]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/zsmalloc.c
ath10k: drop fragments with multicast DA for PCIe
[mirror_ubuntu-hirsute-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC 0x58
62
63 /*
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69 #define ZS_ALIGN 8
70
71 /*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * a single (unsigned long) handle value.
83 *
84 * Note that object index <obj_idx> starts from 0.
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110 #define HANDLE_PIN_BIT 0
111
112 /*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS 2
125 #define CLASS_BITS 8
126 #define ISOLATED_BITS 3
127 #define MAGIC_VAL_BITS 8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135
136 /*
137 * On systems with 4K page size, this gives 255 size classes! There is a
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154 ZS_EMPTY,
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
166 OBJ_ALLOCATED,
167 OBJ_USED,
168 NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201 spinlock_t lock;
202 struct list_head fullness_list[NR_ZS_FULLNESS];
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
208 int objs_per_zspage;
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
211
212 unsigned int index;
213 struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219 SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224 ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229 return PageOwnerPriv1(page);
230 }
231
232 /*
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238 struct link_free {
239 union {
240 /*
241 * Free object index;
242 * It's valid for non-allocated object
243 */
244 unsigned long next;
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
250 };
251
252 struct zs_pool {
253 const char *name;
254
255 struct size_class *size_class[ZS_SIZE_CLASSES];
256 struct kmem_cache *handle_cachep;
257 struct kmem_cache *zspage_cachep;
258
259 atomic_long_t pages_allocated;
260
261 struct zs_pool_stats stats;
262
263 /* Compact classes */
264 struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
276 #endif
277 };
278
279 struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
285 };
286 unsigned int inuse;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 char *vm_buf; /* copy buffer for objects that span pages */
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343 kmem_cache_destroy(pool->handle_cachep);
344 kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360 return kmem_cache_alloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366 kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384 const struct zpool_ops *zpool_ops,
385 struct zpool *zpool)
386 {
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
393 }
394
395 static void zs_zpool_destroy(void *pool)
396 {
397 zs_destroy_pool(pool);
398 }
399
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402 {
403 *handle = zs_malloc(pool, size, gfp);
404 return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408 zs_free(pool, handle);
409 }
410
411 static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413 {
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
423 case ZPOOL_MM_RW:
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430 }
431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433 zs_unmap_object(pool, handle);
434 }
435
436 static u64 zs_zpool_total_size(void *pool)
437 {
438 return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440
441 static struct zpool_driver zs_zpool_driver = {
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
452 };
453
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462 return zspage->isolated;
463 }
464
465 static __maybe_unused int is_first_page(struct page *page)
466 {
467 return PagePrivate(page);
468 }
469
470 /* Protected by class->lock */
471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473 return zspage->inuse;
474 }
475
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479 zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484 struct page *first_page = zspage->first_page;
485
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492 return page->units;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497 page->units = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502 return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507 zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511 unsigned int *class_idx,
512 enum fullness_group *fullness)
513 {
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
518 }
519
520 static void set_zspage_mapping(struct zspage *zspage,
521 unsigned int class_idx,
522 enum fullness_group fullness)
523 {
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
526 }
527
528 /*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
534 */
535 static int get_size_class_index(int size)
536 {
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548 int type, unsigned long cnt)
549 {
550 class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555 int type, unsigned long cnt)
556 {
557 class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562 int type)
563 {
564 return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
569 static void __init zs_stat_init(void)
570 {
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 }
578
579 static void __exit zs_stat_exit(void)
580 {
581 debugfs_remove_recursive(zs_stat_root);
582 }
583
584 static unsigned long zs_can_compact(struct size_class *class);
585
586 static int zs_stats_size_show(struct seq_file *s, void *v)
587 {
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
593 unsigned long obj_allocated, obj_used, pages_used, freeable;
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596 unsigned long total_freeable = 0;
597
598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
601 "pages_per_zspage", "freeable");
602
603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
614 freeable = zs_can_compact(class);
615 spin_unlock(&class->lock);
616
617 objs_per_zspage = class->objs_per_zspage;
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
625 class->pages_per_zspage, freeable);
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
632 total_freeable += freeable;
633 }
634
635 seq_puts(s, "\n");
636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
639 total_used_objs, total_pages, "", total_freeable);
640
641 return 0;
642 }
643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646 {
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649 return;
650 }
651
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
656 }
657
658 static void zs_pool_stat_destroy(struct zs_pool *pool)
659 {
660 debugfs_remove_recursive(pool->stat_dentry);
661 }
662
663 #else /* CONFIG_ZSMALLOC_STAT */
664 static void __init zs_stat_init(void)
665 {
666 }
667
668 static void __exit zs_stat_exit(void)
669 {
670 }
671
672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 }
675
676 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677 {
678 }
679 #endif
680
681
682 /*
683 * For each size class, zspages are divided into different groups
684 * depending on how "full" they are. This was done so that we could
685 * easily find empty or nearly empty zspages when we try to shrink
686 * the pool (not yet implemented). This function returns fullness
687 * status of the given page.
688 */
689 static enum fullness_group get_fullness_group(struct size_class *class,
690 struct zspage *zspage)
691 {
692 int inuse, objs_per_zspage;
693 enum fullness_group fg;
694
695 inuse = get_zspage_inuse(zspage);
696 objs_per_zspage = class->objs_per_zspage;
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
700 else if (inuse == objs_per_zspage)
701 fg = ZS_FULL;
702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708 }
709
710 /*
711 * Each size class maintains various freelists and zspages are assigned
712 * to one of these freelists based on the number of live objects they
713 * have. This functions inserts the given zspage into the freelist
714 * identified by <class, fullness_group>.
715 */
716 static void insert_zspage(struct size_class *class,
717 struct zspage *zspage,
718 enum fullness_group fullness)
719 {
720 struct zspage *head;
721
722 zs_stat_inc(class, fullness, 1);
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
725 /*
726 * We want to see more ZS_FULL pages and less almost empty/full.
727 * Put pages with higher ->inuse first.
728 */
729 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
730 list_add(&zspage->list, &head->list);
731 else
732 list_add(&zspage->list, &class->fullness_list[fullness]);
733 }
734
735 /*
736 * This function removes the given zspage from the freelist identified
737 * by <class, fullness_group>.
738 */
739 static void remove_zspage(struct size_class *class,
740 struct zspage *zspage,
741 enum fullness_group fullness)
742 {
743 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
744 VM_BUG_ON(is_zspage_isolated(zspage));
745
746 list_del_init(&zspage->list);
747 zs_stat_dec(class, fullness, 1);
748 }
749
750 /*
751 * Each size class maintains zspages in different fullness groups depending
752 * on the number of live objects they contain. When allocating or freeing
753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
754 * to ALMOST_EMPTY when freeing an object. This function checks if such
755 * a status change has occurred for the given page and accordingly moves the
756 * page from the freelist of the old fullness group to that of the new
757 * fullness group.
758 */
759 static enum fullness_group fix_fullness_group(struct size_class *class,
760 struct zspage *zspage)
761 {
762 int class_idx;
763 enum fullness_group currfg, newfg;
764
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
767 if (newfg == currfg)
768 goto out;
769
770 if (!is_zspage_isolated(zspage)) {
771 remove_zspage(class, zspage, currfg);
772 insert_zspage(class, zspage, newfg);
773 }
774
775 set_zspage_mapping(zspage, class_idx, newfg);
776
777 out:
778 return newfg;
779 }
780
781 /*
782 * We have to decide on how many pages to link together
783 * to form a zspage for each size class. This is important
784 * to reduce wastage due to unusable space left at end of
785 * each zspage which is given as:
786 * wastage = Zp % class_size
787 * usage = Zp - wastage
788 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
789 *
790 * For example, for size class of 3/8 * PAGE_SIZE, we should
791 * link together 3 PAGE_SIZE sized pages to form a zspage
792 * since then we can perfectly fit in 8 such objects.
