]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/z3fold.c
mm/mincore.c: fix race between swapoff and mincore
[mirror_ubuntu-jammy-kernel.git] / mm / z3fold.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/dcache.h>
30 #include <linux/list.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/page-flags.h>
34 #include <linux/migrate.h>
35 #include <linux/node.h>
36 #include <linux/compaction.h>
37 #include <linux/percpu.h>
38 #include <linux/mount.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45
46 /*
47 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
48 * adjusting internal fragmentation. It also determines the number of
49 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
50 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
51 * in the beginning of an allocated page are occupied by z3fold header, so
52 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
53 * which shows the max number of free chunks in z3fold page, also there will
54 * be 63, or 62, respectively, freelists per pool.
55 */
56 #define NCHUNKS_ORDER 6
57
58 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
59 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
60 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
61 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
62 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
63 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
64
65 #define BUDDY_MASK (0x3)
66 #define BUDDY_SHIFT 2
67 #define SLOTS_ALIGN (0x40)
68
69 /*****************
70 * Structures
71 *****************/
72 struct z3fold_pool;
73 struct z3fold_ops {
74 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
75 };
76
77 enum buddy {
78 HEADLESS = 0,
79 FIRST,
80 MIDDLE,
81 LAST,
82 BUDDIES_MAX = LAST
83 };
84
85 struct z3fold_buddy_slots {
86 /*
87 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
88 * be enough slots to hold all possible variants
89 */
90 unsigned long slot[BUDDY_MASK + 1];
91 unsigned long pool; /* back link + flags */
92 };
93 #define HANDLE_FLAG_MASK (0x03)
94
95 /*
96 * struct z3fold_header - z3fold page metadata occupying first chunks of each
97 * z3fold page, except for HEADLESS pages
98 * @buddy: links the z3fold page into the relevant list in the
99 * pool
100 * @page_lock: per-page lock
101 * @refcount: reference count for the z3fold page
102 * @work: work_struct for page layout optimization
103 * @slots: pointer to the structure holding buddy slots
104 * @cpu: CPU which this page "belongs" to
105 * @first_chunks: the size of the first buddy in chunks, 0 if free
106 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
107 * @last_chunks: the size of the last buddy in chunks, 0 if free
108 * @first_num: the starting number (for the first handle)
109 * @mapped_count: the number of objects currently mapped
110 */
111 struct z3fold_header {
112 struct list_head buddy;
113 spinlock_t page_lock;
114 struct kref refcount;
115 struct work_struct work;
116 struct z3fold_buddy_slots *slots;
117 short cpu;
118 unsigned short first_chunks;
119 unsigned short middle_chunks;
120 unsigned short last_chunks;
121 unsigned short start_middle;
122 unsigned short first_num:2;
123 unsigned short mapped_count:2;
124 };
125
126 /**
127 * struct z3fold_pool - stores metadata for each z3fold pool
128 * @name: pool name
129 * @lock: protects pool unbuddied/lru lists
130 * @stale_lock: protects pool stale page list
131 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
132 * buddies; the list each z3fold page is added to depends on
133 * the size of its free region.
134 * @lru: list tracking the z3fold pages in LRU order by most recently
135 * added buddy.
136 * @stale: list of pages marked for freeing
137 * @pages_nr: number of z3fold pages in the pool.
138 * @c_handle: cache for z3fold_buddy_slots allocation
139 * @ops: pointer to a structure of user defined operations specified at
140 * pool creation time.
141 * @compact_wq: workqueue for page layout background optimization
142 * @release_wq: workqueue for safe page release
143 * @work: work_struct for safe page release
144 * @inode: inode for z3fold pseudo filesystem
145 *
146 * This structure is allocated at pool creation time and maintains metadata
147 * pertaining to a particular z3fold pool.
148 */
149 struct z3fold_pool {
150 const char *name;
151 spinlock_t lock;
152 spinlock_t stale_lock;
153 struct list_head *unbuddied;
154 struct list_head lru;
155 struct list_head stale;
156 atomic64_t pages_nr;
157 struct kmem_cache *c_handle;
158 const struct z3fold_ops *ops;
159 struct zpool *zpool;
160 const struct zpool_ops *zpool_ops;
161 struct workqueue_struct *compact_wq;
162 struct workqueue_struct *release_wq;
163 struct work_struct work;
164 struct inode *inode;
165 };
166
167 /*
168 * Internal z3fold page flags
169 */
170 enum z3fold_page_flags {
171 PAGE_HEADLESS = 0,
172 MIDDLE_CHUNK_MAPPED,
173 NEEDS_COMPACTING,
174 PAGE_STALE,
175 PAGE_CLAIMED, /* by either reclaim or free */
176 };
177
178 /*****************
179 * Helpers
180 *****************/
181
182 /* Converts an allocation size in bytes to size in z3fold chunks */
183 static int size_to_chunks(size_t size)
184 {
185 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
186 }
187
188 #define for_each_unbuddied_list(_iter, _begin) \
189 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
190
191 static void compact_page_work(struct work_struct *w);
192
193 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
194 gfp_t gfp)
195 {
196 struct z3fold_buddy_slots *slots = kmem_cache_alloc(pool->c_handle,
197 gfp);
198
199 if (slots) {
