]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/z3fold.c
mm/z3fold: use release_z3fold_page_locked() to release locked z3fold page
[mirror_ubuntu-hirsute-kernel.git] / mm / z3fold.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47
48 /*
49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50 * adjusting internal fragmentation. It also determines the number of
51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53 * in the beginning of an allocated page are occupied by z3fold header, so
54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55 * which shows the max number of free chunks in z3fold page, also there will
56 * be 63, or 62, respectively, freelists per pool.
57 */
58 #define NCHUNKS_ORDER 6
59
60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66
67 #define BUDDY_MASK (0x3)
68 #define BUDDY_SHIFT 2
69 #define SLOTS_ALIGN (0x40)
70
71 /*****************
72 * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78
79 enum buddy {
80 HEADLESS = 0,
81 FIRST,
82 MIDDLE,
83 LAST,
84 BUDDIES_MAX = LAST
85 };
86
87 struct z3fold_buddy_slots {
88 /*
89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 * be enough slots to hold all possible variants
91 */
92 unsigned long slot[BUDDY_MASK + 1];
93 unsigned long pool; /* back link */
94 rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK (0x03)
97
98 /*
99 * struct z3fold_header - z3fold page metadata occupying first chunks of each
100 * z3fold page, except for HEADLESS pages
101 * @buddy: links the z3fold page into the relevant list in the
102 * pool
103 * @page_lock: per-page lock
104 * @refcount: reference count for the z3fold page
105 * @work: work_struct for page layout optimization
106 * @slots: pointer to the structure holding buddy slots
107 * @pool: pointer to the containing pool
108 * @cpu: CPU which this page "belongs" to
109 * @first_chunks: the size of the first buddy in chunks, 0 if free
110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
111 * @last_chunks: the size of the last buddy in chunks, 0 if free
112 * @first_num: the starting number (for the first handle)
113 * @mapped_count: the number of objects currently mapped
114 */
115 struct z3fold_header {
116 struct list_head buddy;
117 spinlock_t page_lock;
118 struct kref refcount;
119 struct work_struct work;
120 struct z3fold_buddy_slots *slots;
121 struct z3fold_pool *pool;
122 short cpu;
123 unsigned short first_chunks;
124 unsigned short middle_chunks;
125 unsigned short last_chunks;
126 unsigned short start_middle;
127 unsigned short first_num:2;
128 unsigned short mapped_count:2;
129 unsigned short foreign_handles:2;
130 };
131
132 /**
133 * struct z3fold_pool - stores metadata for each z3fold pool
134 * @name: pool name
135 * @lock: protects pool unbuddied/lru lists
136 * @stale_lock: protects pool stale page list
137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
138 * buddies; the list each z3fold page is added to depends on
139 * the size of its free region.
140 * @lru: list tracking the z3fold pages in LRU order by most recently
141 * added buddy.
142 * @stale: list of pages marked for freeing
143 * @pages_nr: number of z3fold pages in the pool.
144 * @c_handle: cache for z3fold_buddy_slots allocation
145 * @ops: pointer to a structure of user defined operations specified at
146 * pool creation time.
147 * @compact_wq: workqueue for page layout background optimization
148 * @release_wq: workqueue for safe page release
149 * @work: work_struct for safe page release
150 * @inode: inode for z3fold pseudo filesystem
151 *
152 * This structure is allocated at pool creation time and maintains metadata
153 * pertaining to a particular z3fold pool.
154 */
155 struct z3fold_pool {
156 const char *name;
157 spinlock_t lock;
158 spinlock_t stale_lock;
159 struct list_head *unbuddied;
160 struct list_head lru;
161 struct list_head stale;
162 atomic64_t pages_nr;
163 struct kmem_cache *c_handle;
164 const struct z3fold_ops *ops;
165 struct zpool *zpool;
166 const struct zpool_ops *zpool_ops;
167 struct workqueue_struct *compact_wq;
168 struct workqueue_struct *release_wq;
169 struct work_struct work;
170 struct inode *inode;
171 };
172
173 /*
174 * Internal z3fold page flags
175 */
176 enum z3fold_page_flags {
177 PAGE_HEADLESS = 0,
178 MIDDLE_CHUNK_MAPPED,
179 NEEDS_COMPACTING,
180 PAGE_STALE,
181 PAGE_CLAIMED, /* by either reclaim or free */
182 };
183
184 /*
185 * handle flags, go under HANDLE_FLAG_MASK
186 */
187 enum z3fold_handle_flags {
188 HANDLES_NOFREE = 0,
189 };
190
191 /*
192 * Forward declarations
193 */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196
197 /*****************
198 * Helpers
199 *****************/
200
201 /* Converts an allocation size in bytes to size in z3fold chunks */
202 static int size_to_chunks(size_t size)
203 {
204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206
207 #define for_each_unbuddied_list(_iter, _begin) \
208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209
210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 gfp_t gfp)
212 {
213 struct z3fold_buddy_slots *slots;
214
215 slots = kmem_cache_zalloc(pool->c_handle,
216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217
218 if (slots) {
219 /* It will be freed separately in free_handle(). */
220 kmemleak_not_leak(slots);
221 slots->pool = (unsigned long)pool;
222 rwlock_init(&slots->lock);
223 }
224
225 return slots;
226 }
227
228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232
233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237
238 /* Lock a z3fold page */
239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 spin_lock(&zhdr->page_lock);
242 }
243
244 /* Try to lock a z3fold page */
245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 return spin_trylock(&zhdr->page_lock);
248 }
249
250 /* Unlock a z3fold page */
251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 spin_unlock(&zhdr->page_lock);
254 }
255
256
257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 bool lock)
259 {