793 */
794 static int get_pages_per_zspage(int class_size)
795 {
796 int i, max_usedpc = 0;
797 /* zspage order which gives maximum used size per KB */
798 int max_usedpc_order = 1;
799
800 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
801 int zspage_size;
802 int waste, usedpc;
803
804 zspage_size = i * PAGE_SIZE;
805 waste = zspage_size % class_size;
806 usedpc = (zspage_size - waste) * 100 / zspage_size;
807
808 if (usedpc > max_usedpc) {
809 max_usedpc = usedpc;
810 max_usedpc_order = i;
811 }
812 }
813
814 return max_usedpc_order;
815 }
816
817 static struct zspage *get_zspage(struct page *page)
818 {
819 struct zspage *zspage = (struct zspage *)page->private;
820
821 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
822 return zspage;
823 }
824
825 static struct page *get_next_page(struct page *page)
826 {
827 if (unlikely(PageHugeObject(page)))
828 return NULL;
829
830 return page->freelist;
831 }
832
833 /**
834 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
835 * @obj: the encoded object value
836 * @page: page object resides in zspage
837 * @obj_idx: object index
838 */
839 static void obj_to_location(unsigned long obj, struct page **page,
840 unsigned int *obj_idx)
841 {
842 obj >>= OBJ_TAG_BITS;
843 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
844 *obj_idx = (obj & OBJ_INDEX_MASK);
845 }
846
847 /**
848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
849 * @page: page object resides in zspage
850 * @obj_idx: object index
851 */
852 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853 {
854 unsigned long obj;
855
856 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
857 obj |= obj_idx & OBJ_INDEX_MASK;
858 obj <<= OBJ_TAG_BITS;
859
860 return obj;
861 }
862
863 static unsigned long handle_to_obj(unsigned long handle)
864 {
865 return *(unsigned long *)handle;
866 }
867
868 static unsigned long obj_to_head(struct page *page, void *obj)
869 {
870 if (unlikely(PageHugeObject(page))) {
871 VM_BUG_ON_PAGE(!is_first_page(page), page);
872 return page->index;
873 } else
874 return *(unsigned long *)obj;
875 }
876
877 static inline int testpin_tag(unsigned long handle)
878 {
879 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
880 }
881
882 static inline int trypin_tag(unsigned long handle)
883 {
884 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
885 }
886
887 static void pin_tag(unsigned long handle) __acquires(bitlock)
888 {
889 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
890 }
891
892 static void unpin_tag(unsigned long handle) __releases(bitlock)
893 {
894 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
895 }
896
897 static void reset_page(struct page *page)
898 {
899 __ClearPageMovable(page);
900 ClearPagePrivate(page);
901 set_page_private(page, 0);
902 page_mapcount_reset(page);
903 ClearPageHugeObject(page);
904 page->freelist = NULL;
905 }
906
907 static int trylock_zspage(struct zspage *zspage)
908 {
909 struct page *cursor, *fail;
910
911 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
912 get_next_page(cursor)) {
913 if (!trylock_page(cursor)) {
914 fail = cursor;
915 goto unlock;
916 }
917 }
918
919 return 1;
920 unlock:
921 for (cursor = get_first_page(zspage); cursor != fail; cursor =
922 get_next_page(cursor))
923 unlock_page(cursor);
924
925 return 0;
926 }
927
928 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
929 struct zspage *zspage)
930 {
931 struct page *page, *next;
932 enum fullness_group fg;
933 unsigned int class_idx;
934
935 get_zspage_mapping(zspage, &class_idx, &fg);
936
937 assert_spin_locked(&class->lock);
938
939 VM_BUG_ON(get_zspage_inuse(zspage));
940 VM_BUG_ON(fg != ZS_EMPTY);
941
942 next = page = get_first_page(zspage);
943 do {
944 VM_BUG_ON_PAGE(!PageLocked(page), page);
945 next = get_next_page(page);
946 reset_page(page);
947 unlock_page(page);
948 dec_zone_page_state(page, NR_ZSPAGES);
949 put_page(page);
950 page = next;
951 } while (page != NULL);
952
953 cache_free_zspage(pool, zspage);
954
955 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
956 atomic_long_sub(class->pages_per_zspage,
957 &pool->pages_allocated);
958 }
959
960 static void free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
962 {
963 VM_BUG_ON(get_zspage_inuse(zspage));
964 VM_BUG_ON(list_empty(&zspage->list));
965
966 if (!trylock_zspage(zspage)) {
967 kick_deferred_free(pool);
968 return;
969 }
970
971 remove_zspage(class, zspage, ZS_EMPTY);
972 __free_zspage(pool, class, zspage);
973 }
974
975 /* Initialize a newly allocated zspage */
976 static void init_zspage(struct size_class *class, struct zspage *zspage)
977 {
978 unsigned int freeobj = 1;
979 unsigned long off = 0;
980 struct page *page = get_first_page(zspage);
981
982 while (page) {
983 struct page *next_page;
984 struct link_free *link;
985 void *vaddr;
986
987 set_first_obj_offset(page, off);
988
989 vaddr = kmap_atomic(page);
990 link = (struct link_free *)vaddr + off / sizeof(*link);
991
992 while ((off += class->size) < PAGE_SIZE) {
993 link->next = freeobj++ << OBJ_TAG_BITS;
994 link += class->size / sizeof(*link);
995 }
996
997 /*
998 * We now come to the last (full or partial) object on this
999 * page, which must point to the first object on the next
1000 * page (if present)
1001 */
1002 next_page = get_next_page(page);
1003 if (next_page) {
1004 link->next = freeobj++ << OBJ_TAG_BITS;
1005 } else {
1006 /*
1007 * Reset OBJ_TAG_BITS bit to last link to tell
1008 * whether it's allocated object or not.
1009 */
1010 link->next = -1UL << OBJ_TAG_BITS;
1011 }
1012 kunmap_atomic(vaddr);
1013 page = next_page;
1014 off %= PAGE_SIZE;
1015 }
1016
1017 set_freeobj(zspage, 0);
1018 }
1019
1020 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021 struct page *pages[])
1022 {
1023 int i;
1024 struct page *page;
1025 struct page *prev_page = NULL;
1026 int nr_pages = class->pages_per_zspage;
1027
1028 /*
1029 * Allocate individual pages and link them together as:
1030 * 1. all pages are linked together using page->freelist
1031 * 2. each sub-page point to zspage using page->private
1032 *
1033 * we set PG_private to identify the first page (i.e. no other sub-page
1034 * has this flag set).
