]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/z3fold.c
Merge tag 'gfs2-for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[mirror_ubuntu-jammy-kernel.git] / mm / z3fold.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46
47 /*
48 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
49 * adjusting internal fragmentation. It also determines the number of
50 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
51 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
52 * in the beginning of an allocated page are occupied by z3fold header, so
53 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
54 * which shows the max number of free chunks in z3fold page, also there will
55 * be 63, or 62, respectively, freelists per pool.
56 */
57 #define NCHUNKS_ORDER 6
58
59 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
60 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
61 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
62 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
63 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
64 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
65
66 #define BUDDY_MASK (0x3)
67 #define BUDDY_SHIFT 2
68 #define SLOTS_ALIGN (0x40)
69
70 /*****************
71 * Structures
72 *****************/
73 struct z3fold_pool;
74 struct z3fold_ops {
75 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
76 };
77
78 enum buddy {
79 HEADLESS = 0,
80 FIRST,
81 MIDDLE,
82 LAST,
83 BUDDIES_MAX = LAST
84 };
85
86 struct z3fold_buddy_slots {
87 /*
88 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
89 * be enough slots to hold all possible variants
90 */
91 unsigned long slot[BUDDY_MASK + 1];
92 unsigned long pool; /* back link + flags */
93 rwlock_t lock;
94 };
95 #define HANDLE_FLAG_MASK (0x03)
96
97 /*
98 * struct z3fold_header - z3fold page metadata occupying first chunks of each
99 * z3fold page, except for HEADLESS pages
100 * @buddy: links the z3fold page into the relevant list in the
101 * pool
102 * @page_lock: per-page lock
103 * @refcount: reference count for the z3fold page
104 * @work: work_struct for page layout optimization
105 * @slots: pointer to the structure holding buddy slots
106 * @pool: pointer to the containing pool
107 * @cpu: CPU which this page "belongs" to
108 * @first_chunks: the size of the first buddy in chunks, 0 if free
109 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
110 * @last_chunks: the size of the last buddy in chunks, 0 if free
111 * @first_num: the starting number (for the first handle)
112 * @mapped_count: the number of objects currently mapped
113 */
114 struct z3fold_header {
115 struct list_head buddy;
116 spinlock_t page_lock;
117 struct kref refcount;
118 struct work_struct work;
119 struct z3fold_buddy_slots *slots;
120 struct z3fold_pool *pool;
121 short cpu;
122 unsigned short first_chunks;
123 unsigned short middle_chunks;
124 unsigned short last_chunks;
125 unsigned short start_middle;
126 unsigned short first_num:2;
127 unsigned short mapped_count:2;
128 unsigned short foreign_handles:2;
129 };
130
131 /**
132 * struct z3fold_pool - stores metadata for each z3fold pool
133 * @name: pool name
134 * @lock: protects pool unbuddied/lru lists
135 * @stale_lock: protects pool stale page list
136 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
137 * buddies; the list each z3fold page is added to depends on
138 * the size of its free region.
139 * @lru: list tracking the z3fold pages in LRU order by most recently
140 * added buddy.
141 * @stale: list of pages marked for freeing
142 * @pages_nr: number of z3fold pages in the pool.
143 * @c_handle: cache for z3fold_buddy_slots allocation
144 * @ops: pointer to a structure of user defined operations specified at
145 * pool creation time.
146 * @compact_wq: workqueue for page layout background optimization
147 * @release_wq: workqueue for safe page release
148 * @work: work_struct for safe page release
149 * @inode: inode for z3fold pseudo filesystem
150 *
151 * This structure is allocated at pool creation time and maintains metadata
152 * pertaining to a particular z3fold pool.
153 */
154 struct z3fold_pool {
155 const char *name;
156 spinlock_t lock;
157 spinlock_t stale_lock;
158 struct list_head *unbuddied;
159 struct list_head lru;
160 struct list_head stale;
161 atomic64_t pages_nr;
162 struct kmem_cache *c_handle;
163 const struct z3fold_ops *ops;
164 struct zpool *zpool;
165 const struct zpool_ops *zpool_ops;
166 struct workqueue_struct *compact_wq;
167 struct workqueue_struct *release_wq;
168 struct work_struct work;
169 struct inode *inode;
170 };
171
172 /*
173 * Internal z3fold page flags
174 */
175 enum z3fold_page_flags {
176 PAGE_HEADLESS = 0,
177 MIDDLE_CHUNK_MAPPED,
178 NEEDS_COMPACTING,
179 PAGE_STALE,
180 PAGE_CLAIMED, /* by either reclaim or free */
181 };
182
183 /*
184 * handle flags, go under HANDLE_FLAG_MASK
185 */
186 enum z3fold_handle_flags {
187 HANDLES_ORPHANED = 0,
188 };
189
190 /*
191 * Forward declarations
192 */
193 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
194 static void compact_page_work(struct work_struct *w);
195
196 /*****************
197 * Helpers
198 *****************/
199
200 /* Converts an allocation size in bytes to size in z3fold chunks */
201 static int size_to_chunks(size_t size)
202 {
203 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
204 }
205
206 #define for_each_unbuddied_list(_iter, _begin) \
207 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
208
209 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
210 gfp_t gfp)
211 {
212 struct z3fold_buddy_slots *slots;
213
214 slots = kmem_cache_alloc(pool->c_handle,
215 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
216
217 if (slots) {
218 memset(slots->slot, 0, sizeof(slots->slot));
219 slots->pool = (unsigned long)pool;
220 rwlock_init(&slots->lock);
221 }
222
223 return slots;
224 }
225
226 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
227 {
228 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
229 }
230
231 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
232 {
233 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
234 }
235
236 /* Lock a z3fold page */
237 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
238 {
239 spin_lock(&zhdr->page_lock);
240 }
241
242 /* Try to lock a z3fold page */
243 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
244 {
245 return spin_trylock(&zhdr->page_lock);
246 }
