]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/z3fold.c
Merge tag 'mt76-for-kvalo-2021-04-12' of https://github.com/nbd168/wireless
[mirror_ubuntu-jammy-kernel.git] / mm / z3fold.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47
48 /*
49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50 * adjusting internal fragmentation. It also determines the number of
51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53 * in the beginning of an allocated page are occupied by z3fold header, so
54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55 * which shows the max number of free chunks in z3fold page, also there will
56 * be 63, or 62, respectively, freelists per pool.
57 */
58 #define NCHUNKS_ORDER 6
59
60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66
67 #define BUDDY_MASK (0x3)
68 #define BUDDY_SHIFT 2
69 #define SLOTS_ALIGN (0x40)
70
71 /*****************
72 * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78
79 enum buddy {
80 HEADLESS = 0,
81 FIRST,
82 MIDDLE,
83 LAST,
84 BUDDIES_MAX = LAST
85 };
86
87 struct z3fold_buddy_slots {
88 /*
89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 * be enough slots to hold all possible variants
91 */
92 unsigned long slot[BUDDY_MASK + 1];
93 unsigned long pool; /* back link */
94 rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK (0x03)
97
98 /*
99 * struct z3fold_header - z3fold page metadata occupying first chunks of each
100 * z3fold page, except for HEADLESS pages
101 * @buddy: links the z3fold page into the relevant list in the
102 * pool
103 * @page_lock: per-page lock
104 * @refcount: reference count for the z3fold page
105 * @work: work_struct for page layout optimization
106 * @slots: pointer to the structure holding buddy slots
107 * @pool: pointer to the containing pool
108 * @cpu: CPU which this page "belongs" to
109 * @first_chunks: the size of the first buddy in chunks, 0 if free
110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
111 * @last_chunks: the size of the last buddy in chunks, 0 if free
112 * @first_num: the starting number (for the first handle)
113 * @mapped_count: the number of objects currently mapped
114 */
115 struct z3fold_header {
116 struct list_head buddy;
117 spinlock_t page_lock;
118 struct kref refcount;
119 struct work_struct work;
120 struct z3fold_buddy_slots *slots;
121 struct z3fold_pool *pool;
122 short cpu;
123 unsigned short first_chunks;
124 unsigned short middle_chunks;
125 unsigned short last_chunks;
126 unsigned short start_middle;
127 unsigned short first_num:2;
128 unsigned short mapped_count:2;
129 unsigned short foreign_handles:2;
130 };
131
132 /**
133 * struct z3fold_pool - stores metadata for each z3fold pool
134 * @name: pool name
135 * @lock: protects pool unbuddied/lru lists
136 * @stale_lock: protects pool stale page list
137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
138 * buddies; the list each z3fold page is added to depends on
139 * the size of its free region.
140 * @lru: list tracking the z3fold pages in LRU order by most recently
141 * added buddy.
142 * @stale: list of pages marked for freeing
143 * @pages_nr: number of z3fold pages in the pool.
144 * @c_handle: cache for z3fold_buddy_slots allocation
145 * @ops: pointer to a structure of user defined operations specified at
146 * pool creation time.
147 * @compact_wq: workqueue for page layout background optimization
148 * @release_wq: workqueue for safe page release
149 * @work: work_struct for safe page release
150 * @inode: inode for z3fold pseudo filesystem
151 *
152 * This structure is allocated at pool creation time and maintains metadata
153 * pertaining to a particular z3fold pool.
154 */
155 struct z3fold_pool {
156 const char *name;
157 spinlock_t lock;
158 spinlock_t stale_lock;
159 struct list_head *unbuddied;
160 struct list_head lru;
161 struct list_head stale;
162 atomic64_t pages_nr;
163 struct kmem_cache *c_handle;
164 const struct z3fold_ops *ops;
165 struct zpool *zpool;
166 const struct zpool_ops *zpool_ops;
167 struct workqueue_struct *compact_wq;
168 struct workqueue_struct *release_wq;
169 struct work_struct work;
170 struct inode *inode;
171 };
172
173 /*
174 * Internal z3fold page flags
175 */
176 enum z3fold_page_flags {
177 PAGE_HEADLESS = 0,
178 MIDDLE_CHUNK_MAPPED,
179 NEEDS_COMPACTING,
180 PAGE_STALE,
181 PAGE_CLAIMED, /* by either reclaim or free */
182 };
183
184 /*
185 * handle flags, go under HANDLE_FLAG_MASK
186 */
187 enum z3fold_handle_flags {
188 HANDLES_NOFREE = 0,
189 };
190
191 /*
192 * Forward declarations
193 */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196
197 /*****************
198 * Helpers
199 *****************/
200
201 /* Converts an allocation size in bytes to size in z3fold chunks */
202 static int size_to_chunks(size_t size)
203 {
204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206
207 #define for_each_unbuddied_list(_iter, _begin) \
208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209
210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 gfp_t gfp)
212 {
213 struct z3fold_buddy_slots *slots;
214
215 slots = kmem_cache_zalloc(pool->c_handle,
216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217
218 if (slots) {
219 /* It will be freed separately in free_handle(). */
220 kmemleak_not_leak(slots);
221 slots->pool = (unsigned long)pool;
222 rwlock_init(&slots->lock);
223 }
224
225 return slots;
226 }
227
228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232
233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237
238 /* Lock a z3fold page */
239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 spin_lock(&zhdr->page_lock);
242 }
243
244 /* Try to lock a z3fold page */
245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 return spin_trylock(&zhdr->page_lock);
248 }
249
250 /* Unlock a z3fold page */
251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 spin_unlock(&zhdr->page_lock);
254 }
255
256
257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 bool lock)
259 {
260 struct z3fold_buddy_slots *slots;
261 struct z3fold_header *zhdr;
262 int locked = 0;
263
264 if (!(handle & (1 << PAGE_HEADLESS))) {
265 slots = handle_to_slots(handle);
266 do {
267 unsigned long addr;
268
269 read_lock(&slots->lock);
270 addr = *(unsigned long *)handle;
271 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 if (lock)
273 locked = z3fold_page_trylock(zhdr);
274 read_unlock(&slots->lock);
275 if (locked)
276 break;
277 cpu_relax();
278 } while (lock);
279 } else {
280 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 }
282
283 return zhdr;
284 }
285
286 /* Returns the z3fold page where a given handle is stored */
287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 return __get_z3fold_header(h, false);
290 }
291
292 /* return locked z3fold page if it's not headless */
293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 return __get_z3fold_header(h, true);
296 }
297
298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 struct page *page = virt_to_page(zhdr);
301
302 if (!test_bit(PAGE_HEADLESS, &page->private))
303 z3fold_page_unlock(zhdr);
304 }
305
306 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
307 {
308 struct z3fold_buddy_slots *slots;
309 int i;
310 bool is_free;
311
312 if (handle & (1 << PAGE_HEADLESS))
313 return;
