]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/zsmalloc.c
Merge tag 'xfs-pnfs-for-linus-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
22 *
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
28 *
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
34 *
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
43 *
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
46 *
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
55 *
56 * For _first_ page only:
57 *
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
68 *
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
72 *
73 */
74
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
78
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/debugfs.h>
95 #include <linux/zsmalloc.h>
96 #include <linux/zpool.h>
97
98 /*
99 * This must be power of 2 and greater than of equal to sizeof(link_free).
100 * These two conditions ensure that any 'struct link_free' itself doesn't
101 * span more than 1 page which avoids complex case of mapping 2 pages simply
102 * to restore link_free pointer values.
103 */
104 #define ZS_ALIGN 8
105
106 /*
107 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
108 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
109 */
110 #define ZS_MAX_ZSPAGE_ORDER 2
111 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
112
113 /*
114 * Object location (<PFN>, <obj_idx>) is encoded as
115 * as single (unsigned long) handle value.
116 *
117 * Note that object index <obj_idx> is relative to system
118 * page <PFN> it is stored in, so for each sub-page belonging
119 * to a zspage, obj_idx starts with 0.
120 *
121 * This is made more complicated by various memory models and PAE.
122 */
123
124 #ifndef MAX_PHYSMEM_BITS
125 #ifdef CONFIG_HIGHMEM64G
126 #define MAX_PHYSMEM_BITS 36
127 #else /* !CONFIG_HIGHMEM64G */
128 /*
129 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
130 * be PAGE_SHIFT
131 */
132 #define MAX_PHYSMEM_BITS BITS_PER_LONG
133 #endif
134 #endif
135 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
136 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
137 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
138
139 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
140 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
141 #define ZS_MIN_ALLOC_SIZE \
142 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
143 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
144
145 /*
146 * On systems with 4K page size, this gives 255 size classes! There is a
147 * trader-off here:
148 * - Large number of size classes is potentially wasteful as free page are
149 * spread across these classes
150 * - Small number of size classes causes large internal fragmentation
151 * - Probably its better to use specific size classes (empirically
152 * determined). NOTE: all those class sizes must be set as multiple of
153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 *
155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156 * (reason above)
157 */
158 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
159
160 /*
161 * We do not maintain any list for completely empty or full pages
162 */
163 enum fullness_group {
164 ZS_ALMOST_FULL,
165 ZS_ALMOST_EMPTY,
166 _ZS_NR_FULLNESS_GROUPS,
167
168 ZS_EMPTY,
169 ZS_FULL
170 };
171
172 enum zs_stat_type {
173 OBJ_ALLOCATED,
174 OBJ_USED,
175 NR_ZS_STAT_TYPE,
176 };
177
178 #ifdef CONFIG_ZSMALLOC_STAT
179
180 static struct dentry *zs_stat_root;
181
182 struct zs_size_stat {
183 unsigned long objs[NR_ZS_STAT_TYPE];
184 };
185
186 #endif
187
188 /*
189 * number of size_classes
190 */
191 static int zs_size_classes;
192
193 /*
194 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
195 * n <= N / f, where
196 * n = number of allocated objects
197 * N = total number of objects zspage can store
198 * f = fullness_threshold_frac
199 *
200 * Similarly, we assign zspage to:
201 * ZS_ALMOST_FULL when n > N / f
202 * ZS_EMPTY when n == 0
203 * ZS_FULL when n == N
204 *
205 * (see: fix_fullness_group())
206 */
207 static const int fullness_threshold_frac = 4;
208
209 struct size_class {
210 /*
211 * Size of objects stored in this class. Must be multiple
212 * of ZS_ALIGN.
213 */
214 int size;
215 unsigned int index;
216
217 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
218 int pages_per_zspage;
219
220 #ifdef CONFIG_ZSMALLOC_STAT
221 struct zs_size_stat stats;
222 #endif
223
224 spinlock_t lock;
225
226 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
227 };
228
229 /*
230 * Placed within free objects to form a singly linked list.
231 * For every zspage, first_page->freelist gives head of this list.
