGE_STALE,
149 PAGE_CLAIMED, /* by either reclaim or free */
150 };
151
152 /*****************
153 * Helpers
154 *****************/
155
156 /* Converts an allocation size in bytes to size in z3fold chunks */
157 static int size_to_chunks(size_t size)
158 {
159 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
160 }
161
162 #define for_each_unbuddied_list(_iter, _begin) \
163 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
164
165 static void compact_page_work(struct work_struct *w);
166
167 /* Initializes the z3fold header of a newly allocated z3fold page */
168 static struct z3fold_header *init_z3fold_page(struct page *page,
169 struct z3fold_pool *pool)
170 {
171 struct z3fold_header *zhdr = page_address(page);
172
173 INIT_LIST_HEAD(&page->lru);
174 clear_bit(PAGE_HEADLESS, &page->private);
175 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
176 clear_bit(NEEDS_COMPACTING, &page->private);
177 clear_bit(PAGE_STALE, &page->private);
178 clear_bit(PAGE_CLAIMED, &page->private);
179
180 spin_lock_init(&zhdr->page_lock);
181 kref_init(&zhdr->refcount);
182 zhdr->first_chunks = 0;
183 zhdr->middle_chunks = 0;
184 zhdr->last_chunks = 0;
185 zhdr->first_num = 0;
186 zhdr->start_middle = 0;
187 zhdr->cpu = -1;
188 zhdr->pool = pool;
189 INIT_LIST_HEAD(&zhdr->buddy);
190 INIT_WORK(&zhdr->work, compact_page_work);
191 return zhdr;
192 }
193
194 /* Resets the struct page fields and frees the page */
195 static void free_z3fold_page(struct page *page)
196 {
197 __free_page(page);
198 }
199
200 /* Lock a z3fold page */
201 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
202 {
203 spin_lock(&zhdr->page_lock);
204 }
205
206 /* Try to lock a z3fold page */
207 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
208 {
209 return spin_trylock(&zhdr->page_lock);
210 }
211
212 /* Unlock a z3fold page */
213 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
214 {
215 spin_unlock(&zhdr->page_lock);
216 }
217
218 /*
219 * Encodes the handle of a particular buddy within a z3fold page
220 * Pool lock should be held as this function accesses first_num
221 */
222 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
223 {
224 unsigned long handle;
225
226 handle = (unsigned long)zhdr;
227 if (bud != HEADLESS) {
228 handle |= (bud + zhdr->first_num) & BUDDY_MASK;
229 if (bud == LAST)
230 handle |= (zhdr->last_chunks << BUDDY_SHIFT);
231 }
232 return handle;
233 }
234
235 /* Returns the z3fold page where a given handle is stored */
236 static struct z3fold_header *handle_to_z3fold_header(unsigned long handle)
237 {
238 return (struct z3fold_header *)(handle & PAGE_MASK);
239 }
240
241 /* only for LAST bud, returns zero otherwise */
242 static unsigned short handle_to_chunks(unsigned long handle)
243 {
244 return (handle & ~PAGE_MASK) >> BUDDY_SHIFT;
245 }
246
247 /*
248 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
249 * but that doesn't matter. because the masking will result in the
250 * correct buddy number.