1035 */
1036 for (i = 0; i < nr_pages; i++) {
1037 page = pages[i];
1038 set_page_private(page, (unsigned long)zspage);
1039 page->freelist = NULL;
1040 if (i == 0) {
1041 zspage->first_page = page;
1042 SetPagePrivate(page);
1043 if (unlikely(class->objs_per_zspage == 1 &&
1044 class->pages_per_zspage == 1))
1045 SetPageHugeObject(page);
1046 } else {
1047 prev_page->freelist = page;
1048 }
1049 prev_page = page;
1050 }
1051 }
1052
1053 /*
1054 * Allocate a zspage for the given size class
1055 */
1056 static struct zspage *alloc_zspage(struct zs_pool *pool,
1057 struct size_class *class,
1058 gfp_t gfp)
1059 {
1060 int i;
1061 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1062 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064 if (!zspage)
1065 return NULL;
1066
1067 memset(zspage, 0, sizeof(struct zspage));
1068 zspage->magic = ZSPAGE_MAGIC;
1069 migrate_lock_init(zspage);
1070
1071 for (i = 0; i < class->pages_per_zspage; i++) {
1072 struct page *page;
1073
1074 page = alloc_page(gfp);
1075 if (!page) {
1076 while (--i >= 0) {
1077 dec_zone_page_state(pages[i], NR_ZSPAGES);
1078 __free_page(pages[i]);
1079 }
1080 cache_free_zspage(pool, zspage);
1081 return NULL;
1082 }
1083
1084 inc_zone_page_state(page, NR_ZSPAGES);
1085 pages[i] = page;
1086 }
1087
1088 create_page_chain(class, zspage, pages);
1089 init_zspage(class, zspage);
1090
1091 return zspage;
1092 }
1093
1094 static struct zspage *find_get_zspage(struct size_class *class)
1095 {
1096 int i;
1097 struct zspage *zspage;
1098
1099 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1100 zspage = list_first_entry_or_null(&class->fullness_list[i],
1101 struct zspage, list);
1102 if (zspage)
1103 break;
1104 }
1105
1106 return zspage;
1107 }
1108
1109 static inline int __zs_cpu_up(struct mapping_area *area)
1110 {
1111 /*
1112 * Make sure we don't leak memory if a cpu UP notification
1113 * and zs_init() race and both call zs_cpu_up() on the same cpu
1114 */
1115 if (area->vm_buf)
1116 return 0;
1117 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1118 if (!area->vm_buf)
1119 return -ENOMEM;
1120 return 0;
1121 }
1122
1123 static inline void __zs_cpu_down(struct mapping_area *area)
1124 {
1125 kfree(area->vm_buf);
1126 area->vm_buf = NULL;
1127 }
1128
1129 static void *__zs_map_object(struct mapping_area *area,
1130 struct page *pages[2], int off, int size)
1131 {
1132 int sizes[2];
1133 void *addr;
1134 char *buf = area->vm_buf;
1135
1136 /* disable page faults to match kmap_atomic() return conditions */
1137 pagefault_disable();
1138
1139 /* no read fastpath */
1140 if (area->vm_mm == ZS_MM_WO)
1141 goto out;
1142
1143 sizes[0] = PAGE_SIZE - off;
1144 sizes[1] = size - sizes[0];
1145
1146 /* copy object to per-cpu buffer */
1147 addr = kmap_atomic(pages[0]);
1148 memcpy(buf, addr + off, sizes[0]);
1149 kunmap_atomic(addr);
1150 addr = kmap_atomic(pages[1]);
1151 memcpy(buf + sizes[0], addr, sizes[1]);
1152 kunmap_atomic(addr);
1153 out:
1154 return area->vm_buf;
1155 }
1156
1157 static void __zs_unmap_object(struct mapping_area *area,
1158 struct page *pages[2], int off, int size)
1159 {
1160 int sizes[2];
1161 void *addr;
1162 char *buf;
1163
1164 /* no write fastpath */
1165 if (area->vm_mm == ZS_MM_RO)
1166 goto out;
1167
1168 buf = area->vm_buf;
1169 buf = buf + ZS_HANDLE_SIZE;
1170 size -= ZS_HANDLE_SIZE;
1171 off += ZS_HANDLE_SIZE;
1172
1173 sizes[0] = PAGE_SIZE - off;
1174 sizes[1] = size - sizes[0];
1175
1176 /* copy per-cpu buffer to object */
1177 addr = kmap_atomic(pages[0]);
1178 memcpy(addr + off, buf, sizes[0]);
1179 kunmap_atomic(addr);
1180 addr = kmap_atomic(pages[1]);
1181 memcpy(addr, buf + sizes[0], sizes[1]);
1182 kunmap_atomic(addr);
1183
1184 out:
1185 /* enable page faults to match kunmap_atomic() return conditions */
1186 pagefault_enable();
1187 }
1188
1189 static int zs_cpu_prepare(unsigned int cpu)
1190 {
1191 struct mapping_area *area;
1192
1193 area = &per_cpu(zs_map_area, cpu);
1194 return __zs_cpu_up(area);
1195 }
1196
1197 static int zs_cpu_dead(unsigned int cpu)
1198 {
1199 struct mapping_area *area;
1200
1201 area = &per_cpu(zs_map_area, cpu);
1202 __zs_cpu_down(area);
1203 return 0;
1204 }
1205
1206 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1207 int objs_per_zspage)
1208 {
1209 if (prev->pages_per_zspage == pages_per_zspage &&
1210 prev->objs_per_zspage == objs_per_zspage)
1211 return true;
1212
1213 return false;
1214 }
1215
1216 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1217 {
1218 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1219 }
1220
1221 unsigned long zs_get_total_pages(struct zs_pool *pool)
1222 {
1223 return atomic_long_read(&pool->pages_allocated);
1224 }
1225 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1226
1227 /**
1228 * zs_map_object - get address of allocated object from handle.
1229 * @pool: pool from which the object was allocated
1230 * @handle: handle returned from zs_malloc
1231 * @mm: maping mode to use
1232 *
1233 * Before using an object allocated from zs_malloc, it must be mapped using
1234 * this function. When done with the object, it must be unmapped using
1235 * zs_unmap_object.
1236 *
1237 * Only one object can be mapped per cpu at a time. There is no protection
1238 * against nested mappings.
1239 *
1240 * This function returns with preemption and page faults disabled.
1241 */
1242 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1243 enum zs_mapmode mm)
1244 {
1245 struct zspage *zspage;
1246 struct page *page;
1247 unsigned long obj, off;
1248 unsigned int obj_idx;
1249
1250 unsigned int class_idx;
1251 enum fullness_group fg;
1252 struct size_class *class;
1253 struct mapping_area *area;
1254 struct page *pages[2];
1255 void *ret;
1256
1257 /*
1258 * Because we use per-cpu mapping areas shared among the
1259 * pools/users, we can't allow mapping in interrupt context
1260 * because it can corrupt another users mappings.
1261 */
1262 BUG_ON(in_interrupt());
1263
1264 /* From now on, migration cannot move the object */
1265 pin_tag(handle);
1266
1267 obj = handle_to_obj(handle);
1268 obj_to_location(obj, &page, &obj_idx);
1269 zspage = get_zspage(page);
1270
1271 /* migration cannot move any subpage in this zspage */
1272 migrate_read_lock(zspage);
1273
1274 get_zspage_mapping(zspage, &class_idx, &fg);
1275 class = pool->size_class[class_idx];
1276 off = (class->size * obj_idx) & ~PAGE_MASK;
1277
1278 area = &get_cpu_var(zs_map_area);
1279 area->vm_mm = mm;
1280 if (off + class->size <= PAGE_SIZE) {
1281 /* this object is contained entirely within a page */
1282 area->vm_addr = kmap_atomic(page);
1283 ret = area->vm_addr + off;
1284 goto out;
1285 }
1286
1287 /* this object spans two pages */
1288 pages[0] = page;
1289 pages[1] = get_next_page(page);
1290 BUG_ON(!pages[1]);
1291
1292 ret = __zs_map_object(area, pages, off, class->size);
1293 out:
1294 if (likely(!PageHugeObject(page)))
1295 ret += ZS_HANDLE_SIZE;
1296
1297 return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(zs_map_object);
1300
1301 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1302 {
1303 struct zspage *zspage;
1304 struct page *page;
1305 unsigned long obj, off;
1306 unsigned int obj_idx;
1307
1308 unsigned int class_idx;
1309 enum fullness_group fg;
1310 struct size_class *class;
1311 struct mapping_area *area;
1312
1313 obj = handle_to_obj(handle);
1314 obj_to_location(obj, &page, &obj_idx);
1315 zspage = get_zspage(page);
1316 get_zspage_mapping(zspage, &class_idx, &fg);
1317 class = pool->size_class[class_idx];
1318 off = (class->size * obj_idx) & ~PAGE_MASK;
1319
1320 area = this_cpu_ptr(&zs_map_area);
1321 if (off + class->size <= PAGE_SIZE)
1322 kunmap_atomic(area->vm_addr);
1323 else {
1324 struct page *pages[2];
1325
1326 pages[0] = page;
1327 pages[1] = get_next_page(page);
1328 BUG_ON(!pages[1]);
1329
1330 __zs_unmap_object(area, pages, off, class->size);
1331 }
1332 put_cpu_var(zs_map_area);
1333
1334 migrate_read_unlock(zspage);
1335 unpin_tag(handle);
1336 }
1337 EXPORT_SYMBOL_GPL(zs_unmap_object);
1338
1339 /**
1340 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1341 * zsmalloc &size_class.