232 *
233 * This must be power of 2 and less than or equal to ZS_ALIGN
234 */
235 struct link_free {
236 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
237 void *next;
238 };
239
240 struct zs_pool {
241 char *name;
242
243 struct size_class **size_class;
244
245 gfp_t flags; /* allocation flags used when growing pool */
246 atomic_long_t pages_allocated;
247
248 #ifdef CONFIG_ZSMALLOC_STAT
249 struct dentry *stat_dentry;
250 #endif
251 };
252
253 /*
254 * A zspage's class index and fullness group
255 * are encoded in its (first)page->mapping
256 */
257 #define CLASS_IDX_BITS 28
258 #define FULLNESS_BITS 4
259 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
260 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
261
262 struct mapping_area {
263 #ifdef CONFIG_PGTABLE_MAPPING
264 struct vm_struct *vm; /* vm area for mapping object that span pages */
265 #else
266 char *vm_buf; /* copy buffer for objects that span pages */
267 #endif
268 char *vm_addr; /* address of kmap_atomic()'ed pages */
269 enum zs_mapmode vm_mm; /* mapping mode */
270 };
271
272 /* zpool driver */
273
274 #ifdef CONFIG_ZPOOL
275
276 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
277 {
278 return zs_create_pool(name, gfp);
279 }
280
281 static void zs_zpool_destroy(void *pool)
282 {
283 zs_destroy_pool(pool);
284 }
285
286 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
287 unsigned long *handle)
288 {
289 *handle = zs_malloc(pool, size);
290 return *handle ? 0 : -1;
291 }
292 static void zs_zpool_free(void *pool, unsigned long handle)
293 {
294 zs_free(pool, handle);
295 }
296
297 static int zs_zpool_shrink(void *pool, unsigned int pages,
298 unsigned int *reclaimed)
299 {
300 return -EINVAL;
301 }
302
303 static void *zs_zpool_map(void *pool, unsigned long handle,
304 enum zpool_mapmode mm)
305 {
306 enum zs_mapmode zs_mm;
307
308 switch (mm) {
309 case ZPOOL_MM_RO:
310 zs_mm = ZS_MM_RO;
311 break;
312 case ZPOOL_MM_WO:
313 zs_mm = ZS_MM_WO;
314 break;
315 case ZPOOL_MM_RW: /* fallthru */
316 default:
317 zs_mm = ZS_MM_RW;
318 break;
319 }
320
321 return zs_map_object(pool, handle, zs_mm);
322 }
323 static void zs_zpool_unmap(void *pool, unsigned long handle)
324 {
325 zs_unmap_object(pool, handle);
326 }
327
328 static u64 zs_zpool_total_size(void *pool)
329 {
330 return zs_get_total_pages(pool) << PAGE_SHIFT;
331 }
332
333 static struct zpool_driver zs_zpool_driver = {
334 .type = "zsmalloc",
335 .owner = THIS_MODULE,
336 .create = zs_zpool_create,
337 .destroy = zs_zpool_destroy,
338 .malloc = zs_zpool_malloc,
339 .free = zs_zpool_free,
340 .shrink = zs_zpool_shrink,
341 .map = zs_zpool_map,
342 .unmap = zs_zpool_unmap,
343 .total_size = zs_zpool_total_size,
344 };
345
346 MODULE_ALIAS("zpool-zsmalloc");
347 #endif /* CONFIG_ZPOOL */
348
349 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
350 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
351
352 static int is_first_page(struct page *page)
353 {
354 return PagePrivate(page);
355 }
356
357 static int is_last_page(struct page *page)
358 {
359 return PagePrivate2(page);
360 }
361
362 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
363 enum fullness_group *fullness)
364 {
365 unsigned long m;
366 BUG_ON(!is_first_page(page));
367
368 m = (unsigned long)page->mapping;
369 *fullness = m & FULLNESS_MASK;
370 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
371 }
372
373 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
374 enum fullness_group fullness)
375 {
376 unsigned long m;
377 BUG_ON(!is_first_page(page));
378
379 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
380 (fullness & FULLNESS_MASK);
381 page->mapping = (struct address_space *)m;
382 }
383
384 /*
385 * zsmalloc divides the pool into various size classes where each
386 * class maintains a list of zspages where each zspage is divided
387 * into equal sized chunks. Each allocation falls into one of these
388 * classes depending on its size. This function returns index of the
389 * size class which has chunk size big enough to hold the give size.
390 */
391 static int get_size_class_index(int size)
392 {
393 int idx = 0;
394
395 if (likely(size > ZS_MIN_ALLOC_SIZE))
396 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
397 ZS_SIZE_CLASS_DELTA);
398
399 return idx;
400 }
401
402 /*
403 * For each size class, zspages are divided into different groups
404 * depending on how "full" they are. This was done so that we could
405 * easily find empty or nearly empty zspages when we try to shrink
406 * the pool (not yet implemented). This function returns fullness
407 * status of the given page.
408 */
409 static enum fullness_group get_fullness_group(struct page *page)
410 {
411 int inuse, max_objects;
412 enum fullness_group fg;
413 BUG_ON(!is_first_page(page));
414
415 inuse = page->inuse;
416 max_objects = page->objects;
417
418 if (inuse == 0)
419 fg = ZS_EMPTY;
420 else if (inuse == max_objects)
421 fg = ZS_FULL;
422 else if (inuse <= max_objects / fullness_threshold_frac)
423 fg = ZS_ALMOST_EMPTY;
424 else
425 fg = ZS_ALMOST_FULL;
426
427 return fg;
428 }
429
430 /*
431 * Each size class maintains various freelists and zspages are assigned
432 * to one of these freelists based on the number of live objects they
433 * have. This functions inserts the given zspage into the freelist
434 * identified by <class, fullness_group>.
435 */
436 static void insert_zspage(struct page *page, struct size_class *class,
437 enum fullness_group fullness)
438 {
439 struct page **head;
440
441 BUG_ON(!is_first_page(page));
442
443 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
444 return;
445
446 head = &class->fullness_list[fullness];
447 if (*head)
448 list_add_tail(&page->lru, &(*head)->lru);
449
450 *head = page;
451 }
452
453 /*
454 * This function removes the given zspage from the freelist identified
455 * by <class, fullness_group>.
