]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/zsmalloc.c
zsmalloc: use OBJ_TAG_BIT for bit shifter
[mirror_ubuntu-zesty-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 *
24 * Usage of struct page flags:
25 * PG_private: identifies the first component page
26 * PG_private2: identifies the last component page
27 * PG_owner_priv_1: indentifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/compaction.h>
54 #include <linux/pagemap.h>
55
56 #define ZSPAGE_MAGIC 0x58
57
58 /*
59 * This must be power of 2 and greater than of equal to sizeof(link_free).
60 * These two conditions ensure that any 'struct link_free' itself doesn't
61 * span more than 1 page which avoids complex case of mapping 2 pages simply
62 * to restore link_free pointer values.
63 */
64 #define ZS_ALIGN 8
65
66 /*
67 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69 */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
75 /*
76 * Object location (<PFN>, <obj_idx>) is encoded as
77 * as single (unsigned long) handle value.
78 *
79 * Note that object index <obj_idx> starts from 0.
80 *
81 * This is made more complicated by various memory models and PAE.
82 */
83
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90 * be PAGE_SHIFT
91 */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
96
97 /*
98 * Memory for allocating for handle keeps object position by
99 * encoding <page, obj_idx> and the encoded value has a room
100 * in least bit(ie, look at obj_to_location).
101 * We use the bit to synchronize between object access by
102 * user and migration.
103 */
104 #define HANDLE_PIN_BIT 0
105
106 /*
107 * Head in allocated object should have OBJ_ALLOCATED_TAG
108 * to identify the object was allocated or not.
109 * It's okay to add the status bit in the least bit because
110 * header keeps handle which is 4byte-aligned address so we
111 * have room for two bit at least.
112 */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
124
125 /*
126 * On systems with 4K page size, this gives 255 size classes! There is a
127 * trader-off here:
128 * - Large number of size classes is potentially wasteful as free page are
129 * spread across these classes
130 * - Small number of size classes causes large internal fragmentation
131 * - Probably its better to use specific size classes (empirically
132 * determined). NOTE: all those class sizes must be set as multiple of
133 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134 *
135 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136 * (reason above)
137 */
138 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
139
140 /*
141 * We do not maintain any list for completely empty or full pages
142 */
143 enum fullness_group {
144 ZS_EMPTY,
145 ZS_ALMOST_EMPTY,
146 ZS_ALMOST_FULL,
147 ZS_FULL,
148 NR_ZS_FULLNESS,
149 };
150
151 enum zs_stat_type {
152 CLASS_EMPTY,
153 CLASS_ALMOST_EMPTY,
154 CLASS_ALMOST_FULL,
155 CLASS_FULL,
156 OBJ_ALLOCATED,
157 OBJ_USED,
158 NR_ZS_STAT_TYPE,
159 };
160
161 struct zs_size_stat {
162 unsigned long objs[NR_ZS_STAT_TYPE];
163 };
164
165 #ifdef CONFIG_ZSMALLOC_STAT
166 static struct dentry *zs_stat_root;
167 #endif
168
169 #ifdef CONFIG_COMPACTION
170 static struct vfsmount *zsmalloc_mnt;
171 #endif
172
173 /*
174 * number of size_classes
175 */
176 static int zs_size_classes;
177
178 /*
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n <= N / f, where
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
183 * f = fullness_threshold_frac
184 *
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
189 *
190 * (see: fix_fullness_group())
191 */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195 spinlock_t lock;
196 struct list_head fullness_list[NR_ZS_FULLNESS];
197 /*
198 * Size of objects stored in this class. Must be multiple
199 * of ZS_ALIGN.
200 */
201 int size;
202 int objs_per_zspage;
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage;
205
206 unsigned int index;
207 struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213 SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218 ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223 return PageOwnerPriv1(page);
224 }
225
226 /*
227 * Placed within free objects to form a singly linked list.
228 * For every zspage, zspage->freeobj gives head of this list.
229 *
230 * This must be power of 2 and less than or equal to ZS_ALIGN
231 */
232 struct link_free {
233 union {
234 /*
235 * Free object index;
236 * It's valid for non-allocated object
237 */
238 unsigned long next;
239 /*
240 * Handle of allocated object.
241 */
242 unsigned long handle;
243 };
244 };
245
246 struct zs_pool {
247 const char *name;
248
249 struct size_class **size_class;
250 struct kmem_cache *handle_cachep;
251 struct kmem_cache *zspage_cachep;
252
253 atomic_long_t pages_allocated;
254
255 struct zs_pool_stats stats;
256
257 /* Compact classes */
258 struct shrinker shrinker;
259 /*
260 * To signify that register_shrinker() was successful
261 * and unregister_shrinker() will not Oops.
262 */
263 bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270 #endif
271 };
272
273 /*
274 * A zspage's class index and fullness group
275 * are encoded in its (first)page->mapping
276 */
277 #define FULLNESS_BITS 2
278 #define CLASS_BITS 8
279 #define ISOLATED_BITS 3
280 #define MAGIC_VAL_BITS 8
281
282 struct zspage {
283 struct {
284 unsigned int fullness:FULLNESS_BITS;
285 unsigned int class:CLASS_BITS;
286 unsigned int isolated:ISOLATED_BITS;
287 unsigned int magic:MAGIC_VAL_BITS;
288 };
289 unsigned int inuse;
290 unsigned int freeobj;
291 struct page *first_page;
292 struct list_head list; /* fullness list */
293 #ifdef CONFIG_COMPACTION
294 rwlock_t lock;
295 #endif
296 };
297
298 struct mapping_area {
299 #ifdef CONFIG_PGTABLE_MAPPING
300 struct vm_struct *vm; /* vm area for mapping object that span pages */
301 #else
302 char *vm_buf; /* copy buffer for objects that span pages */
303 #endif
304 char *vm_addr; /* address of kmap_atomic()'ed pages */
305 enum zs_mapmode vm_mm; /* mapping mode */
306 };
307
308 #ifdef CONFIG_COMPACTION
309 static int zs_register_migration(struct zs_pool *pool);
310 static void zs_unregister_migration(struct zs_pool *pool);
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314 static void kick_deferred_free(struct zs_pool *pool);
315 static void init_deferred_free(struct zs_pool *pool);
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317 #else
318 static int zsmalloc_mount(void) { return 0; }
319 static void zsmalloc_unmount(void) {}
320 static int zs_register_migration(struct zs_pool *pool) { return 0; }
321 static void zs_unregister_migration(struct zs_pool *pool) {}
322 static void migrate_lock_init(struct zspage *zspage) {}
323 static void migrate_read_lock(struct zspage *zspage) {}
324 static void migrate_read_unlock(struct zspage *zspage) {}
325 static void kick_deferred_free(struct zs_pool *pool) {}
326 static void init_deferred_free(struct zs_pool *pool) {}
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328 #endif
329
330 static int create_cache(struct zs_pool *pool)
331 {
332 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333 0, 0, NULL);
334 if (!pool->handle_cachep)
335 return 1;
336
337 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338 0, 0, NULL);
339 if (!pool->zspage_cachep) {
340 kmem_cache_destroy(pool->handle_cachep);
341 pool->handle_cachep = NULL;
342 return 1;
343 }
344
345 return 0;
346 }
347
348 static void destroy_cache(struct zs_pool *pool)
349 {
350 kmem_cache_destroy(pool->handle_cachep);
351 kmem_cache_destroy(pool->zspage_cachep);
352 }
353
354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
355 {
356 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
357 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359
360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
361 {
362 kmem_cache_free(pool->handle_cachep, (void *)handle);
363 }
364
365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366 {
367 return kmem_cache_alloc(pool->zspage_cachep,
368 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 };
370
371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372 {
373 kmem_cache_free(pool->zspage_cachep, zspage);
374 }
375
376 static void record_obj(unsigned long handle, unsigned long obj)
377 {
378 /*
379 * lsb of @obj represents handle lock while other bits
380 * represent object value the handle is pointing so
381 * updating shouldn't do store tearing.
382 */
383 WRITE_ONCE(*(unsigned long *)handle, obj);
384 }
385
386 /* zpool driver */
387
388 #ifdef CONFIG_ZPOOL
389
390 static void *zs_zpool_create(const char *name, gfp_t gfp,
391 const struct zpool_ops *zpool_ops,
392 struct zpool *zpool)
393 {
394 /*
395 * Ignore global gfp flags: zs_malloc() may be invoked from
396 * different contexts and its caller must provide a valid
397 * gfp mask.