314
315 if (WARN_ON(*(unsigned long *)handle == 0))
316 return;
317
318 slots = handle_to_slots(handle);
319 write_lock(&slots->lock);
320 *(unsigned long *)handle = 0;
321
322 if (test_bit(HANDLES_NOFREE, &slots->pool)) {
323 write_unlock(&slots->lock);
324 return; /* simple case, nothing else to do */
325 }
326
327 if (zhdr->slots != slots)
328 zhdr->foreign_handles--;
329
330 is_free = true;
331 for (i = 0; i <= BUDDY_MASK; i++) {
332 if (slots->slot[i]) {
333 is_free = false;
334 break;
335 }
336 }
337 write_unlock(&slots->lock);
338
339 if (is_free) {
340 struct z3fold_pool *pool = slots_to_pool(slots);
341
342 if (zhdr->slots == slots)
343 zhdr->slots = NULL;
344 kmem_cache_free(pool->c_handle, slots);
345 }
346 }
347
348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352
353 static struct file_system_type z3fold_fs = {
354 .name = "z3fold",
355 .init_fs_context = z3fold_init_fs_context,
356 .kill_sb = kill_anon_super,
357 };
358
359 static struct vfsmount *z3fold_mnt;
360 static int z3fold_mount(void)
361 {
362 int ret = 0;
363
364 z3fold_mnt = kern_mount(&z3fold_fs);
365 if (IS_ERR(z3fold_mnt))
366 ret = PTR_ERR(z3fold_mnt);
367
368 return ret;
369 }
370
371 static void z3fold_unmount(void)
372 {
373 kern_unmount(z3fold_mnt);
374 }
375
376 static const struct address_space_operations z3fold_aops;
377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 if (IS_ERR(pool->inode)) {
381 pool->inode = NULL;
382 return 1;
383 }
384
385 pool->inode->i_mapping->private_data = pool;
386 pool->inode->i_mapping->a_ops = &z3fold_aops;
387 return 0;
388 }
389
390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 if (pool->inode)
393 iput(pool->inode);
394 }
395
396 /* Initializes the z3fold header of a newly allocated z3fold page */
397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 struct z3fold_pool *pool, gfp_t gfp)
399 {
400 struct z3fold_header *zhdr = page_address(page);
401 struct z3fold_buddy_slots *slots;
402
403 INIT_LIST_HEAD(&page->lru);
404 clear_bit(PAGE_HEADLESS, &page->private);
405 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 clear_bit(NEEDS_COMPACTING, &page->private);
407 clear_bit(PAGE_STALE, &page->private);
408 clear_bit(PAGE_CLAIMED, &page->private);
409 if (headless)
410 return zhdr;
411
412 slots = alloc_slots(pool, gfp);
413 if (!slots)
414 return NULL;
415
416 memset(zhdr, 0, sizeof(*zhdr));
417 spin_lock_init(&zhdr->page_lock);
418 kref_init(&zhdr->refcount);
419 zhdr->cpu = -1;
420 zhdr->slots = slots;
421 zhdr->pool = pool;
422 INIT_LIST_HEAD(&zhdr->buddy);
423 INIT_WORK(&zhdr->work, compact_page_work);
424 return zhdr;
425 }
426
427 /* Resets the struct page fields and frees the page */
428 static void free_z3fold_page(struct page *page, bool headless)
429 {
430 if (!headless) {
431 lock_page(page);
432 __ClearPageMovable(page);
433 unlock_page(page);
434 }
435 ClearPagePrivate(page);
436 __free_page(page);
437 }
438
439 /* Helper function to build the index */
440 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
441 {
442 return (bud + zhdr->first_num) & BUDDY_MASK;
443 }
444
445 /*
446 * Encodes the handle of a particular buddy within a z3fold page
447 * Pool lock should be held as this function accesses first_num
448 */
449 static unsigned long __encode_handle(struct z3fold_header *zhdr,
450 struct z3fold_buddy_slots *slots,
451 enum buddy bud)
452 {
453 unsigned long h = (unsigned long)zhdr;
454 int idx = 0;
455
456 /*
457 * For a headless page, its handle is its pointer with the extra
458 * PAGE_HEADLESS bit set
459 */
460 if (bud == HEADLESS)
461 return h | (1 << PAGE_HEADLESS);
462
463 /* otherwise, return pointer to encoded handle */
464 idx = __idx(zhdr, bud);
465 h += idx;
466 if (bud == LAST)
467 h |= (zhdr->last_chunks << BUDDY_SHIFT);
468
469 write_lock(&slots->lock);
470 slots->slot[idx] = h;
471 write_unlock(&slots->lock);
472 return (unsigned long)&slots->slot[idx];
473 }
474
475 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
476 {
477 return __encode_handle(zhdr, zhdr->slots, bud);
478 }
479
480 /* only for LAST bud, returns zero otherwise */
481 static unsigned short handle_to_chunks(unsigned long handle)
482 {
483 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
484 unsigned long addr;
485
486 read_lock(&slots->lock);
487 addr = *(unsigned long *)handle;
488 read_unlock(&slots->lock);
489 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
490 }
491
492 /*
493 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
494 * but that doesn't matter. because the masking will result in the
495 * correct buddy number.
496 */
497 static enum buddy handle_to_buddy(unsigned long handle)
498 {
499 struct z3fold_header *zhdr;
500 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
501 unsigned long addr;
502
503 read_lock(&slots->lock);
504 WARN_ON(handle & (1 << PAGE_HEADLESS));
505 addr = *(unsigned long *)handle;
506 read_unlock(&slots->lock);
507 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
508 return (addr - zhdr->first_num) & BUDDY_MASK;
509 }
510
511 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
512 {
513 return zhdr->pool;
514 }
515
516 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
517 {
518 struct page *page = virt_to_page(zhdr);
519 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
520
521 WARN_ON(!list_empty(&zhdr->buddy));
522 set_bit(PAGE_STALE, &page->private);
523 clear_bit(NEEDS_COMPACTING, &page->private);
524 spin_lock(&pool->lock);
525 if (!list_empty(&page->lru))
526 list_del_init(&page->lru);
527 spin_unlock(&pool->lock);
528
529 if (locked)
530 z3fold_page_unlock(zhdr);
531
532 spin_lock(&pool->stale_lock);
533 list_add(&zhdr->buddy, &pool->stale);
534 queue_work(pool->release_wq, &pool->work);
535 spin_unlock(&pool->stale_lock);
536 }
537
538 static void release_z3fold_page(struct kref *ref)
539 {
540 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
541 refcount);
542 __release_z3fold_page(zhdr, false);
543 }
544
545 static void release_z3fold_page_locked(struct kref *ref)
546 {
547 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
548 refcount);
549 WARN_ON(z3fold_page_trylock(zhdr));
550 __release_z3fold_page(zhdr, true);
551 }
552
553 static void release_z3fold_page_locked_list(struct kref *ref)
554 {
555 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
556 refcount);
557 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
558
559 spin_lock(&pool->lock);
560 list_del_init(&zhdr->buddy);
561 spin_unlock(&pool->lock);
562
563 WARN_ON(z3fold_page_trylock(zhdr));
564 __release_z3fold_page(zhdr, true);
565 }
566
567 static void free_pages_work(struct work_struct *w)
568 {
569 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
570
571 spin_lock(&pool->stale_lock);
572 while (!list_empty(&pool->stale)) {
573 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
574 struct z3fold_header, buddy);
575 struct page *page = virt_to_page(zhdr);
576
577 list_del(&zhdr->buddy);
578 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
579 continue;
580 spin_unlock(&pool->stale_lock);
581 cancel_work_sync(&zhdr->work);
582 free_z3fold_page(page, false);
583 cond_resched();
584 spin_lock(&pool->stale_lock);
585 }
586 spin_unlock(&pool->stale_lock);
587 }
588
589 /*
590 * Returns the number of free chunks in a z3fold page.