247
248 /* Unlock a z3fold page */
249 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
250 {
251 spin_unlock(&zhdr->page_lock);
252 }
253
254
255 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
256 bool lock)
257 {
258 struct z3fold_buddy_slots *slots;
259 struct z3fold_header *zhdr;
260 int locked = 0;
261
262 if (!(handle & (1 << PAGE_HEADLESS))) {
263 slots = handle_to_slots(handle);
264 do {
265 unsigned long addr;
266
267 read_lock(&slots->lock);
268 addr = *(unsigned long *)handle;
269 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
270 if (lock)
271 locked = z3fold_page_trylock(zhdr);
272 read_unlock(&slots->lock);
273 if (locked)
274 break;
275 cpu_relax();
276 } while (lock);
277 } else {
278 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
279 }
280
281 return zhdr;
282 }
283
284 /* Returns the z3fold page where a given handle is stored */
285 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
286 {
287 return __get_z3fold_header(h, false);
288 }
289
290 /* return locked z3fold page if it's not headless */
291 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
292 {
293 return __get_z3fold_header(h, true);
294 }
295
296 static inline void put_z3fold_header(struct z3fold_header *zhdr)
297 {
298 struct page *page = virt_to_page(zhdr);
299
300 if (!test_bit(PAGE_HEADLESS, &page->private))
301 z3fold_page_unlock(zhdr);
302 }
303
304 static inline void free_handle(unsigned long handle)
305 {
306 struct z3fold_buddy_slots *slots;
307 struct z3fold_header *zhdr;
308 int i;
309 bool is_free;
310
311 if (handle & (1 << PAGE_HEADLESS))
312 return;
313
314 if (WARN_ON(*(unsigned long *)handle == 0))
315 return;
316
317 zhdr = handle_to_z3fold_header(handle);
318 slots = handle_to_slots(handle);
319 write_lock(&slots->lock);
320 *(unsigned long *)handle = 0;
321 write_unlock(&slots->lock);
322 if (zhdr->slots == slots)
323 return; /* simple case, nothing else to do */
324
325 /* we are freeing a foreign handle if we are here */
326 zhdr->foreign_handles--;
327 is_free = true;
328 read_lock(&slots->lock);
329 if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
330 read_unlock(&slots->lock);
331 return;
332 }
333 for (i = 0; i <= BUDDY_MASK; i++) {
334 if (slots->slot[i]) {
335 is_free = false;
336 break;
337 }
338 }
339 read_unlock(&slots->lock);
340
341 if (is_free) {
342 struct z3fold_pool *pool = slots_to_pool(slots);
343
344 kmem_cache_free(pool->c_handle, slots);
345 }
346 }
347
348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352
353 static struct file_system_type z3fold_fs = {
354 .name = "z3fold",
355 .init_fs_context = z3fold_init_fs_context,
356 .kill_sb = kill_anon_super,
357 };
358
359 static struct vfsmount *z3fold_mnt;
360 static int z3fold_mount(void)
361 {
362 int ret = 0;
363
364 z3fold_mnt = kern_mount(&z3fold_fs);
365 if (IS_ERR(z3fold_mnt))
366 ret = PTR_ERR(z3fold_mnt);
367
368 return ret;
369 }
370
371 static void z3fold_unmount(void)
372 {
373 kern_unmount(z3fold_mnt);
374 }
375
376 static const struct address_space_operations z3fold_aops;
377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 if (IS_ERR(pool->inode)) {
381 pool->inode = NULL;
382 return 1;
383 }
384
385 pool->inode->i_mapping->private_data = pool;
386 pool->inode->i_mapping->a_ops = &z3fold_aops;
387 return 0;
388 }
389
390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 if (pool->inode)
393 iput(pool->inode);
394 }
395
396 /* Initializes the z3fold header of a newly allocated z3fold page */
397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 struct z3fold_pool *pool, gfp_t gfp)
399 {
400 struct z3fold_header *zhdr = page_address(page);
401 struct z3fold_buddy_slots *slots;
402
403 INIT_LIST_HEAD(&page->lru);
404 clear_bit(PAGE_HEADLESS, &page->private);
405 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 clear_bit(NEEDS_COMPACTING, &page->private);
407 clear_bit(PAGE_STALE, &page->private);
408 clear_bit(PAGE_CLAIMED, &page->private);
409 if (headless)
410 return zhdr;
411
412 slots = alloc_slots(pool, gfp);
413 if (!slots)
414 return NULL;
415
416 spin_lock_init(&zhdr->page_lock);
417 kref_init(&zhdr->refcount);
418 zhdr->first_chunks = 0;
419 zhdr->middle_chunks = 0;
420 zhdr->last_chunks = 0;
421 zhdr->first_num = 0;
422 zhdr->start_middle = 0;
423 zhdr->cpu = -1;
424 zhdr->foreign_handles = 0;
425 zhdr->slots = slots;
426 zhdr->pool = pool;
427 INIT_LIST_HEAD(&zhdr->buddy);
428 INIT_WORK(&zhdr->work, compact_page_work);
429 return zhdr;
430 }
431
432 /* Resets the struct page fields and frees the page */
433 static void free_z3fold_page(struct page *page, bool headless)
434 {
435 if (!headless) {
436 lock_page(page);
437 __ClearPageMovable(page);
438 unlock_page(page);
439 }
440 ClearPagePrivate(page);
441 __free_page(page);
442 }
443
444 /* Helper function to build the index */
445 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
446 {
447 return (bud + zhdr->first_num) & BUDDY_MASK;
448 }
449
450 /*
451 * Encodes the handle of a particular buddy within a z3fold page
452 * Pool lock should be held as this function accesses first_num
453 */
454 static unsigned long __encode_handle(struct z3fold_header *zhdr,
455 struct z3fold_buddy_slots *slots,
456 enum buddy bud)
457 {
458 unsigned long h = (unsigned long)zhdr;
459 int idx = 0;
460
461 /*
462 * For a headless page, its handle is its pointer with the extra
463 * PAGE_HEADLESS bit set
464 */
465 if (bud == HEADLESS)
466 return h | (1 << PAGE_HEADLESS);
467
468 /* otherwise, return pointer to encoded handle */
469 idx = __idx(zhdr, bud);
470 h += idx;
471 if (bud == LAST)
472 h |= (zhdr->last_chunks << BUDDY_SHIFT);
473
474 write_lock(&slots->lock);
475 slots->slot[idx] = h;
476 write_unlock(&slots->lock);
477 return (unsigned long)&slots->slot[idx];
478 }
479
480 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
481 {
482 return __encode_handle(zhdr, zhdr->slots, bud);
483 }
484
485 /* only for LAST bud, returns zero otherwise */
486 static unsigned short handle_to_chunks(unsigned long handle)
487 {
488 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
489 unsigned long addr;
490
491 read_lock(&slots->lock);
492 addr = *(unsigned long *)handle;
493 read_unlock(&slots->lock);
494 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
495 }
496
497 /*
498 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
499 * but that doesn't matter. because the masking will result in the
500 * correct buddy number.