398 */
399 return zs_create_pool(name);
400 }
401
402 static void zs_zpool_destroy(void *pool)
403 {
404 zs_destroy_pool(pool);
405 }
406
407 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408 unsigned long *handle)
409 {
410 *handle = zs_malloc(pool, size, gfp);
411 return *handle ? 0 : -1;
412 }
413 static void zs_zpool_free(void *pool, unsigned long handle)
414 {
415 zs_free(pool, handle);
416 }
417
418 static int zs_zpool_shrink(void *pool, unsigned int pages,
419 unsigned int *reclaimed)
420 {
421 return -EINVAL;
422 }
423
424 static void *zs_zpool_map(void *pool, unsigned long handle,
425 enum zpool_mapmode mm)
426 {
427 enum zs_mapmode zs_mm;
428
429 switch (mm) {
430 case ZPOOL_MM_RO:
431 zs_mm = ZS_MM_RO;
432 break;
433 case ZPOOL_MM_WO:
434 zs_mm = ZS_MM_WO;
435 break;
436 case ZPOOL_MM_RW: /* fallthru */
437 default:
438 zs_mm = ZS_MM_RW;
439 break;
440 }
441
442 return zs_map_object(pool, handle, zs_mm);
443 }
444 static void zs_zpool_unmap(void *pool, unsigned long handle)
445 {
446 zs_unmap_object(pool, handle);
447 }
448
449 static u64 zs_zpool_total_size(void *pool)
450 {
451 return zs_get_total_pages(pool) << PAGE_SHIFT;
452 }
453
454 static struct zpool_driver zs_zpool_driver = {
455 .type = "zsmalloc",
456 .owner = THIS_MODULE,
457 .create = zs_zpool_create,
458 .destroy = zs_zpool_destroy,
459 .malloc = zs_zpool_malloc,
460 .free = zs_zpool_free,
461 .shrink = zs_zpool_shrink,
462 .map = zs_zpool_map,
463 .unmap = zs_zpool_unmap,
464 .total_size = zs_zpool_total_size,
465 };
466
467 MODULE_ALIAS("zpool-zsmalloc");
468 #endif /* CONFIG_ZPOOL */
469
470 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
471 {
472 return pages_per_zspage * PAGE_SIZE / size;
473 }
474
475 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
476 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
477
478 static bool is_zspage_isolated(struct zspage *zspage)
479 {
480 return zspage->isolated;
481 }
482
483 static int is_first_page(struct page *page)
484 {
485 return PagePrivate(page);
486 }
487
488 /* Protected by class->lock */
489 static inline int get_zspage_inuse(struct zspage *zspage)
490 {
491 return zspage->inuse;
492 }
493
494 static inline void set_zspage_inuse(struct zspage *zspage, int val)
495 {
496 zspage->inuse = val;
497 }
498
499 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
500 {
501 zspage->inuse += val;
502 }
503
504 static inline struct page *get_first_page(struct zspage *zspage)
505 {
506 struct page *first_page = zspage->first_page;
507
508 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
509 return first_page;
510 }
511
512 static inline int get_first_obj_offset(struct page *page)
513 {
514 return page->units;
515 }
516
517 static inline void set_first_obj_offset(struct page *page, int offset)
518 {
519 page->units = offset;
520 }
521
522 static inline unsigned int get_freeobj(struct zspage *zspage)
523 {
524 return zspage->freeobj;
525 }
526
527 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
528 {
529 zspage->freeobj = obj;
530 }
531
532 static void get_zspage_mapping(struct zspage *zspage,
533 unsigned int *class_idx,
534 enum fullness_group *fullness)
535 {
536 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
537
538 *fullness = zspage->fullness;
539 *class_idx = zspage->class;
540 }
541
542 static void set_zspage_mapping(struct zspage *zspage,
543 unsigned int class_idx,
544 enum fullness_group fullness)
545 {
546 zspage->class = class_idx;
547 zspage->fullness = fullness;
548 }
549
550 /*
551 * zsmalloc divides the pool into various size classes where each
552 * class maintains a list of zspages where each zspage is divided
553 * into equal sized chunks. Each allocation falls into one of these
554 * classes depending on its size. This function returns index of the
555 * size class which has chunk size big enough to hold the give size.
556 */
557 static int get_size_class_index(int size)
558 {
559 int idx = 0;
560
561 if (likely(size > ZS_MIN_ALLOC_SIZE))
562 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
563 ZS_SIZE_CLASS_DELTA);
564
565 return min(zs_size_classes - 1, idx);
566 }
567
568 static inline void zs_stat_inc(struct size_class *class,
569 enum zs_stat_type type, unsigned long cnt)
570 {
571 class->stats.objs[type] += cnt;
572 }
573
574 static inline void zs_stat_dec(struct size_class *class,
575 enum zs_stat_type type, unsigned long cnt)
576 {
577 class->stats.objs[type] -= cnt;
578 }
579
580 static inline unsigned long zs_stat_get(struct size_class *class,
581 enum zs_stat_type type)
582 {
583 return class->stats.objs[type];
584 }
585
586 #ifdef CONFIG_ZSMALLOC_STAT
587
588 static void __init zs_stat_init(void)
589 {
590 if (!debugfs_initialized()) {
591 pr_warn("debugfs not available, stat dir not created\n");
592 return;
593 }
594
595 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
596 if (!zs_stat_root)
597 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
598 }
599
600 static void __exit zs_stat_exit(void)
601 {
602 debugfs_remove_recursive(zs_stat_root);
603 }
604
605 static unsigned long zs_can_compact(struct size_class *class);
606
607 static int zs_stats_size_show(struct seq_file *s, void *v)
608 {
609 int i;
610 struct zs_pool *pool = s->private;
611 struct size_class *class;
612 int objs_per_zspage;
613 unsigned long class_almost_full, class_almost_empty;
614 unsigned long obj_allocated, obj_used, pages_used, freeable;
615 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
616 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
617 unsigned long total_freeable = 0;
618
619 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
620 "class", "size", "almost_full", "almost_empty",
621 "obj_allocated", "obj_used", "pages_used",
622 "pages_per_zspage", "freeable");
623
624 for (i = 0; i < zs_size_classes; i++) {
625 class = pool->size_class[i];
626
627 if (class->index != i)
628 continue;
629
630 spin_lock(&class->lock);
631 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
632 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
633 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
634 obj_used = zs_stat_get(class, OBJ_USED);
635 freeable = zs_can_compact(class);
636 spin_unlock(&class->lock);
637
638 objs_per_zspage = get_maxobj_per_zspage(class->size,
639 class->pages_per_zspage);
640 pages_used = obj_allocated / objs_per_zspage *
641 class->pages_per_zspage;
642
643 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
644 " %10lu %10lu %16d %8lu\n",
645 i, class->size, class_almost_full, class_almost_empty,
646 obj_allocated, obj_used, pages_used,
647 class->pages_per_zspage, freeable);
648
649 total_class_almost_full += class_almost_full;
650 total_class_almost_empty += class_almost_empty;
651 total_objs += obj_allocated;
652 total_used_objs += obj_used;
653 total_pages += pages_used;
654 total_freeable += freeable;
655 }
656
657 seq_puts(s, "\n");
658 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
659 "Total", "", total_class_almost_full,
660 total_class_almost_empty, total_objs,
661 total_used_objs, total_pages, "", total_freeable);
662
663 return 0;
664 }
665
666 static int zs_stats_size_open(struct inode *inode, struct file *file)
667 {
668 return single_open(file, zs_stats_size_show, inode->i_private);
669 }
670
671 static const struct file_operations zs_stat_size_ops = {
672 .open = zs_stats_size_open,
673 .read = seq_read,
674 .llseek = seq_lseek,
675 .release = single_release,
676 };
677
678 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
679 {
680 struct dentry *entry;
681
682 if (!zs_stat_root) {
683 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
684 return;
685 }
686
687 entry = debugfs_create_dir(name, zs_stat_root);
688 if (!entry) {
689 pr_warn("debugfs dir <%s> creation failed\n", name);
690 return;
691 }
692 pool->stat_dentry = entry;
693
694 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
695 pool->stat_dentry, pool, &zs_stat_size_ops);
696 if (!entry) {
697 pr_warn("%s: debugfs file entry <%s> creation failed\n",
698 name, "classes");
699 debugfs_remove_recursive(pool->stat_dentry);
700 pool->stat_dentry = NULL;
701 }
702 }
703
704 static void zs_pool_stat_destroy(struct zs_pool *pool)
705 {
706 debugfs_remove_recursive(pool->stat_dentry);
707 }
708
709 #else /* CONFIG_ZSMALLOC_STAT */
710 static void __init zs_stat_init(void)
711 {
712 }
713
714 static void __exit zs_stat_exit(void)
715 {
716 }
717
718 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
719 {
720 }
721
722 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
723 {
724 }
725 #endif
726
727
728 /*
729 * For each size class, zspages are divided into different groups
730 * depending on how "full" they are. This was done so that we could
731 * easily find empty or nearly empty zspages when we try to shrink
732 * the pool (not yet implemented). This function returns fullness
733 * status of the given page.