200 memset(slots->slot, 0, sizeof(slots->slot));
201 slots->pool = (unsigned long)pool;
202 }
203
204 return slots;
205 }
206
207 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
208 {
209 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
210 }
211
212 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
213 {
214 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
215 }
216
217 static inline void free_handle(unsigned long handle)
218 {
219 struct z3fold_buddy_slots *slots;
220 int i;
221 bool is_free;
222
223 if (handle & (1 << PAGE_HEADLESS))
224 return;
225
226 WARN_ON(*(unsigned long *)handle == 0);
227 *(unsigned long *)handle = 0;
228 slots = handle_to_slots(handle);
229 is_free = true;
230 for (i = 0; i <= BUDDY_MASK; i++) {
231 if (slots->slot[i]) {
232 is_free = false;
233 break;
234 }
235 }
236
237 if (is_free) {
238 struct z3fold_pool *pool = slots_to_pool(slots);
239
240 kmem_cache_free(pool->c_handle, slots);
241 }
242 }
243
244 static struct dentry *z3fold_do_mount(struct file_system_type *fs_type,
245 int flags, const char *dev_name, void *data)
246 {
247 static const struct dentry_operations ops = {
248 .d_dname = simple_dname,
249 };
250
251 return mount_pseudo(fs_type, "z3fold:", NULL, &ops, 0x33);
252 }
253
254 static struct file_system_type z3fold_fs = {
255 .name = "z3fold",
256 .mount = z3fold_do_mount,
257 .kill_sb = kill_anon_super,
258 };
259
260 static struct vfsmount *z3fold_mnt;
261 static int z3fold_mount(void)
262 {
263 int ret = 0;
264
265 z3fold_mnt = kern_mount(&z3fold_fs);
266 if (IS_ERR(z3fold_mnt))
267 ret = PTR_ERR(z3fold_mnt);
268
269 return ret;
270 }
271
272 static void z3fold_unmount(void)
273 {
274 kern_unmount(z3fold_mnt);
275 }
276
277 static const struct address_space_operations z3fold_aops;
278 static int z3fold_register_migration(struct z3fold_pool *pool)
279 {
280 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
281 if (IS_ERR(pool->inode)) {
282 pool->inode = NULL;
283 return 1;
284 }
285
286 pool->inode->i_mapping->private_data = pool;
287 pool->inode->i_mapping->a_ops = &z3fold_aops;
288 return 0;
289 }
290
291 static void z3fold_unregister_migration(struct z3fold_pool *pool)
292 {
293 if (pool->inode)
294 iput(pool->inode);
295 }
296
297 /* Initializes the z3fold header of a newly allocated z3fold page */
298 static struct z3fold_header *init_z3fold_page(struct page *page,
299 struct z3fold_pool *pool, gfp_t gfp)
300 {
301 struct z3fold_header *zhdr = page_address(page);
302 struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
303
304 if (!slots)
305 return NULL;
306
307 INIT_LIST_HEAD(&page->lru);
308 clear_bit(PAGE_HEADLESS, &page->private);
309 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
310 clear_bit(NEEDS_COMPACTING, &page->private);
311 clear_bit(PAGE_STALE, &page->private);
312 clear_bit(PAGE_CLAIMED, &page->private);
313
314 spin_lock_init(&zhdr->page_lock);
315 kref_init(&zhdr->refcount);
316 zhdr->first_chunks = 0;
317 zhdr->middle_chunks = 0;
318 zhdr->last_chunks = 0;
319 zhdr->first_num = 0;
320 zhdr->start_middle = 0;
321 zhdr->cpu = -1;
322 zhdr->slots = slots;
323 INIT_LIST_HEAD(&zhdr->buddy);
324 INIT_WORK(&zhdr->work, compact_page_work);
325 return zhdr;
326 }
327
328 /* Resets the struct page fields and frees the page */
329 static void free_z3fold_page(struct page *page, bool headless)
330 {
331 if (!headless) {
332 lock_page(page);
333 __ClearPageMovable(page);
334 unlock_page(page);
335 }
336 ClearPagePrivate(page);
337 __free_page(page);
338 }
339
340 /* Lock a z3fold page */
341 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
342 {
343 spin_lock(&zhdr->page_lock);
344 }
345
346 /* Try to lock a z3fold page */
347 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
348 {
349 return spin_trylock(&zhdr->page_lock);
350 }
351
352 /* Unlock a z3fold page */
353 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
354 {
355 spin_unlock(&zhdr->page_lock);
356 }
357
358 /* Helper function to build the index */
359 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
360 {
361 return (bud + zhdr->first_num) & BUDDY_MASK;
362 }
363
364 /*
365 * Encodes the handle of a particular buddy within a z3fold page
366 * Pool lock should be held as this function accesses first_num
367 */
368 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
369 {
370 struct z3fold_buddy_slots *slots;
371 unsigned long h = (unsigned long)zhdr;
372 int idx = 0;
373
374 /*
375 * For a headless page, its handle is its pointer with the extra
376 * PAGE_HEADLESS bit set
377 */
378 if (bud == HEADLESS)
379 return h | (1 << PAGE_HEADLESS);
380
381 /* otherwise, return pointer to encoded handle */
382 idx = __idx(zhdr, bud);
383 h += idx;
384 if (bud == LAST)
385 h |= (zhdr->last_chunks << BUDDY_SHIFT);
386
387 slots = zhdr->slots;
388 slots->slot[idx] = h;
389 return (unsigned long)&slots->slot[idx];
390 }
391
392 /* Returns the z3fold page where a given handle is stored */
393 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
394 {
395 unsigned long addr = h;
396
397 if (!(addr & (1 << PAGE_HEADLESS)))
398 addr = *(unsigned long *)h;
399
400 return (struct z3fold_header *)(addr & PAGE_MASK);
401 }
402
403 /* only for LAST bud, returns zero otherwise */
404 static unsigned short handle_to_chunks(unsigned long handle)
405 {
406 unsigned long addr = *(unsigned long *)handle;
407
408 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
409 }
410
411 /*
412 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
413 * but that doesn't matter. because the masking will result in the
414 * correct buddy number.
