]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/zsmalloc.c
zsmalloc: factor page chain functionality out
[mirror_ubuntu-zesty-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private: refers to the component page after the first page
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->lru: links together first pages of various zspages.
36 * Basically forming list of zspages in a fullness group.
37 * page->mapping: class index and fullness group of the zspage
38 * page->inuse: the number of objects that are used in this zspage
39 *
40 * Usage of struct page flags:
41 * PG_private: identifies the first component page
42 * PG_private2: identifies the last component page
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/preempt.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67
68 /*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74 #define ZS_ALIGN 8
75
76 /*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85 /*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
108
109 /*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116 #define HANDLE_PIN_BIT 0
117
118 /*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137 /*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
151
152 /*
153 * We do not maintain any list for completely empty or full pages
154 */
155 enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162 };
163
164 enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169 };
170
171 #ifdef CONFIG_ZSMALLOC_STAT
172 #define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173 #else
174 #define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175 #endif
176
177 struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179 };
180
181 #ifdef CONFIG_ZSMALLOC_STAT
182 static struct dentry *zs_stat_root;
183 #endif
184
185 /*
186 * number of size_classes
187 */
188 static int zs_size_classes;
189
190 /*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
195 * f = fullness_threshold_frac
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204 static const int fullness_threshold_frac = 4;
205
206 struct size_class {
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 int objs_per_zspage;
215 unsigned int index;
216
217 struct zs_size_stat stats;
218
219 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
220 int pages_per_zspage;
221 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
222 bool huge;
223 };
224
225 /*
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
228 *
229 * This must be power of 2 and less than or equal to ZS_ALIGN
230 */
231 struct link_free {
232 union {
233 /*
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
236 */
237 void *next;
238 /*
239 * Handle of allocated object.
240 */
241 unsigned long handle;
242 };
243 };
244
245 struct zs_pool {
246 const char *name;
247
248 struct size_class **size_class;
249 struct kmem_cache *handle_cachep;
250
251 atomic_long_t pages_allocated;
252
253 struct zs_pool_stats stats;
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264 #endif
265 };
266
267 /*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271 #define FULLNESS_BITS 4
272 #define CLASS_BITS 28
273
274 #define FULLNESS_SHIFT 0
275 #define CLASS_SHIFT (FULLNESS_SHIFT + FULLNESS_BITS)
276
277 #define FULLNESS_MASK ((1UL << FULLNESS_BITS) - 1)
278 #define CLASS_MASK ((1UL << CLASS_BITS) - 1)
279
280 struct mapping_area {
281 #ifdef CONFIG_PGTABLE_MAPPING
282 struct vm_struct *vm; /* vm area for mapping object that span pages */
283 #else
284 char *vm_buf; /* copy buffer for objects that span pages */
285 #endif
286 char *vm_addr; /* address of kmap_atomic()'ed pages */
287 enum zs_mapmode vm_mm; /* mapping mode */
288 };
289
290 static int create_handle_cache(struct zs_pool *pool)
291 {
292 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
293 0, 0, NULL);
294 return pool->handle_cachep ? 0 : 1;
295 }
296
297 static void destroy_handle_cache(struct zs_pool *pool)
298 {
299 kmem_cache_destroy(pool->handle_cachep);
300 }
301
302 static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
303 {
304 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
305 gfp & ~__GFP_HIGHMEM);
306 }
307
308 static void free_handle(struct zs_pool *pool, unsigned long handle)
309 {
310 kmem_cache_free(pool->handle_cachep, (void *)handle);
311 }
312
313 static void record_obj(unsigned long handle, unsigned long obj)
314 {
315 /*
316 * lsb of @obj represents handle lock while other bits
317 * represent object value the handle is pointing so
318 * updating shouldn't do store tearing.
319 */
320 WRITE_ONCE(*(unsigned long *)handle, obj);
321 }
322
323 /* zpool driver */
324
325 #ifdef CONFIG_ZPOOL
326
327 static void *zs_zpool_create(const char *name, gfp_t gfp,
328 const struct zpool_ops *zpool_ops,
329 struct zpool *zpool)
330 {
331 /*
332 * Ignore global gfp flags: zs_malloc() may be invoked from
333 * different contexts and its caller must provide a valid
334 * gfp mask.
335 */
336 return zs_create_pool(name);
337 }
338
339 static void zs_zpool_destroy(void *pool)
340 {
341 zs_destroy_pool(pool);
342 }
343
344 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
345 unsigned long *handle)
346 {
347 *handle = zs_malloc(pool, size, gfp);
348 return *handle ? 0 : -1;
349 }
350 static void zs_zpool_free(void *pool, unsigned long handle)
351 {
352 zs_free(pool, handle);
353 }
354
355 static int zs_zpool_shrink(void *pool, unsigned int pages,
356 unsigned int *reclaimed)
357 {
358 return -EINVAL;
359 }
360
361 static void *zs_zpool_map(void *pool, unsigned long handle,
362 enum zpool_mapmode mm)
363 {
364 enum zs_mapmode zs_mm;
365
366 switch (mm) {
367 case ZPOOL_MM_RO:
368 zs_mm = ZS_MM_RO;
369 break;
370 case ZPOOL_MM_WO:
371 zs_mm = ZS_MM_WO;
372 break;
373 case ZPOOL_MM_RW: /* fallthru */
374 default:
375 zs_mm = ZS_MM_RW;
376 break;
377 }
378
379 return zs_map_object(pool, handle, zs_mm);
380 }
381 static void zs_zpool_unmap(void *pool, unsigned long handle)
382 {
383 zs_unmap_object(pool, handle);
384 }
385
386 static u64 zs_zpool_total_size(void *pool)
387 {
388 return zs_get_total_pages(pool) << PAGE_SHIFT;
389 }
390
391 static struct zpool_driver zs_zpool_driver = {
392 .type = "zsmalloc",
393 .owner = THIS_MODULE,
394 .create = zs_zpool_create,
395 .destroy = zs_zpool_destroy,
396 .malloc = zs_zpool_malloc,
397 .free = zs_zpool_free,
398 .shrink = zs_zpool_shrink,
399 .map = zs_zpool_map,
400 .unmap = zs_zpool_unmap,
401 .total_size = zs_zpool_total_size,
402 };
403
404 MODULE_ALIAS("zpool-zsmalloc");
405 #endif /* CONFIG_ZPOOL */
406
407 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
408 {
409 return pages_per_zspage * PAGE_SIZE / size;
410 }
411
412 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
413 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
414
415 static int is_first_page(struct page *page)
416 {
417 return PagePrivate(page);
418 }
419
420 static int is_last_page(struct page *page)
421 {
422 return PagePrivate2(page);
423 }
424
425 static inline int get_zspage_inuse(struct page *first_page)
426 {
427 return first_page->inuse;
428 }
429
430 static inline void set_zspage_inuse(struct page *first_page, int val)
431 {
432 first_page->inuse = val;
433 }
434
435 static inline void mod_zspage_inuse(struct page *first_page, int val)
436 {
437 first_page->inuse += val;
438 }
439
440 static inline int get_first_obj_offset(struct page *page)
441 {
442 return page->index;
443 }
444
445 static inline void set_first_obj_offset(struct page *page, int offset)
446 {
447 page->index = offset;
448 }
449
450 static inline unsigned long get_freeobj(struct page *first_page)
451 {
452 return (unsigned long)first_page->freelist;
453 }
454
455 static inline void set_freeobj(struct page *first_page, unsigned long obj)
456 {
457 first_page->freelist = (void *)obj;
458 }
459
460 static void get_zspage_mapping(struct page *first_page,
461 unsigned int *class_idx,
462 enum fullness_group *fullness)
463 {
464 unsigned long m;
465 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
466
467 m = (unsigned long)first_page->mapping;
468 *fullness = (m >> FULLNESS_SHIFT) & FULLNESS_MASK;
469 *class_idx = (m >> CLASS_SHIFT) & CLASS_MASK;
470 }
471
472 static void set_zspage_mapping(struct page *first_page,
473 unsigned int class_idx,
474 enum fullness_group fullness)
475 {
476 unsigned long m;
477 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
478
479 m = (class_idx << CLASS_SHIFT) | (fullness << FULLNESS_SHIFT);
480 first_page->mapping = (struct address_space *)m;
481 }
482
483 /*
484 * zsmalloc divides the pool into various size classes where each
485 * class maintains a list of zspages where each zspage is divided
486 * into equal sized chunks. Each allocation falls into one of these
487 * classes depending on its size. This function returns index of the
488 * size class which has chunk size big enough to hold the give size.