1342 * @pool: zsmalloc pool to use
1343 *
1344 * The function returns the size of the first huge class - any object of equal
1345 * or bigger size will be stored in zspage consisting of a single physical
1346 * page.
1347 *
1348 * Context: Any context.
1349 *
1350 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1351 */
1352 size_t zs_huge_class_size(struct zs_pool *pool)
1353 {
1354 return huge_class_size;
1355 }
1356 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1357
1358 static unsigned long obj_malloc(struct size_class *class,
1359 struct zspage *zspage, unsigned long handle)
1360 {
1361 int i, nr_page, offset;
1362 unsigned long obj;
1363 struct link_free *link;
1364
1365 struct page *m_page;
1366 unsigned long m_offset;
1367 void *vaddr;
1368
1369 handle |= OBJ_ALLOCATED_TAG;
1370 obj = get_freeobj(zspage);
1371
1372 offset = obj * class->size;
1373 nr_page = offset >> PAGE_SHIFT;
1374 m_offset = offset & ~PAGE_MASK;
1375 m_page = get_first_page(zspage);
1376
1377 for (i = 0; i < nr_page; i++)
1378 m_page = get_next_page(m_page);
1379
1380 vaddr = kmap_atomic(m_page);
1381 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1382 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1383 if (likely(!PageHugeObject(m_page)))
1384 /* record handle in the header of allocated chunk */
1385 link->handle = handle;
1386 else
1387 /* record handle to page->index */
1388 zspage->first_page->index = handle;
1389
1390 kunmap_atomic(vaddr);
1391 mod_zspage_inuse(zspage, 1);
1392 zs_stat_inc(class, OBJ_USED, 1);
1393
1394 obj = location_to_obj(m_page, obj);
1395
1396 return obj;
1397 }
1398
1399
1400 /**
1401 * zs_malloc - Allocate block of given size from pool.
1402 * @pool: pool to allocate from
1403 * @size: size of block to allocate
1404 * @gfp: gfp flags when allocating object
1405 *
1406 * On success, handle to the allocated object is returned,
1407 * otherwise 0.
1408 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1409 */
1410 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1411 {
1412 unsigned long handle, obj;
1413 struct size_class *class;
1414 enum fullness_group newfg;
1415 struct zspage *zspage;
1416
1417 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1418 return 0;
1419
1420 handle = cache_alloc_handle(pool, gfp);
1421 if (!handle)
1422 return 0;
1423
1424 /* extra space in chunk to keep the handle */
1425 size += ZS_HANDLE_SIZE;
1426 class = pool->size_class[get_size_class_index(size)];
1427
1428 spin_lock(&class->lock);
1429 zspage = find_get_zspage(class);
1430 if (likely(zspage)) {
1431 obj = obj_malloc(class, zspage, handle);
1432 /* Now move the zspage to another fullness group, if required */
1433 fix_fullness_group(class, zspage);
1434 record_obj(handle, obj);
1435 spin_unlock(&class->lock);
1436
1437 return handle;
1438 }
1439
1440 spin_unlock(&class->lock);
1441
1442 zspage = alloc_zspage(pool, class, gfp);
1443 if (!zspage) {
1444 cache_free_handle(pool, handle);
1445 return 0;
1446 }
1447
1448 spin_lock(&class->lock);
1449 obj = obj_malloc(class, zspage, handle);
1450 newfg = get_fullness_group(class, zspage);
1451 insert_zspage(class, zspage, newfg);
1452 set_zspage_mapping(zspage, class->index, newfg);
1453 record_obj(handle, obj);
1454 atomic_long_add(class->pages_per_zspage,
1455 &pool->pages_allocated);
1456 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1457
1458 /* We completely set up zspage so mark them as movable */
1459 SetZsPageMovable(pool, zspage);
1460 spin_unlock(&class->lock);
1461
1462 return handle;
1463 }
1464 EXPORT_SYMBOL_GPL(zs_malloc);
1465
1466 static void obj_free(struct size_class *class, unsigned long obj)
1467 {
1468 struct link_free *link;
1469 struct zspage *zspage;
1470 struct page *f_page;
1471 unsigned long f_offset;
1472 unsigned int f_objidx;
1473 void *vaddr;
1474
1475 obj &= ~OBJ_ALLOCATED_TAG;
1476 obj_to_location(obj, &f_page, &f_objidx);
1477 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1478 zspage = get_zspage(f_page);
1479
1480 vaddr = kmap_atomic(f_page);
1481
1482 /* Insert this object in containing zspage's freelist */
1483 link = (struct link_free *)(vaddr + f_offset);
1484 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1485 kunmap_atomic(vaddr);
1486 set_freeobj(zspage, f_objidx);
1487 mod_zspage_inuse(zspage, -1);
1488 zs_stat_dec(class, OBJ_USED, 1);
1489 }
1490
1491 void zs_free(struct zs_pool *pool, unsigned long handle)
1492 {
1493 struct zspage *zspage;
1494 struct page *f_page;
1495 unsigned long obj;
1496 unsigned int f_objidx;
1497 int class_idx;
1498 struct size_class *class;
1499 enum fullness_group fullness;
1500 bool isolated;
1501
1502 if (unlikely(!handle))
1503 return;
1504
1505 pin_tag(handle);
1506 obj = handle_to_obj(handle);
1507 obj_to_location(obj, &f_page, &f_objidx);
1508 zspage = get_zspage(f_page);
1509
1510 migrate_read_lock(zspage);
1511
1512 get_zspage_mapping(zspage, &class_idx, &fullness);
1513 class = pool->size_class[class_idx];
1514
1515 spin_lock(&class->lock);
1516 obj_free(class, obj);
1517 fullness = fix_fullness_group(class, zspage);
1518 if (fullness != ZS_EMPTY) {
1519 migrate_read_unlock(zspage);
1520 goto out;
1521 }
1522
1523 isolated = is_zspage_isolated(zspage);
1524 migrate_read_unlock(zspage);
1525 /* If zspage is isolated, zs_page_putback will free the zspage */
1526 if (likely(!isolated))
1527 free_zspage(pool, class, zspage);
1528 out:
1529
1530 spin_unlock(&class->lock);
1531 unpin_tag(handle);
1532 cache_free_handle(pool, handle);
1533 }
1534 EXPORT_SYMBOL_GPL(zs_free);
1535
1536 static void zs_object_copy(struct size_class *class, unsigned long dst,
1537 unsigned long src)
1538 {
1539 struct page *s_page, *d_page;
1540 unsigned int s_objidx, d_objidx;
1541 unsigned long s_off, d_off;
1542 void *s_addr, *d_addr;
1543 int s_size, d_size, size;
1544 int written = 0;
1545
1546 s_size = d_size = class->size;
1547
1548 obj_to_location(src, &s_page, &s_objidx);
1549 obj_to_location(dst, &d_page, &d_objidx);
1550
1551 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1552 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1553
1554 if (s_off + class->size > PAGE_SIZE)
1555 s_size = PAGE_SIZE - s_off;
1556
1557 if (d_off + class->size > PAGE_SIZE)
1558 d_size = PAGE_SIZE - d_off;
1559
1560 s_addr = kmap_atomic(s_page);
1561 d_addr = kmap_atomic(d_page);
1562
1563 while (1) {
1564 size = min(s_size, d_size);
1565 memcpy(d_addr + d_off, s_addr + s_off, size);
1566 written += size;
1567
1568 if (written == class->size)
1569 break;
1570
1571 s_off += size;
1572 s_size -= size;
1573 d_off += size;
1574 d_size -= size;
1575
1576 if (s_off >= PAGE_SIZE) {
1577 kunmap_atomic(d_addr);
1578 kunmap_atomic(s_addr);
1579 s_page = get_next_page(s_page);
1580 s_addr = kmap_atomic(s_page);
1581 d_addr = kmap_atomic(d_page);
1582 s_size = class->size - written;
1583 s_off = 0;
1584 }
1585
1586 if (d_off >= PAGE_SIZE) {
1587 kunmap_atomic(d_addr);
1588 d_page = get_next_page(d_page);
1589 d_addr = kmap_atomic(d_page);
1590 d_size = class->size - written;
1591 d_off = 0;
1592 }
1593 }
1594
1595 kunmap_atomic(d_addr);
1596 kunmap_atomic(s_addr);
1597 }
1598
1599 /*
1600 * Find alloced object in zspage from index object and
1601 * return handle.