591 * NB: can't be used with HEADLESS pages.
592 */
593 static int num_free_chunks(struct z3fold_header *zhdr)
594 {
595 int nfree;
596 /*
597 * If there is a middle object, pick up the bigger free space
598 * either before or after it. Otherwise just subtract the number
599 * of chunks occupied by the first and the last objects.
600 */
601 if (zhdr->middle_chunks != 0) {
602 int nfree_before = zhdr->first_chunks ?
603 0 : zhdr->start_middle - ZHDR_CHUNKS;
604 int nfree_after = zhdr->last_chunks ?
605 0 : TOTAL_CHUNKS -
606 (zhdr->start_middle + zhdr->middle_chunks);
607 nfree = max(nfree_before, nfree_after);
608 } else
609 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
610 return nfree;
611 }
612
613 /* Add to the appropriate unbuddied list */
614 static inline void add_to_unbuddied(struct z3fold_pool *pool,
615 struct z3fold_header *zhdr)
616 {
617 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
618 zhdr->middle_chunks == 0) {
619 struct list_head *unbuddied;
620 int freechunks = num_free_chunks(zhdr);
621
622 migrate_disable();
623 unbuddied = this_cpu_ptr(pool->unbuddied);
624 spin_lock(&pool->lock);
625 list_add(&zhdr->buddy, &unbuddied[freechunks]);
626 spin_unlock(&pool->lock);
627 zhdr->cpu = smp_processor_id();
628 migrate_enable();
629 }
630 }
631
632 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
633 {
634 enum buddy bud = HEADLESS;
635
636 if (zhdr->middle_chunks) {
637 if (!zhdr->first_chunks &&
638 chunks <= zhdr->start_middle - ZHDR_CHUNKS)
639 bud = FIRST;
640 else if (!zhdr->last_chunks)
641 bud = LAST;
642 } else {
643 if (!zhdr->first_chunks)
644 bud = FIRST;
645 else if (!zhdr->last_chunks)
646 bud = LAST;
647 else
648 bud = MIDDLE;
649 }
650
651 return bud;
652 }
653
654 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
655 unsigned short dst_chunk)
656 {
657 void *beg = zhdr;
658 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
659 beg + (zhdr->start_middle << CHUNK_SHIFT),
660 zhdr->middle_chunks << CHUNK_SHIFT);
661 }
662
663 static inline bool buddy_single(struct z3fold_header *zhdr)
664 {
665 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
666 (zhdr->first_chunks && zhdr->last_chunks) ||
667 (zhdr->middle_chunks && zhdr->last_chunks));
668 }
669
670 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
671 {
672 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
673 void *p = zhdr;
674 unsigned long old_handle = 0;
675 size_t sz = 0;
676 struct z3fold_header *new_zhdr = NULL;
677 int first_idx = __idx(zhdr, FIRST);
678 int middle_idx = __idx(zhdr, MIDDLE);
679 int last_idx = __idx(zhdr, LAST);
680 unsigned short *moved_chunks = NULL;
681
682 /*
683 * No need to protect slots here -- all the slots are "local" and
684 * the page lock is already taken
685 */
686 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
687 p += ZHDR_SIZE_ALIGNED;
688 sz = zhdr->first_chunks << CHUNK_SHIFT;
689 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
690 moved_chunks = &zhdr->first_chunks;
691 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
692 p += zhdr->start_middle << CHUNK_SHIFT;
693 sz = zhdr->middle_chunks << CHUNK_SHIFT;
694 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
695 moved_chunks = &zhdr->middle_chunks;
696 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
697 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
698 sz = zhdr->last_chunks << CHUNK_SHIFT;
699 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
700 moved_chunks = &zhdr->last_chunks;
701 }
702
703 if (sz > 0) {
704 enum buddy new_bud = HEADLESS;
705 short chunks = size_to_chunks(sz);
706 void *q;
707
708 new_zhdr = __z3fold_alloc(pool, sz, false);
709 if (!new_zhdr)
710 return NULL;
711
712 if (WARN_ON(new_zhdr == zhdr))
713 goto out_fail;
714
715 new_bud = get_free_buddy(new_zhdr, chunks);
716 q = new_zhdr;
717 switch (new_bud) {
718 case FIRST:
719 new_zhdr->first_chunks = chunks;
720 q += ZHDR_SIZE_ALIGNED;
721 break;
722 case MIDDLE:
723 new_zhdr->middle_chunks = chunks;
724 new_zhdr->start_middle =
725 new_zhdr->first_chunks + ZHDR_CHUNKS;
726 q += new_zhdr->start_middle << CHUNK_SHIFT;
727 break;
728 case LAST:
729 new_zhdr->last_chunks = chunks;
730 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
731 break;
732 default:
733 goto out_fail;
734 }
735 new_zhdr->foreign_handles++;
736 memcpy(q, p, sz);
737 write_lock(&zhdr->slots->lock);
738 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
739 __idx(new_zhdr, new_bud);
740 if (new_bud == LAST)
741 *(unsigned long *)old_handle |=
742 (new_zhdr->last_chunks << BUDDY_SHIFT);
743 write_unlock(&zhdr->slots->lock);
744 add_to_unbuddied(pool, new_zhdr);
745 z3fold_page_unlock(new_zhdr);
746
747 *moved_chunks = 0;
748 }
749
750 return new_zhdr;
751
752 out_fail:
753 if (new_zhdr) {
754 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
755 atomic64_dec(&pool->pages_nr);
756 else {
757 add_to_unbuddied(pool, new_zhdr);
758 z3fold_page_unlock(new_zhdr);
759 }
760 }
761 return NULL;
762
763 }
764
765 #define BIG_CHUNK_GAP 3
766 /* Has to be called with lock held */
767 static int z3fold_compact_page(struct z3fold_header *zhdr)
768 {
769 struct page *page = virt_to_page(zhdr);
770
771 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
772 return 0; /* can't move middle chunk, it's used */
773
774 if (unlikely(PageIsolated(page)))
775 return 0;
776
777 if (zhdr->middle_chunks == 0)
778 return 0; /* nothing to compact */