489 */
490 static int get_size_class_index(int size)
491 {
492 int idx = 0;
493
494 if (likely(size > ZS_MIN_ALLOC_SIZE))
495 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
496 ZS_SIZE_CLASS_DELTA);
497
498 return min(zs_size_classes - 1, idx);
499 }
500
501 static inline void zs_stat_inc(struct size_class *class,
502 enum zs_stat_type type, unsigned long cnt)
503 {
504 if (type < NR_ZS_STAT_TYPE)
505 class->stats.objs[type] += cnt;
506 }
507
508 static inline void zs_stat_dec(struct size_class *class,
509 enum zs_stat_type type, unsigned long cnt)
510 {
511 if (type < NR_ZS_STAT_TYPE)
512 class->stats.objs[type] -= cnt;
513 }
514
515 static inline unsigned long zs_stat_get(struct size_class *class,
516 enum zs_stat_type type)
517 {
518 if (type < NR_ZS_STAT_TYPE)
519 return class->stats.objs[type];
520 return 0;
521 }
522
523 #ifdef CONFIG_ZSMALLOC_STAT
524
525 static void __init zs_stat_init(void)
526 {
527 if (!debugfs_initialized()) {
528 pr_warn("debugfs not available, stat dir not created\n");
529 return;
530 }
531
532 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
533 if (!zs_stat_root)
534 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
535 }
536
537 static void __exit zs_stat_exit(void)
538 {
539 debugfs_remove_recursive(zs_stat_root);
540 }
541
542 static unsigned long zs_can_compact(struct size_class *class);
543
544 static int zs_stats_size_show(struct seq_file *s, void *v)
545 {
546 int i;
547 struct zs_pool *pool = s->private;
548 struct size_class *class;
549 int objs_per_zspage;
550 unsigned long class_almost_full, class_almost_empty;
551 unsigned long obj_allocated, obj_used, pages_used, freeable;
552 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
553 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
554 unsigned long total_freeable = 0;
555
556 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
557 "class", "size", "almost_full", "almost_empty",
558 "obj_allocated", "obj_used", "pages_used",
559 "pages_per_zspage", "freeable");
560
561 for (i = 0; i < zs_size_classes; i++) {
562 class = pool->size_class[i];
563
564 if (class->index != i)
565 continue;
566
567 spin_lock(&class->lock);
568 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
569 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
570 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
571 obj_used = zs_stat_get(class, OBJ_USED);
572 freeable = zs_can_compact(class);
573 spin_unlock(&class->lock);
574
575 objs_per_zspage = get_maxobj_per_zspage(class->size,
576 class->pages_per_zspage);
577 pages_used = obj_allocated / objs_per_zspage *
578 class->pages_per_zspage;
579
580 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
581 " %10lu %10lu %16d %8lu\n",
582 i, class->size, class_almost_full, class_almost_empty,
583 obj_allocated, obj_used, pages_used,
584 class->pages_per_zspage, freeable);
585
586 total_class_almost_full += class_almost_full;
587 total_class_almost_empty += class_almost_empty;
588 total_objs += obj_allocated;
589 total_used_objs += obj_used;
590 total_pages += pages_used;
591 total_freeable += freeable;
592 }
593
594 seq_puts(s, "\n");
595 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
596 "Total", "", total_class_almost_full,
597 total_class_almost_empty, total_objs,
598 total_used_objs, total_pages, "", total_freeable);
599
600 return 0;
601 }
602
603 static int zs_stats_size_open(struct inode *inode, struct file *file)
604 {
605 return single_open(file, zs_stats_size_show, inode->i_private);
606 }
607
608 static const struct file_operations zs_stat_size_ops = {
609 .open = zs_stats_size_open,
610 .read = seq_read,
611 .llseek = seq_lseek,
612 .release = single_release,
613 };
614
615 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
616 {
617 struct dentry *entry;
618
619 if (!zs_stat_root) {
620 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
621 return;
622 }
623
624 entry = debugfs_create_dir(name, zs_stat_root);
625 if (!entry) {
626 pr_warn("debugfs dir <%s> creation failed\n", name);
627 return;
628 }
629 pool->stat_dentry = entry;
630
631 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
632 pool->stat_dentry, pool, &zs_stat_size_ops);
633 if (!entry) {
634 pr_warn("%s: debugfs file entry <%s> creation failed\n",
635 name, "classes");
636 debugfs_remove_recursive(pool->stat_dentry);
637 pool->stat_dentry = NULL;
638 }
639 }
640
641 static void zs_pool_stat_destroy(struct zs_pool *pool)
642 {
643 debugfs_remove_recursive(pool->stat_dentry);
644 }
645
646 #else /* CONFIG_ZSMALLOC_STAT */
647 static void __init zs_stat_init(void)
648 {
649 }
650
651 static void __exit zs_stat_exit(void)
652 {
653 }
654
655 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
656 {
657 }
658
659 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
660 {
661 }
662 #endif
663
664 /*
665 * For each size class, zspages are divided into different groups
666 * depending on how "full" they are. This was done so that we could
667 * easily find empty or nearly empty zspages when we try to shrink
668 * the pool (not yet implemented). This function returns fullness
669 * status of the given page.