415 */
416 static enum buddy handle_to_buddy(unsigned long handle)
417 {
418 struct z3fold_header *zhdr;
419 unsigned long addr;
420
421 WARN_ON(handle & (1 << PAGE_HEADLESS));
422 addr = *(unsigned long *)handle;
423 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
424 return (addr - zhdr->first_num) & BUDDY_MASK;
425 }
426
427 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
428 {
429 return slots_to_pool(zhdr->slots);
430 }
431
432 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
433 {
434 struct page *page = virt_to_page(zhdr);
435 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
436
437 WARN_ON(!list_empty(&zhdr->buddy));
438 set_bit(PAGE_STALE, &page->private);
439 clear_bit(NEEDS_COMPACTING, &page->private);
440 spin_lock(&pool->lock);
441 if (!list_empty(&page->lru))
442 list_del_init(&page->lru);
443 spin_unlock(&pool->lock);
444 if (locked)
445 z3fold_page_unlock(zhdr);
446 spin_lock(&pool->stale_lock);
447 list_add(&zhdr->buddy, &pool->stale);
448 queue_work(pool->release_wq, &pool->work);
449 spin_unlock(&pool->stale_lock);
450 }
451
452 static void __attribute__((__unused__))
453 release_z3fold_page(struct kref *ref)
454 {
455 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
456 refcount);
457 __release_z3fold_page(zhdr, false);
458 }
459
460 static void release_z3fold_page_locked(struct kref *ref)
461 {
462 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
463 refcount);
464 WARN_ON(z3fold_page_trylock(zhdr));
465 __release_z3fold_page(zhdr, true);
466 }
467
468 static void release_z3fold_page_locked_list(struct kref *ref)
469 {
470 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
471 refcount);
472 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
473 spin_lock(&pool->lock);
474 list_del_init(&zhdr->buddy);
475 spin_unlock(&pool->lock);
476
477 WARN_ON(z3fold_page_trylock(zhdr));
478 __release_z3fold_page(zhdr, true);
479 }
480
481 static void free_pages_work(struct work_struct *w)
482 {
483 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
484
485 spin_lock(&pool->stale_lock);
486 while (!list_empty(&pool->stale)) {
487 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
488 struct z3fold_header, buddy);
489 struct page *page = virt_to_page(zhdr);
490
491 list_del(&zhdr->buddy);
492 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
493 continue;
494 spin_unlock(&pool->stale_lock);
495 cancel_work_sync(&zhdr->work);
496 free_z3fold_page(page, false);
497 cond_resched();
498 spin_lock(&pool->stale_lock);
499 }
500 spin_unlock(&pool->stale_lock);
501 }
502
503 /*
504 * Returns the number of free chunks in a z3fold page.
505 * NB: can't be used with HEADLESS pages.
506 */
507 static int num_free_chunks(struct z3fold_header *zhdr)
508 {
509 int nfree;
510 /*
511 * If there is a middle object, pick up the bigger free space
512 * either before or after it. Otherwise just subtract the number
513 * of chunks occupied by the first and the last objects.
514 */
515 if (zhdr->middle_chunks != 0) {
516 int nfree_before = zhdr->first_chunks ?
517 0 : zhdr->start_middle - ZHDR_CHUNKS;
518 int nfree_after = zhdr->last_chunks ?
519 0 : TOTAL_CHUNKS -
520 (zhdr->start_middle + zhdr->middle_chunks);
521 nfree = max(nfree_before, nfree_after);
522 } else
523 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
524 return nfree;
525 }
526
527 /* Add to the appropriate unbuddied list */
528 static inline void add_to_unbuddied(struct z3fold_pool *pool,
529 struct z3fold_header *zhdr)
530 {
531 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
532 zhdr->middle_chunks == 0) {
533 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
534
535 int freechunks = num_free_chunks(zhdr);
536 spin_lock(&pool->lock);
537 list_add(&zhdr->buddy, &unbuddied[freechunks]);
538 spin_unlock(&pool->lock);
539 zhdr->cpu = smp_processor_id();
540 put_cpu_ptr(pool->unbuddied);
541 }
542 }
543
544 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
545 unsigned short dst_chunk)
546 {
547 void *beg = zhdr;
548 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
549 beg + (zhdr->start_middle << CHUNK_SHIFT),
550 zhdr->middle_chunks << CHUNK_SHIFT);
551 }
552
553 #define BIG_CHUNK_GAP 3
554 /* Has to be called with lock held */
555 static int z3fold_compact_page(struct z3fold_header *zhdr)
556 {
557 struct page *page = virt_to_page(zhdr);
558
559 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
560 return 0; /* can't move middle chunk, it's used */
561
562 if (unlikely(PageIsolated(page)))
563 return 0;
564
565 if (zhdr->middle_chunks == 0)
566 return 0; /* nothing to compact */
567
568 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
569 /* move to the beginning */
570 mchunk_memmove(zhdr, ZHDR_CHUNKS);
571 zhdr->first_chunks = zhdr->middle_chunks;
572 zhdr->middle_chunks = 0;
573 zhdr->start_middle = 0;
574 zhdr->first_num++;
575 return 1;
576 }
577
578 /*
579 * moving data is expensive, so let's only do that if
580 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
581 */
582 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
583 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
584 BIG_CHUNK_GAP) {
585 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
586 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
587 return 1;
588 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
589 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
590 + zhdr->middle_chunks) >=
591 BIG_CHUNK_GAP) {
592 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
593 zhdr->middle_chunks;
594 mchunk_memmove(zhdr, new_start);