251 */
252 static enum buddy handle_to_buddy(unsigned long handle)
253 {
254 struct z3fold_header *zhdr = handle_to_z3fold_header(handle);
255 return (handle - zhdr->first_num) & BUDDY_MASK;
256 }
257
258 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
259 {
260 struct page *page = virt_to_page(zhdr);
261 struct z3fold_pool *pool = zhdr->pool;
262
263 WARN_ON(!list_empty(&zhdr->buddy));
264 set_bit(PAGE_STALE, &page->private);
265 clear_bit(NEEDS_COMPACTING, &page->private);
266 spin_lock(&pool->lock);
267 if (!list_empty(&page->lru))
268 list_del(&page->lru);
269 spin_unlock(&pool->lock);
270 if (locked)
271 z3fold_page_unlock(zhdr);
272 spin_lock(&pool->stale_lock);
273 list_add(&zhdr->buddy, &pool->stale);
274 queue_work(pool->release_wq, &pool->work);
275 spin_unlock(&pool->stale_lock);
276 }
277
278 static void __attribute__((__unused__))
279 release_z3fold_page(struct kref *ref)
280 {
281 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
282 refcount);
283 __release_z3fold_page(zhdr, false);
284 }
285
286 static void release_z3fold_page_locked(struct kref *ref)
287 {
288 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
289 refcount);
290 WARN_ON(z3fold_page_trylock(zhdr));
291 __release_z3fold_page(zhdr, true);
292 }
293
294 static void release_z3fold_page_locked_list(struct kref *ref)
295 {
296 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
297 refcount);
298 spin_lock(&zhdr->pool->lock);
299 list_del_init(&zhdr->buddy);
300 spin_unlock(&zhdr->pool->lock);
301
302 WARN_ON(z3fold_page_trylock(zhdr));
303 __release_z3fold_page(zhdr, true);
304 }
305
306 static void free_pages_work(struct work_struct *w)
307 {
308 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
309
310 spin_lock(&pool->stale_lock);
311 while (!list_empty(&pool->stale)) {
312 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
313 struct z3fold_header, buddy);
314 struct page *page = virt_to_page(zhdr);
315
316 list_del(&zhdr->buddy);
317 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
318 continue;
319 spin_unlock(&pool->stale_lock);
320 cancel_work_sync(&zhdr->work);
321 free_z3fold_page(page);
322 cond_resched();
323 spin_lock(&pool->stale_lock);
324 }
325 spin_unlock(&pool->stale_lock);
326 }
327
328 /*
329 * Returns the number of free chunks in a z3fold page.
330 * NB: can't be used with HEADLESS pages.
331 */
332 static int num_free_chunks(struct z3fold_header *zhdr)
333 {
334 int nfree;
335 /*
336 * If there is a middle object, pick up the bigger free space
337 * either before or after it. Otherwise just subtract the number
338 * of chunks occupied by the first and the last objects.
339 */
340 if (zhdr->middle_chunks != 0) {
341 int nfree_before = zhdr->first_chunks ?
342 0 : zhdr->start_middle - ZHDR_CHUNKS;
343 int nfree_after = zhdr->last_chunks ?
344 0 : TOTAL_CHUNKS -
345 (zhdr->start_middle + zhdr->middle_chunks);
346 nfree = max(nfree_before, nfree_after);
347 } else
348 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
349 return nfree;
350 }
351
352 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
353 unsigned short dst_chunk)
354 {
355 void *beg = zhdr;
356 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
357 beg + (zhdr->start_middle << CHUNK_SHIFT),
358 zhdr->middle_chunks << CHUNK_SHIFT);
359 }
360
361 #define BIG_CHUNK_GAP 3
362 /* Has to be called with lock held */
363 static int z3fold_compact_page(struct z3fold_header *zhdr)
364 {
365 struct page *page = virt_to_page(zhdr);
366
367 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
368 return 0; /* can't move middle chunk, it's used */
369
370 if (zhdr->middle_chunks == 0)
371 return 0; /* nothing to compact */
372
373 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
374 /* move to the beginning */
375 mchunk_memmove(zhdr, ZHDR_CHUNKS);
376 zhdr->first_chunks = zhdr->middle_chunks;
377 zhdr->middle_chunks = 0;