734 */
735 static enum fullness_group get_fullness_group(struct size_class *class,
736 struct zspage *zspage)
737 {
738 int inuse, objs_per_zspage;
739 enum fullness_group fg;
740
741 inuse = get_zspage_inuse(zspage);
742 objs_per_zspage = class->objs_per_zspage;
743
744 if (inuse == 0)
745 fg = ZS_EMPTY;
746 else if (inuse == objs_per_zspage)
747 fg = ZS_FULL;
748 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
749 fg = ZS_ALMOST_EMPTY;
750 else
751 fg = ZS_ALMOST_FULL;
752
753 return fg;
754 }
755
756 /*
757 * Each size class maintains various freelists and zspages are assigned
758 * to one of these freelists based on the number of live objects they
759 * have. This functions inserts the given zspage into the freelist
760 * identified by <class, fullness_group>.
761 */
762 static void insert_zspage(struct size_class *class,
763 struct zspage *zspage,
764 enum fullness_group fullness)
765 {
766 struct zspage *head;
767
768 zs_stat_inc(class, fullness, 1);
769 head = list_first_entry_or_null(&class->fullness_list[fullness],
770 struct zspage, list);
771 /*
772 * We want to see more ZS_FULL pages and less almost empty/full.
773 * Put pages with higher ->inuse first.
774 */
775 if (head) {
776 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
777 list_add(&zspage->list, &head->list);
778 return;
779 }
780 }
781 list_add(&zspage->list, &class->fullness_list[fullness]);
782 }
783
784 /*
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
787 */
788 static void remove_zspage(struct size_class *class,
789 struct zspage *zspage,
790 enum fullness_group fullness)
791 {
792 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793 VM_BUG_ON(is_zspage_isolated(zspage));
794
795 list_del_init(&zspage->list);
796 zs_stat_dec(class, fullness, 1);
797 }
798
799 /*
800 * Each size class maintains zspages in different fullness groups depending
801 * on the number of live objects they contain. When allocating or freeing
802 * objects, the fullness status of the page can change, say, from ALMOST_FULL
803 * to ALMOST_EMPTY when freeing an object. This function checks if such
804 * a status change has occurred for the given page and accordingly moves the
805 * page from the freelist of the old fullness group to that of the new
806 * fullness group.
807 */
808 static enum fullness_group fix_fullness_group(struct size_class *class,
809 struct zspage *zspage)
810 {
811 int class_idx;
812 enum fullness_group currfg, newfg;
813
814 get_zspage_mapping(zspage, &class_idx, &currfg);
815 newfg = get_fullness_group(class, zspage);
816 if (newfg == currfg)
817 goto out;
818
819 if (!is_zspage_isolated(zspage)) {
820 remove_zspage(class, zspage, currfg);
821 insert_zspage(class, zspage, newfg);
822 }
823
824 set_zspage_mapping(zspage, class_idx, newfg);
825
826 out:
827 return newfg;
828 }
829
830 /*
831 * We have to decide on how many pages to link together
832 * to form a zspage for each size class. This is important
833 * to reduce wastage due to unusable space left at end of
834 * each zspage which is given as:
835 * wastage = Zp % class_size
836 * usage = Zp - wastage
837 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
838 *
839 * For example, for size class of 3/8 * PAGE_SIZE, we should
840 * link together 3 PAGE_SIZE sized pages to form a zspage
841 * since then we can perfectly fit in 8 such objects.
842 */
843 static int get_pages_per_zspage(int class_size)
844 {
845 int i, max_usedpc = 0;
846 /* zspage order which gives maximum used size per KB */
847 int max_usedpc_order = 1;
848
849 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
850 int zspage_size;
851 int waste, usedpc;
852
853 zspage_size = i * PAGE_SIZE;
854 waste = zspage_size % class_size;
855 usedpc = (zspage_size - waste) * 100 / zspage_size;
856
857 if (usedpc > max_usedpc) {
858 max_usedpc = usedpc;
859 max_usedpc_order = i;
860 }
861 }
862
863 return max_usedpc_order;
864 }
865
866 static struct zspage *get_zspage(struct page *page)
867 {
868 struct zspage *zspage = (struct zspage *)page->private;
869
870 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
871 return zspage;
872 }
873
874 static struct page *get_next_page(struct page *page)
875 {
876 if (unlikely(PageHugeObject(page)))
877 return NULL;
878
879 return page->freelist;
880 }
881
882 /**
883 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
884 * @page: page object resides in zspage
885 * @obj_idx: object index
886 */
887 static void obj_to_location(unsigned long obj, struct page **page,
888 unsigned int *obj_idx)
889 {
890 obj >>= OBJ_TAG_BITS;
891 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
892 *obj_idx = (obj & OBJ_INDEX_MASK);
893 }
894
895 /**
896 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
897 * @page: page object resides in zspage
898 * @obj_idx: object index
899 */
900 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
901 {
902 unsigned long obj;
903
904 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
905 obj |= obj_idx & OBJ_INDEX_MASK;
906 obj <<= OBJ_TAG_BITS;
907
908 return obj;
909 }
910
911 static unsigned long handle_to_obj(unsigned long handle)
912 {
913 return *(unsigned long *)handle;
914 }
915
916 static unsigned long obj_to_head(struct page *page, void *obj)
917 {
918 if (unlikely(PageHugeObject(page))) {
919 VM_BUG_ON_PAGE(!is_first_page(page), page);
920 return page->index;
921 } else
922 return *(unsigned long *)obj;
923 }
924
925 static inline int testpin_tag(unsigned long handle)
926 {
927 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
928 }
929
930 static inline int trypin_tag(unsigned long handle)
931 {
932 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 }
934
935 static void pin_tag(unsigned long handle)
936 {
937 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
938 }
939
940 static void unpin_tag(unsigned long handle)
941 {
942 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
943 }
944
945 static void reset_page(struct page *page)
946 {
947 __ClearPageMovable(page);
948 clear_bit(PG_private, &page->flags);
949 clear_bit(PG_private_2, &page->flags);
950 set_page_private(page, 0);
951 page_mapcount_reset(page);
952 ClearPageHugeObject(page);
953 page->freelist = NULL;
954 }
955
956 /*
957 * To prevent zspage destroy during migration, zspage freeing should
958 * hold locks of all pages in the zspage.