260 struct z3fold_buddy_slots *slots;
261 struct z3fold_header *zhdr;
262 int locked = 0;
263
264 if (!(handle & (1 << PAGE_HEADLESS))) {
265 slots = handle_to_slots(handle);
266 do {
267 unsigned long addr;
268
269 read_lock(&slots->lock);
270 addr = *(unsigned long *)handle;
271 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 if (lock)
273 locked = z3fold_page_trylock(zhdr);
274 read_unlock(&slots->lock);
275 if (locked)
276 break;
277 cpu_relax();
278 } while (lock);
279 } else {
280 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 }
282
283 return zhdr;
284 }
285
286 /* Returns the z3fold page where a given handle is stored */
287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 return __get_z3fold_header(h, false);
290 }
291
292 /* return locked z3fold page if it's not headless */
293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 return __get_z3fold_header(h, true);
296 }
297
298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 struct page *page = virt_to_page(zhdr);
301
302 if (!test_bit(PAGE_HEADLESS, &page->private))
303 z3fold_page_unlock(zhdr);
304 }
305
306 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
307 {
308 struct z3fold_buddy_slots *slots;
309 int i;
310 bool is_free;
311
312 if (handle & (1 << PAGE_HEADLESS))
313 return;
314
315 if (WARN_ON(*(unsigned long *)handle == 0))
316 return;
317
318 slots = handle_to_slots(handle);
319 write_lock(&slots->lock);
320 *(unsigned long *)handle = 0;
321
322 if (test_bit(HANDLES_NOFREE, &slots->pool)) {
323 write_unlock(&slots->lock);
324 return; /* simple case, nothing else to do */
325 }
326
327 if (zhdr->slots != slots)
328 zhdr->foreign_handles--;
329
330 is_free = true;
331 for (i = 0; i <= BUDDY_MASK; i++) {
332 if (slots->slot[i]) {
333 is_free = false;
334 break;
335 }
336 }
337 write_unlock(&slots->lock);
338
339 if (is_free) {
340 struct z3fold_pool *pool = slots_to_pool(slots);
341
342 if (zhdr->slots == slots)
343 zhdr->slots = NULL;
344 kmem_cache_free(pool->c_handle, slots);
345 }
346 }
347
348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352
353 static struct file_system_type z3fold_fs = {
354 .name = "z3fold",
355 .init_fs_context = z3fold_init_fs_context,
356 .kill_sb = kill_anon_super,
357 };
358
359 static struct vfsmount *z3fold_mnt;
360 static int z3fold_mount(void)
361 {
362 int ret = 0;
363
364 z3fold_mnt = kern_mount(&z3fold_fs);
365 if (IS_ERR(z3fold_mnt))
366 ret = PTR_ERR(z3fold_mnt);
367
368 return ret;
369 }
370
371 static void z3fold_unmount(void)
372 {
373 kern_unmount(z3fold_mnt);
374 }
375
376 static const struct address_space_operations z3fold_aops;
377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 if (IS_ERR(pool->inode)) {
381 pool->inode = NULL;
382 return 1;
383 }
384
385 pool->inode->i_mapping->private_data = pool;
386 pool->inode->i_mapping->a_ops = &z3fold_aops;
387 return 0;
388 }
389
390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 if (pool->inode)
393 iput(pool->inode);
394 }
395
396 /* Initializes the z3fold header of a newly allocated z3fold page */
397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 struct z3fold_pool *pool, gfp_t gfp)
399 {
400 struct z3fold_header *zhdr = page_address(page);
401 struct z3fold_buddy_slots *slots;
402
403 INIT_LIST_HEAD(&page->lru);
404 clear_bit(PAGE_HEADLESS, &page->private);
405 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 clear_bit(NEEDS_COMPACTING, &page->private);
407 clear_bit(PAGE_STALE, &page->private);
408 clear_bit(PAGE_CLAIMED, &page->private);
409 if (headless)
410 return zhdr;
411
412 slots = alloc_slots(pool, gfp);
413 if (!slots)
414 return NULL;
415
416 spin_lock_init(&zhdr->page_lock);
417 kref_init(&zhdr->refcount);
418 zhdr->first_chunks = 0;
419 zhdr->middle_chunks = 0;
420 zhdr->last_chunks = 0;
421 zhdr->first_num = 0;
422 zhdr->start_middle = 0;
423 zhdr->cpu = -1;
424 zhdr->foreign_handles = 0;
425 zhdr->mapped_count = 0;
426 zhdr->slots = slots;
427 zhdr->pool = pool;
428 INIT_LIST_HEAD(&zhdr->buddy);
429 INIT_WORK(&zhdr->work, compact_page_work);
430 return zhdr;
431 }
432
433 /* Resets the struct page fields and frees the page */
434 static void free_z3fold_page(struct page *page, bool headless)
435 {
436 if (!headless) {
437 lock_page(page);
438 __ClearPageMovable(page);
439 unlock_page(page);
440 }
441 ClearPagePrivate(page);
442 __free_page(page);
443 }
444
445 /* Helper function to build the index */
446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
447 {
448 return (bud + zhdr->first_num) & BUDDY_MASK;
449 }
450
451 /*
452 * Encodes the handle of a particular buddy within a z3fold page
453 * Pool lock should be held as this function accesses first_num
454 */
455 static unsigned long __encode_handle(struct z3fold_header *zhdr,
456 struct z3fold_buddy_slots *slots,
457 enum buddy bud)
458 {
459 unsigned long h = (unsigned long)zhdr;
460 int idx = 0;
461
462 /*
463 * For a headless page, its handle is its pointer with the extra
464 * PAGE_HEADLESS bit set
465 */
466 if (bud == HEADLESS)
467 return h | (1 << PAGE_HEADLESS);
468
469 /* otherwise, return pointer to encoded handle */
470 idx = __idx(zhdr, bud);
471 h += idx;
472 if (bud == LAST)
473 h |= (zhdr->last_chunks << BUDDY_SHIFT);
474
475 write_lock(&slots->lock);
476 slots->slot[idx] = h;
477 write_unlock(&slots->lock);
478 return (unsigned long)&slots->slot[idx];
479 }
480
481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
482 {
483 return __encode_handle(zhdr, zhdr->slots, bud);
484 }
485
486 /* only for LAST bud, returns zero otherwise */
487 static unsigned short handle_to_chunks(unsigned long handle)
488 {
489 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 unsigned long addr;
491
492 read_lock(&slots->lock);
493 addr = *(unsigned long *)handle;
494 read_unlock(&slots->lock);
495 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
496 }
497
498 /*
499 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
500 * but that doesn't matter. because the masking will result in the
501 * correct buddy number.