595 zhdr->start_middle = new_start;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
603 {
604 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
605 struct page *page;
606
607 page = virt_to_page(zhdr);
608 if (locked)
609 WARN_ON(z3fold_page_trylock(zhdr));
610 else
611 z3fold_page_lock(zhdr);
612 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
613 z3fold_page_unlock(zhdr);
614 return;
615 }
616 spin_lock(&pool->lock);
617 list_del_init(&zhdr->buddy);
618 spin_unlock(&pool->lock);
619
620 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
621 atomic64_dec(&pool->pages_nr);
622 return;
623 }
624
625 if (unlikely(PageIsolated(page) ||
626 test_bit(PAGE_STALE, &page->private))) {
627 z3fold_page_unlock(zhdr);
628 return;
629 }
630
631 z3fold_compact_page(zhdr);
632 add_to_unbuddied(pool, zhdr);
633 z3fold_page_unlock(zhdr);
634 }
635
636 static void compact_page_work(struct work_struct *w)
637 {
638 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
639 work);
640
641 do_compact_page(zhdr, false);
642 }
643
644 /* returns _locked_ z3fold page header or NULL */
645 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
646 size_t size, bool can_sleep)
647 {
648 struct z3fold_header *zhdr = NULL;
649 struct page *page;
650 struct list_head *unbuddied;
651 int chunks = size_to_chunks(size), i;
652
653 lookup:
654 /* First, try to find an unbuddied z3fold page. */
655 unbuddied = get_cpu_ptr(pool->unbuddied);
656 for_each_unbuddied_list(i, chunks) {
657 struct list_head *l = &unbuddied[i];
658
659 zhdr = list_first_entry_or_null(READ_ONCE(l),
660 struct z3fold_header, buddy);
661
662 if (!zhdr)
663 continue;
664
665 /* Re-check under lock. */
666 spin_lock(&pool->lock);
667 l = &unbuddied[i];
668 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
669 struct z3fold_header, buddy)) ||
670 !z3fold_page_trylock(zhdr)) {
671 spin_unlock(&pool->lock);
672 zhdr = NULL;
673 put_cpu_ptr(pool->unbuddied);
674 if (can_sleep)
675 cond_resched();
676 goto lookup;
677 }
678 list_del_init(&zhdr->buddy);
679 zhdr->cpu = -1;
680 spin_unlock(&pool->lock);
681
682 page = virt_to_page(zhdr);
683 if (test_bit(NEEDS_COMPACTING, &page->private)) {
684 z3fold_page_unlock(zhdr);
685 zhdr = NULL;
686 put_cpu_ptr(pool->unbuddied);
687 if (can_sleep)
688 cond_resched();
689 goto lookup;
690 }
691
692 /*
693 * this page could not be removed from its unbuddied
694 * list while pool lock was held, and then we've taken
695 * page lock so kref_put could not be called before
696 * we got here, so it's safe to just call kref_get()
697 */
698 kref_get(&zhdr->refcount);
699 break;
700 }
701 put_cpu_ptr(pool->unbuddied);
702
703 if (!zhdr) {
704 int cpu;
705
706 /* look for _exact_ match on other cpus' lists */
707 for_each_online_cpu(cpu) {
708 struct list_head *l;
709
710 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
711 spin_lock(&pool->lock);
712 l = &unbuddied[chunks];
713
714 zhdr = list_first_entry_or_null(READ_ONCE(l),
715 struct z3fold_header, buddy);
716
717 if (!zhdr || !z3fold_page_trylock(zhdr)) {
718 spin_unlock(&pool->lock);
719 zhdr = NULL;
720 continue;
721 }
722 list_del_init(&zhdr->buddy);
723 zhdr->cpu = -1;
724 spin_unlock(&pool->lock);
725
726 page = virt_to_page(zhdr);
727 if (test_bit(NEEDS_COMPACTING, &page->private)) {
728 z3fold_page_unlock(zhdr);
729 zhdr = NULL;
730 if (can_sleep)
731 cond_resched();
732 continue;
733 }
734 kref_get(&zhdr->refcount);
735 break;
736 }
737 }
738
739 return zhdr;
740 }
741
742 /*
743 * API Functions
744 */
745
746 /**
747 * z3fold_create_pool() - create a new z3fold pool
748 * @name: pool name
749 * @gfp: gfp flags when allocating the z3fold pool structure
750 * @ops: user-defined operations for the z3fold pool
751 *
752 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
753 * failed.
754 */
755 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
756 const struct z3fold_ops *ops)
757 {
758 struct z3fold_pool *pool = NULL;
759 int i, cpu;
760
761 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
762 if (!pool)
763 goto out;
764 pool->c_handle = kmem_cache_create("z3fold_handle",
765 sizeof(struct z3fold_buddy_slots),
766 SLOTS_ALIGN, 0, NULL);
767 if (!pool->c_handle)
768 goto out_c;
769 spin_lock_init(&pool->lock);
770 spin_lock_init(&pool->stale_lock);
771 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
772 if (!pool->unbuddied)
773 goto out_pool;
774 for_each_possible_cpu(cpu) {
775 struct list_head *unbuddied =
776 per_cpu_ptr(pool->unbuddied, cpu);
777 for_each_unbuddied_list(i, 0)
778 INIT_LIST_HEAD(&unbuddied[i]);
779 }
780 INIT_LIST_HEAD(&pool->lru);
781 INIT_LIST_HEAD(&pool->stale);
782 atomic64_set(&pool->pages_nr, 0);
783 pool->name = name;
784 pool->compact_wq = create_singlethread_workqueue(pool->name);
785 if (!pool->compact_wq)
786 goto out_unbuddied;
787 pool->release_wq = create_singlethread_workqueue(pool->name);
788 if (!pool->release_wq)
789 goto out_wq;
790 if (z3fold_register_migration(pool))
791 goto out_rwq;
792 INIT_WORK(&pool->work, free_pages_work);
793 pool->ops = ops;
794 return pool;
795
796 out_rwq:
797 destroy_workqueue(pool->release_wq);
798 out_wq:
799 destroy_workqueue(pool->compact_wq);
800 out_unbuddied:
801 free_percpu(pool->unbuddied);
802 out_pool:
803 kmem_cache_destroy(pool->c_handle);
804 out_c:
805 kfree(pool);
806 out:
807 return NULL;
808 }
809
810 /**
811 * z3fold_destroy_pool() - destroys an existing z3fold pool
812 * @pool: the z3fold pool to be destroyed
813 *
814 * The pool should be emptied before this function is called.