1602 */
1603 static unsigned long find_alloced_obj(struct size_class *class,
1604 struct page *page, int *obj_idx)
1605 {
1606 unsigned long head;
1607 int offset = 0;
1608 int index = *obj_idx;
1609 unsigned long handle = 0;
1610 void *addr = kmap_atomic(page);
1611
1612 offset = get_first_obj_offset(page);
1613 offset += class->size * index;
1614
1615 while (offset < PAGE_SIZE) {
1616 head = obj_to_head(page, addr + offset);
1617 if (head & OBJ_ALLOCATED_TAG) {
1618 handle = head & ~OBJ_ALLOCATED_TAG;
1619 if (trypin_tag(handle))
1620 break;
1621 handle = 0;
1622 }
1623
1624 offset += class->size;
1625 index++;
1626 }
1627
1628 kunmap_atomic(addr);
1629
1630 *obj_idx = index;
1631
1632 return handle;
1633 }
1634
1635 struct zs_compact_control {
1636 /* Source spage for migration which could be a subpage of zspage */
1637 struct page *s_page;
1638 /* Destination page for migration which should be a first page
1639 * of zspage. */
1640 struct page *d_page;
1641 /* Starting object index within @s_page which used for live object
1642 * in the subpage. */
1643 int obj_idx;
1644 };
1645
1646 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1647 struct zs_compact_control *cc)
1648 {
1649 unsigned long used_obj, free_obj;
1650 unsigned long handle;
1651 struct page *s_page = cc->s_page;
1652 struct page *d_page = cc->d_page;
1653 int obj_idx = cc->obj_idx;
1654 int ret = 0;
1655
1656 while (1) {
1657 handle = find_alloced_obj(class, s_page, &obj_idx);
1658 if (!handle) {
1659 s_page = get_next_page(s_page);
1660 if (!s_page)
1661 break;
1662 obj_idx = 0;
1663 continue;
1664 }
1665
1666 /* Stop if there is no more space */
1667 if (zspage_full(class, get_zspage(d_page))) {
1668 unpin_tag(handle);
1669 ret = -ENOMEM;
1670 break;
1671 }
1672
1673 used_obj = handle_to_obj(handle);
1674 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1675 zs_object_copy(class, free_obj, used_obj);
1676 obj_idx++;
1677 /*
1678 * record_obj updates handle's value to free_obj and it will
1679 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1680 * breaks synchronization using pin_tag(e,g, zs_free) so
1681 * let's keep the lock bit.
1682 */
1683 free_obj |= BIT(HANDLE_PIN_BIT);
1684 record_obj(handle, free_obj);
1685 unpin_tag(handle);
1686 obj_free(class, used_obj);
1687 }
1688
1689 /* Remember last position in this iteration */
1690 cc->s_page = s_page;
1691 cc->obj_idx = obj_idx;
1692
1693 return ret;
1694 }
1695
1696 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1697 {
1698 int i;
1699 struct zspage *zspage;
1700 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1701
1702 if (!source) {
1703 fg[0] = ZS_ALMOST_FULL;
1704 fg[1] = ZS_ALMOST_EMPTY;
1705 }
1706
1707 for (i = 0; i < 2; i++) {
1708 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1709 struct zspage, list);
1710 if (zspage) {
1711 VM_BUG_ON(is_zspage_isolated(zspage));
1712 remove_zspage(class, zspage, fg[i]);
1713 return zspage;
1714 }
1715 }
1716
1717 return zspage;
1718 }
1719
1720 /*
1721 * putback_zspage - add @zspage into right class's fullness list
1722 * @class: destination class
1723 * @zspage: target page
1724 *
1725 * Return @zspage's fullness_group
1726 */
1727 static enum fullness_group putback_zspage(struct size_class *class,
1728 struct zspage *zspage)
1729 {
1730 enum fullness_group fullness;
1731
1732 VM_BUG_ON(is_zspage_isolated(zspage));
1733
1734 fullness = get_fullness_group(class, zspage);
1735 insert_zspage(class, zspage, fullness);
1736 set_zspage_mapping(zspage, class->index, fullness);
1737
1738 return fullness;
1739 }
1740
1741 #ifdef CONFIG_COMPACTION
1742 /*
1743 * To prevent zspage destroy during migration, zspage freeing should
1744 * hold locks of all pages in the zspage.