502 */
503 static enum buddy handle_to_buddy(unsigned long handle)
504 {
505 struct z3fold_header *zhdr;
506 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
507 unsigned long addr;
508
509 read_lock(&slots->lock);
510 WARN_ON(handle & (1 << PAGE_HEADLESS));
511 addr = *(unsigned long *)handle;
512 read_unlock(&slots->lock);
513 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
514 return (addr - zhdr->first_num) & BUDDY_MASK;
515 }
516
517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
518 {
519 return zhdr->pool;
520 }
521
522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
523 {
524 struct page *page = virt_to_page(zhdr);
525 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
526
527 WARN_ON(!list_empty(&zhdr->buddy));
528 set_bit(PAGE_STALE, &page->private);
529 clear_bit(NEEDS_COMPACTING, &page->private);
530 spin_lock(&pool->lock);
531 if (!list_empty(&page->lru))
532 list_del_init(&page->lru);
533 spin_unlock(&pool->lock);
534
535 if (locked)
536 z3fold_page_unlock(zhdr);
537
538 spin_lock(&pool->stale_lock);
539 list_add(&zhdr->buddy, &pool->stale);
540 queue_work(pool->release_wq, &pool->work);
541 spin_unlock(&pool->stale_lock);
542 }
543
544 static void __attribute__((__unused__))
545 release_z3fold_page(struct kref *ref)
546 {
547 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
548 refcount);
549 __release_z3fold_page(zhdr, false);
550 }
551
552 static void release_z3fold_page_locked(struct kref *ref)
553 {
554 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
555 refcount);
556 WARN_ON(z3fold_page_trylock(zhdr));
557 __release_z3fold_page(zhdr, true);
558 }
559
560 static void release_z3fold_page_locked_list(struct kref *ref)
561 {
562 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
563 refcount);
564 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
565
566 spin_lock(&pool->lock);
567 list_del_init(&zhdr->buddy);
568 spin_unlock(&pool->lock);
569
570 WARN_ON(z3fold_page_trylock(zhdr));
571 __release_z3fold_page(zhdr, true);
572 }
573
574 static void free_pages_work(struct work_struct *w)
575 {
576 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
577
578 spin_lock(&pool->stale_lock);
579 while (!list_empty(&pool->stale)) {
580 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
581 struct z3fold_header, buddy);
582 struct page *page = virt_to_page(zhdr);
583
584 list_del(&zhdr->buddy);
585 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
586 continue;
587 spin_unlock(&pool->stale_lock);
588 cancel_work_sync(&zhdr->work);
589 free_z3fold_page(page, false);
590 cond_resched();
591 spin_lock(&pool->stale_lock);
592 }
593 spin_unlock(&pool->stale_lock);
594 }
595
596 /*
597 * Returns the number of free chunks in a z3fold page.
598 * NB: can't be used with HEADLESS pages.
599 */
600 static int num_free_chunks(struct z3fold_header *zhdr)
601 {
602 int nfree;
603 /*
604 * If there is a middle object, pick up the bigger free space
605 * either before or after it. Otherwise just subtract the number
606 * of chunks occupied by the first and the last objects.
607 */
608 if (zhdr->middle_chunks != 0) {
609 int nfree_before = zhdr->first_chunks ?
610 0 : zhdr->start_middle - ZHDR_CHUNKS;
611 int nfree_after = zhdr->last_chunks ?
612 0 : TOTAL_CHUNKS -
613 (zhdr->start_middle + zhdr->middle_chunks);
614 nfree = max(nfree_before, nfree_after);
615 } else
616 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
617 return nfree;
618 }
619
620 /* Add to the appropriate unbuddied list */
621 static inline void add_to_unbuddied(struct z3fold_pool *pool,
622 struct z3fold_header *zhdr)
623 {
624 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
625 zhdr->middle_chunks == 0) {
626 struct list_head *unbuddied;
627 int freechunks = num_free_chunks(zhdr);
628
629 migrate_disable();
630 unbuddied = this_cpu_ptr(pool->unbuddied);
631 spin_lock(&pool->lock);
632 list_add(&zhdr->buddy, &unbuddied[freechunks]);
633 spin_unlock(&pool->lock);
634 zhdr->cpu = smp_processor_id();
635 migrate_enable();
636 }
637 }
638
639 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
640 {
641 enum buddy bud = HEADLESS;
642
643 if (zhdr->middle_chunks) {
644 if (!zhdr->first_chunks &&
645 chunks <= zhdr->start_middle - ZHDR_CHUNKS)
646 bud = FIRST;
647 else if (!zhdr->last_chunks)
648 bud = LAST;
649 } else {
650 if (!zhdr->first_chunks)
651 bud = FIRST;
652 else if (!zhdr->last_chunks)
653 bud = LAST;
654 else
655 bud = MIDDLE;
656 }
657
658 return bud;
659 }
660
661 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
662 unsigned short dst_chunk)
663 {
664 void *beg = zhdr;
665 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
666 beg + (zhdr->start_middle << CHUNK_SHIFT),
667 zhdr->middle_chunks << CHUNK_SHIFT);
668 }
669
670 static inline bool buddy_single(struct z3fold_header *zhdr)
671 {
672 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
673 (zhdr->first_chunks && zhdr->last_chunks) ||
674 (zhdr->middle_chunks && zhdr->last_chunks));
675 }
676
677 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
678 {
679 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
680 void *p = zhdr;
681 unsigned long old_handle = 0;
682 size_t sz = 0;
683 struct z3fold_header *new_zhdr = NULL;
684 int first_idx = __idx(zhdr, FIRST);
685 int middle_idx = __idx(zhdr, MIDDLE);
686 int last_idx = __idx(zhdr, LAST);
687 unsigned short *moved_chunks = NULL;
688
689 /*
690 * No need to protect slots here -- all the slots are "local" and
691 * the page lock is already taken
692 */
693 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
694 p += ZHDR_SIZE_ALIGNED;
695 sz = zhdr->first_chunks << CHUNK_SHIFT;
696 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
697 moved_chunks = &zhdr->first_chunks;
698 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
699 p += zhdr->start_middle << CHUNK_SHIFT;
700 sz = zhdr->middle_chunks << CHUNK_SHIFT;
701 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
702 moved_chunks = &zhdr->middle_chunks;
703 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
704 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
705 sz = zhdr->last_chunks << CHUNK_SHIFT;
706 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
707 moved_chunks = &zhdr->last_chunks;
708 }
709
710 if (sz > 0) {
711 enum buddy new_bud = HEADLESS;
712 short chunks = size_to_chunks(sz);
713 void *q;
714
715 new_zhdr = __z3fold_alloc(pool, sz, false);
716 if (!new_zhdr)
717 return NULL;
718
719 if (WARN_ON(new_zhdr == zhdr))
720 goto out_fail;
721
722 new_bud = get_free_buddy(new_zhdr, chunks);
723 q = new_zhdr;
724 switch (new_bud) {
725 case FIRST:
726 new_zhdr->first_chunks = chunks;
727 q += ZHDR_SIZE_ALIGNED;
728 break;
729 case MIDDLE:
730 new_zhdr->middle_chunks = chunks;
731 new_zhdr->start_middle =