456 */
457 static void remove_zspage(struct page *page, struct size_class *class,
458 enum fullness_group fullness)
459 {
460 struct page **head;
461
462 BUG_ON(!is_first_page(page));
463
464 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
465 return;
466
467 head = &class->fullness_list[fullness];
468 BUG_ON(!*head);
469 if (list_empty(&(*head)->lru))
470 *head = NULL;
471 else if (*head == page)
472 *head = (struct page *)list_entry((*head)->lru.next,
473 struct page, lru);
474
475 list_del_init(&page->lru);
476 }
477
478 /*
479 * Each size class maintains zspages in different fullness groups depending
480 * on the number of live objects they contain. When allocating or freeing
481 * objects, the fullness status of the page can change, say, from ALMOST_FULL
482 * to ALMOST_EMPTY when freeing an object. This function checks if such
483 * a status change has occurred for the given page and accordingly moves the
484 * page from the freelist of the old fullness group to that of the new
485 * fullness group.
486 */
487 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
488 struct page *page)
489 {
490 int class_idx;
491 struct size_class *class;
492 enum fullness_group currfg, newfg;
493
494 BUG_ON(!is_first_page(page));
495
496 get_zspage_mapping(page, &class_idx, &currfg);
497 newfg = get_fullness_group(page);
498 if (newfg == currfg)
499 goto out;
500
501 class = pool->size_class[class_idx];
502 remove_zspage(page, class, currfg);
503 insert_zspage(page, class, newfg);
504 set_zspage_mapping(page, class_idx, newfg);
505
506 out:
507 return newfg;
508 }
509
510 /*
511 * We have to decide on how many pages to link together
512 * to form a zspage for each size class. This is important
513 * to reduce wastage due to unusable space left at end of
514 * each zspage which is given as:
515 * wastage = Zp - Zp % size_class
516 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
517 *
518 * For example, for size class of 3/8 * PAGE_SIZE, we should
519 * link together 3 PAGE_SIZE sized pages to form a zspage
520 * since then we can perfectly fit in 8 such objects.
521 */
522 static int get_pages_per_zspage(int class_size)
523 {
524 int i, max_usedpc = 0;
525 /* zspage order which gives maximum used size per KB */
526 int max_usedpc_order = 1;
527
528 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
529 int zspage_size;
530 int waste, usedpc;
531
532 zspage_size = i * PAGE_SIZE;
533 waste = zspage_size % class_size;
534 usedpc = (zspage_size - waste) * 100 / zspage_size;
535
536 if (usedpc > max_usedpc) {
537 max_usedpc = usedpc;
538 max_usedpc_order = i;
539 }
540 }
541
542 return max_usedpc_order;
543 }
544
545 /*
546 * A single 'zspage' is composed of many system pages which are
547 * linked together using fields in struct page. This function finds
548 * the first/head page, given any component page of a zspage.
549 */
550 static struct page *get_first_page(struct page *page)
551 {
552 if (is_first_page(page))
553 return page;
554 else
555 return page->first_page;
556 }
557
558 static struct page *get_next_page(struct page *page)
559 {
560 struct page *next;
561
562 if (is_last_page(page))
563 next = NULL;
564 else if (is_first_page(page))
565 next = (struct page *)page_private(page);
566 else
567 next = list_entry(page->lru.next, struct page, lru);
568
569 return next;
570 }
571
572 /*
573 * Encode <page, obj_idx> as a single handle value.
574 * On hardware platforms with physical memory starting at 0x0 the pfn
575 * could be 0 so we ensure that the handle will never be 0 by adjusting the
576 * encoded obj_idx value before encoding.
577 */
578 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
579 {
580 unsigned long handle;
581
582 if (!page) {
583 BUG_ON(obj_idx);
584 return NULL;
585 }
586
587 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
588 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
589
590 return (void *)handle;
591 }
592
593 /*
594 * Decode <page, obj_idx> pair from the given object handle. We adjust the
595 * decoded obj_idx back to its original value since it was adjusted in
596 * obj_location_to_handle().
597 */
598 static void obj_handle_to_location(unsigned long handle, struct page **page,
599 unsigned long *obj_idx)
600 {
601 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
602 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
603 }
604
605 static unsigned long obj_idx_to_offset(struct page *page,
606 unsigned long obj_idx, int class_size)
607 {
608 unsigned long off = 0;
609
610 if (!is_first_page(page))
611 off = page->index;
612
613 return off + obj_idx * class_size;
614 }
615
616 static void reset_page(struct page *page)
617 {
618 clear_bit(PG_private, &page->flags);
619 clear_bit(PG_private_2, &page->flags);
620 set_page_private(page, 0);
621 page->mapping = NULL;
622 page->freelist = NULL;
623 page_mapcount_reset(page);
624 }
625
626 static void free_zspage(struct page *first_page)
627 {
628 struct page *nextp, *tmp, *head_extra;
629
630 BUG_ON(!is_first_page(first_page));
631 BUG_ON(first_page->inuse);
632
633 head_extra = (struct page *)page_private(first_page);
634
635 reset_page(first_page);
636 __free_page(first_page);
637
638 /* zspage with only 1 system page */
639 if (!head_extra)
640 return;
641
642 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
643 list_del(&nextp->lru);
644 reset_page(nextp);
645 __free_page(nextp);
646 }
647 reset_page(head_extra);
648 __free_page(head_extra);
649 }
650
651 /* Initialize a newly allocated zspage */
652 static void init_zspage(struct page *first_page, struct size_class *class)
653 {
654 unsigned long off = 0;
655 struct page *page = first_page;
656
657 BUG_ON(!is_first_page(first_page));
658 while (page) {
659 struct page *next_page;
660 struct link_free *link;
661 unsigned int i = 1;
662 void *vaddr;
663
664 /*
665 * page->index stores offset of first object starting
666 * in the page. For the first page, this is always 0,
667 * so we use first_page->index (aka ->freelist) to store
668 * head of corresponding zspage's freelist.