670 */
671 static enum fullness_group get_fullness_group(struct size_class *class,
672 struct page *first_page)
673 {
674 int inuse, objs_per_zspage;
675 enum fullness_group fg;
676
677 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
678
679 inuse = get_zspage_inuse(first_page);
680 objs_per_zspage = class->objs_per_zspage;
681
682 if (inuse == 0)
683 fg = ZS_EMPTY;
684 else if (inuse == objs_per_zspage)
685 fg = ZS_FULL;
686 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
687 fg = ZS_ALMOST_EMPTY;
688 else
689 fg = ZS_ALMOST_FULL;
690
691 return fg;
692 }
693
694 /*
695 * Each size class maintains various freelists and zspages are assigned
696 * to one of these freelists based on the number of live objects they
697 * have. This functions inserts the given zspage into the freelist
698 * identified by <class, fullness_group>.
699 */
700 static void insert_zspage(struct size_class *class,
701 enum fullness_group fullness,
702 struct page *first_page)
703 {
704 struct page **head;
705
706 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
707
708 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
709 return;
710
711 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
712 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
713
714 head = &class->fullness_list[fullness];
715 if (!*head) {
716 *head = first_page;
717 return;
718 }
719
720 /*
721 * We want to see more ZS_FULL pages and less almost
722 * empty/full. Put pages with higher ->inuse first.
723 */
724 list_add_tail(&first_page->lru, &(*head)->lru);
725 if (get_zspage_inuse(first_page) >= get_zspage_inuse(*head))
726 *head = first_page;
727 }
728
729 /*
730 * This function removes the given zspage from the freelist identified
731 * by <class, fullness_group>.
732 */
733 static void remove_zspage(struct size_class *class,
734 enum fullness_group fullness,
735 struct page *first_page)
736 {
737 struct page **head;
738
739 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
740
741 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
742 return;
743
744 head = &class->fullness_list[fullness];
745 VM_BUG_ON_PAGE(!*head, first_page);
746 if (list_empty(&(*head)->lru))
747 *head = NULL;
748 else if (*head == first_page)
749 *head = (struct page *)list_entry((*head)->lru.next,
750 struct page, lru);
751
752 list_del_init(&first_page->lru);
753 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
754 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
755 }
756
757 /*
758 * Each size class maintains zspages in different fullness groups depending
759 * on the number of live objects they contain. When allocating or freeing
760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
761 * to ALMOST_EMPTY when freeing an object. This function checks if such
762 * a status change has occurred for the given page and accordingly moves the
763 * page from the freelist of the old fullness group to that of the new
764 * fullness group.
765 */
766 static enum fullness_group fix_fullness_group(struct size_class *class,
767 struct page *first_page)
768 {
769 int class_idx;
770 enum fullness_group currfg, newfg;
771
772 get_zspage_mapping(first_page, &class_idx, &currfg);
773 newfg = get_fullness_group(class, first_page);
774 if (newfg == currfg)
775 goto out;
776
777 remove_zspage(class, currfg, first_page);
778 insert_zspage(class, newfg, first_page);
779 set_zspage_mapping(first_page, class_idx, newfg);
780
781 out:
782 return newfg;
783 }
784
785 /*
786 * We have to decide on how many pages to link together
787 * to form a zspage for each size class. This is important
788 * to reduce wastage due to unusable space left at end of
789 * each zspage which is given as:
790 * wastage = Zp % class_size
791 * usage = Zp - wastage
792 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
793 *
794 * For example, for size class of 3/8 * PAGE_SIZE, we should
795 * link together 3 PAGE_SIZE sized pages to form a zspage
796 * since then we can perfectly fit in 8 such objects.
797 */
798 static int get_pages_per_zspage(int class_size)
799 {
800 int i, max_usedpc = 0;
801 /* zspage order which gives maximum used size per KB */
802 int max_usedpc_order = 1;
803
804 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
805 int zspage_size;
806 int waste, usedpc;
807
808 zspage_size = i * PAGE_SIZE;
809 waste = zspage_size % class_size;
810 usedpc = (zspage_size - waste) * 100 / zspage_size;
811
812 if (usedpc > max_usedpc) {
813 max_usedpc = usedpc;
814 max_usedpc_order = i;
815 }
816 }
817
818 return max_usedpc_order;
819 }
820
821 /*
822 * A single 'zspage' is composed of many system pages which are
823 * linked together using fields in struct page. This function finds
824 * the first/head page, given any component page of a zspage.
825 */
826 static struct page *get_first_page(struct page *page)
827 {
828 if (is_first_page(page))
829 return page;
830 else
831 return (struct page *)page_private(page);
832 }
833
834 static struct page *get_next_page(struct page *page)
835 {
836 struct page *next;
837
838 if (is_last_page(page))
839 next = NULL;
840 else if (is_first_page(page))
841 next = (struct page *)page_private(page);
842 else
843 next = list_entry(page->lru.next, struct page, lru);
844
845 return next;
846 }
847
848 /*
849 * Encode <page, obj_idx> as a single handle value.
850 * We use the least bit of handle for tagging.
851 */
852 static void *location_to_obj(struct page *page, unsigned long obj_idx)
853 {
854 unsigned long obj;
855
856 if (!page) {
857 VM_BUG_ON(obj_idx);
858 return NULL;
859 }
860
861 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
862 obj |= ((obj_idx) & OBJ_INDEX_MASK);
863 obj <<= OBJ_TAG_BITS;
864
865 return (void *)obj;
866 }
867
868 /*
869 * Decode <page, obj_idx> pair from the given object handle. We adjust the
870 * decoded obj_idx back to its original value since it was adjusted in
871 * location_to_obj().
872 */
873 static void obj_to_location(unsigned long obj, struct page **page,
874 unsigned long *obj_idx)
875 {
876 obj >>= OBJ_TAG_BITS;
877 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
878 *obj_idx = (obj & OBJ_INDEX_MASK);
879 }
880
881 static unsigned long handle_to_obj(unsigned long handle)
882 {
883 return *(unsigned long *)handle;
884 }
885
886 static unsigned long obj_to_head(struct size_class *class, struct page *page,
887 void *obj)
888 {
889 if (class->huge) {
890 VM_BUG_ON_PAGE(!is_first_page(page), page);
891 return page_private(page);
892 } else
893 return *(unsigned long *)obj;
894 }
895
896 static unsigned long obj_idx_to_offset(struct page *page,
897 unsigned long obj_idx, int class_size)
898 {
899 unsigned long off = 0;
900
901 if (!is_first_page(page))
902 off = get_first_obj_offset(page);
903
904 return off + obj_idx * class_size;
905 }
906
907 static inline int trypin_tag(unsigned long handle)
908 {
909 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
910 }
911
912 static void pin_tag(unsigned long handle)
913 {
914 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
915 }
916
917 static void unpin_tag(unsigned long handle)
918 {
919 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921
922 static void reset_page(struct page *page)
923 {
924 clear_bit(PG_private, &page->flags);
925 clear_bit(PG_private_2, &page->flags);
926 set_page_private(page, 0);
927 page->mapping = NULL;
928 page->freelist = NULL;
929 page_mapcount_reset(page);
930 }
931
932 static void free_zspage(struct page *first_page)
933 {
934 struct page *nextp, *tmp, *head_extra;
935
936 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
937 VM_BUG_ON_PAGE(get_zspage_inuse(first_page), first_page);
938
939 head_extra = (struct page *)page_private(first_page);
940
941 reset_page(first_page);
942 __free_page(first_page);
943
944 /* zspage with only 1 system page */
945 if (!head_extra)
946 return;
947
948 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
949 list_del(&nextp->lru);
950 reset_page(nextp);
951 __free_page(nextp);
952 }
953 reset_page(head_extra);
954 __free_page(head_extra);
955 }
956
957 /* Initialize a newly allocated zspage */
958 static void init_zspage(struct size_class *class, struct page *first_page)
959 {
960 unsigned long off = 0;
961 struct page *page = first_page;
962
963 first_page->freelist = NULL;
964 set_zspage_inuse(first_page, 0);
965
966 while (page) {
967 struct page *next_page;
968 struct link_free *link;
969 unsigned int i = 1;
970 void *vaddr;
971
972 /*
973 * page->index stores offset of first object starting
974 * in the page. For the first page, this is always 0,
975 * so we use first_page->index (aka ->freelist) to store
976 * head of corresponding zspage's freelist.