501 */
502 static enum buddy handle_to_buddy(unsigned long handle)
503 {
504 struct z3fold_header *zhdr;
505 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
506 unsigned long addr;
507
508 read_lock(&slots->lock);
509 WARN_ON(handle & (1 << PAGE_HEADLESS));
510 addr = *(unsigned long *)handle;
511 read_unlock(&slots->lock);
512 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
513 return (addr - zhdr->first_num) & BUDDY_MASK;
514 }
515
516 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
517 {
518 return zhdr->pool;
519 }
520
521 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
522 {
523 struct page *page = virt_to_page(zhdr);
524 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
525 bool is_free = true;
526 int i;
527
528 WARN_ON(!list_empty(&zhdr->buddy));
529 set_bit(PAGE_STALE, &page->private);
530 clear_bit(NEEDS_COMPACTING, &page->private);
531 spin_lock(&pool->lock);
532 if (!list_empty(&page->lru))
533 list_del_init(&page->lru);
534 spin_unlock(&pool->lock);
535
536 /* If there are no foreign handles, free the handles array */
537 read_lock(&zhdr->slots->lock);
538 for (i = 0; i <= BUDDY_MASK; i++) {
539 if (zhdr->slots->slot[i]) {
540 is_free = false;
541 break;
542 }
543 }
544 if (!is_free)
545 set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
546 read_unlock(&zhdr->slots->lock);
547
548 if (is_free)
549 kmem_cache_free(pool->c_handle, zhdr->slots);
550
551 if (locked)
552 z3fold_page_unlock(zhdr);
553
554 spin_lock(&pool->stale_lock);
555 list_add(&zhdr->buddy, &pool->stale);
556 queue_work(pool->release_wq, &pool->work);
557 spin_unlock(&pool->stale_lock);
558 }
559
560 static void __attribute__((__unused__))
561 release_z3fold_page(struct kref *ref)
562 {
563 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
564 refcount);
565 __release_z3fold_page(zhdr, false);
566 }
567
568 static void release_z3fold_page_locked(struct kref *ref)
569 {
570 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
571 refcount);
572 WARN_ON(z3fold_page_trylock(zhdr));
573 __release_z3fold_page(zhdr, true);
574 }
575
576 static void release_z3fold_page_locked_list(struct kref *ref)
577 {
578 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
579 refcount);
580 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
581
582 spin_lock(&pool->lock);
583 list_del_init(&zhdr->buddy);
584 spin_unlock(&pool->lock);
585
586 WARN_ON(z3fold_page_trylock(zhdr));
587 __release_z3fold_page(zhdr, true);
588 }
589
590 static void free_pages_work(struct work_struct *w)
591 {
592 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
593
594 spin_lock(&pool->stale_lock);
595 while (!list_empty(&pool->stale)) {
596 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
597 struct z3fold_header, buddy);
598 struct page *page = virt_to_page(zhdr);
599
600 list_del(&zhdr->buddy);
601 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
602 continue;
603 spin_unlock(&pool->stale_lock);
604 cancel_work_sync(&zhdr->work);
605 free_z3fold_page(page, false);
606 cond_resched();
607 spin_lock(&pool->stale_lock);
608 }
609 spin_unlock(&pool->stale_lock);
610 }
611
612 /*
613 * Returns the number of free chunks in a z3fold page.
614 * NB: can't be used with HEADLESS pages.
615 */
616 static int num_free_chunks(struct z3fold_header *zhdr)
617 {
618 int nfree;
619 /*
620 * If there is a middle object, pick up the bigger free space
621 * either before or after it. Otherwise just subtract the number
622 * of chunks occupied by the first and the last objects.
623 */
624 if (zhdr->middle_chunks != 0) {
625 int nfree_before = zhdr->first_chunks ?
626 0 : zhdr->start_middle - ZHDR_CHUNKS;
627 int nfree_after = zhdr->last_chunks ?
628 0 : TOTAL_CHUNKS -
629 (zhdr->start_middle + zhdr->middle_chunks);
630 nfree = max(nfree_before, nfree_after);
631 } else
632 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
633 return nfree;
634 }
635
636 /* Add to the appropriate unbuddied list */
637 static inline void add_to_unbuddied(struct z3fold_pool *pool,
638 struct z3fold_header *zhdr)
639 {
640 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
641 zhdr->middle_chunks == 0) {
642 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
643
644 int freechunks = num_free_chunks(zhdr);
645 spin_lock(&pool->lock);
646 list_add(&zhdr->buddy, &unbuddied[freechunks]);
647 spin_unlock(&pool->lock);
648 zhdr->cpu = smp_processor_id();
649 put_cpu_ptr(pool->unbuddied);
650 }
651 }
652
653 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
654 unsigned short dst_chunk)
655 {
656 void *beg = zhdr;
657 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
658 beg + (zhdr->start_middle << CHUNK_SHIFT),
659 zhdr->middle_chunks << CHUNK_SHIFT);
660 }
661
662 static inline bool buddy_single(struct z3fold_header *zhdr)
663 {
664 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
665 (zhdr->first_chunks && zhdr->last_chunks) ||
666 (zhdr->middle_chunks && zhdr->last_chunks));
667 }
668
669 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
670 {
671 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
672 void *p = zhdr;
673 unsigned long old_handle = 0;
674 size_t sz = 0;
675 struct z3fold_header *new_zhdr = NULL;
676 int first_idx = __idx(zhdr, FIRST);
677 int middle_idx = __idx(zhdr, MIDDLE);
678 int last_idx = __idx(zhdr, LAST);
679 unsigned short *moved_chunks = NULL;
680
681 /*
682 * No need to protect slots here -- all the slots are "local" and
683 * the page lock is already taken
684 */
685 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
686 p += ZHDR_SIZE_ALIGNED;
687 sz = zhdr->first_chunks << CHUNK_SHIFT;
688 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
689 moved_chunks = &zhdr->first_chunks;
690 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
691 p += zhdr->start_middle << CHUNK_SHIFT;
692 sz = zhdr->middle_chunks << CHUNK_SHIFT;
693 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
694 moved_chunks = &zhdr->middle_chunks;
695 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
696 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
697 sz = zhdr->last_chunks << CHUNK_SHIFT;
698 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
699 moved_chunks = &zhdr->last_chunks;
700 }
701
702 if (sz > 0) {
703 enum buddy new_bud = HEADLESS;
704 short chunks = size_to_chunks(sz);
705 void *q;
706
707 new_zhdr = __z3fold_alloc(pool, sz, false);
708 if (!new_zhdr)
709 return NULL;
710
711 if (WARN_ON(new_zhdr == zhdr))
712 goto out_fail;
713
714 if (new_zhdr->first_chunks == 0) {
715 if (new_zhdr->middle_chunks != 0 &&
716 chunks >= new_zhdr->start_middle) {
717 new_bud = LAST;
718 } else {
719 new_bud = FIRST;
720 }
721 } else if (new_zhdr->last_chunks == 0) {
722 new_bud = LAST;
723 } else if (new_zhdr->middle_chunks == 0) {
724 new_bud = MIDDLE;
725 }
726 q = new_zhdr;