732 new_zhdr->first_chunks + ZHDR_CHUNKS;
733 q += new_zhdr->start_middle << CHUNK_SHIFT;
734 break;
735 case LAST:
736 new_zhdr->last_chunks = chunks;
737 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
738 break;
739 default:
740 goto out_fail;
741 }
742 new_zhdr->foreign_handles++;
743 memcpy(q, p, sz);
744 write_lock(&zhdr->slots->lock);
745 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
746 __idx(new_zhdr, new_bud);
747 if (new_bud == LAST)
748 *(unsigned long *)old_handle |=
749 (new_zhdr->last_chunks << BUDDY_SHIFT);
750 write_unlock(&zhdr->slots->lock);
751 add_to_unbuddied(pool, new_zhdr);
752 z3fold_page_unlock(new_zhdr);
753
754 *moved_chunks = 0;
755 }
756
757 return new_zhdr;
758
759 out_fail:
760 if (new_zhdr) {
761 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
762 atomic64_dec(&pool->pages_nr);
763 else {
764 add_to_unbuddied(pool, new_zhdr);
765 z3fold_page_unlock(new_zhdr);
766 }
767 }
768 return NULL;
769
770 }
771
772 #define BIG_CHUNK_GAP 3
773 /* Has to be called with lock held */
774 static int z3fold_compact_page(struct z3fold_header *zhdr)
775 {
776 struct page *page = virt_to_page(zhdr);
777
778 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
779 return 0; /* can't move middle chunk, it's used */
780
781 if (unlikely(PageIsolated(page)))
782 return 0;
783
784 if (zhdr->middle_chunks == 0)
785 return 0; /* nothing to compact */
786
787 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
788 /* move to the beginning */
789 mchunk_memmove(zhdr, ZHDR_CHUNKS);
790 zhdr->first_chunks = zhdr->middle_chunks;
791 zhdr->middle_chunks = 0;
792 zhdr->start_middle = 0;
793 zhdr->first_num++;
794 return 1;
795 }
796
797 /*
798 * moving data is expensive, so let's only do that if
799 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
800 */
801 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
802 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
803 BIG_CHUNK_GAP) {
804 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
805 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
806 return 1;
807 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
808 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
809 + zhdr->middle_chunks) >=
810 BIG_CHUNK_GAP) {
811 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
812 zhdr->middle_chunks;
813 mchunk_memmove(zhdr, new_start);
814 zhdr->start_middle = new_start;
815 return 1;
816 }
817
818 return 0;
819 }
820
821 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
822 {
823 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
824 struct page *page;
825
826 page = virt_to_page(zhdr);
827 if (locked)
828 WARN_ON(z3fold_page_trylock(zhdr));
829 else
830 z3fold_page_lock(zhdr);
831 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
832 z3fold_page_unlock(zhdr);
833 return;
834 }
835 spin_lock(&pool->lock);
836 list_del_init(&zhdr->buddy);
837 spin_unlock(&pool->lock);
838
839 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
840 atomic64_dec(&pool->pages_nr);
841 return;
842 }
843
844 if (test_bit(PAGE_STALE, &page->private) ||
845 test_and_set_bit(PAGE_CLAIMED, &page->private)) {
846 z3fold_page_unlock(zhdr);
847 return;
848 }
849
850 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
851 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
852 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
853 atomic64_dec(&pool->pages_nr);
854 else {
855 clear_bit(PAGE_CLAIMED, &page->private);
856 z3fold_page_unlock(zhdr);
857 }
858 return;
859 }
860
861 z3fold_compact_page(zhdr);
862 add_to_unbuddied(pool, zhdr);
863 clear_bit(PAGE_CLAIMED, &page->private);
864 z3fold_page_unlock(zhdr);
865 }
866
867 static void compact_page_work(struct work_struct *w)
868 {
869 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
870 work);
871
872 do_compact_page(zhdr, false);
873 }
874
875 /* returns _locked_ z3fold page header or NULL */
876 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
877 size_t size, bool can_sleep)
878 {
879 struct z3fold_header *zhdr = NULL;
880 struct page *page;
881 struct list_head *unbuddied;
882 int chunks = size_to_chunks(size), i;
883
884 lookup:
885 migrate_disable();
886 /* First, try to find an unbuddied z3fold page. */
887 unbuddied = this_cpu_ptr(pool->unbuddied);
888 for_each_unbuddied_list(i, chunks) {
889 struct list_head *l = &unbuddied[i];
890
891 zhdr = list_first_entry_or_null(READ_ONCE(l),
892 struct z3fold_header, buddy);
893
894 if (!zhdr)
895 continue;
896
897 /* Re-check under lock. */
898 spin_lock(&pool->lock);
899 l = &unbuddied[i];
900 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
901 struct z3fold_header, buddy)) ||
902 !z3fold_page_trylock(zhdr)) {
903 spin_unlock(&pool->lock);
904 zhdr = NULL;
905 migrate_enable();
906 if (can_sleep)
907 cond_resched();
908 goto lookup;
909 }
910 list_del_init(&zhdr->buddy);
911 zhdr->cpu = -1;
912 spin_unlock(&pool->lock);
913
914 page = virt_to_page(zhdr);
915 if (test_bit(NEEDS_COMPACTING, &page->private) ||
916 test_bit(PAGE_CLAIMED, &page->private)) {
917 z3fold_page_unlock(zhdr);
918 zhdr = NULL;
919 migrate_enable();
920 if (can_sleep)
921 cond_resched();
922 goto lookup;
923 }
924
925 /*
926 * this page could not be removed from its unbuddied
927 * list while pool lock was held, and then we've taken
928 * page lock so kref_put could not be called before
929 * we got here, so it's safe to just call kref_get()
930 */
931 kref_get(&zhdr->refcount);
932 break;
933 }
934 migrate_enable();
935
936 if (!zhdr) {
937 int cpu;
938
939 /* look for _exact_ match on other cpus' lists */
940 for_each_online_cpu(cpu) {
941 struct list_head *l;
942
943 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
944 spin_lock(&pool->lock);
945 l = &unbuddied[chunks];
946
947 zhdr = list_first_entry_or_null(READ_ONCE(l),
948 struct z3fold_header, buddy);
949
950 if (!zhdr || !z3fold_page_trylock(zhdr)) {
951 spin_unlock(&pool->lock);
952 zhdr = NULL;
953 continue;
954 }
955 list_del_init(&zhdr->buddy);
956 zhdr->cpu = -1;
957 spin_unlock(&pool->lock);
958
959 page = virt_to_page(zhdr);
960 if (test_bit(NEEDS_COMPACTING, &page->private) ||
961 test_bit(PAGE_CLAIMED, &page->private)) {
962 z3fold_page_unlock(zhdr);
963 zhdr = NULL;
964 if (can_sleep)
965 cond_resched();
966 continue;
967 }
968 kref_get(&zhdr->refcount);
969 break;
970 }
971 }
972
973 if (zhdr && !zhdr->slots)
974 zhdr->slots = alloc_slots(pool,
975 can_sleep ? GFP_NOIO : GFP_ATOMIC);
976 return zhdr;
977 }
978
979 /*
980 * API Functions
981 */
982
983 /**
984 * z3fold_create_pool() - create a new z3fold pool
985 * @name: pool name
986 * @gfp: gfp flags when allocating the z3fold pool structure
987 * @ops: user-defined operations for the z3fold pool
988 *
989 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
990 * failed.