959 */
960 void lock_zspage(struct zspage *zspage)
961 {
962 struct page *page = get_first_page(zspage);
963
964 do {
965 lock_page(page);
966 } while ((page = get_next_page(page)) != NULL);
967 }
968
969 int trylock_zspage(struct zspage *zspage)
970 {
971 struct page *cursor, *fail;
972
973 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
974 get_next_page(cursor)) {
975 if (!trylock_page(cursor)) {
976 fail = cursor;
977 goto unlock;
978 }
979 }
980
981 return 1;
982 unlock:
983 for (cursor = get_first_page(zspage); cursor != fail; cursor =
984 get_next_page(cursor))
985 unlock_page(cursor);
986
987 return 0;
988 }
989
990 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
992 {
993 struct page *page, *next;
994 enum fullness_group fg;
995 unsigned int class_idx;
996
997 get_zspage_mapping(zspage, &class_idx, &fg);
998
999 assert_spin_locked(&class->lock);
1000
1001 VM_BUG_ON(get_zspage_inuse(zspage));
1002 VM_BUG_ON(fg != ZS_EMPTY);
1003
1004 next = page = get_first_page(zspage);
1005 do {
1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
1007 next = get_next_page(page);
1008 reset_page(page);
1009 unlock_page(page);
1010 put_page(page);
1011 page = next;
1012 } while (page != NULL);
1013
1014 cache_free_zspage(pool, zspage);
1015
1016 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1017 class->size, class->pages_per_zspage));
1018 atomic_long_sub(class->pages_per_zspage,
1019 &pool->pages_allocated);
1020 }
1021
1022 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1023 struct zspage *zspage)
1024 {
1025 VM_BUG_ON(get_zspage_inuse(zspage));
1026 VM_BUG_ON(list_empty(&zspage->list));
1027
1028 if (!trylock_zspage(zspage)) {
1029 kick_deferred_free(pool);
1030 return;
1031 }
1032
1033 remove_zspage(class, zspage, ZS_EMPTY);
1034 __free_zspage(pool, class, zspage);
1035 }
1036
1037 /* Initialize a newly allocated zspage */
1038 static void init_zspage(struct size_class *class, struct zspage *zspage)
1039 {
1040 unsigned int freeobj = 1;
1041 unsigned long off = 0;
1042 struct page *page = get_first_page(zspage);
1043
1044 while (page) {
1045 struct page *next_page;
1046 struct link_free *link;
1047 void *vaddr;
1048
1049 set_first_obj_offset(page, off);
1050
1051 vaddr = kmap_atomic(page);
1052 link = (struct link_free *)vaddr + off / sizeof(*link);
1053
1054 while ((off += class->size) < PAGE_SIZE) {
1055 link->next = freeobj++ << OBJ_TAG_BITS;
1056 link += class->size / sizeof(*link);
1057 }
1058
1059 /*
1060 * We now come to the last (full or partial) object on this
1061 * page, which must point to the first object on the next
1062 * page (if present)
1063 */
1064 next_page = get_next_page(page);
1065 if (next_page) {
1066 link->next = freeobj++ << OBJ_TAG_BITS;
1067 } else {
1068 /*
1069 * Reset OBJ_TAG_BITS bit to last link to tell
1070 * whether it's allocated object or not.
1071 */
1072 link->next = -1 << OBJ_TAG_BITS;
1073 }
1074 kunmap_atomic(vaddr);
1075 page = next_page;
1076 off %= PAGE_SIZE;
1077 }
1078
1079 set_freeobj(zspage, 0);
1080 }
1081
1082 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1083 struct page *pages[])
1084 {
1085 int i;
1086 struct page *page;
1087 struct page *prev_page = NULL;
1088 int nr_pages = class->pages_per_zspage;
1089
1090 /*
1091 * Allocate individual pages and link them together as:
1092 * 1. all pages are linked together using page->freelist
1093 * 2. each sub-page point to zspage using page->private
1094 *
1095 * we set PG_private to identify the first page (i.e. no other sub-page
1096 * has this flag set) and PG_private_2 to identify the last page.
1097 */
1098 for (i = 0; i < nr_pages; i++) {
1099 page = pages[i];
1100 set_page_private(page, (unsigned long)zspage);
1101 page->freelist = NULL;
1102 if (i == 0) {
1103 zspage->first_page = page;
1104 SetPagePrivate(page);
1105 if (unlikely(class->objs_per_zspage == 1 &&
1106 class->pages_per_zspage == 1))
1107 SetPageHugeObject(page);
1108 } else {
1109 prev_page->freelist = page;
1110 }
1111 if (i == nr_pages - 1)
1112 SetPagePrivate2(page);
1113 prev_page = page;
1114 }
1115 }
1116
1117 /*
1118 * Allocate a zspage for the given size class
1119 */
1120 static struct zspage *alloc_zspage(struct zs_pool *pool,
1121 struct size_class *class,
1122 gfp_t gfp)
1123 {
1124 int i;
1125 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1126 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1127
1128 if (!zspage)
1129 return NULL;
1130
1131 memset(zspage, 0, sizeof(struct zspage));
1132 zspage->magic = ZSPAGE_MAGIC;
1133 migrate_lock_init(zspage);
1134
1135 for (i = 0; i < class->pages_per_zspage; i++) {
1136 struct page *page;
1137
1138 page = alloc_page(gfp);
1139 if (!page) {
1140 while (--i >= 0)
1141 __free_page(pages[i]);
1142 cache_free_zspage(pool, zspage);
1143 return NULL;
1144 }
1145 pages[i] = page;
1146 }
1147
1148 create_page_chain(class, zspage, pages);
1149 init_zspage(class, zspage);
1150
1151 return zspage;
1152 }
1153
1154 static struct zspage *find_get_zspage(struct size_class *class)
1155 {
1156 int i;
1157 struct zspage *zspage;
1158
1159 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1160 zspage = list_first_entry_or_null(&class->fullness_list[i],
1161 struct zspage, list);
1162 if (zspage)
1163 break;
1164 }
1165
1166 return zspage;
1167 }
1168
1169 #ifdef CONFIG_PGTABLE_MAPPING
1170 static inline int __zs_cpu_up(struct mapping_area *area)
1171 {
1172 /*
1173 * Make sure we don't leak memory if a cpu UP notification
1174 * and zs_init() race and both call zs_cpu_up() on the same cpu
1175 */
1176 if (area->vm)
1177 return 0;
1178 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1179 if (!area->vm)
1180 return -ENOMEM;
1181 return 0;
1182 }
1183
1184 static inline void __zs_cpu_down(struct mapping_area *area)
1185 {
1186 if (area->vm)
1187 free_vm_area(area->vm);
1188 area->vm = NULL;
1189 }
1190
1191 static inline void *__zs_map_object(struct mapping_area *area,
1192 struct page *pages[2], int off, int size)
1193 {
1194 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1195 area->vm_addr = area->vm->addr;
1196 return area->vm_addr + off;
1197 }
1198
1199 static inline void __zs_unmap_object(struct mapping_area *area,
1200 struct page *pages[2], int off, int size)
1201 {
1202 unsigned long addr = (unsigned long)area->vm_addr;
1203
1204 unmap_kernel_range(addr, PAGE_SIZE * 2);
1205 }
1206
1207 #else /* CONFIG_PGTABLE_MAPPING */
1208
1209 static inline int __zs_cpu_up(struct mapping_area *area)
1210 {
1211 /*
1212 * Make sure we don't leak memory if a cpu UP notification
1213 * and zs_init() race and both call zs_cpu_up() on the same cpu
1214 */
1215 if (area->vm_buf)
1216 return 0;
1217 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1218 if (!area->vm_buf)
1219 return -ENOMEM;
1220 return 0;
1221 }
1222
1223 static inline void __zs_cpu_down(struct mapping_area *area)
1224 {
1225 kfree(area->vm_buf);
1226 area->vm_buf = NULL;
1227 }
1228
1229 static void *__zs_map_object(struct mapping_area *area,
1230 struct page *pages[2], int off, int size)
1231 {
1232 int sizes[2];
1233 void *addr;
1234 char *buf = area->vm_buf;
1235
1236 /* disable page faults to match kmap_atomic() return conditions */
1237 pagefault_disable();
1238
1239 /* no read fastpath */
1240 if (area->vm_mm == ZS_MM_WO)
1241 goto out;
1242
1243 sizes[0] = PAGE_SIZE - off;
1244 sizes[1] = size - sizes[0];
1245
1246 /* copy object to per-cpu buffer */
1247 addr = kmap_atomic(pages[0]);
1248 memcpy(buf, addr + off, sizes[0]);
1249 kunmap_atomic(addr);
1250 addr = kmap_atomic(pages[1]);
1251 memcpy(buf + sizes[0], addr, sizes[1]);
1252 kunmap_atomic(addr);
1253 out:
1254 return area->vm_buf;
1255 }
1256
1257 static void __zs_unmap_object(struct mapping_area *area,
1258 struct page *pages[2], int off, int size)
1259 {
1260 int sizes[2];
1261 void *addr;
1262 char *buf;
1263
1264 /* no write fastpath */
1265 if (area->vm_mm == ZS_MM_RO)
1266 goto out;
1267
1268 buf = area->vm_buf;
1269 buf = buf + ZS_HANDLE_SIZE;
1270 size -= ZS_HANDLE_SIZE;
1271 off += ZS_HANDLE_SIZE;
1272
1273 sizes[0] = PAGE_SIZE - off;
1274 sizes[1] = size - sizes[0];
1275
1276 /* copy per-cpu buffer to object */
1277 addr = kmap_atomic(pages[0]);
1278 memcpy(addr + off, buf, sizes[0]);
1279 kunmap_atomic(addr);
1280 addr = kmap_atomic(pages[1]);
1281 memcpy(addr, buf + sizes[0], sizes[1]);
1282 kunmap_atomic(addr);
1283
1284 out:
1285 /* enable page faults to match kunmap_atomic() return conditions */
1286 pagefault_enable();
1287 }
1288
1289 #endif /* CONFIG_PGTABLE_MAPPING */
1290
1291 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1292 void *pcpu)
1293 {
1294 int ret, cpu = (long)pcpu;
1295 struct mapping_area *area;
1296
1297 switch (action) {
1298 case CPU_UP_PREPARE:
1299 area = &per_cpu(zs_map_area, cpu);
1300 ret = __zs_cpu_up(area);
1301 if (ret)
1302 return notifier_from_errno(ret);
1303 break;
1304 case CPU_DEAD:
1305 case CPU_UP_CANCELED:
1306 area = &per_cpu(zs_map_area, cpu);
1307 __zs_cpu_down(area);
1308 break;
1309 }
1310
1311 return NOTIFY_OK;
1312 }
1313
1314 static struct notifier_block zs_cpu_nb = {
1315 .notifier_call = zs_cpu_notifier
1316 };
1317
1318 static int zs_register_cpu_notifier(void)
1319 {
1320 int cpu, uninitialized_var(ret);
1321
1322 cpu_notifier_register_begin();
1323
1324 __register_cpu_notifier(&zs_cpu_nb);
1325 for_each_online_cpu(cpu) {
1326 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1327 if (notifier_to_errno(ret))
1328 break;
1329 }
1330
1331 cpu_notifier_register_done();
1332 return notifier_to_errno(ret);
1333 }
1334
1335 static void zs_unregister_cpu_notifier(void)
1336 {
1337 int cpu;
1338
1339 cpu_notifier_register_begin();
1340
1341 for_each_online_cpu(cpu)
1342 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1343 __unregister_cpu_notifier(&zs_cpu_nb);
1344
1345 cpu_notifier_register_done();
1346 }
1347
1348 static void init_zs_size_classes(void)
1349 {
1350 int nr;
1351
1352 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1353 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1354 nr += 1;
1355
1356 zs_size_classes = nr;
1357 }
1358
1359 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1360 {
1361 if (prev->pages_per_zspage != pages_per_zspage)
1362 return false;
1363
1364 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1365 != get_maxobj_per_zspage(size, pages_per_zspage))
1366 return false;
1367
1368 return true;
1369 }
1370
1371 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1372 {
1373 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1374 }
1375
1376 unsigned long zs_get_total_pages(struct zs_pool *pool)
1377 {
1378 return atomic_long_read(&pool->pages_allocated);
1379 }
1380 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1381
1382 /**
1383 * zs_map_object - get address of allocated object from handle.