977 */
978 if (page != first_page)
979 set_first_obj_offset(page, off);
980
981 vaddr = kmap_atomic(page);
982 link = (struct link_free *)vaddr + off / sizeof(*link);
983
984 while ((off += class->size) < PAGE_SIZE) {
985 link->next = location_to_obj(page, i++);
986 link += class->size / sizeof(*link);
987 }
988
989 /*
990 * We now come to the last (full or partial) object on this
991 * page, which must point to the first object on the next
992 * page (if present)
993 */
994 next_page = get_next_page(page);
995 link->next = location_to_obj(next_page, 0);
996 kunmap_atomic(vaddr);
997 page = next_page;
998 off %= PAGE_SIZE;
999 }
1000
1001 set_freeobj(first_page, (unsigned long)location_to_obj(first_page, 0));
1002 }
1003
1004 static void create_page_chain(struct page *pages[], int nr_pages)
1005 {
1006 int i;
1007 struct page *page;
1008 struct page *prev_page = NULL;
1009 struct page *first_page = NULL;
1010
1011 /*
1012 * Allocate individual pages and link them together as:
1013 * 1. first page->private = first sub-page
1014 * 2. all sub-pages are linked together using page->lru
1015 * 3. each sub-page is linked to the first page using page->private
1016 *
1017 * For each size class, First/Head pages are linked together using
1018 * page->lru. Also, we set PG_private to identify the first page
1019 * (i.e. no other sub-page has this flag set) and PG_private_2 to
1020 * identify the last page.
1021 */
1022 for (i = 0; i < nr_pages; i++) {
1023 page = pages[i];
1024
1025 INIT_LIST_HEAD(&page->lru);
1026 if (i == 0) {
1027 SetPagePrivate(page);
1028 set_page_private(page, 0);
1029 first_page = page;
1030 }
1031 if (i == 1)
1032 set_page_private(first_page, (unsigned long)page);
1033 if (i >= 1)
1034 set_page_private(page, (unsigned long)first_page);
1035 if (i >= 2)
1036 list_add(&page->lru, &prev_page->lru);
1037 if (i == nr_pages - 1)
1038 SetPagePrivate2(page);
1039 prev_page = page;
1040 }
1041 }
1042
1043 /*
1044 * Allocate a zspage for the given size class
1045 */
1046 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
1047 {
1048 int i;
1049 struct page *first_page = NULL;
1050 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1051
1052 for (i = 0; i < class->pages_per_zspage; i++) {
1053 struct page *page;
1054
1055 page = alloc_page(flags);
1056 if (!page) {
1057 while (--i >= 0)
1058 __free_page(pages[i]);
1059 return NULL;
1060 }
1061 pages[i] = page;
1062 }
1063
1064 create_page_chain(pages, class->pages_per_zspage);
1065 first_page = pages[0];
1066 init_zspage(class, first_page);
1067
1068 return first_page;
1069 }
1070
1071 static struct page *find_get_zspage(struct size_class *class)
1072 {
1073 int i;
1074 struct page *page;
1075
1076 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1077 page = class->fullness_list[i];
1078 if (page)
1079 break;
1080 }
1081
1082 return page;
1083 }
1084
1085 #ifdef CONFIG_PGTABLE_MAPPING
1086 static inline int __zs_cpu_up(struct mapping_area *area)
1087 {
1088 /*
1089 * Make sure we don't leak memory if a cpu UP notification
1090 * and zs_init() race and both call zs_cpu_up() on the same cpu
1091 */
1092 if (area->vm)
1093 return 0;
1094 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1095 if (!area->vm)
1096 return -ENOMEM;
1097 return 0;
1098 }
1099
1100 static inline void __zs_cpu_down(struct mapping_area *area)
1101 {
1102 if (area->vm)
1103 free_vm_area(area->vm);
1104 area->vm = NULL;
1105 }
1106
1107 static inline void *__zs_map_object(struct mapping_area *area,
1108 struct page *pages[2], int off, int size)
1109 {
1110 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1111 area->vm_addr = area->vm->addr;
1112 return area->vm_addr + off;
1113 }
1114
1115 static inline void __zs_unmap_object(struct mapping_area *area,
1116 struct page *pages[2], int off, int size)
1117 {
1118 unsigned long addr = (unsigned long)area->vm_addr;
1119
1120 unmap_kernel_range(addr, PAGE_SIZE * 2);
1121 }
1122
1123 #else /* CONFIG_PGTABLE_MAPPING */
1124
1125 static inline int __zs_cpu_up(struct mapping_area *area)
1126 {
1127 /*
1128 * Make sure we don't leak memory if a cpu UP notification
1129 * and zs_init() race and both call zs_cpu_up() on the same cpu
1130 */
1131 if (area->vm_buf)
1132 return 0;
1133 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1134 if (!area->vm_buf)
1135 return -ENOMEM;
1136 return 0;
1137 }
1138
1139 static inline void __zs_cpu_down(struct mapping_area *area)
1140 {
1141 kfree(area->vm_buf);
1142 area->vm_buf = NULL;
1143 }
1144
1145 static void *__zs_map_object(struct mapping_area *area,
1146 struct page *pages[2], int off, int size)
1147 {
1148 int sizes[2];
1149 void *addr;
1150 char *buf = area->vm_buf;
1151
1152 /* disable page faults to match kmap_atomic() return conditions */
1153 pagefault_disable();
1154
1155 /* no read fastpath */
1156 if (area->vm_mm == ZS_MM_WO)
1157 goto out;
1158
1159 sizes[0] = PAGE_SIZE - off;
1160 sizes[1] = size - sizes[0];
1161
1162 /* copy object to per-cpu buffer */
1163 addr = kmap_atomic(pages[0]);
1164 memcpy(buf, addr + off, sizes[0]);
1165 kunmap_atomic(addr);
1166 addr = kmap_atomic(pages[1]);
1167 memcpy(buf + sizes[0], addr, sizes[1]);
1168 kunmap_atomic(addr);
1169 out:
1170 return area->vm_buf;
1171 }
1172
1173 static void __zs_unmap_object(struct mapping_area *area,
1174 struct page *pages[2], int off, int size)
1175 {
1176 int sizes[2];
1177 void *addr;
1178 char *buf;
1179
1180 /* no write fastpath */
1181 if (area->vm_mm == ZS_MM_RO)
1182 goto out;
1183
1184 buf = area->vm_buf;
1185 buf = buf + ZS_HANDLE_SIZE;
1186 size -= ZS_HANDLE_SIZE;
1187 off += ZS_HANDLE_SIZE;
1188
1189 sizes[0] = PAGE_SIZE - off;
1190 sizes[1] = size - sizes[0];
1191
1192 /* copy per-cpu buffer to object */
1193 addr = kmap_atomic(pages[0]);
1194 memcpy(addr + off, buf, sizes[0]);
1195 kunmap_atomic(addr);
1196 addr = kmap_atomic(pages[1]);
1197 memcpy(addr, buf + sizes[0], sizes[1]);
1198 kunmap_atomic(addr);
1199
1200 out:
1201 /* enable page faults to match kunmap_atomic() return conditions */
1202 pagefault_enable();
1203 }
1204
1205 #endif /* CONFIG_PGTABLE_MAPPING */
1206
1207 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1208 void *pcpu)
1209 {