1745 */
1746 static void lock_zspage(struct zspage *zspage)
1747 {
1748 struct page *page = get_first_page(zspage);
1749
1750 do {
1751 lock_page(page);
1752 } while ((page = get_next_page(page)) != NULL);
1753 }
1754
1755 static int zs_init_fs_context(struct fs_context *fc)
1756 {
1757 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1758 }
1759
1760 static struct file_system_type zsmalloc_fs = {
1761 .name = "zsmalloc",
1762 .init_fs_context = zs_init_fs_context,
1763 .kill_sb = kill_anon_super,
1764 };
1765
1766 static int zsmalloc_mount(void)
1767 {
1768 int ret = 0;
1769
1770 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1771 if (IS_ERR(zsmalloc_mnt))
1772 ret = PTR_ERR(zsmalloc_mnt);
1773
1774 return ret;
1775 }
1776
1777 static void zsmalloc_unmount(void)
1778 {
1779 kern_unmount(zsmalloc_mnt);
1780 }
1781
1782 static void migrate_lock_init(struct zspage *zspage)
1783 {
1784 rwlock_init(&zspage->lock);
1785 }
1786
1787 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1788 {
1789 read_lock(&zspage->lock);
1790 }
1791
1792 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1793 {
1794 read_unlock(&zspage->lock);
1795 }
1796
1797 static void migrate_write_lock(struct zspage *zspage)
1798 {
1799 write_lock(&zspage->lock);
1800 }
1801
1802 static void migrate_write_unlock(struct zspage *zspage)
1803 {
1804 write_unlock(&zspage->lock);
1805 }
1806
1807 /* Number of isolated subpage for *page migration* in this zspage */
1808 static void inc_zspage_isolation(struct zspage *zspage)
1809 {
1810 zspage->isolated++;
1811 }
1812
1813 static void dec_zspage_isolation(struct zspage *zspage)
1814 {
1815 zspage->isolated--;
1816 }
1817
1818 static void putback_zspage_deferred(struct zs_pool *pool,
1819 struct size_class *class,
1820 struct zspage *zspage)
1821 {
1822 enum fullness_group fg;
1823
1824 fg = putback_zspage(class, zspage);
1825 if (fg == ZS_EMPTY)
1826 schedule_work(&pool->free_work);
1827
1828 }
1829
1830 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1831 {
1832 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1833 atomic_long_dec(&pool->isolated_pages);
1834 /*
1835 * There's no possibility of racing, since wait_for_isolated_drain()
1836 * checks the isolated count under &class->lock after enqueuing
1837 * on migration_wait.
1838 */
1839 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1840 wake_up_all(&pool->migration_wait);
1841 }
1842
1843 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1844 struct page *newpage, struct page *oldpage)
1845 {
1846 struct page *page;
1847 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1848 int idx = 0;
1849
1850 page = get_first_page(zspage);
1851 do {
1852 if (page == oldpage)
1853 pages[idx] = newpage;
1854 else
1855 pages[idx] = page;
1856 idx++;
1857 } while ((page = get_next_page(page)) != NULL);
1858
1859 create_page_chain(class, zspage, pages);
1860 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1861 if (unlikely(PageHugeObject(oldpage)))
1862 newpage->index = oldpage->index;
1863 __SetPageMovable(newpage, page_mapping(oldpage));
1864 }
1865
1866 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1867 {
1868 struct zs_pool *pool;
1869 struct size_class *class;
1870 int class_idx;
1871 enum fullness_group fullness;
1872 struct zspage *zspage;
1873 struct address_space *mapping;
1874
1875 /*
1876 * Page is locked so zspage couldn't be destroyed. For detail, look at
1877 * lock_zspage in free_zspage.
1878 */
1879 VM_BUG_ON_PAGE(!PageMovable(page), page);
1880 VM_BUG_ON_PAGE(PageIsolated(page), page);
1881
1882 zspage = get_zspage(page);
1883
1884 /*
1885 * Without class lock, fullness could be stale while class_idx is okay
1886 * because class_idx is constant unless page is freed so we should get
1887 * fullness again under class lock.
1888 */
1889 get_zspage_mapping(zspage, &class_idx, &fullness);
1890 mapping = page_mapping(page);
1891 pool = mapping->private_data;
1892 class = pool->size_class[class_idx];
1893
1894 spin_lock(&class->lock);
1895 if (get_zspage_inuse(zspage) == 0) {
1896 spin_unlock(&class->lock);
1897 return false;
1898 }
1899
1900 /* zspage is isolated for object migration */
1901 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1902 spin_unlock(&class->lock);
1903 return false;
1904 }
1905
1906 /*
1907 * If this is first time isolation for the zspage, isolate zspage from
1908 * size_class to prevent further object allocation from the zspage.
1909 */
1910 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1911 get_zspage_mapping(zspage, &class_idx, &fullness);
1912 atomic_long_inc(&pool->isolated_pages);
1913 remove_zspage(class, zspage, fullness);
1914 }
1915
1916 inc_zspage_isolation(zspage);
1917 spin_unlock(&class->lock);
1918
1919 return true;
1920 }
1921
1922 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1923 struct page *page, enum migrate_mode mode)
1924 {
1925 struct zs_pool *pool;
1926 struct size_class *class;
1927 int class_idx;
1928 enum fullness_group fullness;
1929 struct zspage *zspage;
1930 struct page *dummy;
1931 void *s_addr, *d_addr, *addr;
1932 int offset, pos;
1933 unsigned long handle, head;
1934 unsigned long old_obj, new_obj;
1935 unsigned int obj_idx;
1936 int ret = -EAGAIN;
1937
1938 /*
1939 * We cannot support the _NO_COPY case here, because copy needs to
1940 * happen under the zs lock, which does not work with
1941 * MIGRATE_SYNC_NO_COPY workflow.
1942 */
1943 if (mode == MIGRATE_SYNC_NO_COPY)
1944 return -EINVAL;
1945
1946 VM_BUG_ON_PAGE(!PageMovable(page), page);
1947 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1948
1949 zspage = get_zspage(page);
1950
1951 /* Concurrent compactor cannot migrate any subpage in zspage */
1952 migrate_write_lock(zspage);
1953 get_zspage_mapping(zspage, &class_idx, &fullness);
1954 pool = mapping->private_data;
1955 class = pool->size_class[class_idx];
1956 offset = get_first_obj_offset(page);
1957
1958 spin_lock(&class->lock);
1959 if (!get_zspage_inuse(zspage)) {
1960 /*
1961 * Set "offset" to end of the page so that every loops
1962 * skips unnecessary object scanning.
1963 */
1964 offset = PAGE_SIZE;
1965 }
1966
1967 pos = offset;
1968 s_addr = kmap_atomic(page);
1969 while (pos < PAGE_SIZE) {
1970 head = obj_to_head(page, s_addr + pos);
1971 if (head & OBJ_ALLOCATED_TAG) {
1972 handle = head & ~OBJ_ALLOCATED_TAG;
1973 if (!trypin_tag(handle))
1974 goto unpin_objects;
1975 }
1976 pos += class->size;
1977 }
1978
1979 /*
1980 * Here, any user cannot access all objects in the zspage so let's move.
1981 */
1982 d_addr = kmap_atomic(newpage);
1983 memcpy(d_addr, s_addr, PAGE_SIZE);
1984 kunmap_atomic(d_addr);
1985
1986 for (addr = s_addr + offset; addr < s_addr + pos;
1987 addr += class->size) {
1988 head = obj_to_head(page, addr);
1989 if (head & OBJ_ALLOCATED_TAG) {
1990 handle = head & ~OBJ_ALLOCATED_TAG;
1991 if (!testpin_tag(handle))
1992 BUG();
1993
1994 old_obj = handle_to_obj(handle);
1995 obj_to_location(old_obj, &dummy, &obj_idx);
1996 new_obj = (unsigned long)location_to_obj(newpage,
1997 obj_idx);
1998 new_obj |= BIT(HANDLE_PIN_BIT);
1999 record_obj(handle, new_obj);
2000 }
2001 }
2002
2003 replace_sub_page(class, zspage, newpage, page);
2004 get_page(newpage);
2005
2006 dec_zspage_isolation(zspage);
2007
2008 /*
2009 * Page migration is done so let's putback isolated zspage to
2010 * the list if @page is final isolated subpage in the zspage.
2011 */
2012 if (!is_zspage_isolated(zspage)) {
2013 /*
2014 * We cannot race with zs_destroy_pool() here because we wait
2015 * for isolation to hit zero before we start destroying.
2016 * Also, we ensure that everyone can see pool->destroying before
2017 * we start waiting.