1384 * @pool: pool from which the object was allocated
1385 * @handle: handle returned from zs_malloc
1386 *
1387 * Before using an object allocated from zs_malloc, it must be mapped using
1388 * this function. When done with the object, it must be unmapped using
1389 * zs_unmap_object.
1390 *
1391 * Only one object can be mapped per cpu at a time. There is no protection
1392 * against nested mappings.
1393 *
1394 * This function returns with preemption and page faults disabled.
1395 */
1396 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1397 enum zs_mapmode mm)
1398 {
1399 struct zspage *zspage;
1400 struct page *page;
1401 unsigned long obj, off;
1402 unsigned int obj_idx;
1403
1404 unsigned int class_idx;
1405 enum fullness_group fg;
1406 struct size_class *class;
1407 struct mapping_area *area;
1408 struct page *pages[2];
1409 void *ret;
1410
1411 /*
1412 * Because we use per-cpu mapping areas shared among the
1413 * pools/users, we can't allow mapping in interrupt context
1414 * because it can corrupt another users mappings.
1415 */
1416 WARN_ON_ONCE(in_interrupt());
1417
1418 /* From now on, migration cannot move the object */
1419 pin_tag(handle);
1420
1421 obj = handle_to_obj(handle);
1422 obj_to_location(obj, &page, &obj_idx);
1423 zspage = get_zspage(page);
1424
1425 /* migration cannot move any subpage in this zspage */
1426 migrate_read_lock(zspage);
1427
1428 get_zspage_mapping(zspage, &class_idx, &fg);
1429 class = pool->size_class[class_idx];
1430 off = (class->size * obj_idx) & ~PAGE_MASK;
1431
1432 area = &get_cpu_var(zs_map_area);
1433 area->vm_mm = mm;
1434 if (off + class->size <= PAGE_SIZE) {
1435 /* this object is contained entirely within a page */
1436 area->vm_addr = kmap_atomic(page);
1437 ret = area->vm_addr + off;
1438 goto out;
1439 }
1440
1441 /* this object spans two pages */
1442 pages[0] = page;
1443 pages[1] = get_next_page(page);
1444 BUG_ON(!pages[1]);
1445
1446 ret = __zs_map_object(area, pages, off, class->size);
1447 out:
1448 if (likely(!PageHugeObject(page)))
1449 ret += ZS_HANDLE_SIZE;
1450
1451 return ret;
1452 }
1453 EXPORT_SYMBOL_GPL(zs_map_object);
1454
1455 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1456 {
1457 struct zspage *zspage;
1458 struct page *page;
1459 unsigned long obj, off;
1460 unsigned int obj_idx;
1461
1462 unsigned int class_idx;
1463 enum fullness_group fg;
1464 struct size_class *class;
1465 struct mapping_area *area;
1466
1467 obj = handle_to_obj(handle);
1468 obj_to_location(obj, &page, &obj_idx);
1469 zspage = get_zspage(page);
1470 get_zspage_mapping(zspage, &class_idx, &fg);
1471 class = pool->size_class[class_idx];
1472 off = (class->size * obj_idx) & ~PAGE_MASK;
1473
1474 area = this_cpu_ptr(&zs_map_area);
1475 if (off + class->size <= PAGE_SIZE)
1476 kunmap_atomic(area->vm_addr);
1477 else {
1478 struct page *pages[2];
1479
1480 pages[0] = page;
1481 pages[1] = get_next_page(page);
1482 BUG_ON(!pages[1]);
1483
1484 __zs_unmap_object(area, pages, off, class->size);
1485 }
1486 put_cpu_var(zs_map_area);
1487
1488 migrate_read_unlock(zspage);
1489 unpin_tag(handle);
1490 }
1491 EXPORT_SYMBOL_GPL(zs_unmap_object);
1492
1493 static unsigned long obj_malloc(struct size_class *class,
1494 struct zspage *zspage, unsigned long handle)
1495 {
1496 int i, nr_page, offset;
1497 unsigned long obj;
1498 struct link_free *link;
1499
1500 struct page *m_page;
1501 unsigned long m_offset;
1502 void *vaddr;
1503
1504 handle |= OBJ_ALLOCATED_TAG;
1505 obj = get_freeobj(zspage);
1506
1507 offset = obj * class->size;
1508 nr_page = offset >> PAGE_SHIFT;
1509 m_offset = offset & ~PAGE_MASK;
1510 m_page = get_first_page(zspage);
1511
1512 for (i = 0; i < nr_page; i++)
1513 m_page = get_next_page(m_page);
1514
1515 vaddr = kmap_atomic(m_page);
1516 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1517 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1518 if (likely(!PageHugeObject(m_page)))
1519 /* record handle in the header of allocated chunk */
1520 link->handle = handle;
1521 else
1522 /* record handle to page->index */
1523 zspage->first_page->index = handle;
1524
1525 kunmap_atomic(vaddr);
1526 mod_zspage_inuse(zspage, 1);
1527 zs_stat_inc(class, OBJ_USED, 1);
1528
1529 obj = location_to_obj(m_page, obj);
1530
1531 return obj;
1532 }
1533
1534
1535 /**
1536 * zs_malloc - Allocate block of given size from pool.
1537 * @pool: pool to allocate from
1538 * @size: size of block to allocate
1539 *
1540 * On success, handle to the allocated object is returned,
1541 * otherwise 0.