1210 int ret, cpu = (long)pcpu;
1211 struct mapping_area *area;
1212
1213 switch (action) {
1214 case CPU_UP_PREPARE:
1215 area = &per_cpu(zs_map_area, cpu);
1216 ret = __zs_cpu_up(area);
1217 if (ret)
1218 return notifier_from_errno(ret);
1219 break;
1220 case CPU_DEAD:
1221 case CPU_UP_CANCELED:
1222 area = &per_cpu(zs_map_area, cpu);
1223 __zs_cpu_down(area);
1224 break;
1225 }
1226
1227 return NOTIFY_OK;
1228 }
1229
1230 static struct notifier_block zs_cpu_nb = {
1231 .notifier_call = zs_cpu_notifier
1232 };
1233
1234 static int zs_register_cpu_notifier(void)
1235 {
1236 int cpu, uninitialized_var(ret);
1237
1238 cpu_notifier_register_begin();
1239
1240 __register_cpu_notifier(&zs_cpu_nb);
1241 for_each_online_cpu(cpu) {
1242 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1243 if (notifier_to_errno(ret))
1244 break;
1245 }
1246
1247 cpu_notifier_register_done();
1248 return notifier_to_errno(ret);
1249 }
1250
1251 static void zs_unregister_cpu_notifier(void)
1252 {
1253 int cpu;
1254
1255 cpu_notifier_register_begin();
1256
1257 for_each_online_cpu(cpu)
1258 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1259 __unregister_cpu_notifier(&zs_cpu_nb);
1260
1261 cpu_notifier_register_done();
1262 }
1263
1264 static void init_zs_size_classes(void)
1265 {
1266 int nr;
1267
1268 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1269 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1270 nr += 1;
1271
1272 zs_size_classes = nr;
1273 }
1274
1275 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1276 {
1277 if (prev->pages_per_zspage != pages_per_zspage)
1278 return false;
1279
1280 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1281 != get_maxobj_per_zspage(size, pages_per_zspage))
1282 return false;
1283
1284 return true;
1285 }
1286
1287 static bool zspage_full(struct size_class *class, struct page *first_page)
1288 {
1289 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
1290
1291 return get_zspage_inuse(first_page) == class->objs_per_zspage;
1292 }
1293
1294 unsigned long zs_get_total_pages(struct zs_pool *pool)
1295 {
1296 return atomic_long_read(&pool->pages_allocated);
1297 }
1298 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1299
1300 /**
1301 * zs_map_object - get address of allocated object from handle.
1302 * @pool: pool from which the object was allocated
1303 * @handle: handle returned from zs_malloc
1304 *
1305 * Before using an object allocated from zs_malloc, it must be mapped using
1306 * this function. When done with the object, it must be unmapped using
1307 * zs_unmap_object.
1308 *
1309 * Only one object can be mapped per cpu at a time. There is no protection
1310 * against nested mappings.
1311 *
1312 * This function returns with preemption and page faults disabled.
1313 */
1314 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1315 enum zs_mapmode mm)
1316 {
1317 struct page *page;
1318 unsigned long obj, obj_idx, off;
1319
1320 unsigned int class_idx;
1321 enum fullness_group fg;
1322 struct size_class *class;
1323 struct mapping_area *area;
1324 struct page *pages[2];
1325 void *ret;
1326
1327 /*
1328 * Because we use per-cpu mapping areas shared among the
1329 * pools/users, we can't allow mapping in interrupt context
1330 * because it can corrupt another users mappings.
1331 */
1332 WARN_ON_ONCE(in_interrupt());
1333
1334 /* From now on, migration cannot move the object */
1335 pin_tag(handle);
1336
1337 obj = handle_to_obj(handle);
1338 obj_to_location(obj, &page, &obj_idx);
1339 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1340 class = pool->size_class[class_idx];
1341 off = obj_idx_to_offset(page, obj_idx, class->size);
1342
1343 area = &get_cpu_var(zs_map_area);
1344 area->vm_mm = mm;
1345 if (off + class->size <= PAGE_SIZE) {
1346 /* this object is contained entirely within a page */
1347 area->vm_addr = kmap_atomic(page);
1348 ret = area->vm_addr + off;
1349 goto out;
1350 }
1351
1352 /* this object spans two pages */
1353 pages[0] = page;
1354 pages[1] = get_next_page(page);
1355 BUG_ON(!pages[1]);
1356
1357 ret = __zs_map_object(area, pages, off, class->size);
1358 out:
1359 if (!class->huge)
1360 ret += ZS_HANDLE_SIZE;
1361
1362 return ret;
1363 }
1364 EXPORT_SYMBOL_GPL(zs_map_object);
1365
1366 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1367 {
1368 struct page *page;
1369 unsigned long obj, obj_idx, off;
1370
1371 unsigned int class_idx;
1372 enum fullness_group fg;
1373 struct size_class *class;
1374 struct mapping_area *area;
1375
1376 obj = handle_to_obj(handle);
1377 obj_to_location(obj, &page, &obj_idx);
1378 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1379 class = pool->size_class[class_idx];
1380 off = obj_idx_to_offset(page, obj_idx, class->size);
1381
1382 area = this_cpu_ptr(&zs_map_area);
1383 if (off + class->size <= PAGE_SIZE)
1384 kunmap_atomic(area->vm_addr);
1385 else {
1386 struct page *pages[2];
1387
1388 pages[0] = page;
1389 pages[1] = get_next_page(page);
1390 BUG_ON(!pages[1]);
1391
1392 __zs_unmap_object(area, pages, off, class->size);
1393 }
1394 put_cpu_var(zs_map_area);
1395 unpin_tag(handle);
1396 }
1397 EXPORT_SYMBOL_GPL(zs_unmap_object);
1398
1399 static unsigned long obj_malloc(struct size_class *class,
1400 struct page *first_page, unsigned long handle)
1401 {
1402 unsigned long obj;
1403 struct link_free *link;
1404
1405 struct page *m_page;
1406 unsigned long m_objidx, m_offset;
1407 void *vaddr;
1408
1409 handle |= OBJ_ALLOCATED_TAG;
1410 obj = get_freeobj(first_page);
1411 obj_to_location(obj, &m_page, &m_objidx);
1412 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1413
1414 vaddr = kmap_atomic(m_page);
1415 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1416 set_freeobj(first_page, (unsigned long)link->next);
1417 if (!class->huge)
1418 /* record handle in the header of allocated chunk */
1419 link->handle = handle;
1420 else
1421 /* record handle in first_page->private */
1422 set_page_private(first_page, handle);
1423 kunmap_atomic(vaddr);
1424 mod_zspage_inuse(first_page, 1);
1425 zs_stat_inc(class, OBJ_USED, 1);
1426
1427 return obj;
1428 }
1429
1430
1431 /**
1432 * zs_malloc - Allocate block of given size from pool.