378 zhdr->start_middle = 0;
379 zhdr->first_num++;
380 return 1;
381 }
382
383 /*
384 * moving data is expensive, so let's only do that if
385 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
386 */
387 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
388 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
389 BIG_CHUNK_GAP) {
390 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
391 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
392 return 1;
393 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
394 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
395 + zhdr->middle_chunks) >=
396 BIG_CHUNK_GAP) {
397 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
398 zhdr->middle_chunks;
399 mchunk_memmove(zhdr, new_start);
400 zhdr->start_middle = new_start;
401 return 1;
402 }
403
404 return 0;
405 }
406
407 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
408 {
409 struct z3fold_pool *pool = zhdr->pool;
410 struct page *page;
411 struct list_head *unbuddied;
412 int fchunks;
413
414 page = virt_to_page(zhdr);
415 if (locked)
416 WARN_ON(z3fold_page_trylock(zhdr));
417 else
418 z3fold_page_lock(zhdr);
419 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
420 z3fold_page_unlock(zhdr);
421 return;
422 }
423 spin_lock(&pool->lock);
424 list_del_init(&zhdr->buddy);
425 spin_unlock(&pool->lock);
426
427 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
428 atomic64_dec(&pool->pages_nr);
429 return;
430 }
431
432 z3fold_compact_page(zhdr);
433 unbuddied = get_cpu_ptr(pool->unbuddied);
434 fchunks = num_free_chunks(zhdr);
435 if (fchunks < NCHUNKS &&
436 (!zhdr->first_chunks || !zhdr->middle_chunks ||
437 !zhdr->last_chunks)) {
438 /* the page's not completely free and it's unbuddied */
439 spin_lock(&pool->lock);
440 list_add(&zhdr->buddy, &unbuddied[fchunks]);
441 spin_unlock(&pool->lock);
442 zhdr->cpu = smp_processor_id();
443 }
444 put_cpu_ptr(pool->unbuddied);
445 z3fold_page_unlock(zhdr);
446 }
447
448 static void compact_page_work(struct work_struct *w)
449 {
450 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
451 work);
452
453 do_compact_page(zhdr, false);
454 }
455
456
457 /*
458 * API Functions
459 */
460
461 /**
462 * z3fold_create_pool() - create a new z3fold pool
463 * @name: pool name
464 * @gfp: gfp flags when allocating the z3fold pool structure
465 * @ops: user-defined operations for the z3fold pool
466 *
467 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
468 * failed.
469 */
470 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
471 const struct z3fold_ops *ops)
472 {
473 struct z3fold_pool *pool = NULL;
474 int i, cpu;
475
476 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
477 if (!pool)
478 goto out;
479 spin_lock_init(&pool->lock);
480 spin_lock_init(&pool->stale_lock);
481 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
482 if (!pool->unbuddied)
483 goto out_pool;
484 for_each_possible_cpu(cpu) {
485 struct list_head *unbuddied =
486 per_cpu_ptr(pool->unbuddied, cpu);
487 for_each_unbuddied_list(i, 0)
488 INIT_LIST_HEAD(&unbuddied[i]);
489 }
490 INIT_LIST_HEAD(&pool->lru);
491 INIT_LIST_HEAD(&pool->stale);
492 atomic64_set(&pool->pages_nr, 0);
493 pool->name = name;
494 pool->compact_wq = create_singlethread_workqueue(pool->name);
495 if (!pool->compact_wq)
496 goto out_unbuddied;
497 pool->release_wq = create_singlethread_workqueue(pool->name);
498 if (!pool->release_wq)
499 goto out_wq;
500 INIT_WORK(&pool->work, free_pages_work);
501 pool->ops = ops;
502 return pool;
503
504 out_wq:
505 destroy_workqueue(pool->compact_wq);
506 out_unbuddied:
507 free_percpu(pool->unbuddied);
508 out_pool:
509 kfree(pool);
510 out:
511 return NULL;
512 }
513
514 /**
515 * z3fold_destroy_pool() - destroys an existing z3fold pool
516 * @pool: the z3fold pool to be destroyed
517 *
518 * The pool should be emptied before this function is called.