1542 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1543 */
1544 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1545 {
1546 unsigned long handle, obj;
1547 struct size_class *class;
1548 enum fullness_group newfg;
1549 struct zspage *zspage;
1550
1551 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1552 return 0;
1553
1554 handle = cache_alloc_handle(pool, gfp);
1555 if (!handle)
1556 return 0;
1557
1558 /* extra space in chunk to keep the handle */
1559 size += ZS_HANDLE_SIZE;
1560 class = pool->size_class[get_size_class_index(size)];
1561
1562 spin_lock(&class->lock);
1563 zspage = find_get_zspage(class);
1564 if (likely(zspage)) {
1565 obj = obj_malloc(class, zspage, handle);
1566 /* Now move the zspage to another fullness group, if required */
1567 fix_fullness_group(class, zspage);
1568 record_obj(handle, obj);
1569 spin_unlock(&class->lock);
1570
1571 return handle;
1572 }
1573
1574 spin_unlock(&class->lock);
1575
1576 zspage = alloc_zspage(pool, class, gfp);
1577 if (!zspage) {
1578 cache_free_handle(pool, handle);
1579 return 0;
1580 }
1581
1582 spin_lock(&class->lock);
1583 obj = obj_malloc(class, zspage, handle);
1584 newfg = get_fullness_group(class, zspage);
1585 insert_zspage(class, zspage, newfg);
1586 set_zspage_mapping(zspage, class->index, newfg);
1587 record_obj(handle, obj);
1588 atomic_long_add(class->pages_per_zspage,
1589 &pool->pages_allocated);
1590 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1591 class->size, class->pages_per_zspage));
1592
1593 /* We completely set up zspage so mark them as movable */
1594 SetZsPageMovable(pool, zspage);
1595 spin_unlock(&class->lock);
1596
1597 return handle;
1598 }
1599 EXPORT_SYMBOL_GPL(zs_malloc);
1600
1601 static void obj_free(struct size_class *class, unsigned long obj)
1602 {
1603 struct link_free *link;
1604 struct zspage *zspage;
1605 struct page *f_page;
1606 unsigned long f_offset;
1607 unsigned int f_objidx;
1608 void *vaddr;
1609
1610 obj &= ~OBJ_ALLOCATED_TAG;
1611 obj_to_location(obj, &f_page, &f_objidx);
1612 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1613 zspage = get_zspage(f_page);
1614
1615 vaddr = kmap_atomic(f_page);
1616
1617 /* Insert this object in containing zspage's freelist */
1618 link = (struct link_free *)(vaddr + f_offset);
1619 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1620 kunmap_atomic(vaddr);
1621 set_freeobj(zspage, f_objidx);
1622 mod_zspage_inuse(zspage, -1);
1623 zs_stat_dec(class, OBJ_USED, 1);
1624 }
1625
1626 void zs_free(struct zs_pool *pool, unsigned long handle)
1627 {
1628 struct zspage *zspage;
1629 struct page *f_page;
1630 unsigned long obj;
1631 unsigned int f_objidx;
1632 int class_idx;
1633 struct size_class *class;
1634 enum fullness_group fullness;
1635 bool isolated;
1636
1637 if (unlikely(!handle))
1638 return;
1639
1640 pin_tag(handle);
1641 obj = handle_to_obj(handle);
1642 obj_to_location(obj, &f_page, &f_objidx);
1643 zspage = get_zspage(f_page);
1644
1645 migrate_read_lock(zspage);
1646
1647 get_zspage_mapping(zspage, &class_idx, &fullness);
1648 class = pool->size_class[class_idx];
1649
1650 spin_lock(&class->lock);
1651 obj_free(class, obj);
1652 fullness = fix_fullness_group(class, zspage);
1653 if (fullness != ZS_EMPTY) {
1654 migrate_read_unlock(zspage);
1655 goto out;
1656 }
1657
1658 isolated = is_zspage_isolated(zspage);
1659 migrate_read_unlock(zspage);
1660 /* If zspage is isolated, zs_page_putback will free the zspage */
1661 if (likely(!isolated))
1662 free_zspage(pool, class, zspage);
1663 out:
1664
1665 spin_unlock(&class->lock);
1666 unpin_tag(handle);
1667 cache_free_handle(pool, handle);
1668 }
1669 EXPORT_SYMBOL_GPL(zs_free);
1670
1671 static void zs_object_copy(struct size_class *class, unsigned long dst,
1672 unsigned long src)
1673 {
1674 struct page *s_page, *d_page;
1675 unsigned int s_objidx, d_objidx;
1676 unsigned long s_off, d_off;
1677 void *s_addr, *d_addr;
1678 int s_size, d_size, size;
1679 int written = 0;
1680
1681 s_size = d_size = class->size;
1682
1683 obj_to_location(src, &s_page, &s_objidx);
1684 obj_to_location(dst, &d_page, &d_objidx);
1685
1686 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1687 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1688
1689 if (s_off + class->size > PAGE_SIZE)
1690 s_size = PAGE_SIZE - s_off;
1691
1692 if (d_off + class->size > PAGE_SIZE)
1693 d_size = PAGE_SIZE - d_off;
1694
1695 s_addr = kmap_atomic(s_page);
1696 d_addr = kmap_atomic(d_page);
1697
1698 while (1) {
1699 size = min(s_size, d_size);
1700 memcpy(d_addr + d_off, s_addr + s_off, size);
1701 written += size;
1702
1703 if (written == class->size)
1704 break;
1705
1706 s_off += size;
1707 s_size -= size;
1708 d_off += size;
1709 d_size -= size;
1710
1711 if (s_off >= PAGE_SIZE) {
1712 kunmap_atomic(d_addr);
1713 kunmap_atomic(s_addr);
1714 s_page = get_next_page(s_page);
1715 s_addr = kmap_atomic(s_page);
1716 d_addr = kmap_atomic(d_page);
1717 s_size = class->size - written;
1718 s_off = 0;
1719 }
1720
1721 if (d_off >= PAGE_SIZE) {
1722 kunmap_atomic(d_addr);
1723 d_page = get_next_page(d_page);
1724 d_addr = kmap_atomic(d_page);
1725 d_size = class->size - written;
1726 d_off = 0;
1727 }
1728 }
1729
1730 kunmap_atomic(d_addr);
1731 kunmap_atomic(s_addr);
1732 }
1733
1734 /*
1735 * Find alloced object in zspage from index object and
1736 * return handle.
1737 */
1738 static unsigned long find_alloced_obj(struct size_class *class,
1739 struct page *page, int index)
1740 {
1741 unsigned long head;
1742 int offset = 0;
1743 unsigned long handle = 0;
1744 void *addr = kmap_atomic(page);
1745
1746 offset = get_first_obj_offset(page);
1747 offset += class->size * index;
1748
1749 while (offset < PAGE_SIZE) {
1750 head = obj_to_head(page, addr + offset);
1751 if (head & OBJ_ALLOCATED_TAG) {
1752 handle = head & ~OBJ_ALLOCATED_TAG;
1753 if (trypin_tag(handle))
1754 break;
1755 handle = 0;
1756 }
1757
1758 offset += class->size;
1759 index++;
1760 }
1761
1762 kunmap_atomic(addr);
1763 return handle;
1764 }
1765
1766 struct zs_compact_control {
1767 /* Source spage for migration which could be a subpage of zspage */
1768 struct page *s_page;
1769 /* Destination page for migration which should be a first page
1770 * of zspage. */
1771 struct page *d_page;
1772 /* Starting object index within @s_page which used for live object
1773 * in the subpage. */
1774 int index;
1775 };
1776
1777 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1778 struct zs_compact_control *cc)
1779 {
1780 unsigned long used_obj, free_obj;
1781 unsigned long handle;
1782 struct page *s_page = cc->s_page;
1783 struct page *d_page = cc->d_page;
1784 unsigned long index = cc->index;
1785 int ret = 0;
1786
1787 while (1) {
1788 handle = find_alloced_obj(class, s_page, index);
1789 if (!handle) {
1790 s_page = get_next_page(s_page);
1791 if (!s_page)
1792 break;
1793 index = 0;
1794 continue;
1795 }
1796
1797 /* Stop if there is no more space */
1798 if (zspage_full(class, get_zspage(d_page))) {
1799 unpin_tag(handle);
1800 ret = -ENOMEM;
1801 break;
1802 }
1803
1804 used_obj = handle_to_obj(handle);
1805 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1806 zs_object_copy(class, free_obj, used_obj);
1807 index++;
1808 /*
1809 * record_obj updates handle's value to free_obj and it will
1810 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1811 * breaks synchronization using pin_tag(e,g, zs_free) so
1812 * let's keep the lock bit.