727 switch (new_bud) {
728 case FIRST:
729 new_zhdr->first_chunks = chunks;
730 q += ZHDR_SIZE_ALIGNED;
731 break;
732 case MIDDLE:
733 new_zhdr->middle_chunks = chunks;
734 new_zhdr->start_middle =
735 new_zhdr->first_chunks + ZHDR_CHUNKS;
736 q += new_zhdr->start_middle << CHUNK_SHIFT;
737 break;
738 case LAST:
739 new_zhdr->last_chunks = chunks;
740 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
741 break;
742 default:
743 goto out_fail;
744 }
745 new_zhdr->foreign_handles++;
746 memcpy(q, p, sz);
747 write_lock(&zhdr->slots->lock);
748 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
749 __idx(new_zhdr, new_bud);
750 if (new_bud == LAST)
751 *(unsigned long *)old_handle |=
752 (new_zhdr->last_chunks << BUDDY_SHIFT);
753 write_unlock(&zhdr->slots->lock);
754 add_to_unbuddied(pool, new_zhdr);
755 z3fold_page_unlock(new_zhdr);
756
757 *moved_chunks = 0;
758 }
759
760 return new_zhdr;
761
762 out_fail:
763 if (new_zhdr) {
764 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
765 atomic64_dec(&pool->pages_nr);
766 else {
767 add_to_unbuddied(pool, new_zhdr);
768 z3fold_page_unlock(new_zhdr);
769 }
770 }
771 return NULL;
772
773 }
774
775 #define BIG_CHUNK_GAP 3
776 /* Has to be called with lock held */
777 static int z3fold_compact_page(struct z3fold_header *zhdr)
778 {
779 struct page *page = virt_to_page(zhdr);
780
781 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
782 return 0; /* can't move middle chunk, it's used */
783
784 if (unlikely(PageIsolated(page)))
785 return 0;
786
787 if (zhdr->middle_chunks == 0)
788 return 0; /* nothing to compact */
789
790 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
791 /* move to the beginning */
792 mchunk_memmove(zhdr, ZHDR_CHUNKS);
793 zhdr->first_chunks = zhdr->middle_chunks;
794 zhdr->middle_chunks = 0;
795 zhdr->start_middle = 0;
796 zhdr->first_num++;
797 return 1;
798 }
799
800 /*
801 * moving data is expensive, so let's only do that if
802 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
803 */
804 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
805 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
806 BIG_CHUNK_GAP) {
807 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
808 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
809 return 1;
810 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
811 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
812 + zhdr->middle_chunks) >=
813 BIG_CHUNK_GAP) {
814 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
815 zhdr->middle_chunks;
816 mchunk_memmove(zhdr, new_start);
817 zhdr->start_middle = new_start;
818 return 1;
819 }
820
821 return 0;
822 }
823
824 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
825 {
826 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
827 struct page *page;
828
829 page = virt_to_page(zhdr);
830 if (locked)
831 WARN_ON(z3fold_page_trylock(zhdr));
832 else
833 z3fold_page_lock(zhdr);
834 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
835 z3fold_page_unlock(zhdr);
836 return;
837 }
838 spin_lock(&pool->lock);
839 list_del_init(&zhdr->buddy);
840 spin_unlock(&pool->lock);
841
842 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
843 atomic64_dec(&pool->pages_nr);
844 return;
845 }
846
847 if (unlikely(PageIsolated(page) ||
848 test_bit(PAGE_CLAIMED, &page->private) ||
849 test_bit(PAGE_STALE, &page->private))) {
850 z3fold_page_unlock(zhdr);
851 return;
852 }
853
854 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
855 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
856 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
857 atomic64_dec(&pool->pages_nr);
858 else
859 z3fold_page_unlock(zhdr);
860 return;
861 }
862
863 z3fold_compact_page(zhdr);
864 add_to_unbuddied(pool, zhdr);
865 z3fold_page_unlock(zhdr);
866 }
867
868 static void compact_page_work(struct work_struct *w)
869 {
870 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
871 work);
872
873 do_compact_page(zhdr, false);
874 }
875
876 /* returns _locked_ z3fold page header or NULL */
877 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
878 size_t size, bool can_sleep)
879 {
880 struct z3fold_header *zhdr = NULL;
881 struct page *page;
882 struct list_head *unbuddied;
883 int chunks = size_to_chunks(size), i;
884
885 lookup:
886 /* First, try to find an unbuddied z3fold page. */
887 unbuddied = get_cpu_ptr(pool->unbuddied);
888 for_each_unbuddied_list(i, chunks) {
889 struct list_head *l = &unbuddied[i];
890
891 zhdr = list_first_entry_or_null(READ_ONCE(l),
892 struct z3fold_header, buddy);
893
894 if (!zhdr)
895 continue;
896
897 /* Re-check under lock. */
898 spin_lock(&pool->lock);
899 l = &unbuddied[i];
900 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
901 struct z3fold_header, buddy)) ||
902 !z3fold_page_trylock(zhdr)) {
903 spin_unlock(&pool->lock);
904 zhdr = NULL;
905 put_cpu_ptr(pool->unbuddied);
906 if (can_sleep)
907 cond_resched();
908 goto lookup;
909 }
910 list_del_init(&zhdr->buddy);
911 zhdr->cpu = -1;
912 spin_unlock(&pool->lock);
913
914 page = virt_to_page(zhdr);
915 if (test_bit(NEEDS_COMPACTING, &page->private) ||
916 test_bit(PAGE_CLAIMED, &page->private)) {
917 z3fold_page_unlock(zhdr);
918 zhdr = NULL;
919 put_cpu_ptr(pool->unbuddied);
920 if (can_sleep)
921 cond_resched();
922 goto lookup;
923 }
924
925 /*
926 * this page could not be removed from its unbuddied
927 * list while pool lock was held, and then we've taken
928 * page lock so kref_put could not be called before
929 * we got here, so it's safe to just call kref_get()
930 */
931 kref_get(&zhdr->refcount);
932 break;
933 }
934 put_cpu_ptr(pool->unbuddied);
935
936 if (!zhdr) {
937 int cpu;
938
939 /* look for _exact_ match on other cpus' lists */
940 for_each_online_cpu(cpu) {
941 struct list_head *l;
942
943 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
944 spin_lock(&pool->lock);
945 l = &unbuddied[chunks];
946
947 zhdr = list_first_entry_or_null(READ_ONCE(l),
948 struct z3fold_header, buddy);
949
950 if (!zhdr || !z3fold_page_trylock(zhdr)) {
951 spin_unlock(&pool->lock);
952 zhdr = NULL;
953 continue;
954 }
955 list_del_init(&zhdr->buddy);
956 zhdr->cpu = -1;
957 spin_unlock(&pool->lock);
958
959 page = virt_to_page(zhdr);
960 if (test_bit(NEEDS_COMPACTING, &page->private) ||
961 test_bit(PAGE_CLAIMED, &page->private)) {
962 z3fold_page_unlock(zhdr);
963 zhdr = NULL;
964 if (can_sleep)
965 cond_resched();
966 continue;
967 }
968 kref_get(&zhdr->refcount);
969 break;
970 }
971 }
972
973 return zhdr;
974 }
975
976 /*
977 * API Functions
978 */
979
980 /**
981 * z3fold_create_pool() - create a new z3fold pool
982 * @name: pool name
983 * @gfp: gfp flags when allocating the z3fold pool structure
984 * @ops: user-defined operations for the z3fold pool
985 *
986 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
987 * failed.