779
780 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
781 /* move to the beginning */
782 mchunk_memmove(zhdr, ZHDR_CHUNKS);
783 zhdr->first_chunks = zhdr->middle_chunks;
784 zhdr->middle_chunks = 0;
785 zhdr->start_middle = 0;
786 zhdr->first_num++;
787 return 1;
788 }
789
790 /*
791 * moving data is expensive, so let's only do that if
792 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
793 */
794 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
795 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
796 BIG_CHUNK_GAP) {
797 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
798 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
799 return 1;
800 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
801 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
802 + zhdr->middle_chunks) >=
803 BIG_CHUNK_GAP) {
804 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
805 zhdr->middle_chunks;
806 mchunk_memmove(zhdr, new_start);
807 zhdr->start_middle = new_start;
808 return 1;
809 }
810
811 return 0;
812 }
813
814 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
815 {
816 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
817 struct page *page;
818
819 page = virt_to_page(zhdr);
820 if (locked)
821 WARN_ON(z3fold_page_trylock(zhdr));
822 else
823 z3fold_page_lock(zhdr);
824 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
825 z3fold_page_unlock(zhdr);
826 return;
827 }
828 spin_lock(&pool->lock);
829 list_del_init(&zhdr->buddy);
830 spin_unlock(&pool->lock);
831
832 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
833 atomic64_dec(&pool->pages_nr);
834 return;
835 }
836
837 if (test_bit(PAGE_STALE, &page->private) ||
838 test_and_set_bit(PAGE_CLAIMED, &page->private)) {
839 z3fold_page_unlock(zhdr);
840 return;
841 }
842
843 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
844 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
845 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
846 atomic64_dec(&pool->pages_nr);
847 else {
848 clear_bit(PAGE_CLAIMED, &page->private);
849 z3fold_page_unlock(zhdr);
850 }
851 return;
852 }
853
854 z3fold_compact_page(zhdr);
855 add_to_unbuddied(pool, zhdr);
856 clear_bit(PAGE_CLAIMED, &page->private);
857 z3fold_page_unlock(zhdr);
858 }
859
860 static void compact_page_work(struct work_struct *w)
861 {
862 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
863 work);
864
865 do_compact_page(zhdr, false);
866 }
867
868 /* returns _locked_ z3fold page header or NULL */
869 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
870 size_t size, bool can_sleep)
871 {
872 struct z3fold_header *zhdr = NULL;
873 struct page *page;
874 struct list_head *unbuddied;
875 int chunks = size_to_chunks(size), i;
876
877 lookup:
878 migrate_disable();
879 /* First, try to find an unbuddied z3fold page. */
880 unbuddied = this_cpu_ptr(pool->unbuddied);
881 for_each_unbuddied_list(i, chunks) {
882 struct list_head *l = &unbuddied[i];
883
884 zhdr = list_first_entry_or_null(READ_ONCE(l),
885 struct z3fold_header, buddy);
886
887 if (!zhdr)
888 continue;
889
890 /* Re-check under lock. */
891 spin_lock(&pool->lock);
892 l = &unbuddied[i];
893 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
894 struct z3fold_header, buddy)) ||
895 !z3fold_page_trylock(zhdr)) {
896 spin_unlock(&pool->lock);
897 zhdr = NULL;
898 migrate_enable();
899 if (can_sleep)
900 cond_resched();
901 goto lookup;
902 }
903 list_del_init(&zhdr->buddy);
904 zhdr->cpu = -1;
905 spin_unlock(&pool->lock);
906
907 page = virt_to_page(zhdr);
908 if (test_bit(NEEDS_COMPACTING, &page->private) ||
909 test_bit(PAGE_CLAIMED, &page->private)) {
910 z3fold_page_unlock(zhdr);
911 zhdr = NULL;
912 migrate_enable();
913 if (can_sleep)
914 cond_resched();
915 goto lookup;
916 }
917
918 /*
919 * this page could not be removed from its unbuddied
920 * list while pool lock was held, and then we've taken
921 * page lock so kref_put could not be called before
922 * we got here, so it's safe to just call kref_get()
923 */
924 kref_get(&zhdr->refcount);
925 break;
926 }
927 migrate_enable();
928
929 if (!zhdr) {
930 int cpu;
931
932 /* look for _exact_ match on other cpus' lists */
933 for_each_online_cpu(cpu) {
934 struct list_head *l;
935
936 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
937 spin_lock(&pool->lock);
938 l = &unbuddied[chunks];
939
940 zhdr = list_first_entry_or_null(READ_ONCE(l),
941 struct z3fold_header, buddy);
942
943 if (!zhdr || !z3fold_page_trylock(zhdr)) {
944 spin_unlock(&pool->lock);
945 zhdr = NULL;
946 continue;
947 }
948 list_del_init(&zhdr->buddy);
949 zhdr->cpu = -1;
950 spin_unlock(&pool->lock);
951
952 page = virt_to_page(zhdr);
953 if (test_bit(NEEDS_COMPACTING, &page->private) ||
954 test_bit(PAGE_CLAIMED, &page->private)) {
955 z3fold_page_unlock(zhdr);
956 zhdr = NULL;
957 if (can_sleep)
958 cond_resched();
959 continue;
960 }
961 kref_get(&zhdr->refcount);
962 break;
963 }
964 }
965
966 if (zhdr && !zhdr->slots)
967 zhdr->slots = alloc_slots(pool,
968 can_sleep ? GFP_NOIO : GFP_ATOMIC);
969 return zhdr;
970 }
971
972 /*
973 * API Functions
974 */
975
976 /**
977 * z3fold_create_pool() - create a new z3fold pool
978 * @name: pool name
979 * @gfp: gfp flags when allocating the z3fold pool structure
980 * @ops: user-defined operations for the z3fold pool
981 *
982 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
983 * failed.