991 */
992 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
993 const struct z3fold_ops *ops)
994 {
995 struct z3fold_pool *pool = NULL;
996 int i, cpu;
997
998 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
999 if (!pool)
1000 goto out;
1001 pool->c_handle = kmem_cache_create("z3fold_handle",
1002 sizeof(struct z3fold_buddy_slots),
1003 SLOTS_ALIGN, 0, NULL);
1004 if (!pool->c_handle)
1005 goto out_c;
1006 spin_lock_init(&pool->lock);
1007 spin_lock_init(&pool->stale_lock);
1008 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1009 if (!pool->unbuddied)
1010 goto out_pool;
1011 for_each_possible_cpu(cpu) {
1012 struct list_head *unbuddied =
1013 per_cpu_ptr(pool->unbuddied, cpu);
1014 for_each_unbuddied_list(i, 0)
1015 INIT_LIST_HEAD(&unbuddied[i]);
1016 }
1017 INIT_LIST_HEAD(&pool->lru);
1018 INIT_LIST_HEAD(&pool->stale);
1019 atomic64_set(&pool->pages_nr, 0);
1020 pool->name = name;
1021 pool->compact_wq = create_singlethread_workqueue(pool->name);
1022 if (!pool->compact_wq)
1023 goto out_unbuddied;
1024 pool->release_wq = create_singlethread_workqueue(pool->name);
1025 if (!pool->release_wq)
1026 goto out_wq;
1027 if (z3fold_register_migration(pool))
1028 goto out_rwq;
1029 INIT_WORK(&pool->work, free_pages_work);
1030 pool->ops = ops;
1031 return pool;
1032
1033 out_rwq:
1034 destroy_workqueue(pool->release_wq);
1035 out_wq:
1036 destroy_workqueue(pool->compact_wq);
1037 out_unbuddied:
1038 free_percpu(pool->unbuddied);
1039 out_pool:
1040 kmem_cache_destroy(pool->c_handle);
1041 out_c:
1042 kfree(pool);
1043 out:
1044 return NULL;
1045 }
1046
1047 /**
1048 * z3fold_destroy_pool() - destroys an existing z3fold pool
1049 * @pool: the z3fold pool to be destroyed
1050 *
1051 * The pool should be emptied before this function is called.
1052 */
1053 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1054 {
1055 kmem_cache_destroy(pool->c_handle);
1056
1057 /*
1058 * We need to destroy pool->compact_wq before pool->release_wq,
1059 * as any pending work on pool->compact_wq will call
1060 * queue_work(pool->release_wq, &pool->work).
1061 *
1062 * There are still outstanding pages until both workqueues are drained,
1063 * so we cannot unregister migration until then.
1064 */
1065
1066 destroy_workqueue(pool->compact_wq);
1067 destroy_workqueue(pool->release_wq);
1068 z3fold_unregister_migration(pool);
1069 free_percpu(pool->unbuddied);
1070 kfree(pool);
1071 }
1072
1073 /**
1074 * z3fold_alloc() - allocates a region of a given size
1075 * @pool: z3fold pool from which to allocate
1076 * @size: size in bytes of the desired allocation
1077 * @gfp: gfp flags used if the pool needs to grow
1078 * @handle: handle of the new allocation
1079 *
1080 * This function will attempt to find a free region in the pool large enough to
1081 * satisfy the allocation request. A search of the unbuddied lists is
1082 * performed first. If no suitable free region is found, then a new page is
1083 * allocated and added to the pool to satisfy the request.
1084 *
1085 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1086 * as z3fold pool pages.
1087 *
1088 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1089 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1090 * a new page.
1091 */
1092 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1093 unsigned long *handle)
1094 {
1095 int chunks = size_to_chunks(size);
1096 struct z3fold_header *zhdr = NULL;
1097 struct page *page = NULL;
1098 enum buddy bud;
1099 bool can_sleep = gfpflags_allow_blocking(gfp);
1100
1101 if (!size)
1102 return -EINVAL;
1103
1104 if (size > PAGE_SIZE)
1105 return -ENOSPC;
1106
1107 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1108 bud = HEADLESS;
1109 else {
1110 retry:
1111 zhdr = __z3fold_alloc(pool, size, can_sleep);
1112 if (zhdr) {
1113 bud = get_free_buddy(zhdr, chunks);
1114 if (bud == HEADLESS) {
1115 if (kref_put(&zhdr->refcount,
1116 release_z3fold_page_locked))
1117 atomic64_dec(&pool->pages_nr);
1118 else
1119 z3fold_page_unlock(zhdr);
1120 pr_err("No free chunks in unbuddied\n");
1121 WARN_ON(1);
1122 goto retry;
1123 }
1124 page = virt_to_page(zhdr);
1125 goto found;
1126 }
1127 bud = FIRST;
1128 }
1129
1130 page = NULL;
1131 if (can_sleep) {
1132 spin_lock(&pool->stale_lock);
1133 zhdr = list_first_entry_or_null(&pool->stale,
1134 struct z3fold_header, buddy);
1135 /*
1136 * Before allocating a page, let's see if we can take one from
1137 * the stale pages list. cancel_work_sync() can sleep so we
1138 * limit this case to the contexts where we can sleep
1139 */
1140 if (zhdr) {
1141 list_del(&zhdr->buddy);
1142 spin_unlock(&pool->stale_lock);
1143 cancel_work_sync(&zhdr->work);
1144 page = virt_to_page(zhdr);
1145 } else {
1146 spin_unlock(&pool->stale_lock);
1147 }
1148 }
1149 if (!page)
1150 page = alloc_page(gfp);
1151
1152 if (!page)
1153 return -ENOMEM;
1154
1155 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1156 if (!zhdr) {
1157 __free_page(page);
1158 return -ENOMEM;
1159 }
1160 atomic64_inc(&pool->pages_nr);
1161
1162 if (bud == HEADLESS) {
1163 set_bit(PAGE_HEADLESS, &page->private);
1164 goto headless;
1165 }
1166 if (can_sleep) {
1167 lock_page(page);
1168 __SetPageMovable(page, pool->inode->i_mapping);
1169 unlock_page(page);
1170 } else {
1171 if (trylock_page(page)) {
1172 __SetPageMovable(page, pool->inode->i_mapping);
1173 unlock_page(page);
1174 }
1175 }
1176 z3fold_page_lock(zhdr);
1177
1178 found:
1179 if (bud == FIRST)
1180 zhdr->first_chunks = chunks;
1181 else if (bud == LAST)
1182 zhdr->last_chunks = chunks;
1183 else {
1184 zhdr->middle_chunks = chunks;
1185 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1186 }
1187 add_to_unbuddied(pool, zhdr);
1188
1189 headless:
1190 spin_lock(&pool->lock);
1191 /* Add/move z3fold page to beginning of LRU */
1192 if (!list_empty(&page->lru))
1193 list_del(&page->lru);
1194
1195 list_add(&page->lru, &pool->lru);
1196
1197 *handle = encode_handle(zhdr, bud);
1198 spin_unlock(&pool->lock);
1199 if (bud != HEADLESS)
1200 z3fold_page_unlock(zhdr);
1201
1202 return 0;
1203 }
1204
1205 /**
1206 * z3fold_free() - frees the allocation associated with the given handle
1207 * @pool: pool in which the allocation resided
1208 * @handle: handle associated with the allocation returned by z3fold_alloc()
1209 *
1210 * In the case that the z3fold page in which the allocation resides is under
1211 * reclaim, as indicated by the PG_reclaim flag being set, this function
1212 * only sets the first|last_chunks to 0. The page is actually freed
1213 * once both buddies are evicted (see z3fold_reclaim_page() below).