519 */
520 static void z3fold_destroy_pool(struct z3fold_pool *pool)
521 {
522 destroy_workqueue(pool->release_wq);
523 destroy_workqueue(pool->compact_wq);
524 kfree(pool);
525 }
526
527 /**
528 * z3fold_alloc() - allocates a region of a given size
529 * @pool: z3fold pool from which to allocate
530 * @size: size in bytes of the desired allocation
531 * @gfp: gfp flags used if the pool needs to grow
532 * @handle: handle of the new allocation
533 *
534 * This function will attempt to find a free region in the pool large enough to
535 * satisfy the allocation request. A search of the unbuddied lists is
536 * performed first. If no suitable free region is found, then a new page is
537 * allocated and added to the pool to satisfy the request.
538 *
539 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
540 * as z3fold pool pages.
541 *
542 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
543 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
544 * a new page.
545 */
546 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
547 unsigned long *handle)
548 {
549 int chunks = 0, i, freechunks;
550 struct z3fold_header *zhdr = NULL;
551 struct page *page = NULL;
552 enum buddy bud;
553 bool can_sleep = (gfp & __GFP_RECLAIM) == __GFP_RECLAIM;
554
555 if (!size || (gfp & __GFP_HIGHMEM))
556 return -EINVAL;
557
558 if (size > PAGE_SIZE)
559 return -ENOSPC;
560
561 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
562 bud = HEADLESS;
563 else {
564 struct list_head *unbuddied;
565 chunks = size_to_chunks(size);
566
567 lookup:
568 /* First, try to find an unbuddied z3fold page. */
569 unbuddied = get_cpu_ptr(pool->unbuddied);
570 for_each_unbuddied_list(i, chunks) {
571 struct list_head *l = &unbuddied[i];
572
573 zhdr = list_first_entry_or_null(READ_ONCE(l),
574 struct z3fold_header, buddy);
575
576 if (!zhdr)
577 continue;
578
579 /* Re-check under lock. */
580 spin_lock(&pool->lock);
581 l = &unbuddied[i];
582 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
583 struct z3fold_header, buddy)) ||
584 !z3fold_page_trylock(zhdr)) {
585 spin_unlock(&pool->lock);
586 put_cpu_ptr(pool->unbuddied);
587 goto lookup;
588 }
589 list_del_init(&zhdr->buddy);
590 zhdr->cpu = -1;
591 spin_unlock(&pool->lock);
592
593 page = virt_to_page(zhdr);
594 if (test_bit(NEEDS_COMPACTING, &page->private)) {
595 z3fold_page_unlock(zhdr);
596 zhdr = NULL;
597 put_cpu_ptr(pool->unbuddied);
598 if (can_sleep)
599 cond_resched();
600 goto lookup;
601 }
602
603 /*
604 * this page could not be removed from its unbuddied
605 * list while pool lock was held, and then we've taken
606 * page lock so kref_put could not be called before
607 * we got here, so it's safe to just call kref_get()
608 */
609 kref_get(&zhdr->refcount);
610 break;
611 }
612 put_cpu_ptr(pool->unbuddied);
613
614 if (zhdr) {
615 if (zhdr->first_chunks == 0) {
616 if (zhdr->middle_chunks != 0 &&
617 chunks >= zhdr->start_middle)
618 bud = LAST;
619 else
620 bud = FIRST;
621 } else if (zhdr->last_chunks == 0)
622 bud = LAST;
623 else if (zhdr->middle_chunks == 0)
624 bud = MIDDLE;
625 else {
626 if (kref_put(&zhdr->refcount,
627 release_z3fold_page_locked))
628 atomic64_dec(&pool->pages_nr);
629 else
630 z3fold_page_unlock(zhdr);
631 pr_err("No free chunks in unbuddied\n");
632 WARN_ON(1);
633 goto lookup;
634 }
635 goto found;
636 }
637 bud = FIRST;
638 }
639
640 spin_lock(&pool->stale_lock);
641 zhdr = list_first_entry_or_null(&pool->stale,
642 struct z3fold_header, buddy);
643 /*
644 * Before allocating a page, let's see if we can take one from the
645 * stale pages list. cancel_work_sync() can sleep so we must make
646 * sure it won't be called in case we're in atomic context.