815 */
816 static void z3fold_destroy_pool(struct z3fold_pool *pool)
817 {
818 kmem_cache_destroy(pool->c_handle);
819 z3fold_unregister_migration(pool);
820 destroy_workqueue(pool->release_wq);
821 destroy_workqueue(pool->compact_wq);
822 kfree(pool);
823 }
824
825 /**
826 * z3fold_alloc() - allocates a region of a given size
827 * @pool: z3fold pool from which to allocate
828 * @size: size in bytes of the desired allocation
829 * @gfp: gfp flags used if the pool needs to grow
830 * @handle: handle of the new allocation
831 *
832 * This function will attempt to find a free region in the pool large enough to
833 * satisfy the allocation request. A search of the unbuddied lists is
834 * performed first. If no suitable free region is found, then a new page is
835 * allocated and added to the pool to satisfy the request.
836 *
837 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
838 * as z3fold pool pages.
839 *
840 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
841 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
842 * a new page.
843 */
844 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
845 unsigned long *handle)
846 {
847 int chunks = size_to_chunks(size);
848 struct z3fold_header *zhdr = NULL;
849 struct page *page = NULL;
850 enum buddy bud;
851 bool can_sleep = gfpflags_allow_blocking(gfp);
852
853 if (!size || (gfp & __GFP_HIGHMEM))
854 return -EINVAL;
855
856 if (size > PAGE_SIZE)
857 return -ENOSPC;
858
859 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
860 bud = HEADLESS;
861 else {
862 retry:
863 zhdr = __z3fold_alloc(pool, size, can_sleep);
864 if (zhdr) {
865 if (zhdr->first_chunks == 0) {
866 if (zhdr->middle_chunks != 0 &&
867 chunks >= zhdr->start_middle)
868 bud = LAST;
869 else
870 bud = FIRST;
871 } else if (zhdr->last_chunks == 0)
872 bud = LAST;
873 else if (zhdr->middle_chunks == 0)
874 bud = MIDDLE;
875 else {
876 if (kref_put(&zhdr->refcount,
877 release_z3fold_page_locked))
878 atomic64_dec(&pool->pages_nr);
879 else
880 z3fold_page_unlock(zhdr);
881 pr_err("No free chunks in unbuddied\n");
882 WARN_ON(1);
883 goto retry;
884 }
885 page = virt_to_page(zhdr);
886 goto found;
887 }
888 bud = FIRST;
889 }
890
891 page = NULL;
892 if (can_sleep) {
893 spin_lock(&pool->stale_lock);
894 zhdr = list_first_entry_or_null(&pool->stale,
895 struct z3fold_header, buddy);
896 /*
897 * Before allocating a page, let's see if we can take one from
898 * the stale pages list. cancel_work_sync() can sleep so we
899 * limit this case to the contexts where we can sleep
900 */
901 if (zhdr) {
902 list_del(&zhdr->buddy);
903 spin_unlock(&pool->stale_lock);
904 cancel_work_sync(&zhdr->work);
905 page = virt_to_page(zhdr);
906 } else {
907 spin_unlock(&pool->stale_lock);
908 }
909 }
910 if (!page)
911 page = alloc_page(gfp);
912
913 if (!page)
914 return -ENOMEM;
915
916 zhdr = init_z3fold_page(page, pool, gfp);
917 if (!zhdr) {
918 __free_page(page);
919 return -ENOMEM;
920 }
921 atomic64_inc(&pool->pages_nr);
922
923 if (bud == HEADLESS) {
924 set_bit(PAGE_HEADLESS, &page->private);
925 goto headless;
926 }
927 if (can_sleep) {
928 lock_page(page);
929 __SetPageMovable(page, pool->inode->i_mapping);
930 unlock_page(page);
931 } else {
932 if (trylock_page(page)) {
933 __SetPageMovable(page, pool->inode->i_mapping);
934 unlock_page(page);
935 }
936 }
937 z3fold_page_lock(zhdr);
938
939 found:
940 if (bud == FIRST)
941 zhdr->first_chunks = chunks;
942 else if (bud == LAST)
943 zhdr->last_chunks = chunks;
944 else {
945 zhdr->middle_chunks = chunks;
946 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
947 }
948 add_to_unbuddied(pool, zhdr);
949
950 headless:
951 spin_lock(&pool->lock);
952 /* Add/move z3fold page to beginning of LRU */
953 if (!list_empty(&page->lru))
954 list_del(&page->lru);
955
956 list_add(&page->lru, &pool->lru);
957
958 *handle = encode_handle(zhdr, bud);
959 spin_unlock(&pool->lock);
960 if (bud != HEADLESS)
961 z3fold_page_unlock(zhdr);
962
963 return 0;
964 }
965
966 /**
967 * z3fold_free() - frees the allocation associated with the given handle
968 * @pool: pool in which the allocation resided
969 * @handle: handle associated with the allocation returned by z3fold_alloc()
970 *
971 * In the case that the z3fold page in which the allocation resides is under
972 * reclaim, as indicated by the PG_reclaim flag being set, this function
973 * only sets the first|last_chunks to 0. The page is actually freed
974 * once both buddies are evicted (see z3fold_reclaim_page() below).
975 */
976 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
977 {
978 struct z3fold_header *zhdr;
979 struct page *page;
980 enum buddy bud;
981
982 zhdr = handle_to_z3fold_header(handle);
983 page = virt_to_page(zhdr);
984
985 if (test_bit(PAGE_HEADLESS, &page->private)) {
986 /* if a headless page is under reclaim, just leave.
987 * NB: we use test_and_set_bit for a reason: if the bit
988 * has not been set before, we release this page
989 * immediately so we don't care about its value any more.