1214 */
1215 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1216 {
1217 struct z3fold_header *zhdr;
1218 struct page *page;
1219 enum buddy bud;
1220 bool page_claimed;
1221
1222 zhdr = get_z3fold_header(handle);
1223 page = virt_to_page(zhdr);
1224 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1225
1226 if (test_bit(PAGE_HEADLESS, &page->private)) {
1227 /* if a headless page is under reclaim, just leave.
1228 * NB: we use test_and_set_bit for a reason: if the bit
1229 * has not been set before, we release this page
1230 * immediately so we don't care about its value any more.
1231 */
1232 if (!page_claimed) {
1233 spin_lock(&pool->lock);
1234 list_del(&page->lru);
1235 spin_unlock(&pool->lock);
1236 put_z3fold_header(zhdr);
1237 free_z3fold_page(page, true);
1238 atomic64_dec(&pool->pages_nr);
1239 }
1240 return;
1241 }
1242
1243 /* Non-headless case */
1244 bud = handle_to_buddy(handle);
1245
1246 switch (bud) {
1247 case FIRST:
1248 zhdr->first_chunks = 0;
1249 break;
1250 case MIDDLE:
1251 zhdr->middle_chunks = 0;
1252 break;
1253 case LAST:
1254 zhdr->last_chunks = 0;
1255 break;
1256 default:
1257 pr_err("%s: unknown bud %d\n", __func__, bud);
1258 WARN_ON(1);
1259 put_z3fold_header(zhdr);
1260 return;
1261 }
1262
1263 if (!page_claimed)
1264 free_handle(handle, zhdr);
1265 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1266 atomic64_dec(&pool->pages_nr);
1267 return;
1268 }
1269 if (page_claimed) {
1270 /* the page has not been claimed by us */
1271 z3fold_page_unlock(zhdr);
1272 return;
1273 }
1274 if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1275 put_z3fold_header(zhdr);
1276 clear_bit(PAGE_CLAIMED, &page->private);
1277 return;
1278 }
1279 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1280 spin_lock(&pool->lock);
1281 list_del_init(&zhdr->buddy);
1282 spin_unlock(&pool->lock);
1283 zhdr->cpu = -1;
1284 kref_get(&zhdr->refcount);
1285 clear_bit(PAGE_CLAIMED, &page->private);
1286 do_compact_page(zhdr, true);
1287 return;
1288 }
1289 kref_get(&zhdr->refcount);
1290 clear_bit(PAGE_CLAIMED, &page->private);
1291 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1292 put_z3fold_header(zhdr);
1293 }
1294
1295 /**
1296 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1297 * @pool: pool from which a page will attempt to be evicted
1298 * @retries: number of pages on the LRU list for which eviction will
1299 * be attempted before failing
1300 *
1301 * z3fold reclaim is different from normal system reclaim in that it is done
1302 * from the bottom, up. This is because only the bottom layer, z3fold, has
1303 * information on how the allocations are organized within each z3fold page.
1304 * This has the potential to create interesting locking situations between
1305 * z3fold and the user, however.
1306 *
1307 * To avoid these, this is how z3fold_reclaim_page() should be called:
1308 *
1309 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1310 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1311 * call the user-defined eviction handler with the pool and handle as
1312 * arguments.
1313 *
1314 * If the handle can not be evicted, the eviction handler should return
1315 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1316 * appropriate list and try the next z3fold page on the LRU up to
1317 * a user defined number of retries.
1318 *
1319 * If the handle is successfully evicted, the eviction handler should
1320 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1321 * contains logic to delay freeing the page if the page is under reclaim,
1322 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1323 *
1324 * If all buddies in the z3fold page are successfully evicted, then the
1325 * z3fold page can be freed.
1326 *
1327 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1328 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1329 * the retry limit was hit.
1330 */
1331 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1332 {
1333 int i, ret = -1;
1334 struct z3fold_header *zhdr = NULL;
1335 struct page *page = NULL;
1336 struct list_head *pos;
1337 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1338 struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1339
1340 rwlock_init(&slots.lock);
1341 slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1342
1343 spin_lock(&pool->lock);
1344 if (!pool->ops || !pool->ops->evict || retries == 0) {
1345 spin_unlock(&pool->lock);
1346 return -EINVAL;
1347 }
1348 for (i = 0; i < retries; i++) {
1349 if (list_empty(&pool->lru)) {
1350 spin_unlock(&pool->lock);
1351 return -EINVAL;
1352 }
1353 list_for_each_prev(pos, &pool->lru) {
1354 page = list_entry(pos, struct page, lru);
1355
1356 zhdr = page_address(page);
1357 if (test_bit(PAGE_HEADLESS, &page->private)) {
1358 /*
1359 * For non-headless pages, we wait to do this
1360 * until we have the page lock to avoid racing
1361 * with __z3fold_alloc(). Headless pages don't
1362 * have a lock (and __z3fold_alloc() will never
1363 * see them), but we still need to test and set
1364 * PAGE_CLAIMED to avoid racing with
1365 * z3fold_free(), so just do it now before
1366 * leaving the loop.