669 */
670 if (page != first_page)
671 page->index = off;
672
673 vaddr = kmap_atomic(page);
674 link = (struct link_free *)vaddr + off / sizeof(*link);
675
676 while ((off += class->size) < PAGE_SIZE) {
677 link->next = obj_location_to_handle(page, i++);
678 link += class->size / sizeof(*link);
679 }
680
681 /*
682 * We now come to the last (full or partial) object on this
683 * page, which must point to the first object on the next
684 * page (if present)
685 */
686 next_page = get_next_page(page);
687 link->next = obj_location_to_handle(next_page, 0);
688 kunmap_atomic(vaddr);
689 page = next_page;
690 off %= PAGE_SIZE;
691 }
692 }
693
694 /*
695 * Allocate a zspage for the given size class
696 */
697 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
698 {
699 int i, error;
700 struct page *first_page = NULL, *uninitialized_var(prev_page);
701
702 /*
703 * Allocate individual pages and link them together as:
704 * 1. first page->private = first sub-page
705 * 2. all sub-pages are linked together using page->lru
706 * 3. each sub-page is linked to the first page using page->first_page
707 *
708 * For each size class, First/Head pages are linked together using
709 * page->lru. Also, we set PG_private to identify the first page
710 * (i.e. no other sub-page has this flag set) and PG_private_2 to
711 * identify the last page.
712 */
713 error = -ENOMEM;
714 for (i = 0; i < class->pages_per_zspage; i++) {
715 struct page *page;
716
717 page = alloc_page(flags);
718 if (!page)
719 goto cleanup;
720
721 INIT_LIST_HEAD(&page->lru);
722 if (i == 0) { /* first page */
723 SetPagePrivate(page);
724 set_page_private(page, 0);
725 first_page = page;
726 first_page->inuse = 0;
727 }
728 if (i == 1)
729 set_page_private(first_page, (unsigned long)page);
730 if (i >= 1)
731 page->first_page = first_page;
732 if (i >= 2)
733 list_add(&page->lru, &prev_page->lru);
734 if (i == class->pages_per_zspage - 1) /* last page */
735 SetPagePrivate2(page);
736 prev_page = page;
737 }
738
739 init_zspage(first_page, class);
740
741 first_page->freelist = obj_location_to_handle(first_page, 0);
742 /* Maximum number of objects we can store in this zspage */
743 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
744
745 error = 0; /* Success */
746
747 cleanup:
748 if (unlikely(error) && first_page) {
749 free_zspage(first_page);
750 first_page = NULL;
751 }
752
753 return first_page;
754 }
755
756 static struct page *find_get_zspage(struct size_class *class)
757 {
758 int i;
759 struct page *page;
760
761 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
762 page = class->fullness_list[i];
763 if (page)
764 break;
765 }
766
767 return page;
768 }
769
770 #ifdef CONFIG_PGTABLE_MAPPING
771 static inline int __zs_cpu_up(struct mapping_area *area)
772 {
773 /*
774 * Make sure we don't leak memory if a cpu UP notification
775 * and zs_init() race and both call zs_cpu_up() on the same cpu
776 */
777 if (area->vm)
778 return 0;
779 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
780 if (!area->vm)
781 return -ENOMEM;
782 return 0;
783 }
784
785 static inline void __zs_cpu_down(struct mapping_area *area)
786 {
787 if (area->vm)
788 free_vm_area(area->vm);
789 area->vm = NULL;
790 }
791
792 static inline void *__zs_map_object(struct mapping_area *area,
793 struct page *pages[2], int off, int size)
794 {
795 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
796 area->vm_addr = area->vm->addr;
797 return area->vm_addr + off;
798 }
799
800 static inline void __zs_unmap_object(struct mapping_area *area,
801 struct page *pages[2], int off, int size)
802 {
803 unsigned long addr = (unsigned long)area->vm_addr;
804
805 unmap_kernel_range(addr, PAGE_SIZE * 2);
806 }
807
808 #else /* CONFIG_PGTABLE_MAPPING */
809
810 static inline int __zs_cpu_up(struct mapping_area *area)
811 {
812 /*
813 * Make sure we don't leak memory if a cpu UP notification
814 * and zs_init() race and both call zs_cpu_up() on the same cpu
815 */
816 if (area->vm_buf)
817 return 0;
818 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
819 if (!area->vm_buf)
820 return -ENOMEM;
821 return 0;
822 }
823
824 static inline void __zs_cpu_down(struct mapping_area *area)
825 {
826 kfree(area->vm_buf);
827 area->vm_buf = NULL;
828 }
829
830 static void *__zs_map_object(struct mapping_area *area,