990 */
991 if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
992 spin_lock(&pool->lock);
993 list_del(&page->lru);
994 spin_unlock(&pool->lock);
995 free_z3fold_page(page, true);
996 atomic64_dec(&pool->pages_nr);
997 }
998 return;
999 }
1000
1001 /* Non-headless case */
1002 z3fold_page_lock(zhdr);
1003 bud = handle_to_buddy(handle);
1004
1005 switch (bud) {
1006 case FIRST:
1007 zhdr->first_chunks = 0;
1008 break;
1009 case MIDDLE:
1010 zhdr->middle_chunks = 0;
1011 break;
1012 case LAST:
1013 zhdr->last_chunks = 0;
1014 break;
1015 default:
1016 pr_err("%s: unknown bud %d\n", __func__, bud);
1017 WARN_ON(1);
1018 z3fold_page_unlock(zhdr);
1019 return;
1020 }
1021
1022 free_handle(handle);
1023 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1024 atomic64_dec(&pool->pages_nr);
1025 return;
1026 }
1027 if (test_bit(PAGE_CLAIMED, &page->private)) {
1028 z3fold_page_unlock(zhdr);
1029 return;
1030 }
1031 if (unlikely(PageIsolated(page)) ||
1032 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1033 z3fold_page_unlock(zhdr);
1034 return;
1035 }
1036 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1037 spin_lock(&pool->lock);
1038 list_del_init(&zhdr->buddy);
1039 spin_unlock(&pool->lock);
1040 zhdr->cpu = -1;
1041 kref_get(&zhdr->refcount);
1042 do_compact_page(zhdr, true);
1043 return;
1044 }
1045 kref_get(&zhdr->refcount);
1046 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1047 z3fold_page_unlock(zhdr);
1048 }
1049
1050 /**
1051 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1052 * @pool: pool from which a page will attempt to be evicted
1053 * @retries: number of pages on the LRU list for which eviction will
1054 * be attempted before failing
1055 *
1056 * z3fold reclaim is different from normal system reclaim in that it is done
1057 * from the bottom, up. This is because only the bottom layer, z3fold, has
1058 * information on how the allocations are organized within each z3fold page.
1059 * This has the potential to create interesting locking situations between
1060 * z3fold and the user, however.
1061 *
1062 * To avoid these, this is how z3fold_reclaim_page() should be called:
1063 *
1064 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1065 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1066 * call the user-defined eviction handler with the pool and handle as
1067 * arguments.
1068 *
1069 * If the handle can not be evicted, the eviction handler should return
1070 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1071 * appropriate list and try the next z3fold page on the LRU up to
1072 * a user defined number of retries.
1073 *
1074 * If the handle is successfully evicted, the eviction handler should
1075 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1076 * contains logic to delay freeing the page if the page is under reclaim,
1077 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1078 *
1079 * If all buddies in the z3fold page are successfully evicted, then the
1080 * z3fold page can be freed.
1081 *
1082 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1083 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1084 * the retry limit was hit.
1085 */
1086 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1087 {
1088 int i, ret = 0;
1089 struct z3fold_header *zhdr = NULL;
1090 struct page *page = NULL;
1091 struct list_head *pos;
1092 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1093
1094 spin_lock(&pool->lock);
1095 if (!pool->ops || !pool->ops->evict || retries == 0) {
1096 spin_unlock(&pool->lock);
1097 return -EINVAL;
1098 }
1099 for (i = 0; i < retries; i++) {
1100 if (list_empty(&pool->lru)) {
1101 spin_unlock(&pool->lock);
1102 return -EINVAL;
1103 }
1104 list_for_each_prev(pos, &pool->lru) {
1105 page = list_entry(pos, struct page, lru);
1106
1107 /* this bit could have been set by free, in which case
1108 * we pass over to the next page in the pool.
1109 */
1110 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1111 continue;
1112
1113 if (unlikely(PageIsolated(page)))
1114 continue;
1115 if (test_bit(PAGE_HEADLESS, &page->private))
1116 break;
1117
1118 zhdr = page_address(page);
1119 if (!z3fold_page_trylock(zhdr)) {
1120 zhdr = NULL;
1121 continue; /* can't evict at this point */
1122 }
1123 kref_get(&zhdr->refcount);
1124 list_del_init(&zhdr->buddy);
1125 zhdr->cpu = -1;
1126 break;
1127 }
1128
1129 if (!zhdr)
1130 break;
1131
1132 list_del_init(&page->lru);
1133 spin_unlock(&pool->lock);
1134
1135 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1136 /*
1137 * We need encode the handles before unlocking, since
1138 * we can race with free that will set
1139 * (first|last)_chunks to 0
1140 */
1141 first_handle = 0;
1142 last_handle = 0;
1143 middle_handle = 0;
1144 if (zhdr->first_chunks)
1145 first_handle = encode_handle(zhdr, FIRST);
1146 if (zhdr->middle_chunks)
1147 middle_handle = encode_handle(zhdr, MIDDLE);
1148 if (zhdr->last_chunks)
1149 last_handle = encode_handle(zhdr, LAST);
1150 /*
1151 * it's safe to unlock here because we hold a
1152 * reference to this page
1153 */
1154 z3fold_page_unlock(zhdr);
1155 } else {
1156 first_handle = encode_handle(zhdr, HEADLESS);
1157 last_handle = middle_handle = 0;
1158 }
1159
1160 /* Issue the eviction callback(s) */
1161 if (middle_handle) {
1162 ret = pool->ops->evict(pool, middle_handle);
1163 if (ret)
1164 goto next;
1165 }
1166 if (first_handle) {
1167 ret = pool->ops->evict(pool, first_handle);
1168 if (ret)
1169 goto next;
1170 }
1171 if (last_handle) {
1172 ret = pool->ops->evict(pool, last_handle);
1173 if (ret)
1174 goto next;
1175 }
1176 next:
1177 if (test_bit(PAGE_HEADLESS, &page->private)) {
1178 if (ret == 0) {
1179 free_z3fold_page(page, true);
1180 atomic64_dec(&pool->pages_nr);
1181 return 0;
1182 }
1183 spin_lock(&pool->lock);
1184 list_add(&page->lru, &pool->lru);
1185 spin_unlock(&pool->lock);
1186 } else {
1187 z3fold_page_lock(zhdr);
1188 clear_bit(PAGE_CLAIMED, &page->private);
1189 if (kref_put(&zhdr->refcount,
1190 release_z3fold_page_locked)) {
1191 atomic64_dec(&pool->pages_nr);
1192 return 0;
1193 }
1194 /*
1195 * if we are here, the page is still not completely
1196 * free. Take the global pool lock then to be able
1197 * to add it back to the lru list
1198 */
1199 spin_lock(&pool->lock);
1200 list_add(&page->lru, &pool->lru);
1201 spin_unlock(&pool->lock);
1202 z3fold_page_unlock(zhdr);
1203 }
1204
1205 /* We started off locked to we need to lock the pool back */
1206 spin_lock(&pool->lock);
1207 }
1208 spin_unlock(&pool->lock);
1209 return -EAGAIN;
1210 }
1211
1212 /**
1213 * z3fold_map() - maps the allocation associated with the given handle
1214 * @pool: pool in which the allocation resides
1215 * @handle: handle associated with the allocation to be mapped
1216 *
1217 * Extracts the buddy number from handle and constructs the pointer to the
1218 * correct starting chunk within the page.