1367 */
1368 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1369 continue;
1370
1371 break;
1372 }
1373
1374 if (kref_get_unless_zero(&zhdr->refcount) == 0) {
1375 zhdr = NULL;
1376 break;
1377 }
1378 if (!z3fold_page_trylock(zhdr)) {
1379 if (kref_put(&zhdr->refcount,
1380 release_z3fold_page))
1381 atomic64_dec(&pool->pages_nr);
1382 zhdr = NULL;
1383 continue; /* can't evict at this point */
1384 }
1385
1386 /* test_and_set_bit is of course atomic, but we still
1387 * need to do it under page lock, otherwise checking
1388 * that bit in __z3fold_alloc wouldn't make sense
1389 */
1390 if (zhdr->foreign_handles ||
1391 test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1392 if (kref_put(&zhdr->refcount,
1393 release_z3fold_page_locked))
1394 atomic64_dec(&pool->pages_nr);
1395 else
1396 z3fold_page_unlock(zhdr);
1397 zhdr = NULL;
1398 continue; /* can't evict such page */
1399 }
1400 list_del_init(&zhdr->buddy);
1401 zhdr->cpu = -1;
1402 break;
1403 }
1404
1405 if (!zhdr)
1406 break;
1407
1408 list_del_init(&page->lru);
1409 spin_unlock(&pool->lock);
1410
1411 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1412 /*
1413 * We need encode the handles before unlocking, and
1414 * use our local slots structure because z3fold_free
1415 * can zero out zhdr->slots and we can't do much
1416 * about that
1417 */
1418 first_handle = 0;
1419 last_handle = 0;
1420 middle_handle = 0;
1421 memset(slots.slot, 0, sizeof(slots.slot));
1422 if (zhdr->first_chunks)
1423 first_handle = __encode_handle(zhdr, &slots,
1424 FIRST);
1425 if (zhdr->middle_chunks)
1426 middle_handle = __encode_handle(zhdr, &slots,
1427 MIDDLE);
1428 if (zhdr->last_chunks)
1429 last_handle = __encode_handle(zhdr, &slots,
1430 LAST);
1431 /*
1432 * it's safe to unlock here because we hold a
1433 * reference to this page
1434 */
1435 z3fold_page_unlock(zhdr);
1436 } else {
1437 first_handle = encode_handle(zhdr, HEADLESS);
1438 last_handle = middle_handle = 0;
1439 }
1440 /* Issue the eviction callback(s) */
1441 if (middle_handle) {
1442 ret = pool->ops->evict(pool, middle_handle);
1443 if (ret)
1444 goto next;
1445 }
1446 if (first_handle) {
1447 ret = pool->ops->evict(pool, first_handle);
1448 if (ret)
1449 goto next;
1450 }
1451 if (last_handle) {
1452 ret = pool->ops->evict(pool, last_handle);
1453 if (ret)
1454 goto next;
1455 }
1456 next:
1457 if (test_bit(PAGE_HEADLESS, &page->private)) {
1458 if (ret == 0) {
1459 free_z3fold_page(page, true);
1460 atomic64_dec(&pool->pages_nr);
1461 return 0;
1462 }
1463 spin_lock(&pool->lock);
1464 list_add(&page->lru, &pool->lru);
1465 spin_unlock(&pool->lock);
1466 clear_bit(PAGE_CLAIMED, &page->private);
1467 } else {
1468 struct z3fold_buddy_slots *slots = zhdr->slots;
1469 z3fold_page_lock(zhdr);
1470 if (kref_put(&zhdr->refcount,
1471 release_z3fold_page_locked)) {
1472 kmem_cache_free(pool->c_handle, slots);
1473 atomic64_dec(&pool->pages_nr);
1474 return 0;
1475 }
1476 /*
1477 * if we are here, the page is still not completely
1478 * free. Take the global pool lock then to be able
1479 * to add it back to the lru list
1480 */
1481 spin_lock(&pool->lock);
1482 list_add(&page->lru, &pool->lru);
1483 spin_unlock(&pool->lock);
1484 z3fold_page_unlock(zhdr);
1485 clear_bit(PAGE_CLAIMED, &page->private);
1486 }
1487
1488 /* We started off locked to we need to lock the pool back */
1489 spin_lock(&pool->lock);
1490 }
1491 spin_unlock(&pool->lock);
1492 return -EAGAIN;
1493 }
1494
1495 /**
1496 * z3fold_map() - maps the allocation associated with the given handle
1497 * @pool: pool in which the allocation resides
1498 * @handle: handle associated with the allocation to be mapped
1499 *
1500 * Extracts the buddy number from handle and constructs the pointer to the
1501 * correct starting chunk within the page.
1502 *
1503 * Returns: a pointer to the mapped allocation
1504 */
1505 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1506 {
1507 struct z3fold_header *zhdr;
1508 struct page *page;
1509 void *addr;
1510 enum buddy buddy;
1511
1512 zhdr = get_z3fold_header(handle);
1513 addr = zhdr;
1514 page = virt_to_page(zhdr);
1515
1516 if (test_bit(PAGE_HEADLESS, &page->private))
1517 goto out;
1518
1519 buddy = handle_to_buddy(handle);
1520 switch (buddy) {
1521 case FIRST:
1522 addr += ZHDR_SIZE_ALIGNED;
1523 break;
1524 case MIDDLE:
1525 addr += zhdr->start_middle << CHUNK_SHIFT;
1526 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1527 break;
1528 case LAST:
1529 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1530 break;
1531 default:
1532 pr_err("unknown buddy id %d\n", buddy);
1533 WARN_ON(1);
1534 addr = NULL;
1535 break;
1536 }
1537
1538 if (addr)
1539 zhdr->mapped_count++;
1540 out:
1541 put_z3fold_header(zhdr);
1542 return addr;
1543 }
1544
1545 /**
1546 * z3fold_unmap() - unmaps the allocation associated with the given handle
1547 * @pool: pool in which the allocation resides
1548 * @handle: handle associated with the allocation to be unmapped
1549 */
1550 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1551 {
1552 struct z3fold_header *zhdr;
1553 struct page *page;
1554 enum buddy buddy;
1555
1556 zhdr = get_z3fold_header(handle);
1557 page = virt_to_page(zhdr);
1558
1559 if (test_bit(PAGE_HEADLESS, &page->private))
1560 return;
1561
1562 buddy = handle_to_buddy(handle);
1563 if (buddy == MIDDLE)
1564 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1565 zhdr->mapped_count--;
1566 put_z3fold_header(zhdr);
1567 }
1568
1569 /**
1570 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1571 * @pool: pool whose size is being queried
1572 *
1573 * Returns: size in pages of the given pool.
1574 */
1575 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1576 {
1577 return atomic64_read(&pool->pages_nr);
1578 }
1579
1580 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1581 {
1582 struct z3fold_header *zhdr;
1583 struct z3fold_pool *pool;
1584
1585 VM_BUG_ON_PAGE(!PageMovable(page), page);
1586 VM_BUG_ON_PAGE(PageIsolated(page), page);
1587
1588 if (test_bit(PAGE_HEADLESS, &page->private))
1589 return false;
1590
1591 zhdr = page_address(page);
1592 z3fold_page_lock(zhdr);
1593 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1594 test_bit(PAGE_STALE, &page->private))
1595 goto out;
1596
1597 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1598 goto out;
1599
1600 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1601 goto out;
1602 pool = zhdr_to_pool(zhdr);
1603 spin_lock(&pool->lock);
1604 if (!list_empty(&zhdr->buddy))
1605 list_del_init(&zhdr->buddy);
1606 if (!list_empty(&page->lru))
1607 list_del_init(&page->lru);
1608 spin_unlock(&pool->lock);
1609
1610 kref_get(&zhdr->refcount);
1611 z3fold_page_unlock(zhdr);
1612 return true;
1613
1614 out:
1615 z3fold_page_unlock(zhdr);
1616 return false;
1617 }
1618
1619 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1620 struct page *page, enum migrate_mode mode)
1621 {
1622 struct z3fold_header *zhdr, *new_zhdr;
1623 struct z3fold_pool *pool;
1624 struct address_space *new_mapping;
1625
1626 VM_BUG_ON_PAGE(!PageMovable(page), page);
1627 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1628 VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1629 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1630
1631 zhdr = page_address(page);
1632 pool = zhdr_to_pool(zhdr);
1633
1634 if (!z3fold_page_trylock(zhdr))
1635 return -EAGAIN;
1636 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1637 z3fold_page_unlock(zhdr);
1638 clear_bit(PAGE_CLAIMED, &page->private);
1639 return -EBUSY;
1640 }
1641 if (work_pending(&zhdr->work)) {
1642 z3fold_page_unlock(zhdr);
1643 return -EAGAIN;
1644 }
1645 new_zhdr = page_address(newpage);
1646 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1647 newpage->private = page->private;
1648 page->private = 0;
1649 z3fold_page_unlock(zhdr);
1650 spin_lock_init(&new_zhdr->page_lock);
1651 INIT_WORK(&new_zhdr->work, compact_page_work);
1652 /*
1653 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1654 * so we only have to reinitialize it.