988 */
989 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
990 const struct z3fold_ops *ops)
991 {
992 struct z3fold_pool *pool = NULL;
993 int i, cpu;
994
995 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
996 if (!pool)
997 goto out;
998 pool->c_handle = kmem_cache_create("z3fold_handle",
999 sizeof(struct z3fold_buddy_slots),
1000 SLOTS_ALIGN, 0, NULL);
1001 if (!pool->c_handle)
1002 goto out_c;
1003 spin_lock_init(&pool->lock);
1004 spin_lock_init(&pool->stale_lock);
1005 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1006 if (!pool->unbuddied)
1007 goto out_pool;
1008 for_each_possible_cpu(cpu) {
1009 struct list_head *unbuddied =
1010 per_cpu_ptr(pool->unbuddied, cpu);
1011 for_each_unbuddied_list(i, 0)
1012 INIT_LIST_HEAD(&unbuddied[i]);
1013 }
1014 INIT_LIST_HEAD(&pool->lru);
1015 INIT_LIST_HEAD(&pool->stale);
1016 atomic64_set(&pool->pages_nr, 0);
1017 pool->name = name;
1018 pool->compact_wq = create_singlethread_workqueue(pool->name);
1019 if (!pool->compact_wq)
1020 goto out_unbuddied;
1021 pool->release_wq = create_singlethread_workqueue(pool->name);
1022 if (!pool->release_wq)
1023 goto out_wq;
1024 if (z3fold_register_migration(pool))
1025 goto out_rwq;
1026 INIT_WORK(&pool->work, free_pages_work);
1027 pool->ops = ops;
1028 return pool;
1029
1030 out_rwq:
1031 destroy_workqueue(pool->release_wq);
1032 out_wq:
1033 destroy_workqueue(pool->compact_wq);
1034 out_unbuddied:
1035 free_percpu(pool->unbuddied);
1036 out_pool:
1037 kmem_cache_destroy(pool->c_handle);
1038 out_c:
1039 kfree(pool);
1040 out:
1041 return NULL;
1042 }
1043
1044 /**
1045 * z3fold_destroy_pool() - destroys an existing z3fold pool
1046 * @pool: the z3fold pool to be destroyed
1047 *
1048 * The pool should be emptied before this function is called.
1049 */
1050 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1051 {
1052 kmem_cache_destroy(pool->c_handle);
1053
1054 /*
1055 * We need to destroy pool->compact_wq before pool->release_wq,
1056 * as any pending work on pool->compact_wq will call
1057 * queue_work(pool->release_wq, &pool->work).
1058 *
1059 * There are still outstanding pages until both workqueues are drained,
1060 * so we cannot unregister migration until then.
1061 */
1062
1063 destroy_workqueue(pool->compact_wq);
1064 destroy_workqueue(pool->release_wq);
1065 z3fold_unregister_migration(pool);
1066 kfree(pool);
1067 }
1068
1069 /**
1070 * z3fold_alloc() - allocates a region of a given size
1071 * @pool: z3fold pool from which to allocate
1072 * @size: size in bytes of the desired allocation
1073 * @gfp: gfp flags used if the pool needs to grow
1074 * @handle: handle of the new allocation
1075 *
1076 * This function will attempt to find a free region in the pool large enough to
1077 * satisfy the allocation request. A search of the unbuddied lists is
1078 * performed first. If no suitable free region is found, then a new page is
1079 * allocated and added to the pool to satisfy the request.
1080 *
1081 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1082 * as z3fold pool pages.
1083 *
1084 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1085 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1086 * a new page.
1087 */
1088 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1089 unsigned long *handle)
1090 {
1091 int chunks = size_to_chunks(size);
1092 struct z3fold_header *zhdr = NULL;
1093 struct page *page = NULL;
1094 enum buddy bud;
1095 bool can_sleep = gfpflags_allow_blocking(gfp);
1096
1097 if (!size)
1098 return -EINVAL;
1099
1100 if (size > PAGE_SIZE)
1101 return -ENOSPC;
1102
1103 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1104 bud = HEADLESS;
1105 else {
1106 retry:
1107 zhdr = __z3fold_alloc(pool, size, can_sleep);
1108 if (zhdr) {
1109 if (zhdr->first_chunks == 0) {
1110 if (zhdr->middle_chunks != 0 &&
1111 chunks >= zhdr->start_middle)
1112 bud = LAST;
1113 else
1114 bud = FIRST;
1115 } else if (zhdr->last_chunks == 0)
1116 bud = LAST;
1117 else if (zhdr->middle_chunks == 0)
1118 bud = MIDDLE;
1119 else {
1120 if (kref_put(&zhdr->refcount,
1121 release_z3fold_page_locked))
1122 atomic64_dec(&pool->pages_nr);
1123 else
1124 z3fold_page_unlock(zhdr);
1125 pr_err("No free chunks in unbuddied\n");
1126 WARN_ON(1);
1127 goto retry;
1128 }
1129 page = virt_to_page(zhdr);
1130 goto found;
1131 }
1132 bud = FIRST;
1133 }
1134
1135 page = NULL;
1136 if (can_sleep) {
1137 spin_lock(&pool->stale_lock);
1138 zhdr = list_first_entry_or_null(&pool->stale,
1139 struct z3fold_header, buddy);
1140 /*
1141 * Before allocating a page, let's see if we can take one from
1142 * the stale pages list. cancel_work_sync() can sleep so we
1143 * limit this case to the contexts where we can sleep
1144 */
1145 if (zhdr) {
1146 list_del(&zhdr->buddy);
1147 spin_unlock(&pool->stale_lock);
1148 cancel_work_sync(&zhdr->work);
1149 page = virt_to_page(zhdr);
1150 } else {
1151 spin_unlock(&pool->stale_lock);
1152 }
1153 }
1154 if (!page)
1155 page = alloc_page(gfp);
1156
1157 if (!page)
1158 return -ENOMEM;
1159
1160 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1161 if (!zhdr) {
1162 __free_page(page);
1163 return -ENOMEM;
1164 }
1165 atomic64_inc(&pool->pages_nr);
1166
1167 if (bud == HEADLESS) {
1168 set_bit(PAGE_HEADLESS, &page->private);
1169 goto headless;
1170 }
1171 if (can_sleep) {
1172 lock_page(page);
1173 __SetPageMovable(page, pool->inode->i_mapping);
1174 unlock_page(page);
1175 } else {
1176 if (trylock_page(page)) {
1177 __SetPageMovable(page, pool->inode->i_mapping);
1178 unlock_page(page);
1179 }
1180 }
1181 z3fold_page_lock(zhdr);
1182
1183 found:
1184 if (bud == FIRST)
1185 zhdr->first_chunks = chunks;
1186 else if (bud == LAST)
1187 zhdr->last_chunks = chunks;
1188 else {
1189 zhdr->middle_chunks = chunks;
1190 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1191 }
1192 add_to_unbuddied(pool, zhdr);
1193
1194 headless:
1195 spin_lock(&pool->lock);
1196 /* Add/move z3fold page to beginning of LRU */
1197 if (!list_empty(&page->lru))
1198 list_del(&page->lru);
1199
1200 list_add(&page->lru, &pool->lru);
1201
1202 *handle = encode_handle(zhdr, bud);
1203 spin_unlock(&pool->lock);
1204 if (bud != HEADLESS)
1205 z3fold_page_unlock(zhdr);
1206
1207 return 0;
1208 }
1209
1210 /**
1211 * z3fold_free() - frees the allocation associated with the given handle
1212 * @pool: pool in which the allocation resided
1213 * @handle: handle associated with the allocation returned by z3fold_alloc()
1214 *
1215 * In the case that the z3fold page in which the allocation resides is under
1216 * reclaim, as indicated by the PG_reclaim flag being set, this function
1217 * only sets the first|last_chunks to 0. The page is actually freed
1218 * once both buddies are evicted (see z3fold_reclaim_page() below).