1433 * @pool: pool to allocate from
1434 * @size: size of block to allocate
1435 *
1436 * On success, handle to the allocated object is returned,
1437 * otherwise 0.
1438 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1439 */
1440 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1441 {
1442 unsigned long handle, obj;
1443 struct size_class *class;
1444 struct page *first_page;
1445
1446 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1447 return 0;
1448
1449 handle = alloc_handle(pool, gfp);
1450 if (!handle)
1451 return 0;
1452
1453 /* extra space in chunk to keep the handle */
1454 size += ZS_HANDLE_SIZE;
1455 class = pool->size_class[get_size_class_index(size)];
1456
1457 spin_lock(&class->lock);
1458 first_page = find_get_zspage(class);
1459
1460 if (!first_page) {
1461 spin_unlock(&class->lock);
1462 first_page = alloc_zspage(class, gfp);
1463 if (unlikely(!first_page)) {
1464 free_handle(pool, handle);
1465 return 0;
1466 }
1467
1468 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1469 atomic_long_add(class->pages_per_zspage,
1470 &pool->pages_allocated);
1471
1472 spin_lock(&class->lock);
1473 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1474 class->size, class->pages_per_zspage));
1475 }
1476
1477 obj = obj_malloc(class, first_page, handle);
1478 /* Now move the zspage to another fullness group, if required */
1479 fix_fullness_group(class, first_page);
1480 record_obj(handle, obj);
1481 spin_unlock(&class->lock);
1482
1483 return handle;
1484 }
1485 EXPORT_SYMBOL_GPL(zs_malloc);
1486
1487 static void obj_free(struct size_class *class, unsigned long obj)
1488 {
1489 struct link_free *link;
1490 struct page *first_page, *f_page;
1491 unsigned long f_objidx, f_offset;
1492 void *vaddr;
1493
1494 obj &= ~OBJ_ALLOCATED_TAG;
1495 obj_to_location(obj, &f_page, &f_objidx);
1496 first_page = get_first_page(f_page);
1497
1498 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1499
1500 vaddr = kmap_atomic(f_page);
1501
1502 /* Insert this object in containing zspage's freelist */
1503 link = (struct link_free *)(vaddr + f_offset);
1504 link->next = (void *)get_freeobj(first_page);
1505 if (class->huge)
1506 set_page_private(first_page, 0);
1507 kunmap_atomic(vaddr);
1508 set_freeobj(first_page, obj);
1509 mod_zspage_inuse(first_page, -1);
1510 zs_stat_dec(class, OBJ_USED, 1);
1511 }
1512
1513 void zs_free(struct zs_pool *pool, unsigned long handle)
1514 {
1515 struct page *first_page, *f_page;
1516 unsigned long obj, f_objidx;
1517 int class_idx;
1518 struct size_class *class;
1519 enum fullness_group fullness;
1520
1521 if (unlikely(!handle))
1522 return;
1523
1524 pin_tag(handle);
1525 obj = handle_to_obj(handle);
1526 obj_to_location(obj, &f_page, &f_objidx);
1527 first_page = get_first_page(f_page);
1528
1529 get_zspage_mapping(first_page, &class_idx, &fullness);
1530 class = pool->size_class[class_idx];
1531
1532 spin_lock(&class->lock);
1533 obj_free(class, obj);
1534 fullness = fix_fullness_group(class, first_page);
1535 if (fullness == ZS_EMPTY) {
1536 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1537 class->size, class->pages_per_zspage));
1538 atomic_long_sub(class->pages_per_zspage,
1539 &pool->pages_allocated);
1540 free_zspage(first_page);
1541 }
1542 spin_unlock(&class->lock);
1543 unpin_tag(handle);
1544
1545 free_handle(pool, handle);
1546 }
1547 EXPORT_SYMBOL_GPL(zs_free);
1548
1549 static void zs_object_copy(struct size_class *class, unsigned long dst,
1550 unsigned long src)
1551 {
1552 struct page *s_page, *d_page;
1553 unsigned long s_objidx, d_objidx;
1554 unsigned long s_off, d_off;
1555 void *s_addr, *d_addr;
1556 int s_size, d_size, size;
1557 int written = 0;
1558
1559 s_size = d_size = class->size;
1560
1561 obj_to_location(src, &s_page, &s_objidx);
1562 obj_to_location(dst, &d_page, &d_objidx);
1563
1564 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1565 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1566
1567 if (s_off + class->size > PAGE_SIZE)
1568 s_size = PAGE_SIZE - s_off;
1569
1570 if (d_off + class->size > PAGE_SIZE)
1571 d_size = PAGE_SIZE - d_off;
1572
1573 s_addr = kmap_atomic(s_page);
1574 d_addr = kmap_atomic(d_page);
1575
1576 while (1) {
1577 size = min(s_size, d_size);
1578 memcpy(d_addr + d_off, s_addr + s_off, size);
1579 written += size;
1580
1581 if (written == class->size)
1582 break;
1583
1584 s_off += size;
1585 s_size -= size;
1586 d_off += size;
1587 d_size -= size;
1588
1589 if (s_off >= PAGE_SIZE) {
1590 kunmap_atomic(d_addr);
1591 kunmap_atomic(s_addr);
1592 s_page = get_next_page(s_page);
1593 s_addr = kmap_atomic(s_page);
1594 d_addr = kmap_atomic(d_page);
1595 s_size = class->size - written;
1596 s_off = 0;
1597 }
1598
1599 if (d_off >= PAGE_SIZE) {
1600 kunmap_atomic(d_addr);
1601 d_page = get_next_page(d_page);
1602 d_addr = kmap_atomic(d_page);
1603 d_size = class->size - written;
1604 d_off = 0;
1605 }
1606 }
1607
1608 kunmap_atomic(d_addr);
1609 kunmap_atomic(s_addr);
1610 }
1611
1612 /*
1613 * Find alloced object in zspage from index object and
1614 * return handle.