1813 */
1814 free_obj |= BIT(HANDLE_PIN_BIT);
1815 record_obj(handle, free_obj);
1816 unpin_tag(handle);
1817 obj_free(class, used_obj);
1818 }
1819
1820 /* Remember last position in this iteration */
1821 cc->s_page = s_page;
1822 cc->index = index;
1823
1824 return ret;
1825 }
1826
1827 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1828 {
1829 int i;
1830 struct zspage *zspage;
1831 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1832
1833 if (!source) {
1834 fg[0] = ZS_ALMOST_FULL;
1835 fg[1] = ZS_ALMOST_EMPTY;
1836 }
1837
1838 for (i = 0; i < 2; i++) {
1839 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1840 struct zspage, list);
1841 if (zspage) {
1842 VM_BUG_ON(is_zspage_isolated(zspage));
1843 remove_zspage(class, zspage, fg[i]);
1844 return zspage;
1845 }
1846 }
1847
1848 return zspage;
1849 }
1850
1851 /*
1852 * putback_zspage - add @zspage into right class's fullness list
1853 * @class: destination class
1854 * @zspage: target page
1855 *
1856 * Return @zspage's fullness_group
1857 */
1858 static enum fullness_group putback_zspage(struct size_class *class,
1859 struct zspage *zspage)
1860 {
1861 enum fullness_group fullness;
1862
1863 VM_BUG_ON(is_zspage_isolated(zspage));
1864
1865 fullness = get_fullness_group(class, zspage);
1866 insert_zspage(class, zspage, fullness);
1867 set_zspage_mapping(zspage, class->index, fullness);
1868
1869 return fullness;
1870 }
1871
1872 #ifdef CONFIG_COMPACTION
1873 static struct dentry *zs_mount(struct file_system_type *fs_type,
1874 int flags, const char *dev_name, void *data)
1875 {
1876 static const struct dentry_operations ops = {
1877 .d_dname = simple_dname,
1878 };
1879
1880 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1881 }
1882
1883 static struct file_system_type zsmalloc_fs = {
1884 .name = "zsmalloc",
1885 .mount = zs_mount,
1886 .kill_sb = kill_anon_super,
1887 };
1888
1889 static int zsmalloc_mount(void)
1890 {
1891 int ret = 0;
1892
1893 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1894 if (IS_ERR(zsmalloc_mnt))
1895 ret = PTR_ERR(zsmalloc_mnt);
1896
1897 return ret;
1898 }
1899
1900 static void zsmalloc_unmount(void)
1901 {
1902 kern_unmount(zsmalloc_mnt);
1903 }
1904
1905 static void migrate_lock_init(struct zspage *zspage)
1906 {
1907 rwlock_init(&zspage->lock);
1908 }
1909
1910 static void migrate_read_lock(struct zspage *zspage)
1911 {
1912 read_lock(&zspage->lock);
1913 }
1914
1915 static void migrate_read_unlock(struct zspage *zspage)
1916 {
1917 read_unlock(&zspage->lock);
1918 }
1919
1920 static void migrate_write_lock(struct zspage *zspage)
1921 {
1922 write_lock(&zspage->lock);
1923 }
1924
1925 static void migrate_write_unlock(struct zspage *zspage)
1926 {
1927 write_unlock(&zspage->lock);
1928 }
1929
1930 /* Number of isolated subpage for *page migration* in this zspage */
1931 static void inc_zspage_isolation(struct zspage *zspage)
1932 {
1933 zspage->isolated++;
1934 }
1935
1936 static void dec_zspage_isolation(struct zspage *zspage)
1937 {
1938 zspage->isolated--;
1939 }
1940
1941 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1942 struct page *newpage, struct page *oldpage)
1943 {
1944 struct page *page;
1945 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1946 int idx = 0;
1947
1948 page = get_first_page(zspage);
1949 do {
1950 if (page == oldpage)
1951 pages[idx] = newpage;
1952 else
1953 pages[idx] = page;
1954 idx++;
1955 } while ((page = get_next_page(page)) != NULL);
1956
1957 create_page_chain(class, zspage, pages);
1958 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1959 if (unlikely(PageHugeObject(oldpage)))
1960 newpage->index = oldpage->index;
1961 __SetPageMovable(newpage, page_mapping(oldpage));
1962 }
1963
1964 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1965 {
1966 struct zs_pool *pool;
1967 struct size_class *class;
1968 int class_idx;
1969 enum fullness_group fullness;
1970 struct zspage *zspage;
1971 struct address_space *mapping;
1972
1973 /*
1974 * Page is locked so zspage couldn't be destroyed. For detail, look at
1975 * lock_zspage in free_zspage.
1976 */
1977 VM_BUG_ON_PAGE(!PageMovable(page), page);
1978 VM_BUG_ON_PAGE(PageIsolated(page), page);
1979
1980 zspage = get_zspage(page);
1981
1982 /*
1983 * Without class lock, fullness could be stale while class_idx is okay
1984 * because class_idx is constant unless page is freed so we should get
1985 * fullness again under class lock.
1986 */
1987 get_zspage_mapping(zspage, &class_idx, &fullness);
1988 mapping = page_mapping(page);
1989 pool = mapping->private_data;
1990 class = pool->size_class[class_idx];
1991
1992 spin_lock(&class->lock);
1993 if (get_zspage_inuse(zspage) == 0) {
1994 spin_unlock(&class->lock);
1995 return false;
1996 }
1997
1998 /* zspage is isolated for object migration */
1999 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2000 spin_unlock(&class->lock);
2001 return false;
2002 }
2003
2004 /*
2005 * If this is first time isolation for the zspage, isolate zspage from
2006 * size_class to prevent further object allocation from the zspage.
2007 */
2008 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2009 get_zspage_mapping(zspage, &class_idx, &fullness);
2010 remove_zspage(class, zspage, fullness);
2011 }
2012
2013 inc_zspage_isolation(zspage);
2014 spin_unlock(&class->lock);
2015
2016 return true;
2017 }
2018
2019 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2020 struct page *page, enum migrate_mode mode)
2021 {
2022 struct zs_pool *pool;
2023 struct size_class *class;
2024 int class_idx;
2025 enum fullness_group fullness;
2026 struct zspage *zspage;
2027 struct page *dummy;
2028 void *s_addr, *d_addr, *addr;
2029 int offset, pos;
2030 unsigned long handle, head;
2031 unsigned long old_obj, new_obj;
2032 unsigned int obj_idx;
2033 int ret = -EAGAIN;
2034
2035 VM_BUG_ON_PAGE(!PageMovable(page), page);
2036 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2037
2038 zspage = get_zspage(page);
2039
2040 /* Concurrent compactor cannot migrate any subpage in zspage */
2041 migrate_write_lock(zspage);
2042 get_zspage_mapping(zspage, &class_idx, &fullness);
2043 pool = mapping->private_data;
2044 class = pool->size_class[class_idx];
2045 offset = get_first_obj_offset(page);
2046
2047 spin_lock(&class->lock);
2048 if (!get_zspage_inuse(zspage)) {
2049 ret = -EBUSY;
2050 goto unlock_class;
2051 }
2052
2053 pos = offset;
2054 s_addr = kmap_atomic(page);
2055 while (pos < PAGE_SIZE) {
2056 head = obj_to_head(page, s_addr + pos);
2057 if (head & OBJ_ALLOCATED_TAG) {
2058 handle = head & ~OBJ_ALLOCATED_TAG;
2059 if (!trypin_tag(handle))
2060 goto unpin_objects;
2061 }
2062 pos += class->size;
2063 }
2064
2065 /*
2066 * Here, any user cannot access all objects in the zspage so let's move.
2067 */
2068 d_addr = kmap_atomic(newpage);
2069 memcpy(d_addr, s_addr, PAGE_SIZE);
2070 kunmap_atomic(d_addr);
2071
2072 for (addr = s_addr + offset; addr < s_addr + pos;
2073 addr += class->size) {
2074 head = obj_to_head(page, addr);
2075 if (head & OBJ_ALLOCATED_TAG) {
2076 handle = head & ~OBJ_ALLOCATED_TAG;
2077 if (!testpin_tag(handle))
2078 BUG();
2079
2080 old_obj = handle_to_obj(handle);
2081 obj_to_location(old_obj, &dummy, &obj_idx);
2082 new_obj = (unsigned long)location_to_obj(newpage,
2083 obj_idx);
2084 new_obj |= BIT(HANDLE_PIN_BIT);
2085 record_obj(handle, new_obj);
2086 }
2087 }
2088
2089 replace_sub_page(class, zspage, newpage, page);
2090 get_page(newpage);
2091
2092 dec_zspage_isolation(zspage);
2093
2094 /*
2095 * Page migration is done so let's putback isolated zspage to
2096 * the list if @page is final isolated subpage in the zspage.