1219 */
1220 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1221 {
1222 struct z3fold_header *zhdr;
1223 struct page *page;
1224 enum buddy bud;
1225 bool page_claimed;
1226
1227 zhdr = get_z3fold_header(handle);
1228 page = virt_to_page(zhdr);
1229 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1230
1231 if (test_bit(PAGE_HEADLESS, &page->private)) {
1232 /* if a headless page is under reclaim, just leave.
1233 * NB: we use test_and_set_bit for a reason: if the bit
1234 * has not been set before, we release this page
1235 * immediately so we don't care about its value any more.
1236 */
1237 if (!page_claimed) {
1238 spin_lock(&pool->lock);
1239 list_del(&page->lru);
1240 spin_unlock(&pool->lock);
1241 put_z3fold_header(zhdr);
1242 free_z3fold_page(page, true);
1243 atomic64_dec(&pool->pages_nr);
1244 }
1245 return;
1246 }
1247
1248 /* Non-headless case */
1249 bud = handle_to_buddy(handle);
1250
1251 switch (bud) {
1252 case FIRST:
1253 zhdr->first_chunks = 0;
1254 break;
1255 case MIDDLE:
1256 zhdr->middle_chunks = 0;
1257 break;
1258 case LAST:
1259 zhdr->last_chunks = 0;
1260 break;
1261 default:
1262 pr_err("%s: unknown bud %d\n", __func__, bud);
1263 WARN_ON(1);
1264 put_z3fold_header(zhdr);
1265 clear_bit(PAGE_CLAIMED, &page->private);
1266 return;
1267 }
1268
1269 if (!page_claimed)
1270 free_handle(handle);
1271 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1272 atomic64_dec(&pool->pages_nr);
1273 return;
1274 }
1275 if (page_claimed) {
1276 /* the page has not been claimed by us */
1277 z3fold_page_unlock(zhdr);
1278 return;
1279 }
1280 if (unlikely(PageIsolated(page)) ||
1281 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1282 put_z3fold_header(zhdr);
1283 clear_bit(PAGE_CLAIMED, &page->private);
1284 return;
1285 }
1286 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1287 spin_lock(&pool->lock);
1288 list_del_init(&zhdr->buddy);
1289 spin_unlock(&pool->lock);
1290 zhdr->cpu = -1;
1291 kref_get(&zhdr->refcount);
1292 clear_bit(PAGE_CLAIMED, &page->private);
1293 do_compact_page(zhdr, true);
1294 return;
1295 }
1296 kref_get(&zhdr->refcount);
1297 clear_bit(PAGE_CLAIMED, &page->private);
1298 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1299 put_z3fold_header(zhdr);
1300 }
1301
1302 /**
1303 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1304 * @pool: pool from which a page will attempt to be evicted
1305 * @retries: number of pages on the LRU list for which eviction will
1306 * be attempted before failing
1307 *
1308 * z3fold reclaim is different from normal system reclaim in that it is done
1309 * from the bottom, up. This is because only the bottom layer, z3fold, has
1310 * information on how the allocations are organized within each z3fold page.
1311 * This has the potential to create interesting locking situations between
1312 * z3fold and the user, however.
1313 *
1314 * To avoid these, this is how z3fold_reclaim_page() should be called:
1315 *
1316 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1317 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1318 * call the user-defined eviction handler with the pool and handle as
1319 * arguments.
1320 *
1321 * If the handle can not be evicted, the eviction handler should return
1322 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1323 * appropriate list and try the next z3fold page on the LRU up to
1324 * a user defined number of retries.
1325 *
1326 * If the handle is successfully evicted, the eviction handler should
1327 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1328 * contains logic to delay freeing the page if the page is under reclaim,
1329 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1330 *
1331 * If all buddies in the z3fold page are successfully evicted, then the
1332 * z3fold page can be freed.
1333 *
1334 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1335 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1336 * the retry limit was hit.
1337 */
1338 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1339 {
1340 int i, ret = -1;
1341 struct z3fold_header *zhdr = NULL;
1342 struct page *page = NULL;
1343 struct list_head *pos;
1344 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1345
1346 spin_lock(&pool->lock);
1347 if (!pool->ops || !pool->ops->evict || retries == 0) {
1348 spin_unlock(&pool->lock);
1349 return -EINVAL;
1350 }
1351 for (i = 0; i < retries; i++) {
1352 if (list_empty(&pool->lru)) {
1353 spin_unlock(&pool->lock);
1354 return -EINVAL;
1355 }
1356 list_for_each_prev(pos, &pool->lru) {
1357 page = list_entry(pos, struct page, lru);
1358
1359 /* this bit could have been set by free, in which case
1360 * we pass over to the next page in the pool.