831 struct page *pages[2], int off, int size)
832 {
833 int sizes[2];
834 void *addr;
835 char *buf = area->vm_buf;
836
837 /* disable page faults to match kmap_atomic() return conditions */
838 pagefault_disable();
839
840 /* no read fastpath */
841 if (area->vm_mm == ZS_MM_WO)
842 goto out;
843
844 sizes[0] = PAGE_SIZE - off;
845 sizes[1] = size - sizes[0];
846
847 /* copy object to per-cpu buffer */
848 addr = kmap_atomic(pages[0]);
849 memcpy(buf, addr + off, sizes[0]);
850 kunmap_atomic(addr);
851 addr = kmap_atomic(pages[1]);
852 memcpy(buf + sizes[0], addr, sizes[1]);
853 kunmap_atomic(addr);
854 out:
855 return area->vm_buf;
856 }
857
858 static void __zs_unmap_object(struct mapping_area *area,
859 struct page *pages[2], int off, int size)
860 {
861 int sizes[2];
862 void *addr;
863 char *buf = area->vm_buf;
864
865 /* no write fastpath */
866 if (area->vm_mm == ZS_MM_RO)
867 goto out;
868
869 sizes[0] = PAGE_SIZE - off;
870 sizes[1] = size - sizes[0];
871
872 /* copy per-cpu buffer to object */
873 addr = kmap_atomic(pages[0]);
874 memcpy(addr + off, buf, sizes[0]);
875 kunmap_atomic(addr);
876 addr = kmap_atomic(pages[1]);
877 memcpy(addr, buf + sizes[0], sizes[1]);
878 kunmap_atomic(addr);
879
880 out:
881 /* enable page faults to match kunmap_atomic() return conditions */
882 pagefault_enable();
883 }
884
885 #endif /* CONFIG_PGTABLE_MAPPING */
886
887 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
888 void *pcpu)
889 {
890 int ret, cpu = (long)pcpu;
891 struct mapping_area *area;
892
893 switch (action) {
894 case CPU_UP_PREPARE:
895 area = &per_cpu(zs_map_area, cpu);
896 ret = __zs_cpu_up(area);
897 if (ret)
898 return notifier_from_errno(ret);
899 break;
900 case CPU_DEAD:
901 case CPU_UP_CANCELED:
902 area = &per_cpu(zs_map_area, cpu);
903 __zs_cpu_down(area);
904 break;
905 }
906
907 return NOTIFY_OK;
908 }
909
910 static struct notifier_block zs_cpu_nb = {
911 .notifier_call = zs_cpu_notifier
912 };
913
914 static int zs_register_cpu_notifier(void)
915 {
916 int cpu, uninitialized_var(ret);
917
918 cpu_notifier_register_begin();
919
920 __register_cpu_notifier(&zs_cpu_nb);
921 for_each_online_cpu(cpu) {
922 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
923 if (notifier_to_errno(ret))
924 break;
925 }
926
927 cpu_notifier_register_done();
928 return notifier_to_errno(ret);
929 }
930
931 static void zs_unregister_cpu_notifier(void)
932 {
933 int cpu;
934
935 cpu_notifier_register_begin();
936
937 for_each_online_cpu(cpu)
938 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
939 __unregister_cpu_notifier(&zs_cpu_nb);
940
941 cpu_notifier_register_done();
942 }
943
944 static void init_zs_size_classes(void)
945 {
946 int nr;
947
948 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
949 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
950 nr += 1;
951
952 zs_size_classes = nr;
953 }
954
955 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
956 {
957 return pages_per_zspage * PAGE_SIZE / size;
958 }
959
960 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
961 {
962 if (prev->pages_per_zspage != pages_per_zspage)
963 return false;
964
965 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
966 != get_maxobj_per_zspage(size, pages_per_zspage))
967 return false;
968
969 return true;
970 }
971
972 #ifdef CONFIG_ZSMALLOC_STAT
973
974 static inline void zs_stat_inc(struct size_class *class,
975 enum zs_stat_type type, unsigned long cnt)
976 {
977 class->stats.objs[type] += cnt;
978 }
979
980 static inline void zs_stat_dec(struct size_class *class,
981 enum zs_stat_type type, unsigned long cnt)
982 {
983 class->stats.objs[type] -= cnt;
984 }
985
986 static inline unsigned long zs_stat_get(struct size_class *class,
987 enum zs_stat_type type)
988 {
989 return class->stats.objs[type];
990 }
991
992 static int __init zs_stat_init(void)
993 {
994 if (!debugfs_initialized())
995 return -ENODEV;
996
997 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
998 if (!zs_stat_root)
999 return -ENOMEM;
1000
1001 return 0;
1002 }
1003
1004 static void __exit zs_stat_exit(void)
1005 {
1006 debugfs_remove_recursive(zs_stat_root);
1007 }
1008
1009 static int zs_stats_size_show(struct seq_file *s, void *v)
1010 {
1011 int i;
1012 struct zs_pool *pool = s->private;
1013 struct size_class *class;