984 */
985 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
986 const struct z3fold_ops *ops)
987 {
988 struct z3fold_pool *pool = NULL;
989 int i, cpu;
990
991 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
992 if (!pool)
993 goto out;
994 pool->c_handle = kmem_cache_create("z3fold_handle",
995 sizeof(struct z3fold_buddy_slots),
996 SLOTS_ALIGN, 0, NULL);
997 if (!pool->c_handle)
998 goto out_c;
999 spin_lock_init(&pool->lock);
1000 spin_lock_init(&pool->stale_lock);
1001 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1002 if (!pool->unbuddied)
1003 goto out_pool;
1004 for_each_possible_cpu(cpu) {
1005 struct list_head *unbuddied =
1006 per_cpu_ptr(pool->unbuddied, cpu);
1007 for_each_unbuddied_list(i, 0)
1008 INIT_LIST_HEAD(&unbuddied[i]);
1009 }
1010 INIT_LIST_HEAD(&pool->lru);
1011 INIT_LIST_HEAD(&pool->stale);
1012 atomic64_set(&pool->pages_nr, 0);
1013 pool->name = name;
1014 pool->compact_wq = create_singlethread_workqueue(pool->name);
1015 if (!pool->compact_wq)
1016 goto out_unbuddied;
1017 pool->release_wq = create_singlethread_workqueue(pool->name);
1018 if (!pool->release_wq)
1019 goto out_wq;
1020 if (z3fold_register_migration(pool))
1021 goto out_rwq;
1022 INIT_WORK(&pool->work, free_pages_work);
1023 pool->ops = ops;
1024 return pool;
1025
1026 out_rwq:
1027 destroy_workqueue(pool->release_wq);
1028 out_wq:
1029 destroy_workqueue(pool->compact_wq);
1030 out_unbuddied:
1031 free_percpu(pool->unbuddied);
1032 out_pool:
1033 kmem_cache_destroy(pool->c_handle);
1034 out_c:
1035 kfree(pool);
1036 out:
1037 return NULL;
1038 }
1039
1040 /**
1041 * z3fold_destroy_pool() - destroys an existing z3fold pool
1042 * @pool: the z3fold pool to be destroyed
1043 *
1044 * The pool should be emptied before this function is called.
1045 */
1046 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1047 {
1048 kmem_cache_destroy(pool->c_handle);
1049
1050 /*
1051 * We need to destroy pool->compact_wq before pool->release_wq,
1052 * as any pending work on pool->compact_wq will call
1053 * queue_work(pool->release_wq, &pool->work).
1054 *
1055 * There are still outstanding pages until both workqueues are drained,
1056 * so we cannot unregister migration until then.
1057 */
1058
1059 destroy_workqueue(pool->compact_wq);
1060 destroy_workqueue(pool->release_wq);
1061 z3fold_unregister_migration(pool);
1062 kfree(pool);
1063 }
1064
1065 /**
1066 * z3fold_alloc() - allocates a region of a given size
1067 * @pool: z3fold pool from which to allocate
1068 * @size: size in bytes of the desired allocation
1069 * @gfp: gfp flags used if the pool needs to grow
1070 * @handle: handle of the new allocation
1071 *
1072 * This function will attempt to find a free region in the pool large enough to
1073 * satisfy the allocation request. A search of the unbuddied lists is
1074 * performed first. If no suitable free region is found, then a new page is
1075 * allocated and added to the pool to satisfy the request.
1076 *
1077 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1078 * as z3fold pool pages.
1079 *
1080 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1081 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1082 * a new page.
1083 */
1084 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1085 unsigned long *handle)
1086 {
1087 int chunks = size_to_chunks(size);
1088 struct z3fold_header *zhdr = NULL;
1089 struct page *page = NULL;
1090 enum buddy bud;
1091 bool can_sleep = gfpflags_allow_blocking(gfp);
1092
1093 if (!size)
1094 return -EINVAL;
1095
1096 if (size > PAGE_SIZE)
1097 return -ENOSPC;
1098
1099 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1100 bud = HEADLESS;
1101 else {
1102 retry:
1103 zhdr = __z3fold_alloc(pool, size, can_sleep);
1104 if (zhdr) {
1105 bud = get_free_buddy(zhdr, chunks);
1106 if (bud == HEADLESS) {
1107 if (kref_put(&zhdr->refcount,
1108 release_z3fold_page_locked))
1109 atomic64_dec(&pool->pages_nr);
1110 else
1111 z3fold_page_unlock(zhdr);
1112 pr_err("No free chunks in unbuddied\n");
1113 WARN_ON(1);
1114 goto retry;
1115 }
1116 page = virt_to_page(zhdr);
1117 goto found;
1118 }
1119 bud = FIRST;
1120 }
1121
1122 page = NULL;
1123 if (can_sleep) {
1124 spin_lock(&pool->stale_lock);
1125 zhdr = list_first_entry_or_null(&pool->stale,
1126 struct z3fold_header, buddy);
1127 /*
1128 * Before allocating a page, let's see if we can take one from
1129 * the stale pages list. cancel_work_sync() can sleep so we
1130 * limit this case to the contexts where we can sleep
1131 */
1132 if (zhdr) {
1133 list_del(&zhdr->buddy);
1134 spin_unlock(&pool->stale_lock);
1135 cancel_work_sync(&zhdr->work);
1136 page = virt_to_page(zhdr);
1137 } else {
1138 spin_unlock(&pool->stale_lock);
1139 }
1140 }
1141 if (!page)
1142 page = alloc_page(gfp);
1143
1144 if (!page)
1145 return -ENOMEM;
1146
1147 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1148 if (!zhdr) {
1149 __free_page(page);
1150 return -ENOMEM;
1151 }
1152 atomic64_inc(&pool->pages_nr);
1153
1154 if (bud == HEADLESS) {
1155 set_bit(PAGE_HEADLESS, &page->private);
1156 goto headless;
1157 }
1158 if (can_sleep) {
1159 lock_page(page);
1160 __SetPageMovable(page, pool->inode->i_mapping);
1161 unlock_page(page);
1162 } else {
1163 if (trylock_page(page)) {
1164 __SetPageMovable(page, pool->inode->i_mapping);
1165 unlock_page(page);
1166 }
1167 }
1168 z3fold_page_lock(zhdr);
1169
1170 found:
1171 if (bud == FIRST)
1172 zhdr->first_chunks = chunks;
1173 else if (bud == LAST)
1174 zhdr->last_chunks = chunks;
1175 else {
1176 zhdr->middle_chunks = chunks;
1177 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1178 }
1179 add_to_unbuddied(pool, zhdr);
1180
1181 headless:
1182 spin_lock(&pool->lock);
1183 /* Add/move z3fold page to beginning of LRU */
1184 if (!list_empty(&page->lru))
1185 list_del(&page->lru);
1186
1187 list_add(&page->lru, &pool->lru);
1188
1189 *handle = encode_handle(zhdr, bud);
1190 spin_unlock(&pool->lock);
1191 if (bud != HEADLESS)
1192 z3fold_page_unlock(zhdr);
1193
1194 return 0;
1195 }
1196
1197 /**
1198 * z3fold_free() - frees the allocation associated with the given handle
1199 * @pool: pool in which the allocation resided
1200 * @handle: handle associated with the allocation returned by z3fold_alloc()
1201 *
1202 * In the case that the z3fold page in which the allocation resides is under
1203 * reclaim, as indicated by the PG_reclaim flag being set, this function
1204 * only sets the first|last_chunks to 0. The page is actually freed
1205 * once both buddies are evicted (see z3fold_reclaim_page() below).