647 */
648 if (zhdr && (can_sleep || !work_pending(&zhdr->work))) {
649 list_del(&zhdr->buddy);
650 spin_unlock(&pool->stale_lock);
651 if (can_sleep)
652 cancel_work_sync(&zhdr->work);
653 page = virt_to_page(zhdr);
654 } else {
655 spin_unlock(&pool->stale_lock);
656 page = alloc_page(gfp);
657 }
658
659 if (!page)
660 return -ENOMEM;
661
662 atomic64_inc(&pool->pages_nr);
663 zhdr = init_z3fold_page(page, pool);
664
665 if (bud == HEADLESS) {
666 set_bit(PAGE_HEADLESS, &page->private);
667 goto headless;
668 }
669 z3fold_page_lock(zhdr);
670
671 found:
672 if (bud == FIRST)
673 zhdr->first_chunks = chunks;
674 else if (bud == LAST)
675 zhdr->last_chunks = chunks;
676 else {
677 zhdr->middle_chunks = chunks;
678 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
679 }
680
681 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
682 zhdr->middle_chunks == 0) {
683 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
684
685 /* Add to unbuddied list */
686 freechunks = num_free_chunks(zhdr);
687 spin_lock(&pool->lock);
688 list_add(&zhdr->buddy, &unbuddied[freechunks]);
689 spin_unlock(&pool->lock);
690 zhdr->cpu = smp_processor_id();
691 put_cpu_ptr(pool->unbuddied);
692 }
693
694 headless:
695 spin_lock(&pool->lock);
696 /* Add/move z3fold page to beginning of LRU */
697 if (!list_empty(&page->lru))
698 list_del(&page->lru);
699
700 list_add(&page->lru, &pool->lru);
701
702 *handle = encode_handle(zhdr, bud);
703 spin_unlock(&pool->lock);
704 if (bud != HEADLESS)
705 z3fold_page_unlock(zhdr);
706
707 return 0;
708 }
709
710 /**
711 * z3fold_free() - frees the allocation associated with the given handle
712 * @pool: pool in which the allocation resided
713 * @handle: handle associated with the allocation returned by z3fold_alloc()
714 *
715 * In the case that the z3fold page in which the allocation resides is under
716 * reclaim, as indicated by the PG_reclaim flag being set, this function
717 * only sets the first|last_chunks to 0. The page is actually freed
718 * once both buddies are evicted (see z3fold_reclaim_page() below).
719 */
720 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
721 {
722 struct z3fold_header *zhdr;
723 struct page *page;
724 enum buddy bud;
725
726 zhdr = handle_to_z3fold_header(handle);
727 page = virt_to_page(zhdr);
728
729 if (test_bit(PAGE_HEADLESS, &page->private)) {
730 /* if a headless page is under reclaim, just leave.
731 * NB: we use test_and_set_bit for a reason: if the bit
732 * has not been set before, we release this page
733 * immediately so we don't care about its value any more.