1615 */
1616 static unsigned long find_alloced_obj(struct size_class *class,
1617 struct page *page, int index)
1618 {
1619 unsigned long head;
1620 int offset = 0;
1621 unsigned long handle = 0;
1622 void *addr = kmap_atomic(page);
1623
1624 if (!is_first_page(page))
1625 offset = get_first_obj_offset(page);
1626 offset += class->size * index;
1627
1628 while (offset < PAGE_SIZE) {
1629 head = obj_to_head(class, page, addr + offset);
1630 if (head & OBJ_ALLOCATED_TAG) {
1631 handle = head & ~OBJ_ALLOCATED_TAG;
1632 if (trypin_tag(handle))
1633 break;
1634 handle = 0;
1635 }
1636
1637 offset += class->size;
1638 index++;
1639 }
1640
1641 kunmap_atomic(addr);
1642 return handle;
1643 }
1644
1645 struct zs_compact_control {
1646 /* Source page for migration which could be a subpage of zspage. */
1647 struct page *s_page;
1648 /* Destination page for migration which should be a first page
1649 * of zspage. */
1650 struct page *d_page;
1651 /* Starting object index within @s_page which used for live object
1652 * in the subpage. */
1653 int index;
1654 };
1655
1656 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1657 struct zs_compact_control *cc)
1658 {
1659 unsigned long used_obj, free_obj;
1660 unsigned long handle;
1661 struct page *s_page = cc->s_page;
1662 struct page *d_page = cc->d_page;
1663 unsigned long index = cc->index;
1664 int ret = 0;
1665
1666 while (1) {
1667 handle = find_alloced_obj(class, s_page, index);
1668 if (!handle) {
1669 s_page = get_next_page(s_page);
1670 if (!s_page)
1671 break;
1672 index = 0;
1673 continue;
1674 }
1675
1676 /* Stop if there is no more space */
1677 if (zspage_full(class, d_page)) {
1678 unpin_tag(handle);
1679 ret = -ENOMEM;
1680 break;
1681 }
1682
1683 used_obj = handle_to_obj(handle);
1684 free_obj = obj_malloc(class, d_page, handle);
1685 zs_object_copy(class, free_obj, used_obj);
1686 index++;
1687 /*
1688 * record_obj updates handle's value to free_obj and it will
1689 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1690 * breaks synchronization using pin_tag(e,g, zs_free) so
1691 * let's keep the lock bit.
1692 */
1693 free_obj |= BIT(HANDLE_PIN_BIT);
1694 record_obj(handle, free_obj);
1695 unpin_tag(handle);
1696 obj_free(class, used_obj);
1697 }
1698
1699 /* Remember last position in this iteration */
1700 cc->s_page = s_page;
1701 cc->index = index;
1702
1703 return ret;
1704 }
1705
1706 static struct page *isolate_target_page(struct size_class *class)
1707 {
1708 int i;
1709 struct page *page;
1710
1711 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1712 page = class->fullness_list[i];
1713 if (page) {
1714 remove_zspage(class, i, page);
1715 break;
1716 }
1717 }
1718
1719 return page;
1720 }
1721
1722 /*
1723 * putback_zspage - add @first_page into right class's fullness list
1724 * @pool: target pool
1725 * @class: destination class
1726 * @first_page: target page
1727 *
1728 * Return @fist_page's fullness_group
1729 */
1730 static enum fullness_group putback_zspage(struct zs_pool *pool,
1731 struct size_class *class,
1732 struct page *first_page)
1733 {
1734 enum fullness_group fullness;
1735
1736 fullness = get_fullness_group(class, first_page);
1737 insert_zspage(class, fullness, first_page);
1738 set_zspage_mapping(first_page, class->index, fullness);
1739
1740 if (fullness == ZS_EMPTY) {
1741 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1742 class->size, class->pages_per_zspage));
1743 atomic_long_sub(class->pages_per_zspage,
1744 &pool->pages_allocated);
1745
1746 free_zspage(first_page);
1747 }
1748
1749 return fullness;
1750 }
1751
1752 static struct page *isolate_source_page(struct size_class *class)
1753 {
1754 int i;
1755 struct page *page = NULL;
1756
1757 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1758 page = class->fullness_list[i];
1759 if (!page)
1760 continue;
1761
1762 remove_zspage(class, i, page);
1763 break;
1764 }
1765
1766 return page;
1767 }
1768
1769 /*
1770 *
1771 * Based on the number of unused allocated objects calculate
1772 * and return the number of pages that we can free.
1773 */
1774 static unsigned long zs_can_compact(struct size_class *class)
1775 {
1776 unsigned long obj_wasted;
1777 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1778 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1779
1780 if (obj_allocated <= obj_used)
1781 return 0;
1782
1783 obj_wasted = obj_allocated - obj_used;
1784 obj_wasted /= get_maxobj_per_zspage(class->size,
1785 class->pages_per_zspage);
1786
1787 return obj_wasted * class->pages_per_zspage;
1788 }
1789
1790 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1791 {
1792 struct zs_compact_control cc;
1793 struct page *src_page;
1794 struct page *dst_page = NULL;
1795
1796 spin_lock(&class->lock);
1797 while ((src_page = isolate_source_page(class))) {
1798
1799 if (!zs_can_compact(class))
1800 break;
1801
1802 cc.index = 0;
1803 cc.s_page = src_page;
1804
1805 while ((dst_page = isolate_target_page(class))) {
1806 cc.d_page = dst_page;
1807 /*
1808 * If there is no more space in dst_page, resched
1809 * and see if anyone had allocated another zspage.
1810 */
1811 if (!migrate_zspage(pool, class, &cc))
1812 break;
1813
1814 putback_zspage(pool, class, dst_page);
1815 }
1816
1817 /* Stop if we couldn't find slot */
1818 if (dst_page == NULL)
1819 break;
1820
1821 putback_zspage(pool, class, dst_page);
1822 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1823 pool->stats.pages_compacted += class->pages_per_zspage;
1824 spin_unlock(&class->lock);
1825 cond_resched();
1826 spin_lock(&class->lock);
1827 }
1828
1829 if (src_page)
1830 putback_zspage(pool, class, src_page);
1831
1832 spin_unlock(&class->lock);
1833 }
1834
1835 unsigned long zs_compact(struct zs_pool *pool)
1836 {
1837 int i;
1838 struct size_class *class;
1839
1840 for (i = zs_size_classes - 1; i >= 0; i--) {
1841 class = pool->size_class[i];
1842 if (!class)
1843 continue;
1844 if (class->index != i)
1845 continue;
1846 __zs_compact(pool, class);
1847 }
1848
1849 return pool->stats.pages_compacted;
1850 }
1851 EXPORT_SYMBOL_GPL(zs_compact);
1852
1853 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1854 {
1855 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1856 }
1857 EXPORT_SYMBOL_GPL(zs_pool_stats);
1858
1859 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1860 struct shrink_control *sc)
1861 {
1862 unsigned long pages_freed;
1863 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1864 shrinker);
1865
1866 pages_freed = pool->stats.pages_compacted;
1867 /*
1868 * Compact classes and calculate compaction delta.