1206 */
1207 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1208 {
1209 struct z3fold_header *zhdr;
1210 struct page *page;
1211 enum buddy bud;
1212 bool page_claimed;
1213
1214 zhdr = get_z3fold_header(handle);
1215 page = virt_to_page(zhdr);
1216 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1217
1218 if (test_bit(PAGE_HEADLESS, &page->private)) {
1219 /* if a headless page is under reclaim, just leave.
1220 * NB: we use test_and_set_bit for a reason: if the bit
1221 * has not been set before, we release this page
1222 * immediately so we don't care about its value any more.
1223 */
1224 if (!page_claimed) {
1225 spin_lock(&pool->lock);
1226 list_del(&page->lru);
1227 spin_unlock(&pool->lock);
1228 put_z3fold_header(zhdr);
1229 free_z3fold_page(page, true);
1230 atomic64_dec(&pool->pages_nr);
1231 }
1232 return;
1233 }
1234
1235 /* Non-headless case */
1236 bud = handle_to_buddy(handle);
1237
1238 switch (bud) {
1239 case FIRST:
1240 zhdr->first_chunks = 0;
1241 break;
1242 case MIDDLE:
1243 zhdr->middle_chunks = 0;
1244 break;
1245 case LAST:
1246 zhdr->last_chunks = 0;
1247 break;
1248 default:
1249 pr_err("%s: unknown bud %d\n", __func__, bud);
1250 WARN_ON(1);
1251 put_z3fold_header(zhdr);
1252 return;
1253 }
1254
1255 if (!page_claimed)
1256 free_handle(handle, zhdr);
1257 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1258 atomic64_dec(&pool->pages_nr);
1259 return;
1260 }
1261 if (page_claimed) {
1262 /* the page has not been claimed by us */
1263 z3fold_page_unlock(zhdr);
1264 return;
1265 }
1266 if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1267 put_z3fold_header(zhdr);
1268 clear_bit(PAGE_CLAIMED, &page->private);
1269 return;
1270 }
1271 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1272 spin_lock(&pool->lock);
1273 list_del_init(&zhdr->buddy);
1274 spin_unlock(&pool->lock);
1275 zhdr->cpu = -1;
1276 kref_get(&zhdr->refcount);
1277 clear_bit(PAGE_CLAIMED, &page->private);
1278 do_compact_page(zhdr, true);
1279 return;
1280 }
1281 kref_get(&zhdr->refcount);
1282 clear_bit(PAGE_CLAIMED, &page->private);
1283 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1284 put_z3fold_header(zhdr);
1285 }
1286
1287 /**
1288 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1289 * @pool: pool from which a page will attempt to be evicted
1290 * @retries: number of pages on the LRU list for which eviction will
1291 * be attempted before failing
1292 *
1293 * z3fold reclaim is different from normal system reclaim in that it is done
1294 * from the bottom, up. This is because only the bottom layer, z3fold, has
1295 * information on how the allocations are organized within each z3fold page.
1296 * This has the potential to create interesting locking situations between
1297 * z3fold and the user, however.
1298 *
1299 * To avoid these, this is how z3fold_reclaim_page() should be called:
1300 *
1301 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1302 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1303 * call the user-defined eviction handler with the pool and handle as
1304 * arguments.
1305 *
1306 * If the handle can not be evicted, the eviction handler should return
1307 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1308 * appropriate list and try the next z3fold page on the LRU up to
1309 * a user defined number of retries.
1310 *
1311 * If the handle is successfully evicted, the eviction handler should
1312 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1313 * contains logic to delay freeing the page if the page is under reclaim,
1314 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1315 *
1316 * If all buddies in the z3fold page are successfully evicted, then the
1317 * z3fold page can be freed.
1318 *
1319 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1320 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1321 * the retry limit was hit.
1322 */
1323 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1324 {
1325 int i, ret = -1;
1326 struct z3fold_header *zhdr = NULL;
1327 struct page *page = NULL;
1328 struct list_head *pos;
1329 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1330 struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1331
1332 rwlock_init(&slots.lock);
1333 slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1334
1335 spin_lock(&pool->lock);
1336 if (!pool->ops || !pool->ops->evict || retries == 0) {
1337 spin_unlock(&pool->lock);
1338 return -EINVAL;
1339 }
1340 for (i = 0; i < retries; i++) {
1341 if (list_empty(&pool->lru)) {
1342 spin_unlock(&pool->lock);
1343 return -EINVAL;
1344 }
1345 list_for_each_prev(pos, &pool->lru) {
1346 page = list_entry(pos, struct page, lru);
1347
1348 zhdr = page_address(page);
1349 if (test_bit(PAGE_HEADLESS, &page->private)) {
1350 /*
1351 * For non-headless pages, we wait to do this
1352 * until we have the page lock to avoid racing
1353 * with __z3fold_alloc(). Headless pages don't
1354 * have a lock (and __z3fold_alloc() will never
1355 * see them), but we still need to test and set
1356 * PAGE_CLAIMED to avoid racing with
1357 * z3fold_free(), so just do it now before
1358 * leaving the loop.