734 */
735 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
736 spin_lock(&pool->lock);
737 list_del(&page->lru);
738 spin_unlock(&pool->lock);
739 free_z3fold_page(page);
740 atomic64_dec(&pool->pages_nr);
741 }
742 return;
743 }
744
745 /* Non-headless case */
746 z3fold_page_lock(zhdr);
747 bud = handle_to_buddy(handle);
748
749 switch (bud) {
750 case FIRST:
751 zhdr->first_chunks = 0;
752 break;
753 case MIDDLE:
754 zhdr->middle_chunks = 0;
755 break;
756 case LAST:
757 zhdr->last_chunks = 0;
758 break;
759 default:
760 pr_err("%s: unknown bud %d\n", __func__, bud);
761 WARN_ON(1);
762 z3fold_page_unlock(zhdr);
763 return;
764 }
765
766 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
767 atomic64_dec(&pool->pages_nr);
768 return;
769 }
770 if (test_bit(PAGE_CLAIMED, &page->private)) {
771 z3fold_page_unlock(zhdr);
772 return;
773 }
774 if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
775 z3fold_page_unlock(zhdr);
776 return;
777 }
778 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
779 spin_lock(&pool->lock);
780 list_del_init(&zhdr->buddy);
781 spin_unlock(&pool->lock);
782 zhdr->cpu = -1;
783 kref_get(&zhdr->refcount);
784 do_compact_page(zhdr, true);
785 return;
786 }
787 kref_get(&zhdr->refcount);
788 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
789 z3fold_page_unlock(zhdr);
790 }
791
792 /**
793 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
794 * @pool: pool from which a page will attempt to be evicted
795 * @retires: number of pages on the LRU list for which eviction will
796 * be attempted before failing
797 *
798 * z3fold reclaim is different from normal system reclaim in that it is done
799 * from the bottom, up. This is because only the bottom layer, z3fold, has
800 * information on how the allocations are organized within each z3fold page.
801 * This has the potential to create interesting locking situations between
802 * z3fold and the user, however.
803 *
804 * To avoid these, this is how z3fold_reclaim_page() should be called:
805
806 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
807 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
808 * call the user-defined eviction handler with the pool and handle as
809 * arguments.
810 *
811 * If the handle can not be evicted, the eviction handler should return
812 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
813 * appropriate list and try the next z3fold page on the LRU up to
814 * a user defined number of retries.
815 *
816 * If the handle is successfully evicted, the eviction handler should
817 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
818 * contains logic to delay freeing the page if the page is under reclaim,
819 * as indicated by the setting of the PG_reclaim flag on the underlying page.
820 *
821 * If all buddies in the z3fold page are successfully evicted, then the
822 * z3fold page can be freed.
823 *
824 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
825 * no pages to evict or an eviction handler is not registered, -EAGAIN if
826 * the retry limit was hit.
827 */
828 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
829 {
830 int i, ret = 0;
831 struct z3fold_header *zhdr = NULL;
832 struct page *page = NULL;
833 struct list_head *pos;
834 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
835
836 spin_lock(&pool->lock);
837 if (!pool->ops || !pool->ops->evict || retries == 0) {
838 spin_unlock(&pool->lock);
839 return -EINVAL;
840 }
841 for (i = 0; i < retries; i++) {
842 if (list_empty(&pool->lru)) {
843 spin_unlock(&pool->lock);
844 return -EINVAL;
845 }
846 list_for_each_prev(pos, &pool->lru) {
847 page = list_entry(pos, struct page, lru);
848
849 /* this bit could have been set by free, in which case
850 * we pass over to the next page in the pool.