1014 int objs_per_zspage;
1015 unsigned long obj_allocated, obj_used, pages_used;
1016 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1017
1018 seq_printf(s, " %5s %5s %13s %10s %10s\n", "class", "size",
1019 "obj_allocated", "obj_used", "pages_used");
1020
1021 for (i = 0; i < zs_size_classes; i++) {
1022 class = pool->size_class[i];
1023
1024 if (class->index != i)
1025 continue;
1026
1027 spin_lock(&class->lock);
1028 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1029 obj_used = zs_stat_get(class, OBJ_USED);
1030 spin_unlock(&class->lock);
1031
1032 objs_per_zspage = get_maxobj_per_zspage(class->size,
1033 class->pages_per_zspage);
1034 pages_used = obj_allocated / objs_per_zspage *
1035 class->pages_per_zspage;
1036
1037 seq_printf(s, " %5u %5u %10lu %10lu %10lu\n", i,
1038 class->size, obj_allocated, obj_used, pages_used);
1039
1040 total_objs += obj_allocated;
1041 total_used_objs += obj_used;
1042 total_pages += pages_used;
1043 }
1044
1045 seq_puts(s, "\n");
1046 seq_printf(s, " %5s %5s %10lu %10lu %10lu\n", "Total", "",
1047 total_objs, total_used_objs, total_pages);
1048
1049 return 0;
1050 }
1051
1052 static int zs_stats_size_open(struct inode *inode, struct file *file)
1053 {
1054 return single_open(file, zs_stats_size_show, inode->i_private);
1055 }
1056
1057 static const struct file_operations zs_stat_size_ops = {
1058 .open = zs_stats_size_open,
1059 .read = seq_read,
1060 .llseek = seq_lseek,
1061 .release = single_release,
1062 };
1063
1064 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
1065 {
1066 struct dentry *entry;
1067
1068 if (!zs_stat_root)
1069 return -ENODEV;
1070
1071 entry = debugfs_create_dir(name, zs_stat_root);
1072 if (!entry) {
1073 pr_warn("debugfs dir <%s> creation failed\n", name);
1074 return -ENOMEM;
1075 }
1076 pool->stat_dentry = entry;
1077
1078 entry = debugfs_create_file("obj_in_classes", S_IFREG | S_IRUGO,
1079 pool->stat_dentry, pool, &zs_stat_size_ops);
1080 if (!entry) {
1081 pr_warn("%s: debugfs file entry <%s> creation failed\n",
1082 name, "obj_in_classes");
1083 return -ENOMEM;
1084 }
1085
1086 return 0;
1087 }
1088
1089 static void zs_pool_stat_destroy(struct zs_pool *pool)
1090 {
1091 debugfs_remove_recursive(pool->stat_dentry);
1092 }
1093
1094 #else /* CONFIG_ZSMALLOC_STAT */
1095
1096 static inline void zs_stat_inc(struct size_class *class,
1097 enum zs_stat_type type, unsigned long cnt)
1098 {
1099 }
1100
1101 static inline void zs_stat_dec(struct size_class *class,
1102 enum zs_stat_type type, unsigned long cnt)
1103 {
1104 }
1105
1106 static inline unsigned long zs_stat_get(struct size_class *class,
1107 enum zs_stat_type type)
1108 {
1109 return 0;
1110 }
1111
1112 static int __init zs_stat_init(void)
1113 {
1114 return 0;
1115 }
1116
1117 static void __exit zs_stat_exit(void)
1118 {
1119 }
1120
1121 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
1122 {
1123 return 0;
1124 }
1125
1126 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
1127 {
1128 }
1129
1130 #endif
1131
1132 unsigned long zs_get_total_pages(struct zs_pool *pool)
1133 {
1134 return atomic_long_read(&pool->pages_allocated);
1135 }
1136 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1137
1138 /**
1139 * zs_map_object - get address of allocated object from handle.
1140 * @pool: pool from which the object was allocated
1141 * @handle: handle returned from zs_malloc
1142 *
1143 * Before using an object allocated from zs_malloc, it must be mapped using
1144 * this function. When done with the object, it must be unmapped using
1145 * zs_unmap_object.
1146 *
1147 * Only one object can be mapped per cpu at a time. There is no protection
1148 * against nested mappings.
1149 *
1150 * This function returns with preemption and page faults disabled.
1151 */
1152 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1153 enum zs_mapmode mm)
1154 {
1155 struct page *page;
1156 unsigned long obj_idx, off;
1157
1158 unsigned int class_idx;
1159 enum fullness_group fg;
1160 struct size_class *class;
1161 struct mapping_area *area;
1162 struct page *pages[2];
1163
1164 BUG_ON(!handle);
1165
1166 /*
1167 * Because we use per-cpu mapping areas shared among the
1168 * pools/users, we can't allow mapping in interrupt context
1169 * because it can corrupt another users mappings.