1359 */
1360 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1361 continue;
1362
1363 break;
1364 }
1365
1366 if (kref_get_unless_zero(&zhdr->refcount) == 0) {
1367 zhdr = NULL;
1368 break;
1369 }
1370 if (!z3fold_page_trylock(zhdr)) {
1371 if (kref_put(&zhdr->refcount,
1372 release_z3fold_page))
1373 atomic64_dec(&pool->pages_nr);
1374 zhdr = NULL;
1375 continue; /* can't evict at this point */
1376 }
1377
1378 /* test_and_set_bit is of course atomic, but we still
1379 * need to do it under page lock, otherwise checking
1380 * that bit in __z3fold_alloc wouldn't make sense
1381 */
1382 if (zhdr->foreign_handles ||
1383 test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1384 if (kref_put(&zhdr->refcount,
1385 release_z3fold_page))
1386 atomic64_dec(&pool->pages_nr);
1387 else
1388 z3fold_page_unlock(zhdr);
1389 zhdr = NULL;
1390 continue; /* can't evict such page */
1391 }
1392 list_del_init(&zhdr->buddy);
1393 zhdr->cpu = -1;
1394 break;
1395 }
1396
1397 if (!zhdr)
1398 break;
1399
1400 list_del_init(&page->lru);
1401 spin_unlock(&pool->lock);
1402
1403 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1404 /*
1405 * We need encode the handles before unlocking, and
1406 * use our local slots structure because z3fold_free
1407 * can zero out zhdr->slots and we can't do much
1408 * about that
1409 */
1410 first_handle = 0;
1411 last_handle = 0;
1412 middle_handle = 0;
1413 memset(slots.slot, 0, sizeof(slots.slot));
1414 if (zhdr->first_chunks)
1415 first_handle = __encode_handle(zhdr, &slots,
1416 FIRST);
1417 if (zhdr->middle_chunks)
1418 middle_handle = __encode_handle(zhdr, &slots,
1419 MIDDLE);
1420 if (zhdr->last_chunks)
1421 last_handle = __encode_handle(zhdr, &slots,
1422 LAST);
1423 /*
1424 * it's safe to unlock here because we hold a
1425 * reference to this page
1426 */
1427 z3fold_page_unlock(zhdr);
1428 } else {
1429 first_handle = encode_handle(zhdr, HEADLESS);
1430 last_handle = middle_handle = 0;
1431 }
1432 /* Issue the eviction callback(s) */
1433 if (middle_handle) {
1434 ret = pool->ops->evict(pool, middle_handle);
1435 if (ret)
1436 goto next;
1437 }
1438 if (first_handle) {
1439 ret = pool->ops->evict(pool, first_handle);
1440 if (ret)
1441 goto next;
1442 }
1443 if (last_handle) {
1444 ret = pool->ops->evict(pool, last_handle);
1445 if (ret)
1446 goto next;
1447 }
1448 next:
1449 if (test_bit(PAGE_HEADLESS, &page->private)) {
1450 if (ret == 0) {
1451 free_z3fold_page(page, true);
1452 atomic64_dec(&pool->pages_nr);
1453 return 0;
1454 }
1455 spin_lock(&pool->lock);
1456 list_add(&page->lru, &pool->lru);
1457 spin_unlock(&pool->lock);
1458 clear_bit(PAGE_CLAIMED, &page->private);
1459 } else {
1460 struct z3fold_buddy_slots *slots = zhdr->slots;
1461 z3fold_page_lock(zhdr);
1462 if (kref_put(&zhdr->refcount,
1463 release_z3fold_page_locked)) {
1464 kmem_cache_free(pool->c_handle, slots);
1465 atomic64_dec(&pool->pages_nr);
1466 return 0;
1467 }
1468 /*
1469 * if we are here, the page is still not completely
1470 * free. Take the global pool lock then to be able
1471 * to add it back to the lru list
1472 */
1473 spin_lock(&pool->lock);
1474 list_add(&page->lru, &pool->lru);
1475 spin_unlock(&pool->lock);
1476 z3fold_page_unlock(zhdr);
1477 clear_bit(PAGE_CLAIMED, &page->private);
1478 }
1479
1480 /* We started off locked to we need to lock the pool back */
1481 spin_lock(&pool->lock);
1482 }
1483 spin_unlock(&pool->lock);
1484 return -EAGAIN;
1485 }
1486
1487 /**
1488 * z3fold_map() - maps the allocation associated with the given handle
1489 * @pool: pool in which the allocation resides
1490 * @handle: handle associated with the allocation to be mapped
1491 *
1492 * Extracts the buddy number from handle and constructs the pointer to the
1493 * correct starting chunk within the page.
1494 *
1495 * Returns: a pointer to the mapped allocation
1496 */
1497 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1498 {
1499 struct z3fold_header *zhdr;
1500 struct page *page;
1501 void *addr;
1502 enum buddy buddy;
1503
1504 zhdr = get_z3fold_header(handle);
1505 addr = zhdr;
1506 page = virt_to_page(zhdr);
1507
1508 if (test_bit(PAGE_HEADLESS, &page->private))
1509 goto out;
1510
1511 buddy = handle_to_buddy(handle);
1512 switch (buddy) {
1513 case FIRST:
1514 addr += ZHDR_SIZE_ALIGNED;
1515 break;
1516 case MIDDLE:
1517 addr += zhdr->start_middle << CHUNK_SHIFT;
1518 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1519 break;
1520 case LAST:
1521 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1522 break;
1523 default:
1524 pr_err("unknown buddy id %d\n", buddy);
1525 WARN_ON(1);
1526 addr = NULL;
1527 break;
1528 }
1529
1530 if (addr)
1531 zhdr->mapped_count++;
1532 out:
1533 put_z3fold_header(zhdr);
1534 return addr;
1535 }
1536
1537 /**
1538 * z3fold_unmap() - unmaps the allocation associated with the given handle
1539 * @pool: pool in which the allocation resides
1540 * @handle: handle associated with the allocation to be unmapped
1541 */
1542 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1543 {
1544 struct z3fold_header *zhdr;
1545 struct page *page;
1546 enum buddy buddy;
1547
1548 zhdr = get_z3fold_header(handle);
1549 page = virt_to_page(zhdr);
1550
1551 if (test_bit(PAGE_HEADLESS, &page->private))
1552 return;
1553
1554 buddy = handle_to_buddy(handle);
1555 if (buddy == MIDDLE)
1556 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1557 zhdr->mapped_count--;
1558 put_z3fold_header(zhdr);
1559 }
1560
1561 /**
1562 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1563 * @pool: pool whose size is being queried
1564 *
1565 * Returns: size in pages of the given pool.
1566 */
1567 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1568 {
1569 return atomic64_read(&pool->pages_nr);
1570 }
1571
1572 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1573 {
1574 struct z3fold_header *zhdr;
1575 struct z3fold_pool *pool;
1576
1577 VM_BUG_ON_PAGE(!PageMovable(page), page);
1578 VM_BUG_ON_PAGE(PageIsolated(page), page);
1579
1580 if (test_bit(PAGE_HEADLESS, &page->private))
1581 return false;
1582
1583 zhdr = page_address(page);
1584 z3fold_page_lock(zhdr);
1585 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1586 test_bit(PAGE_STALE, &page->private))
1587 goto out;
1588
1589 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1590 goto out;
1591
1592 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1593 goto out;
1594 pool = zhdr_to_pool(zhdr);
1595 spin_lock(&pool->lock);
1596 if (!list_empty(&zhdr->buddy))
1597 list_del_init(&zhdr->buddy);
1598 if (!list_empty(&page->lru))
1599 list_del_init(&page->lru);
1600 spin_unlock(&pool->lock);
1601
1602 kref_get(&zhdr->refcount);
1603 z3fold_page_unlock(zhdr);
1604 return true;
1605
1606 out:
1607 z3fold_page_unlock(zhdr);
1608 return false;
1609 }
1610
1611 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1612 struct page *page, enum migrate_mode mode)
1613 {
1614 struct z3fold_header *zhdr, *new_zhdr;
1615 struct z3fold_pool *pool;
1616 struct address_space *new_mapping;
1617
1618 VM_BUG_ON_PAGE(!PageMovable(page), page);
1619 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1620 VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1621 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1622
1623 zhdr = page_address(page);
1624 pool = zhdr_to_pool(zhdr);
1625
1626 if (!z3fold_page_trylock(zhdr))
1627 return -EAGAIN;
1628 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1629 z3fold_page_unlock(zhdr);
1630 clear_bit(PAGE_CLAIMED, &page->private);
1631 return -EBUSY;
1632 }
1633 if (work_pending(&zhdr->work)) {
1634 z3fold_page_unlock(zhdr);
1635 return -EAGAIN;
1636 }
1637 new_zhdr = page_address(newpage);
1638 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1639 newpage->private = page->private;
1640 page->private = 0;
1641 z3fold_page_unlock(zhdr);
1642 spin_lock_init(&new_zhdr->page_lock);
1643 INIT_WORK(&new_zhdr->work, compact_page_work);
1644 /*
1645 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1646 * so we only have to reinitialize it.