851 */
852 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
853 continue;
854
855 zhdr = page_address(page);
856 if (test_bit(PAGE_HEADLESS, &page->private))
857 break;
858
859 if (!z3fold_page_trylock(zhdr)) {
860 zhdr = NULL;
861 continue; /* can't evict at this point */
862 }
863 kref_get(&zhdr->refcount);
864 list_del_init(&zhdr->buddy);
865 zhdr->cpu = -1;
866 break;
867 }
868
869 if (!zhdr)
870 break;
871
872 list_del_init(&page->lru);
873 spin_unlock(&pool->lock);
874
875 if (!test_bit(PAGE_HEADLESS, &page->private)) {
876 /*
877 * We need encode the handles before unlocking, since
878 * we can race with free that will set
879 * (first|last)_chunks to 0
880 */
881 first_handle = 0;
882 last_handle = 0;
883 middle_handle = 0;
884 if (zhdr->first_chunks)
885 first_handle = encode_handle(zhdr, FIRST);
886 if (zhdr->middle_chunks)
887 middle_handle = encode_handle(zhdr, MIDDLE);
888 if (zhdr->last_chunks)
889 last_handle = encode_handle(zhdr, LAST);
890 /*
891 * it's safe to unlock here because we hold a
892 * reference to this page
893 */
894 z3fold_page_unlock(zhdr);
895 } else {
896 first_handle = encode_handle(zhdr, HEADLESS);
897 last_handle = middle_handle = 0;
898 }
899
900 /* Issue the eviction callback(s) */
901 if (middle_handle) {
902 ret = pool->ops->evict(pool, middle_handle);
903 if (ret)
904 goto next;
905 }
906 if (first_handle) {
907 ret = pool->ops->evict(pool, first_handle);
908 if (ret)
909 goto next;
910 }
911 if (last_handle) {
912 ret = pool->ops->evict(pool, last_handle);
913 if (ret)
914 goto next;
915 }
916 next:
917 if (test_bit(PAGE_HEADLESS, &page->private)) {
918 if (ret == 0) {
919 free_z3fold_page(page);
920 atomic64_dec(&pool->pages_nr);
921 return 0;
922 }
923 spin_lock(&pool->lock);
924 list_add(&page->lru, &pool->lru);
925 spin_unlock(&pool->lock);
926 } else {
927 z3fold_page_lock(zhdr);
928 clear_bit(PAGE_CLAIMED, &page->private);
929 if (kref_put(&zhdr->refcount,
930 release_z3fold_page_locked)) {
931 atomic64_dec(&pool->pages_nr);
932 return 0;
933 }
934 /*
935 * if we are here, the page is still not completely
936 * free. Take the global pool lock then to be able
937 * to add it back to the lru list
938 */
939 spin_lock(&pool->lock);
940 list_add(&page->lru, &pool->lru);
941 spin_unlock(&pool->lock);
942 z3fold_page_unlock(zhdr);
943 }
944
945 /* We started off locked to we need to lock the pool back */
946 spin_lock(&pool->lock);
947 }
948 spin_unlock(&pool->lock);
949 return -EAGAIN;
950 }
951
952 /**
953 * z3fold_map() - maps the allocation associated with the given handle
954 * @pool: pool in which the allocation resides
955 * @handle: handle associated with the allocation to be mapped
956 *
957 * Extracts the buddy number from handle and constructs the pointer to the
958 * correct starting chunk within the page.
959 *
960 * Returns: a pointer to the mapped allocation
961 */
962 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
963 {
964 struct z3fold_header *zhdr;
965 struct page *page;
966 void *addr;
967 enum buddy buddy;
968
969 zhdr = handle_to_z3fold_header(handle);
970 addr = zhdr;
971 page = virt_to_page(zhdr);
972
973 if (test_bit(PAGE_HEADLESS, &page->private))
974 goto out;
975
976 z3fold_page_lock(zhdr);
977 buddy = handle_to_buddy(handle);
978 switch (buddy) {
979 case FIRST:
980 addr += ZHDR_SIZE_ALIGNED;
981 break;
982 case MIDDLE:
983 addr += zhdr->start_middle << CHUNK_SHIFT;
984 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
985 break;
986 case LAST:
987 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
988 break;
989 default:
990 pr_err("unknown buddy id %d\n", buddy);
991 WARN_ON(1);
992 addr = NULL;
993 break;
994 }
995
996 z3fold_page_unlock(zhdr);
997 out:
998 return addr;
999 }
1000
1001 /**
1002 * z3fold_unmap() - unmaps the allocation associated with the given handle
1003 * @pool: pool in which the allocation resides
1004 * @handle: handle associated with the allocation to be unmapped
1005 */
1006 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1007 {
1008 struct z3fold_header *zhdr;
1009 struct page *page;
1010 enum buddy buddy;
1011
1012 zhdr = handle_to_z3fold_header(handle);
1013 page = virt_to_page(zhdr);
1014
1015 if (test_bit(PAGE_HEADLESS, &page->private))
1016 return;
1017
1018 z3fold_page_lock(zhdr);
1019 buddy = handle_to_buddy(handle);
1020 if (buddy == MIDDLE)
1021 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1022 z3fold_page_unlock(zhdr);
1023 }
1024
1025 /**
1026 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1027 * @pool: pool whose size is being queried
1028 *
1029 * Returns: size in pages of the given pool.