1219 *
1220 * Returns: a pointer to the mapped allocation
1221 */
1222 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1223 {
1224 struct z3fold_header *zhdr;
1225 struct page *page;
1226 void *addr;
1227 enum buddy buddy;
1228
1229 zhdr = handle_to_z3fold_header(handle);
1230 addr = zhdr;
1231 page = virt_to_page(zhdr);
1232
1233 if (test_bit(PAGE_HEADLESS, &page->private))
1234 goto out;
1235
1236 z3fold_page_lock(zhdr);
1237 buddy = handle_to_buddy(handle);
1238 switch (buddy) {
1239 case FIRST:
1240 addr += ZHDR_SIZE_ALIGNED;
1241 break;
1242 case MIDDLE:
1243 addr += zhdr->start_middle << CHUNK_SHIFT;
1244 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1245 break;
1246 case LAST:
1247 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1248 break;
1249 default:
1250 pr_err("unknown buddy id %d\n", buddy);
1251 WARN_ON(1);
1252 addr = NULL;
1253 break;
1254 }
1255
1256 if (addr)
1257 zhdr->mapped_count++;
1258 z3fold_page_unlock(zhdr);
1259 out:
1260 return addr;
1261 }
1262
1263 /**
1264 * z3fold_unmap() - unmaps the allocation associated with the given handle
1265 * @pool: pool in which the allocation resides
1266 * @handle: handle associated with the allocation to be unmapped
1267 */
1268 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1269 {
1270 struct z3fold_header *zhdr;
1271 struct page *page;
1272 enum buddy buddy;
1273
1274 zhdr = handle_to_z3fold_header(handle);
1275 page = virt_to_page(zhdr);
1276
1277 if (test_bit(PAGE_HEADLESS, &page->private))
1278 return;
1279
1280 z3fold_page_lock(zhdr);
1281 buddy = handle_to_buddy(handle);
1282 if (buddy == MIDDLE)
1283 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1284 zhdr->mapped_count--;
1285 z3fold_page_unlock(zhdr);
1286 }
1287
1288 /**
1289 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1290 * @pool: pool whose size is being queried
1291 *
1292 * Returns: size in pages of the given pool.
1293 */
1294 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1295 {
1296 return atomic64_read(&pool->pages_nr);
1297 }
1298
1299 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1300 {
1301 struct z3fold_header *zhdr;
1302 struct z3fold_pool *pool;
1303
1304 VM_BUG_ON_PAGE(!PageMovable(page), page);
1305 VM_BUG_ON_PAGE(PageIsolated(page), page);
1306
1307 if (test_bit(PAGE_HEADLESS, &page->private))
1308 return false;
1309
1310 zhdr = page_address(page);
1311 z3fold_page_lock(zhdr);
1312 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1313 test_bit(PAGE_STALE, &page->private))
1314 goto out;
1315
1316 pool = zhdr_to_pool(zhdr);
1317
1318 if (zhdr->mapped_count == 0) {
1319 kref_get(&zhdr->refcount);
1320 if (!list_empty(&zhdr->buddy))
1321 list_del_init(&zhdr->buddy);
1322 spin_lock(&pool->lock);
1323 if (!list_empty(&page->lru))
1324 list_del(&page->lru);
1325 spin_unlock(&pool->lock);
1326 z3fold_page_unlock(zhdr);
1327 return true;
1328 }
1329 out:
1330 z3fold_page_unlock(zhdr);
1331 return false;
1332 }
1333
1334 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1335 struct page *page, enum migrate_mode mode)
1336 {
1337 struct z3fold_header *zhdr, *new_zhdr;
1338 struct z3fold_pool *pool;
1339 struct address_space *new_mapping;
1340
1341 VM_BUG_ON_PAGE(!PageMovable(page), page);
1342 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1343 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1344
1345 zhdr = page_address(page);
1346 pool = zhdr_to_pool(zhdr);
1347
1348 if (!trylock_page(page))
1349 return -EAGAIN;
1350
1351 if (!z3fold_page_trylock(zhdr)) {
1352 unlock_page(page);
1353 return -EAGAIN;
1354 }
1355 if (zhdr->mapped_count != 0) {
1356 z3fold_page_unlock(zhdr);
1357 unlock_page(page);
1358 return -EBUSY;
1359 }
1360 new_zhdr = page_address(newpage);
1361 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1362 newpage->private = page->private;
1363 page->private = 0;
1364 z3fold_page_unlock(zhdr);
1365 spin_lock_init(&new_zhdr->page_lock);
1366 new_mapping = page_mapping(page);
1367 __ClearPageMovable(page);
1368 ClearPagePrivate(page);
1369
1370 get_page(newpage);
1371 z3fold_page_lock(new_zhdr);
1372 if (new_zhdr->first_chunks)
1373 encode_handle(new_zhdr, FIRST);
1374 if (new_zhdr->last_chunks)
1375 encode_handle(new_zhdr, LAST);
1376 if (new_zhdr->middle_chunks)