1361 */
1362 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1363 page = NULL;
1364 continue;
1365 }
1366
1367 if (unlikely(PageIsolated(page))) {
1368 clear_bit(PAGE_CLAIMED, &page->private);
1369 page = NULL;
1370 continue;
1371 }
1372 zhdr = page_address(page);
1373 if (test_bit(PAGE_HEADLESS, &page->private))
1374 break;
1375
1376 if (!z3fold_page_trylock(zhdr)) {
1377 clear_bit(PAGE_CLAIMED, &page->private);
1378 zhdr = NULL;
1379 continue; /* can't evict at this point */
1380 }
1381 if (zhdr->foreign_handles) {
1382 clear_bit(PAGE_CLAIMED, &page->private);
1383 z3fold_page_unlock(zhdr);
1384 zhdr = NULL;
1385 continue; /* can't evict such page */
1386 }
1387 kref_get(&zhdr->refcount);
1388 list_del_init(&zhdr->buddy);
1389 zhdr->cpu = -1;
1390 break;
1391 }
1392
1393 if (!zhdr)
1394 break;
1395
1396 list_del_init(&page->lru);
1397 spin_unlock(&pool->lock);
1398
1399 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1400 /*
1401 * We need encode the handles before unlocking, and
1402 * use our local slots structure because z3fold_free
1403 * can zero out zhdr->slots and we can't do much
1404 * about that
1405 */
1406 first_handle = 0;
1407 last_handle = 0;
1408 middle_handle = 0;
1409 if (zhdr->first_chunks)
1410 first_handle = encode_handle(zhdr, FIRST);
1411 if (zhdr->middle_chunks)
1412 middle_handle = encode_handle(zhdr, MIDDLE);
1413 if (zhdr->last_chunks)
1414 last_handle = encode_handle(zhdr, LAST);
1415 /*
1416 * it's safe to unlock here because we hold a
1417 * reference to this page
1418 */
1419 z3fold_page_unlock(zhdr);
1420 } else {
1421 first_handle = encode_handle(zhdr, HEADLESS);
1422 last_handle = middle_handle = 0;
1423 }
1424 /* Issue the eviction callback(s) */
1425 if (middle_handle) {
1426 ret = pool->ops->evict(pool, middle_handle);
1427 if (ret)
1428 goto next;
1429 free_handle(middle_handle);
1430 }
1431 if (first_handle) {
1432 ret = pool->ops->evict(pool, first_handle);
1433 if (ret)
1434 goto next;
1435 free_handle(first_handle);
1436 }
1437 if (last_handle) {
1438 ret = pool->ops->evict(pool, last_handle);
1439 if (ret)
1440 goto next;
1441 free_handle(last_handle);
1442 }
1443 next:
1444 if (test_bit(PAGE_HEADLESS, &page->private)) {
1445 if (ret == 0) {
1446 free_z3fold_page(page, true);
1447 atomic64_dec(&pool->pages_nr);
1448 return 0;
1449 }
1450 spin_lock(&pool->lock);
1451 list_add(&page->lru, &pool->lru);
1452 spin_unlock(&pool->lock);
1453 clear_bit(PAGE_CLAIMED, &page->private);
1454 } else {
1455 z3fold_page_lock(zhdr);
1456 if (kref_put(&zhdr->refcount,
1457 release_z3fold_page_locked)) {
1458 atomic64_dec(&pool->pages_nr);
1459 return 0;
1460 }
1461 /*
1462 * if we are here, the page is still not completely
1463 * free. Take the global pool lock then to be able
1464 * to add it back to the lru list
1465 */
1466 spin_lock(&pool->lock);
1467 list_add(&page->lru, &pool->lru);
1468 spin_unlock(&pool->lock);
1469 z3fold_page_unlock(zhdr);
1470 clear_bit(PAGE_CLAIMED, &page->private);
1471 }
1472
1473 /* We started off locked to we need to lock the pool back */
1474 spin_lock(&pool->lock);
1475 }
1476 spin_unlock(&pool->lock);
1477 return -EAGAIN;
1478 }
1479
1480 /**
1481 * z3fold_map() - maps the allocation associated with the given handle
1482 * @pool: pool in which the allocation resides
1483 * @handle: handle associated with the allocation to be mapped
1484 *
1485 * Extracts the buddy number from handle and constructs the pointer to the
1486 * correct starting chunk within the page.
1487 *
1488 * Returns: a pointer to the mapped allocation
1489 */
1490 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1491 {
1492 struct z3fold_header *zhdr;
1493 struct page *page;
1494 void *addr;
1495 enum buddy buddy;
1496
1497 zhdr = get_z3fold_header(handle);
1498 addr = zhdr;
1499 page = virt_to_page(zhdr);
1500
1501 if (test_bit(PAGE_HEADLESS, &page->private))
1502 goto out;
1503
1504 buddy = handle_to_buddy(handle);
1505 switch (buddy) {
1506 case FIRST:
1507 addr += ZHDR_SIZE_ALIGNED;
1508 break;
1509 case MIDDLE:
1510 addr += zhdr->start_middle << CHUNK_SHIFT;
1511 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1512 break;
1513 case LAST:
1514 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1515 break;
1516 default:
1517 pr_err("unknown buddy id %d\n", buddy);
1518 WARN_ON(1);
1519 addr = NULL;
1520 break;
1521 }
1522
1523 if (addr)
1524 zhdr->mapped_count++;
1525 out:
1526 put_z3fold_header(zhdr);
1527 return addr;
1528 }
1529
1530 /**
1531 * z3fold_unmap() - unmaps the allocation associated with the given handle
1532 * @pool: pool in which the allocation resides
1533 * @handle: handle associated with the allocation to be unmapped
1534 */
1535 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1536 {
1537 struct z3fold_header *zhdr;
1538 struct page *page;
1539 enum buddy buddy;
1540
1541 zhdr = get_z3fold_header(handle);
1542 page = virt_to_page(zhdr);
1543
1544 if (test_bit(PAGE_HEADLESS, &page->private))
1545 return;
1546
1547 buddy = handle_to_buddy(handle);
1548 if (buddy == MIDDLE)
1549 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1550 zhdr->mapped_count--;
1551 put_z3fold_header(zhdr);
1552 }
1553
1554 /**
1555 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1556 * @pool: pool whose size is being queried
1557 *
1558 * Returns: size in pages of the given pool.