1869 * Can run concurrently with a manually triggered
1870 * (by user) compaction.
1871 */
1872 pages_freed = zs_compact(pool) - pages_freed;
1873
1874 return pages_freed ? pages_freed : SHRINK_STOP;
1875 }
1876
1877 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1878 struct shrink_control *sc)
1879 {
1880 int i;
1881 struct size_class *class;
1882 unsigned long pages_to_free = 0;
1883 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1884 shrinker);
1885
1886 for (i = zs_size_classes - 1; i >= 0; i--) {
1887 class = pool->size_class[i];
1888 if (!class)
1889 continue;
1890 if (class->index != i)
1891 continue;
1892
1893 pages_to_free += zs_can_compact(class);
1894 }
1895
1896 return pages_to_free;
1897 }
1898
1899 static void zs_unregister_shrinker(struct zs_pool *pool)
1900 {
1901 if (pool->shrinker_enabled) {
1902 unregister_shrinker(&pool->shrinker);
1903 pool->shrinker_enabled = false;
1904 }
1905 }
1906
1907 static int zs_register_shrinker(struct zs_pool *pool)
1908 {
1909 pool->shrinker.scan_objects = zs_shrinker_scan;
1910 pool->shrinker.count_objects = zs_shrinker_count;
1911 pool->shrinker.batch = 0;
1912 pool->shrinker.seeks = DEFAULT_SEEKS;
1913
1914 return register_shrinker(&pool->shrinker);
1915 }
1916
1917 /**
1918 * zs_create_pool - Creates an allocation pool to work from.
1919 * @flags: allocation flags used to allocate pool metadata
1920 *
1921 * This function must be called before anything when using
1922 * the zsmalloc allocator.
1923 *
1924 * On success, a pointer to the newly created pool is returned,
1925 * otherwise NULL.
1926 */
1927 struct zs_pool *zs_create_pool(const char *name)
1928 {
1929 int i;
1930 struct zs_pool *pool;
1931 struct size_class *prev_class = NULL;
1932
1933 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1934 if (!pool)
1935 return NULL;
1936
1937 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1938 GFP_KERNEL);
1939 if (!pool->size_class) {
1940 kfree(pool);
1941 return NULL;
1942 }
1943
1944 pool->name = kstrdup(name, GFP_KERNEL);
1945 if (!pool->name)
1946 goto err;
1947
1948 if (create_handle_cache(pool))
1949 goto err;
1950
1951 /*
1952 * Iterate reversly, because, size of size_class that we want to use
1953 * for merging should be larger or equal to current size.
1954 */
1955 for (i = zs_size_classes - 1; i >= 0; i--) {
1956 int size;
1957 int pages_per_zspage;
1958 struct size_class *class;
1959
1960 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1961 if (size > ZS_MAX_ALLOC_SIZE)
1962 size = ZS_MAX_ALLOC_SIZE;
1963 pages_per_zspage = get_pages_per_zspage(size);
1964
1965 /*
1966 * size_class is used for normal zsmalloc operation such
1967 * as alloc/free for that size. Although it is natural that we
1968 * have one size_class for each size, there is a chance that we
1969 * can get more memory utilization if we use one size_class for
1970 * many different sizes whose size_class have same
1971 * characteristics. So, we makes size_class point to
1972 * previous size_class if possible.
1973 */
1974 if (prev_class) {
1975 if (can_merge(prev_class, size, pages_per_zspage)) {
1976 pool->size_class[i] = prev_class;
1977 continue;
1978 }
1979 }
1980
1981 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1982 if (!class)
1983 goto err;
1984
1985 class->size = size;
1986 class->index = i;
1987 class->pages_per_zspage = pages_per_zspage;
1988 class->objs_per_zspage = class->pages_per_zspage *
1989 PAGE_SIZE / class->size;
1990 if (pages_per_zspage == 1 && class->objs_per_zspage == 1)
1991 class->huge = true;
1992 spin_lock_init(&class->lock);
1993 pool->size_class[i] = class;
1994
1995 prev_class = class;
1996 }
1997
1998 /* debug only, don't abort if it fails */
1999 zs_pool_stat_create(pool, name);
2000
2001 /*
2002 * Not critical, we still can use the pool
2003 * and user can trigger compaction manually.
2004 */
2005 if (zs_register_shrinker(pool) == 0)
2006 pool->shrinker_enabled = true;
2007 return pool;
2008
2009 err:
2010 zs_destroy_pool(pool);
2011 return NULL;
2012 }
2013 EXPORT_SYMBOL_GPL(zs_create_pool);
2014
2015 void zs_destroy_pool(struct zs_pool *pool)
2016 {
2017 int i;
2018
2019 zs_unregister_shrinker(pool);
2020 zs_pool_stat_destroy(pool);
2021
2022 for (i = 0; i < zs_size_classes; i++) {
2023 int fg;
2024 struct size_class *class = pool->size_class[i];
2025
2026 if (!class)
2027 continue;
2028
2029 if (class->index != i)
2030 continue;
2031
2032 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
2033 if (class->fullness_list[fg]) {
2034 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2035 class->size, fg);
2036 }
2037 }
2038 kfree(class);
2039 }
2040
2041 destroy_handle_cache(pool);
2042 kfree(pool->size_class);
2043 kfree(pool->name);
2044 kfree(pool);
2045 }
2046 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2047
2048 static int __init zs_init(void)
2049 {
2050 int ret = zs_register_cpu_notifier();
2051
2052 if (ret)
2053 goto notifier_fail;
2054
2055 init_zs_size_classes();
2056
2057 #ifdef CONFIG_ZPOOL
2058 zpool_register_driver(&zs_zpool_driver);
2059 #endif
2060
2061 zs_stat_init();
2062
2063 return 0;
2064
2065 notifier_fail:
2066 zs_unregister_cpu_notifier();
2067
2068 return ret;
2069 }
2070
2071 static void __exit zs_exit(void)
2072 {
2073 #ifdef CONFIG_ZPOOL
2074 zpool_unregister_driver(&zs_zpool_driver);
2075 #endif
2076 zs_unregister_cpu_notifier();
2077
2078 zs_stat_exit();
2079 }
2080
2081 module_init(zs_init);
2082 module_exit(zs_exit);
2083
2084 MODULE_LICENSE("Dual BSD/GPL");
2085 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");