1030 */
1031 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1032 {
1033 return atomic64_read(&pool->pages_nr);
1034 }
1035
1036 /*****************
1037 * zpool
1038 ****************/
1039
1040 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1041 {
1042 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1043 return pool->zpool_ops->evict(pool->zpool, handle);
1044 else
1045 return -ENOENT;
1046 }
1047
1048 static const struct z3fold_ops z3fold_zpool_ops = {
1049 .evict = z3fold_zpool_evict
1050 };
1051
1052 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1053 const struct zpool_ops *zpool_ops,
1054 struct zpool *zpool)
1055 {
1056 struct z3fold_pool *pool;
1057
1058 pool = z3fold_create_pool(name, gfp,
1059 zpool_ops ? &z3fold_zpool_ops : NULL);
1060 if (pool) {
1061 pool->zpool = zpool;
1062 pool->zpool_ops = zpool_ops;
1063 }
1064 return pool;
1065 }
1066
1067 static void z3fold_zpool_destroy(void *pool)
1068 {
1069 z3fold_destroy_pool(pool);
1070 }
1071
1072 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1073 unsigned long *handle)
1074 {
1075 return z3fold_alloc(pool, size, gfp, handle);
1076 }
1077 static void z3fold_zpool_free(void *pool, unsigned long handle)
1078 {
1079 z3fold_free(pool, handle);
1080 }
1081
1082 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1083 unsigned int *reclaimed)
1084 {
1085 unsigned int total = 0;
1086 int ret = -EINVAL;
1087
1088 while (total < pages) {
1089 ret = z3fold_reclaim_page(pool, 8);
1090 if (ret < 0)
1091 break;
1092 total++;
1093 }
1094
1095 if (reclaimed)
1096 *reclaimed = total;
1097
1098 return ret;
1099 }
1100
1101 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1102 enum zpool_mapmode mm)
1103 {
1104 return z3fold_map(pool, handle);
1105 }
1106 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1107 {
1108 z3fold_unmap(pool, handle);
1109 }
1110
1111 static u64 z3fold_zpool_total_size(void *pool)
1112 {
1113 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1114 }
1115
1116 static struct zpool_driver z3fold_zpool_driver = {
1117 .type = "z3fold",
1118 .owner = THIS_MODULE,
1119 .create = z3fold_zpool_create,
1120 .destroy = z3fold_zpool_destroy,
1121 .malloc = z3fold_zpool_malloc,
1122 .free = z3fold_zpool_free,
1123 .shrink = z3fold_zpool_shrink,
1124 .map = z3fold_zpool_map,
1125 .unmap = z3fold_zpool_unmap,
1126 .total_size = z3fold_zpool_total_size,
1127 };
1128
1129 MODULE_ALIAS("zpool-z3fold");
1130
1131 static int __init init_z3fold(void)
1132 {
1133 /* Make sure the z3fold header is not larger than the page size */
1134 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1135 zpool_register_driver(&z3fold_zpool_driver);
1136
1137 return 0;
1138 }
1139
1140 static void __exit exit_z3fold(void)
1141 {
1142 zpool_unregister_driver(&z3fold_zpool_driver);
1143 }
1144
1145 module_init(init_z3fold);
1146 module_exit(exit_z3fold);
1147
1148 MODULE_LICENSE("GPL");
1149 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1150 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");