1647 */
1648 INIT_LIST_HEAD(&new_zhdr->buddy);
1649 new_mapping = page_mapping(page);
1650 __ClearPageMovable(page);
1651 ClearPagePrivate(page);
1652
1653 get_page(newpage);
1654 z3fold_page_lock(new_zhdr);
1655 if (new_zhdr->first_chunks)
1656 encode_handle(new_zhdr, FIRST);
1657 if (new_zhdr->last_chunks)
1658 encode_handle(new_zhdr, LAST);
1659 if (new_zhdr->middle_chunks)
1660 encode_handle(new_zhdr, MIDDLE);
1661 set_bit(NEEDS_COMPACTING, &newpage->private);
1662 new_zhdr->cpu = smp_processor_id();
1663 spin_lock(&pool->lock);
1664 list_add(&newpage->lru, &pool->lru);
1665 spin_unlock(&pool->lock);
1666 __SetPageMovable(newpage, new_mapping);
1667 z3fold_page_unlock(new_zhdr);
1668
1669 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1670
1671 page_mapcount_reset(page);
1672 clear_bit(PAGE_CLAIMED, &page->private);
1673 put_page(page);
1674 return 0;
1675 }
1676
1677 static void z3fold_page_putback(struct page *page)
1678 {
1679 struct z3fold_header *zhdr;
1680 struct z3fold_pool *pool;
1681
1682 zhdr = page_address(page);
1683 pool = zhdr_to_pool(zhdr);
1684
1685 z3fold_page_lock(zhdr);
1686 if (!list_empty(&zhdr->buddy))
1687 list_del_init(&zhdr->buddy);
1688 INIT_LIST_HEAD(&page->lru);
1689 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1690 atomic64_dec(&pool->pages_nr);
1691 return;
1692 }
1693 spin_lock(&pool->lock);
1694 list_add(&page->lru, &pool->lru);
1695 spin_unlock(&pool->lock);
1696 clear_bit(PAGE_CLAIMED, &page->private);
1697 z3fold_page_unlock(zhdr);
1698 }
1699
1700 static const struct address_space_operations z3fold_aops = {
1701 .isolate_page = z3fold_page_isolate,
1702 .migratepage = z3fold_page_migrate,
1703 .putback_page = z3fold_page_putback,
1704 };
1705
1706 /*****************
1707 * zpool
1708 ****************/
1709
1710 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1711 {
1712 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1713 return pool->zpool_ops->evict(pool->zpool, handle);
1714 else
1715 return -ENOENT;
1716 }
1717
1718 static const struct z3fold_ops z3fold_zpool_ops = {
1719 .evict = z3fold_zpool_evict
1720 };
1721
1722 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1723 const struct zpool_ops *zpool_ops,
1724 struct zpool *zpool)
1725 {
1726 struct z3fold_pool *pool;
1727
1728 pool = z3fold_create_pool(name, gfp,
1729 zpool_ops ? &z3fold_zpool_ops : NULL);
1730 if (pool) {
1731 pool->zpool = zpool;
1732 pool->zpool_ops = zpool_ops;
1733 }
1734 return pool;
1735 }
1736
1737 static void z3fold_zpool_destroy(void *pool)
1738 {
1739 z3fold_destroy_pool(pool);
1740 }
1741
1742 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1743 unsigned long *handle)
1744 {
1745 return z3fold_alloc(pool, size, gfp, handle);
1746 }
1747 static void z3fold_zpool_free(void *pool, unsigned long handle)
1748 {
1749 z3fold_free(pool, handle);
1750 }
1751
1752 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1753 unsigned int *reclaimed)
1754 {
1755 unsigned int total = 0;
1756 int ret = -EINVAL;
1757
1758 while (total < pages) {
1759 ret = z3fold_reclaim_page(pool, 8);
1760 if (ret < 0)
1761 break;
1762 total++;
1763 }
1764
1765 if (reclaimed)
1766 *reclaimed = total;
1767
1768 return ret;
1769 }
1770
1771 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1772 enum zpool_mapmode mm)
1773 {
1774 return z3fold_map(pool, handle);
1775 }
1776 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1777 {
1778 z3fold_unmap(pool, handle);
1779 }
1780
1781 static u64 z3fold_zpool_total_size(void *pool)
1782 {
1783 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1784 }
1785
1786 static struct zpool_driver z3fold_zpool_driver = {
1787 .type = "z3fold",
1788 .sleep_mapped = true,
1789 .owner = THIS_MODULE,
1790 .create = z3fold_zpool_create,
1791 .destroy = z3fold_zpool_destroy,
1792 .malloc = z3fold_zpool_malloc,
1793 .free = z3fold_zpool_free,
1794 .shrink = z3fold_zpool_shrink,
1795 .map = z3fold_zpool_map,
1796 .unmap = z3fold_zpool_unmap,
1797 .total_size = z3fold_zpool_total_size,
1798 };
1799
1800 MODULE_ALIAS("zpool-z3fold");
1801
1802 static int __init init_z3fold(void)
1803 {
1804 int ret;
1805
1806 /* Make sure the z3fold header is not larger than the page size */
1807 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1808 ret = z3fold_mount();
1809 if (ret)
1810 return ret;
1811
1812 zpool_register_driver(&z3fold_zpool_driver);
1813
1814 return 0;
1815 }
1816
1817 static void __exit exit_z3fold(void)
1818 {
1819 z3fold_unmount();
1820 zpool_unregister_driver(&z3fold_zpool_driver);
1821 }
1822
1823 module_init(init_z3fold);
1824 module_exit(exit_z3fold);
1825
1826 MODULE_LICENSE("GPL");
1827 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1828 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");