1170 */
1171 BUG_ON(in_interrupt());
1172
1173 obj_handle_to_location(handle, &page, &obj_idx);
1174 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1175 class = pool->size_class[class_idx];
1176 off = obj_idx_to_offset(page, obj_idx, class->size);
1177
1178 area = &get_cpu_var(zs_map_area);
1179 area->vm_mm = mm;
1180 if (off + class->size <= PAGE_SIZE) {
1181 /* this object is contained entirely within a page */
1182 area->vm_addr = kmap_atomic(page);
1183 return area->vm_addr + off;
1184 }
1185
1186 /* this object spans two pages */
1187 pages[0] = page;
1188 pages[1] = get_next_page(page);
1189 BUG_ON(!pages[1]);
1190
1191 return __zs_map_object(area, pages, off, class->size);
1192 }
1193 EXPORT_SYMBOL_GPL(zs_map_object);
1194
1195 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1196 {
1197 struct page *page;
1198 unsigned long obj_idx, off;
1199
1200 unsigned int class_idx;
1201 enum fullness_group fg;
1202 struct size_class *class;
1203 struct mapping_area *area;
1204
1205 BUG_ON(!handle);
1206
1207 obj_handle_to_location(handle, &page, &obj_idx);
1208 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1209 class = pool->size_class[class_idx];
1210 off = obj_idx_to_offset(page, obj_idx, class->size);
1211
1212 area = this_cpu_ptr(&zs_map_area);
1213 if (off + class->size <= PAGE_SIZE)
1214 kunmap_atomic(area->vm_addr);
1215 else {
1216 struct page *pages[2];
1217
1218 pages[0] = page;
1219 pages[1] = get_next_page(page);
1220 BUG_ON(!pages[1]);
1221
1222 __zs_unmap_object(area, pages, off, class->size);
1223 }
1224 put_cpu_var(zs_map_area);
1225 }
1226 EXPORT_SYMBOL_GPL(zs_unmap_object);
1227
1228 /**
1229 * zs_malloc - Allocate block of given size from pool.
1230 * @pool: pool to allocate from
1231 * @size: size of block to allocate
1232 *
1233 * On success, handle to the allocated object is returned,
1234 * otherwise 0.
1235 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1236 */
1237 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1238 {
1239 unsigned long obj;
1240 struct link_free *link;
1241 struct size_class *class;
1242 void *vaddr;
1243
1244 struct page *first_page, *m_page;
1245 unsigned long m_objidx, m_offset;
1246
1247 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1248 return 0;
1249
1250 class = pool->size_class[get_size_class_index(size)];
1251
1252 spin_lock(&class->lock);
1253 first_page = find_get_zspage(class);
1254
1255 if (!first_page) {
1256 spin_unlock(&class->lock);
1257 first_page = alloc_zspage(class, pool->flags);
1258 if (unlikely(!first_page))
1259 return 0;
1260
1261 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1262 atomic_long_add(class->pages_per_zspage,
1263 &pool->pages_allocated);
1264
1265 spin_lock(&class->lock);
1266 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1267 class->size, class->pages_per_zspage));
1268 }
1269
1270 obj = (unsigned long)first_page->freelist;
1271 obj_handle_to_location(obj, &m_page, &m_objidx);
1272 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1273
1274 vaddr = kmap_atomic(m_page);
1275 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1276 first_page->freelist = link->next;
1277 memset(link, POISON_INUSE, sizeof(*link));
1278 kunmap_atomic(vaddr);
1279
1280 first_page->inuse++;
1281 zs_stat_inc(class, OBJ_USED, 1);
1282 /* Now move the zspage to another fullness group, if required */
1283 fix_fullness_group(pool, first_page);
1284 spin_unlock(&class->lock);
1285
1286 return obj;
1287 }
1288 EXPORT_SYMBOL_GPL(zs_malloc);
1289
1290 void zs_free(struct zs_pool *pool, unsigned long obj)
1291 {
1292 struct link_free *link;
1293 struct page *first_page, *f_page;
1294 unsigned long f_objidx, f_offset;
1295 void *vaddr;
1296
1297 int class_idx;
1298 struct size_class *class;
1299 enum fullness_group fullness;
1300
1301 if (unlikely(!obj))
1302 return;
1303
1304 obj_handle_to_location(obj, &f_page, &f_objidx);
1305 first_page = get_first_page(f_page);
1306
1307 get_zspage_mapping(first_page, &class_idx, &fullness);
1308 class = pool->size_class[class_idx];
1309 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1310
1311 spin_lock(&class->lock);
1312
1313 /* Insert this object in containing zspage's freelist */
1314 vaddr = kmap_atomic(f_page);
1315 link = (struct link_free *)(vaddr + f_offset);
1316 link->next = first_page->freelist;
1317 kunmap_atomic(vaddr);
1318 first_page->freelist = (void *)obj;
1319
1320 first_page->inuse--;
1321 fullness = fix_fullness_group(pool, first_page);
1322
1323 zs_stat_dec(class, OBJ_USED, 1);
1324 if (fullness == ZS_EMPTY)
1325 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1326 class->size, class->pages_per_zspage));
1327
1328 spin_unlock(&class->lock);
1329
1330 if (fullness == ZS_EMPTY) {
1331 atomic_long_sub(class->pages_per_zspage,
1332 &pool->pages_allocated);
1333 free_zspage(first_page);
1334 }
1335 }
1336 EXPORT_SYMBOL_GPL(zs_free);
1337
1338 /**
1339 * zs_create_pool - Creates an allocation pool to work from.