1559 */
1560 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1561 {
1562 return atomic64_read(&pool->pages_nr);
1563 }
1564
1565 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1566 {
1567 struct z3fold_header *zhdr;
1568 struct z3fold_pool *pool;
1569
1570 VM_BUG_ON_PAGE(!PageMovable(page), page);
1571 VM_BUG_ON_PAGE(PageIsolated(page), page);
1572
1573 if (test_bit(PAGE_HEADLESS, &page->private) ||
1574 test_bit(PAGE_CLAIMED, &page->private))
1575 return false;
1576
1577 zhdr = page_address(page);
1578 z3fold_page_lock(zhdr);
1579 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1580 test_bit(PAGE_STALE, &page->private))
1581 goto out;
1582
1583 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1584 goto out;
1585
1586 pool = zhdr_to_pool(zhdr);
1587 spin_lock(&pool->lock);
1588 if (!list_empty(&zhdr->buddy))
1589 list_del_init(&zhdr->buddy);
1590 if (!list_empty(&page->lru))
1591 list_del_init(&page->lru);
1592 spin_unlock(&pool->lock);
1593
1594 kref_get(&zhdr->refcount);
1595 z3fold_page_unlock(zhdr);
1596 return true;
1597
1598 out:
1599 z3fold_page_unlock(zhdr);
1600 return false;
1601 }
1602
1603 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1604 struct page *page, enum migrate_mode mode)
1605 {
1606 struct z3fold_header *zhdr, *new_zhdr;
1607 struct z3fold_pool *pool;
1608 struct address_space *new_mapping;
1609
1610 VM_BUG_ON_PAGE(!PageMovable(page), page);
1611 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1612 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1613
1614 zhdr = page_address(page);
1615 pool = zhdr_to_pool(zhdr);
1616
1617 if (!z3fold_page_trylock(zhdr)) {
1618 return -EAGAIN;
1619 }
1620 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1621 z3fold_page_unlock(zhdr);
1622 return -EBUSY;
1623 }
1624 if (work_pending(&zhdr->work)) {
1625 z3fold_page_unlock(zhdr);
1626 return -EAGAIN;
1627 }
1628 new_zhdr = page_address(newpage);
1629 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1630 newpage->private = page->private;
1631 page->private = 0;
1632 z3fold_page_unlock(zhdr);
1633 spin_lock_init(&new_zhdr->page_lock);
1634 INIT_WORK(&new_zhdr->work, compact_page_work);
1635 /*
1636 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1637 * so we only have to reinitialize it.
1638 */
1639 INIT_LIST_HEAD(&new_zhdr->buddy);
1640 new_mapping = page_mapping(page);
1641 __ClearPageMovable(page);
1642 ClearPagePrivate(page);
1643
1644 get_page(newpage);
1645 z3fold_page_lock(new_zhdr);
1646 if (new_zhdr->first_chunks)
1647 encode_handle(new_zhdr, FIRST);
1648 if (new_zhdr->last_chunks)
1649 encode_handle(new_zhdr, LAST);
1650 if (new_zhdr->middle_chunks)
1651 encode_handle(new_zhdr, MIDDLE);
1652 set_bit(NEEDS_COMPACTING, &newpage->private);
1653 new_zhdr->cpu = smp_processor_id();
1654 spin_lock(&pool->lock);
1655 list_add(&newpage->lru, &pool->lru);
1656 spin_unlock(&pool->lock);
1657 __SetPageMovable(newpage, new_mapping);
1658 z3fold_page_unlock(new_zhdr);
1659
1660 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1661
1662 page_mapcount_reset(page);
1663 put_page(page);
1664 return 0;
1665 }
1666
1667 static void z3fold_page_putback(struct page *page)
1668 {
1669 struct z3fold_header *zhdr;
1670 struct z3fold_pool *pool;
1671
1672 zhdr = page_address(page);
1673 pool = zhdr_to_pool(zhdr);
1674
1675 z3fold_page_lock(zhdr);
1676 if (!list_empty(&zhdr->buddy))
1677 list_del_init(&zhdr->buddy);
1678 INIT_LIST_HEAD(&page->lru);
1679 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1680 atomic64_dec(&pool->pages_nr);
1681 return;
1682 }
1683 spin_lock(&pool->lock);
1684 list_add(&page->lru, &pool->lru);
1685 spin_unlock(&pool->lock);
1686 z3fold_page_unlock(zhdr);
1687 }
1688
1689 static const struct address_space_operations z3fold_aops = {
1690 .isolate_page = z3fold_page_isolate,
1691 .migratepage = z3fold_page_migrate,
1692 .putback_page = z3fold_page_putback,
1693 };
1694
1695 /*****************
1696 * zpool
1697 ****************/
1698
1699 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1700 {
1701 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1702 return pool->zpool_ops->evict(pool->zpool, handle);
1703 else
1704 return -ENOENT;
1705 }
1706
1707 static const struct z3fold_ops z3fold_zpool_ops = {
1708 .evict = z3fold_zpool_evict
1709 };
1710
1711 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1712 const struct zpool_ops *zpool_ops,
1713 struct zpool *zpool)
1714 {
1715 struct z3fold_pool *pool;
1716
1717 pool = z3fold_create_pool(name, gfp,
1718 zpool_ops ? &z3fold_zpool_ops : NULL);
1719 if (pool) {
1720 pool->zpool = zpool;
1721 pool->zpool_ops = zpool_ops;
1722 }
1723 return pool;
1724 }
1725
1726 static void z3fold_zpool_destroy(void *pool)
1727 {
1728 z3fold_destroy_pool(pool);
1729 }
1730
1731 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1732 unsigned long *handle)
1733 {
1734 return z3fold_alloc(pool, size, gfp, handle);
1735 }
1736 static void z3fold_zpool_free(void *pool, unsigned long handle)
1737 {
1738 z3fold_free(pool, handle);
1739 }
1740
1741 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1742 unsigned int *reclaimed)
1743 {
1744 unsigned int total = 0;
1745 int ret = -EINVAL;
1746
1747 while (total < pages) {
1748 ret = z3fold_reclaim_page(pool, 8);
1749 if (ret < 0)
1750 break;
1751 total++;
1752 }
1753
1754 if (reclaimed)
1755 *reclaimed = total;
1756
1757 return ret;
1758 }
1759
1760 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1761 enum zpool_mapmode mm)
1762 {
1763 return z3fold_map(pool, handle);
1764 }
1765 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1766 {
1767 z3fold_unmap(pool, handle);
1768 }
1769
1770 static u64 z3fold_zpool_total_size(void *pool)
1771 {
1772 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1773 }
1774
1775 static struct zpool_driver z3fold_zpool_driver = {
1776 .type = "z3fold",
1777 .owner = THIS_MODULE,
1778 .create = z3fold_zpool_create,
1779 .destroy = z3fold_zpool_destroy,
1780 .malloc = z3fold_zpool_malloc,
1781 .free = z3fold_zpool_free,
1782 .shrink = z3fold_zpool_shrink,
1783 .map = z3fold_zpool_map,
1784 .unmap = z3fold_zpool_unmap,
1785 .total_size = z3fold_zpool_total_size,
1786 };
1787
1788 MODULE_ALIAS("zpool-z3fold");
1789
1790 static int __init init_z3fold(void)
1791 {
1792 int ret;
1793
1794 /* Make sure the z3fold header is not larger than the page size */
1795 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1796 ret = z3fold_mount();
1797 if (ret)
1798 return ret;
1799
1800 zpool_register_driver(&z3fold_zpool_driver);
1801
1802 return 0;
1803 }
1804
1805 static void __exit exit_z3fold(void)
1806 {
1807 z3fold_unmount();
1808 zpool_unregister_driver(&z3fold_zpool_driver);
1809 }
1810
1811 module_init(init_z3fold);
1812 module_exit(exit_z3fold);
1813
1814 MODULE_LICENSE("GPL");
1815 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1816 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");