1655 */
1656 INIT_LIST_HEAD(&new_zhdr->buddy);
1657 new_mapping = page_mapping(page);
1658 __ClearPageMovable(page);
1659 ClearPagePrivate(page);
1660
1661 get_page(newpage);
1662 z3fold_page_lock(new_zhdr);
1663 if (new_zhdr->first_chunks)
1664 encode_handle(new_zhdr, FIRST);
1665 if (new_zhdr->last_chunks)
1666 encode_handle(new_zhdr, LAST);
1667 if (new_zhdr->middle_chunks)
1668 encode_handle(new_zhdr, MIDDLE);
1669 set_bit(NEEDS_COMPACTING, &newpage->private);
1670 new_zhdr->cpu = smp_processor_id();
1671 spin_lock(&pool->lock);
1672 list_add(&newpage->lru, &pool->lru);
1673 spin_unlock(&pool->lock);
1674 __SetPageMovable(newpage, new_mapping);
1675 z3fold_page_unlock(new_zhdr);
1676
1677 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1678
1679 page_mapcount_reset(page);
1680 clear_bit(PAGE_CLAIMED, &page->private);
1681 put_page(page);
1682 return 0;
1683 }
1684
1685 static void z3fold_page_putback(struct page *page)
1686 {
1687 struct z3fold_header *zhdr;
1688 struct z3fold_pool *pool;
1689
1690 zhdr = page_address(page);
1691 pool = zhdr_to_pool(zhdr);
1692
1693 z3fold_page_lock(zhdr);
1694 if (!list_empty(&zhdr->buddy))
1695 list_del_init(&zhdr->buddy);
1696 INIT_LIST_HEAD(&page->lru);
1697 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1698 atomic64_dec(&pool->pages_nr);
1699 return;
1700 }
1701 spin_lock(&pool->lock);
1702 list_add(&page->lru, &pool->lru);
1703 spin_unlock(&pool->lock);
1704 clear_bit(PAGE_CLAIMED, &page->private);
1705 z3fold_page_unlock(zhdr);
1706 }
1707
1708 static const struct address_space_operations z3fold_aops = {
1709 .isolate_page = z3fold_page_isolate,
1710 .migratepage = z3fold_page_migrate,
1711 .putback_page = z3fold_page_putback,
1712 };
1713
1714 /*****************
1715 * zpool
1716 ****************/
1717
1718 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1719 {
1720 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1721 return pool->zpool_ops->evict(pool->zpool, handle);
1722 else
1723 return -ENOENT;
1724 }
1725
1726 static const struct z3fold_ops z3fold_zpool_ops = {
1727 .evict = z3fold_zpool_evict
1728 };
1729
1730 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1731 const struct zpool_ops *zpool_ops,
1732 struct zpool *zpool)
1733 {
1734 struct z3fold_pool *pool;
1735
1736 pool = z3fold_create_pool(name, gfp,
1737 zpool_ops ? &z3fold_zpool_ops : NULL);
1738 if (pool) {
1739 pool->zpool = zpool;
1740 pool->zpool_ops = zpool_ops;
1741 }
1742 return pool;
1743 }
1744
1745 static void z3fold_zpool_destroy(void *pool)
1746 {
1747 z3fold_destroy_pool(pool);
1748 }
1749
1750 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1751 unsigned long *handle)
1752 {
1753 return z3fold_alloc(pool, size, gfp, handle);
1754 }
1755 static void z3fold_zpool_free(void *pool, unsigned long handle)
1756 {
1757 z3fold_free(pool, handle);
1758 }
1759
1760 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1761 unsigned int *reclaimed)
1762 {
1763 unsigned int total = 0;
1764 int ret = -EINVAL;
1765
1766 while (total < pages) {
1767 ret = z3fold_reclaim_page(pool, 8);
1768 if (ret < 0)
1769 break;
1770 total++;
1771 }
1772
1773 if (reclaimed)
1774 *reclaimed = total;
1775
1776 return ret;
1777 }
1778
1779 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1780 enum zpool_mapmode mm)
1781 {
1782 return z3fold_map(pool, handle);
1783 }
1784 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1785 {
1786 z3fold_unmap(pool, handle);
1787 }
1788
1789 static u64 z3fold_zpool_total_size(void *pool)
1790 {
1791 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1792 }
1793
1794 static struct zpool_driver z3fold_zpool_driver = {
1795 .type = "z3fold",
1796 .owner = THIS_MODULE,
1797 .create = z3fold_zpool_create,
1798 .destroy = z3fold_zpool_destroy,
1799 .malloc = z3fold_zpool_malloc,
1800 .free = z3fold_zpool_free,
1801 .shrink = z3fold_zpool_shrink,
1802 .map = z3fold_zpool_map,
1803 .unmap = z3fold_zpool_unmap,
1804 .total_size = z3fold_zpool_total_size,
1805 };
1806
1807 MODULE_ALIAS("zpool-z3fold");
1808
1809 static int __init init_z3fold(void)
1810 {
1811 int ret;
1812
1813 /* Make sure the z3fold header is not larger than the page size */
1814 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1815 ret = z3fold_mount();
1816 if (ret)
1817 return ret;
1818
1819 zpool_register_driver(&z3fold_zpool_driver);
1820
1821 return 0;
1822 }
1823
1824 static void __exit exit_z3fold(void)
1825 {
1826 z3fold_unmount();
1827 zpool_unregister_driver(&z3fold_zpool_driver);
1828 }
1829
1830 module_init(init_z3fold);
1831 module_exit(exit_z3fold);
1832
1833 MODULE_LICENSE("GPL");
1834 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1835 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");