1377 encode_handle(new_zhdr, MIDDLE);
1378 set_bit(NEEDS_COMPACTING, &newpage->private);
1379 new_zhdr->cpu = smp_processor_id();
1380 spin_lock(&pool->lock);
1381 list_add(&newpage->lru, &pool->lru);
1382 spin_unlock(&pool->lock);
1383 __SetPageMovable(newpage, new_mapping);
1384 z3fold_page_unlock(new_zhdr);
1385
1386 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1387
1388 page_mapcount_reset(page);
1389 unlock_page(page);
1390 put_page(page);
1391 return 0;
1392 }
1393
1394 static void z3fold_page_putback(struct page *page)
1395 {
1396 struct z3fold_header *zhdr;
1397 struct z3fold_pool *pool;
1398
1399 zhdr = page_address(page);
1400 pool = zhdr_to_pool(zhdr);
1401
1402 z3fold_page_lock(zhdr);
1403 if (!list_empty(&zhdr->buddy))
1404 list_del_init(&zhdr->buddy);
1405 INIT_LIST_HEAD(&page->lru);
1406 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1407 atomic64_dec(&pool->pages_nr);
1408 return;
1409 }
1410 spin_lock(&pool->lock);
1411 list_add(&page->lru, &pool->lru);
1412 spin_unlock(&pool->lock);
1413 z3fold_page_unlock(zhdr);
1414 }
1415
1416 static const struct address_space_operations z3fold_aops = {
1417 .isolate_page = z3fold_page_isolate,
1418 .migratepage = z3fold_page_migrate,
1419 .putback_page = z3fold_page_putback,
1420 };
1421
1422 /*****************
1423 * zpool
1424 ****************/
1425
1426 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1427 {
1428 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1429 return pool->zpool_ops->evict(pool->zpool, handle);
1430 else
1431 return -ENOENT;
1432 }
1433
1434 static const struct z3fold_ops z3fold_zpool_ops = {
1435 .evict = z3fold_zpool_evict
1436 };
1437
1438 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1439 const struct zpool_ops *zpool_ops,
1440 struct zpool *zpool)
1441 {
1442 struct z3fold_pool *pool;
1443
1444 pool = z3fold_create_pool(name, gfp,
1445 zpool_ops ? &z3fold_zpool_ops : NULL);
1446 if (pool) {
1447 pool->zpool = zpool;
1448 pool->zpool_ops = zpool_ops;
1449 }
1450 return pool;
1451 }
1452
1453 static void z3fold_zpool_destroy(void *pool)
1454 {
1455 z3fold_destroy_pool(pool);
1456 }
1457
1458 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1459 unsigned long *handle)
1460 {
1461 return z3fold_alloc(pool, size, gfp, handle);
1462 }
1463 static void z3fold_zpool_free(void *pool, unsigned long handle)
1464 {
1465 z3fold_free(pool, handle);
1466 }
1467
1468 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1469 unsigned int *reclaimed)
1470 {
1471 unsigned int total = 0;
1472 int ret = -EINVAL;
1473
1474 while (total < pages) {
1475 ret = z3fold_reclaim_page(pool, 8);
1476 if (ret < 0)
1477 break;
1478 total++;
1479 }
1480
1481 if (reclaimed)
1482 *reclaimed = total;
1483
1484 return ret;
1485 }
1486
1487 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1488 enum zpool_mapmode mm)
1489 {
1490 return z3fold_map(pool, handle);
1491 }
1492 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1493 {
1494 z3fold_unmap(pool, handle);
1495 }
1496
1497 static u64 z3fold_zpool_total_size(void *pool)
1498 {
1499 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1500 }
1501
1502 static struct zpool_driver z3fold_zpool_driver = {
1503 .type = "z3fold",
1504 .owner = THIS_MODULE,
1505 .create = z3fold_zpool_create,
1506 .destroy = z3fold_zpool_destroy,
1507 .malloc = z3fold_zpool_malloc,
1508 .free = z3fold_zpool_free,
1509 .shrink = z3fold_zpool_shrink,
1510 .map = z3fold_zpool_map,
1511 .unmap = z3fold_zpool_unmap,
1512 .total_size = z3fold_zpool_total_size,
1513 };
1514
1515 MODULE_ALIAS("zpool-z3fold");
1516
1517 static int __init init_z3fold(void)
1518 {
1519 int ret;
1520
1521 /* Make sure the z3fold header is not larger than the page size */
1522 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1523 ret = z3fold_mount();
1524 if (ret)
1525 return ret;
1526
1527 zpool_register_driver(&z3fold_zpool_driver);
1528
1529 return 0;
1530 }
1531
1532 static void __exit exit_z3fold(void)
1533 {
1534 z3fold_unmount();
1535 zpool_unregister_driver(&z3fold_zpool_driver);
1536 }
1537
1538 module_init(init_z3fold);
1539 module_exit(exit_z3fold);
1540
1541 MODULE_LICENSE("GPL");
1542 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1543 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");