1340 * @flags: allocation flags used to allocate pool metadata
1341 *
1342 * This function must be called before anything when using
1343 * the zsmalloc allocator.
1344 *
1345 * On success, a pointer to the newly created pool is returned,
1346 * otherwise NULL.
1347 */
1348 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1349 {
1350 int i;
1351 struct zs_pool *pool;
1352 struct size_class *prev_class = NULL;
1353
1354 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1355 if (!pool)
1356 return NULL;
1357
1358 pool->name = kstrdup(name, GFP_KERNEL);
1359 if (!pool->name) {
1360 kfree(pool);
1361 return NULL;
1362 }
1363
1364 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1365 GFP_KERNEL);
1366 if (!pool->size_class) {
1367 kfree(pool->name);
1368 kfree(pool);
1369 return NULL;
1370 }
1371
1372 /*
1373 * Iterate reversly, because, size of size_class that we want to use
1374 * for merging should be larger or equal to current size.
1375 */
1376 for (i = zs_size_classes - 1; i >= 0; i--) {
1377 int size;
1378 int pages_per_zspage;
1379 struct size_class *class;
1380
1381 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1382 if (size > ZS_MAX_ALLOC_SIZE)
1383 size = ZS_MAX_ALLOC_SIZE;
1384 pages_per_zspage = get_pages_per_zspage(size);
1385
1386 /*
1387 * size_class is used for normal zsmalloc operation such
1388 * as alloc/free for that size. Although it is natural that we
1389 * have one size_class for each size, there is a chance that we
1390 * can get more memory utilization if we use one size_class for
1391 * many different sizes whose size_class have same
1392 * characteristics. So, we makes size_class point to
1393 * previous size_class if possible.
1394 */
1395 if (prev_class) {
1396 if (can_merge(prev_class, size, pages_per_zspage)) {
1397 pool->size_class[i] = prev_class;
1398 continue;
1399 }
1400 }
1401
1402 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1403 if (!class)
1404 goto err;
1405
1406 class->size = size;
1407 class->index = i;
1408 class->pages_per_zspage = pages_per_zspage;
1409 spin_lock_init(&class->lock);
1410 pool->size_class[i] = class;
1411
1412 prev_class = class;
1413 }
1414
1415 pool->flags = flags;
1416
1417 if (zs_pool_stat_create(name, pool))
1418 goto err;
1419
1420 return pool;
1421
1422 err:
1423 zs_destroy_pool(pool);
1424 return NULL;
1425 }
1426 EXPORT_SYMBOL_GPL(zs_create_pool);
1427
1428 void zs_destroy_pool(struct zs_pool *pool)
1429 {
1430 int i;
1431
1432 zs_pool_stat_destroy(pool);
1433
1434 for (i = 0; i < zs_size_classes; i++) {
1435 int fg;
1436 struct size_class *class = pool->size_class[i];
1437
1438 if (!class)
1439 continue;
1440
1441 if (class->index != i)
1442 continue;
1443
1444 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1445 if (class->fullness_list[fg]) {
1446 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1447 class->size, fg);
1448 }
1449 }
1450 kfree(class);
1451 }
1452
1453 kfree(pool->size_class);
1454 kfree(pool->name);
1455 kfree(pool);
1456 }
1457 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1458
1459 static int __init zs_init(void)
1460 {
1461 int ret = zs_register_cpu_notifier();
1462
1463 if (ret)
1464 goto notifier_fail;
1465
1466 init_zs_size_classes();
1467
1468 #ifdef CONFIG_ZPOOL
1469 zpool_register_driver(&zs_zpool_driver);
1470 #endif
1471
1472 ret = zs_stat_init();
1473 if (ret) {
1474 pr_err("zs stat initialization failed\n");
1475 goto stat_fail;
1476 }
1477 return 0;
1478
1479 stat_fail:
1480 #ifdef CONFIG_ZPOOL
1481 zpool_unregister_driver(&zs_zpool_driver);
1482 #endif
1483 notifier_fail:
1484 zs_unregister_cpu_notifier();
1485
1486 return ret;
1487 }
1488
1489 static void __exit zs_exit(void)
1490 {
1491 #ifdef CONFIG_ZPOOL
1492 zpool_unregister_driver(&zs_zpool_driver);
1493 #endif
1494 zs_unregister_cpu_notifier();
1495
1496 zs_stat_exit();
1497 }
1498
1499 module_init(zs_init);
1500 module_exit(zs_exit);
1501
1502 MODULE_LICENSE("Dual BSD/GPL");
1503 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");