2018 */
2019 putback_zspage_deferred(pool, class, zspage);
2020 zs_pool_dec_isolated(pool);
2021 }
2022
2023 if (page_zone(newpage) != page_zone(page)) {
2024 dec_zone_page_state(page, NR_ZSPAGES);
2025 inc_zone_page_state(newpage, NR_ZSPAGES);
2026 }
2027
2028 reset_page(page);
2029 put_page(page);
2030 page = newpage;
2031
2032 ret = MIGRATEPAGE_SUCCESS;
2033 unpin_objects:
2034 for (addr = s_addr + offset; addr < s_addr + pos;
2035 addr += class->size) {
2036 head = obj_to_head(page, addr);
2037 if (head & OBJ_ALLOCATED_TAG) {
2038 handle = head & ~OBJ_ALLOCATED_TAG;
2039 if (!testpin_tag(handle))
2040 BUG();
2041 unpin_tag(handle);
2042 }
2043 }
2044 kunmap_atomic(s_addr);
2045 spin_unlock(&class->lock);
2046 migrate_write_unlock(zspage);
2047
2048 return ret;
2049 }
2050
2051 static void zs_page_putback(struct page *page)
2052 {
2053 struct zs_pool *pool;
2054 struct size_class *class;
2055 int class_idx;
2056 enum fullness_group fg;
2057 struct address_space *mapping;
2058 struct zspage *zspage;
2059
2060 VM_BUG_ON_PAGE(!PageMovable(page), page);
2061 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2062
2063 zspage = get_zspage(page);
2064 get_zspage_mapping(zspage, &class_idx, &fg);
2065 mapping = page_mapping(page);
2066 pool = mapping->private_data;
2067 class = pool->size_class[class_idx];
2068
2069 spin_lock(&class->lock);
2070 dec_zspage_isolation(zspage);
2071 if (!is_zspage_isolated(zspage)) {
2072 /*
2073 * Due to page_lock, we cannot free zspage immediately
2074 * so let's defer.
2075 */
2076 putback_zspage_deferred(pool, class, zspage);
2077 zs_pool_dec_isolated(pool);
2078 }
2079 spin_unlock(&class->lock);
2080 }
2081
2082 static const struct address_space_operations zsmalloc_aops = {
2083 .isolate_page = zs_page_isolate,
2084 .migratepage = zs_page_migrate,
2085 .putback_page = zs_page_putback,
2086 };
2087
2088 static int zs_register_migration(struct zs_pool *pool)
2089 {
2090 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2091 if (IS_ERR(pool->inode)) {
2092 pool->inode = NULL;
2093 return 1;
2094 }
2095
2096 pool->inode->i_mapping->private_data = pool;
2097 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2098 return 0;
2099 }
2100
2101 static bool pool_isolated_are_drained(struct zs_pool *pool)
2102 {
2103 return atomic_long_read(&pool->isolated_pages) == 0;
2104 }
2105
2106 /* Function for resolving migration */
2107 static void wait_for_isolated_drain(struct zs_pool *pool)
2108 {
2109
2110 /*
2111 * We're in the process of destroying the pool, so there are no
2112 * active allocations. zs_page_isolate() fails for completely free
2113 * zspages, so we need only wait for the zs_pool's isolated
2114 * count to hit zero.
2115 */
2116 wait_event(pool->migration_wait,
2117 pool_isolated_are_drained(pool));
2118 }
2119
2120 static void zs_unregister_migration(struct zs_pool *pool)
2121 {
2122 pool->destroying = true;
2123 /*
2124 * We need a memory barrier here to ensure global visibility of
2125 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2126 * case we don't care, or it will be > 0 and pool->destroying will
2127 * ensure that we wake up once isolation hits 0.
2128 */
2129 smp_mb();
2130 wait_for_isolated_drain(pool); /* This can block */
2131 flush_work(&pool->free_work);
2132 iput(pool->inode);
2133 }
2134
2135 /*
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2138 */
2139 static void async_free_zspage(struct work_struct *work)
2140 {
2141 int i;
2142 struct size_class *class;
2143 unsigned int class_idx;
2144 enum fullness_group fullness;
2145 struct zspage *zspage, *tmp;
2146 LIST_HEAD(free_pages);
2147 struct zs_pool *pool = container_of(work, struct zs_pool,
2148 free_work);
2149
2150 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151 class = pool->size_class[i];
2152 if (class->index != i)
2153 continue;
2154
2155 spin_lock(&class->lock);
2156 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157 spin_unlock(&class->lock);
2158 }
2159
2160
2161 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162 list_del(&zspage->list);
2163 lock_zspage(zspage);
2164
2165 get_zspage_mapping(zspage, &class_idx, &fullness);
2166 VM_BUG_ON(fullness != ZS_EMPTY);
2167 class = pool->size_class[class_idx];
2168 spin_lock(&class->lock);
2169 __free_zspage(pool, pool->size_class[class_idx], zspage);
2170 spin_unlock(&class->lock);
2171 }
2172 };
2173
2174 static void kick_deferred_free(struct zs_pool *pool)
2175 {
2176 schedule_work(&pool->free_work);
2177 }
2178
2179 static void init_deferred_free(struct zs_pool *pool)
2180 {
2181 INIT_WORK(&pool->free_work, async_free_zspage);
2182 }
2183
2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185 {
2186 struct page *page = get_first_page(zspage);
2187
2188 do {
2189 WARN_ON(!trylock_page(page));
2190 __SetPageMovable(page, pool->inode->i_mapping);
2191 unlock_page(page);
2192 } while ((page = get_next_page(page)) != NULL);
2193 }
2194 #endif
2195
2196 /*
2197 *
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2200 */
2201 static unsigned long zs_can_compact(struct size_class *class)
2202 {
2203 unsigned long obj_wasted;
2204 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2206
2207 if (obj_allocated <= obj_used)
2208 return 0;
2209
2210 obj_wasted = obj_allocated - obj_used;
2211 obj_wasted /= class->objs_per_zspage;
2212
2213 return obj_wasted * class->pages_per_zspage;
2214 }
2215
2216 static unsigned long __zs_compact(struct zs_pool *pool,
2217 struct size_class *class)
2218 {
2219 struct zs_compact_control cc;
2220 struct zspage *src_zspage;
2221 struct zspage *dst_zspage = NULL;
2222 unsigned long pages_freed = 0;
2223
2224 spin_lock(&class->lock);
2225 while ((src_zspage = isolate_zspage(class, true))) {
2226
2227 if (!zs_can_compact(class))
2228 break;
2229
2230 cc.obj_idx = 0;
2231 cc.s_page = get_first_page(src_zspage);
2232
2233 while ((dst_zspage = isolate_zspage(class, false))) {
2234 cc.d_page = get_first_page(dst_zspage);
2235 /*
2236 * If there is no more space in dst_page, resched
2237 * and see if anyone had allocated another zspage.
2238 */
2239 if (!migrate_zspage(pool, class, &cc))
2240 break;
2241
2242 putback_zspage(class, dst_zspage);
2243 }
2244
2245 /* Stop if we couldn't find slot */
2246 if (dst_zspage == NULL)
2247 break;
2248
2249 putback_zspage(class, dst_zspage);
2250 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2251 free_zspage(pool, class, src_zspage);
2252 pages_freed += class->pages_per_zspage;
2253 }
2254 spin_unlock(&class->lock);
2255 cond_resched();
2256 spin_lock(&class->lock);
2257 }
2258
2259 if (src_zspage)
2260 putback_zspage(class, src_zspage);
2261
2262 spin_unlock(&class->lock);
2263
2264 return pages_freed;
2265 }
2266
2267 unsigned long zs_compact(struct zs_pool *pool)
2268 {
2269 int i;
2270 struct size_class *class;
2271 unsigned long pages_freed = 0;
2272
2273 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2274 class = pool->size_class[i];
2275 if (!class)
2276 continue;
2277 if (class->index != i)
2278 continue;
2279 pages_freed += __zs_compact(pool, class);
2280 }
2281 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2282
2283 return pages_freed;
2284 }
2285 EXPORT_SYMBOL_GPL(zs_compact);
2286
2287 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2288 {
2289 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2290 }
2291 EXPORT_SYMBOL_GPL(zs_pool_stats);
2292
2293 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2294 struct shrink_control *sc)
2295 {
2296 unsigned long pages_freed;
2297 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2298 shrinker);
2299
2300 /*
2301 * Compact classes and calculate compaction delta.
2302 * Can run concurrently with a manually triggered
2303 * (by user) compaction.
2304 */
2305 pages_freed = zs_compact(pool);
2306
2307 return pages_freed ? pages_freed : SHRINK_STOP;
2308 }
2309
2310 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2311 struct shrink_control *sc)
2312 {
2313 int i;
2314 struct size_class *class;
2315 unsigned long pages_to_free = 0;
2316 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2317 shrinker);
2318
2319 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2320 class = pool->size_class[i];
2321 if (!class)
2322 continue;
2323 if (class->index != i)
2324 continue;
2325
2326 pages_to_free += zs_can_compact(class);
2327 }
2328
2329 return pages_to_free;
2330 }
2331
2332 static void zs_unregister_shrinker(struct zs_pool *pool)
2333 {
2334 unregister_shrinker(&pool->shrinker);
2335 }
2336
2337 static int zs_register_shrinker(struct zs_pool *pool)
2338 {
2339 pool->shrinker.scan_objects = zs_shrinker_scan;
2340 pool->shrinker.count_objects = zs_shrinker_count;
2341 pool->shrinker.batch = 0;
2342 pool->shrinker.seeks = DEFAULT_SEEKS;
2343
2344 return register_shrinker(&pool->shrinker);
2345 }
2346
2347 /**
2348 * zs_create_pool - Creates an allocation pool to work from.
2349 * @name: pool name to be created
2350 *
2351 * This function must be called before anything when using
2352 * the zsmalloc allocator.
2353 *
2354 * On success, a pointer to the newly created pool is returned,
2355 * otherwise NULL.
2356 */
2357 struct zs_pool *zs_create_pool(const char *name)
2358 {
2359 int i;
2360 struct zs_pool *pool;
2361 struct size_class *prev_class = NULL;
2362
2363 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2364 if (!pool)
2365 return NULL;
2366
2367 init_deferred_free(pool);
2368
2369 pool->name = kstrdup(name, GFP_KERNEL);
2370 if (!pool->name)
2371 goto err;
2372
2373 #ifdef CONFIG_COMPACTION
2374 init_waitqueue_head(&pool->migration_wait);
2375 #endif
2376
2377 if (create_cache(pool))
2378 goto err;
2379
2380 /*
2381 * Iterate reversely, because, size of size_class that we want to use
2382 * for merging should be larger or equal to current size.
2383 */
2384 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2385 int size;
2386 int pages_per_zspage;
2387 int objs_per_zspage;
2388 struct size_class *class;
2389 int fullness = 0;
2390
2391 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2392 if (size > ZS_MAX_ALLOC_SIZE)
2393 size = ZS_MAX_ALLOC_SIZE;
2394 pages_per_zspage = get_pages_per_zspage(size);
2395 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2396
2397 /*
2398 * We iterate from biggest down to smallest classes,
2399 * so huge_class_size holds the size of the first huge
2400 * class. Any object bigger than or equal to that will
2401 * endup in the huge class.
2402 */
2403 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2404 !huge_class_size) {
2405 huge_class_size = size;
2406 /*
2407 * The object uses ZS_HANDLE_SIZE bytes to store the
2408 * handle. We need to subtract it, because zs_malloc()
2409 * unconditionally adds handle size before it performs
2410 * size class search - so object may be smaller than
2411 * huge class size, yet it still can end up in the huge
2412 * class because it grows by ZS_HANDLE_SIZE extra bytes
2413 * right before class lookup.
2414 */
2415 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2416 }
2417
2418 /*
2419 * size_class is used for normal zsmalloc operation such
2420 * as alloc/free for that size. Although it is natural that we
2421 * have one size_class for each size, there is a chance that we
2422 * can get more memory utilization if we use one size_class for
2423 * many different sizes whose size_class have same
2424 * characteristics. So, we makes size_class point to
2425 * previous size_class if possible.
2426 */
2427 if (prev_class) {
2428 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2429 pool->size_class[i] = prev_class;
2430 continue;
2431 }
2432 }
2433
2434 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2435 if (!class)
2436 goto err;
2437
2438 class->size = size;
2439 class->index = i;
2440 class->pages_per_zspage = pages_per_zspage;
2441 class->objs_per_zspage = objs_per_zspage;
2442 spin_lock_init(&class->lock);
2443 pool->size_class[i] = class;
2444 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2445 fullness++)
2446 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2447
2448 prev_class = class;
2449 }
2450
2451 /* debug only, don't abort if it fails */
2452 zs_pool_stat_create(pool, name);
2453
2454 if (zs_register_migration(pool))
2455 goto err;
2456
2457 /*
2458 * Not critical since shrinker is only used to trigger internal
2459 * defragmentation of the pool which is pretty optional thing. If
2460 * registration fails we still can use the pool normally and user can
2461 * trigger compaction manually. Thus, ignore return code.
2462 */
2463 zs_register_shrinker(pool);
2464
2465 return pool;
2466
2467 err:
2468 zs_destroy_pool(pool);
2469 return NULL;
2470 }
2471 EXPORT_SYMBOL_GPL(zs_create_pool);
2472
2473 void zs_destroy_pool(struct zs_pool *pool)
2474 {
2475 int i;
2476
2477 zs_unregister_shrinker(pool);
2478 zs_unregister_migration(pool);
2479 zs_pool_stat_destroy(pool);
2480
2481 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2482 int fg;
2483 struct size_class *class = pool->size_class[i];
2484
2485 if (!class)
2486 continue;
2487
2488 if (class->index != i)
2489 continue;
2490
2491 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2492 if (!list_empty(&class->fullness_list[fg])) {
2493 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2494 class->size, fg);
2495 }
2496 }
2497 kfree(class);
2498 }
2499
2500 destroy_cache(pool);
2501 kfree(pool->name);
2502 kfree(pool);
2503 }
2504 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2505
2506 static int __init zs_init(void)
2507 {
2508 int ret;
2509
2510 ret = zsmalloc_mount();
2511 if (ret)
2512 goto out;
2513
2514 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2515 zs_cpu_prepare, zs_cpu_dead);
2516 if (ret)
2517 goto hp_setup_fail;
2518
2519 #ifdef CONFIG_ZPOOL
2520 zpool_register_driver(&zs_zpool_driver);
2521 #endif
2522
2523 zs_stat_init();
2524
2525 return 0;
2526
2527 hp_setup_fail:
2528 zsmalloc_unmount();
2529 out:
2530 return ret;
2531 }
2532
2533 static void __exit zs_exit(void)
2534 {
2535 #ifdef CONFIG_ZPOOL
2536 zpool_unregister_driver(&zs_zpool_driver);
2537 #endif
2538 zsmalloc_unmount();
2539 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2540
2541 zs_stat_exit();
2542 }
2543
2544 module_init(zs_init);
2545 module_exit(zs_exit);
2546
2547 MODULE_LICENSE("Dual BSD/GPL");
2548 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");