2097 */
2098 if (!is_zspage_isolated(zspage))
2099 putback_zspage(class, zspage);
2100
2101 reset_page(page);
2102 put_page(page);
2103 page = newpage;
2104
2105 ret = 0;
2106 unpin_objects:
2107 for (addr = s_addr + offset; addr < s_addr + pos;
2108 addr += class->size) {
2109 head = obj_to_head(page, addr);
2110 if (head & OBJ_ALLOCATED_TAG) {
2111 handle = head & ~OBJ_ALLOCATED_TAG;
2112 if (!testpin_tag(handle))
2113 BUG();
2114 unpin_tag(handle);
2115 }
2116 }
2117 kunmap_atomic(s_addr);
2118 unlock_class:
2119 spin_unlock(&class->lock);
2120 migrate_write_unlock(zspage);
2121
2122 return ret;
2123 }
2124
2125 void zs_page_putback(struct page *page)
2126 {
2127 struct zs_pool *pool;
2128 struct size_class *class;
2129 int class_idx;
2130 enum fullness_group fg;
2131 struct address_space *mapping;
2132 struct zspage *zspage;
2133
2134 VM_BUG_ON_PAGE(!PageMovable(page), page);
2135 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2136
2137 zspage = get_zspage(page);
2138 get_zspage_mapping(zspage, &class_idx, &fg);
2139 mapping = page_mapping(page);
2140 pool = mapping->private_data;
2141 class = pool->size_class[class_idx];
2142
2143 spin_lock(&class->lock);
2144 dec_zspage_isolation(zspage);
2145 if (!is_zspage_isolated(zspage)) {
2146 fg = putback_zspage(class, zspage);
2147 /*
2148 * Due to page_lock, we cannot free zspage immediately
2149 * so let's defer.
2150 */
2151 if (fg == ZS_EMPTY)
2152 schedule_work(&pool->free_work);
2153 }
2154 spin_unlock(&class->lock);
2155 }
2156
2157 const struct address_space_operations zsmalloc_aops = {
2158 .isolate_page = zs_page_isolate,
2159 .migratepage = zs_page_migrate,
2160 .putback_page = zs_page_putback,
2161 };
2162
2163 static int zs_register_migration(struct zs_pool *pool)
2164 {
2165 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2166 if (IS_ERR(pool->inode)) {
2167 pool->inode = NULL;
2168 return 1;
2169 }
2170
2171 pool->inode->i_mapping->private_data = pool;
2172 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2173 return 0;
2174 }
2175
2176 static void zs_unregister_migration(struct zs_pool *pool)
2177 {
2178 flush_work(&pool->free_work);
2179 if (pool->inode)
2180 iput(pool->inode);
2181 }
2182
2183 /*
2184 * Caller should hold page_lock of all pages in the zspage
2185 * In here, we cannot use zspage meta data.
2186 */
2187 static void async_free_zspage(struct work_struct *work)
2188 {
2189 int i;
2190 struct size_class *class;
2191 unsigned int class_idx;
2192 enum fullness_group fullness;
2193 struct zspage *zspage, *tmp;
2194 LIST_HEAD(free_pages);
2195 struct zs_pool *pool = container_of(work, struct zs_pool,
2196 free_work);
2197
2198 for (i = 0; i < zs_size_classes; i++) {
2199 class = pool->size_class[i];
2200 if (class->index != i)
2201 continue;
2202
2203 spin_lock(&class->lock);
2204 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2205 spin_unlock(&class->lock);
2206 }
2207
2208
2209 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2210 list_del(&zspage->list);
2211 lock_zspage(zspage);
2212
2213 get_zspage_mapping(zspage, &class_idx, &fullness);
2214 VM_BUG_ON(fullness != ZS_EMPTY);
2215 class = pool->size_class[class_idx];
2216 spin_lock(&class->lock);
2217 __free_zspage(pool, pool->size_class[class_idx], zspage);
2218 spin_unlock(&class->lock);
2219 }
2220 };
2221
2222 static void kick_deferred_free(struct zs_pool *pool)
2223 {
2224 schedule_work(&pool->free_work);
2225 }
2226
2227 static void init_deferred_free(struct zs_pool *pool)
2228 {
2229 INIT_WORK(&pool->free_work, async_free_zspage);
2230 }
2231
2232 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2233 {
2234 struct page *page = get_first_page(zspage);
2235
2236 do {
2237 WARN_ON(!trylock_page(page));
2238 __SetPageMovable(page, pool->inode->i_mapping);
2239 unlock_page(page);
2240 } while ((page = get_next_page(page)) != NULL);
2241 }
2242 #endif
2243
2244 /*
2245 *
2246 * Based on the number of unused allocated objects calculate
2247 * and return the number of pages that we can free.
2248 */
2249 static unsigned long zs_can_compact(struct size_class *class)
2250 {
2251 unsigned long obj_wasted;
2252 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2253 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2254
2255 if (obj_allocated <= obj_used)
2256 return 0;
2257
2258 obj_wasted = obj_allocated - obj_used;
2259 obj_wasted /= get_maxobj_per_zspage(class->size,
2260 class->pages_per_zspage);
2261
2262 return obj_wasted * class->pages_per_zspage;
2263 }
2264
2265 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2266 {
2267 struct zs_compact_control cc;
2268 struct zspage *src_zspage;
2269 struct zspage *dst_zspage = NULL;
2270
2271 spin_lock(&class->lock);
2272 while ((src_zspage = isolate_zspage(class, true))) {
2273
2274 if (!zs_can_compact(class))
2275 break;
2276
2277 cc.index = 0;
2278 cc.s_page = get_first_page(src_zspage);
2279
2280 while ((dst_zspage = isolate_zspage(class, false))) {
2281 cc.d_page = get_first_page(dst_zspage);
2282 /*
2283 * If there is no more space in dst_page, resched
2284 * and see if anyone had allocated another zspage.
2285 */
2286 if (!migrate_zspage(pool, class, &cc))
2287 break;
2288
2289 putback_zspage(class, dst_zspage);
2290 }
2291
2292 /* Stop if we couldn't find slot */
2293 if (dst_zspage == NULL)
2294 break;
2295
2296 putback_zspage(class, dst_zspage);
2297 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2298 free_zspage(pool, class, src_zspage);
2299 pool->stats.pages_compacted += class->pages_per_zspage;
2300 }
2301 spin_unlock(&class->lock);
2302 cond_resched();
2303 spin_lock(&class->lock);
2304 }
2305
2306 if (src_zspage)
2307 putback_zspage(class, src_zspage);
2308
2309 spin_unlock(&class->lock);
2310 }
2311
2312 unsigned long zs_compact(struct zs_pool *pool)
2313 {
2314 int i;
2315 struct size_class *class;
2316
2317 for (i = zs_size_classes - 1; i >= 0; i--) {
2318 class = pool->size_class[i];
2319 if (!class)
2320 continue;
2321 if (class->index != i)
2322 continue;
2323 __zs_compact(pool, class);
2324 }
2325
2326 return pool->stats.pages_compacted;
2327 }
2328 EXPORT_SYMBOL_GPL(zs_compact);
2329
2330 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2331 {
2332 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2333 }
2334 EXPORT_SYMBOL_GPL(zs_pool_stats);
2335
2336 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2337 struct shrink_control *sc)
2338 {
2339 unsigned long pages_freed;
2340 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2341 shrinker);
2342
2343 pages_freed = pool->stats.pages_compacted;
2344 /*
2345 * Compact classes and calculate compaction delta.
2346 * Can run concurrently with a manually triggered
2347 * (by user) compaction.
2348 */
2349 pages_freed = zs_compact(pool) - pages_freed;
2350
2351 return pages_freed ? pages_freed : SHRINK_STOP;
2352 }
2353
2354 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2355 struct shrink_control *sc)
2356 {
2357 int i;
2358 struct size_class *class;
2359 unsigned long pages_to_free = 0;
2360 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2361 shrinker);
2362
2363 for (i = zs_size_classes - 1; i >= 0; i--) {
2364 class = pool->size_class[i];
2365 if (!class)
2366 continue;
2367 if (class->index != i)
2368 continue;
2369
2370 pages_to_free += zs_can_compact(class);
2371 }
2372
2373 return pages_to_free;
2374 }
2375
2376 static void zs_unregister_shrinker(struct zs_pool *pool)
2377 {
2378 if (pool->shrinker_enabled) {
2379 unregister_shrinker(&pool->shrinker);
2380 pool->shrinker_enabled = false;
2381 }
2382 }
2383
2384 static int zs_register_shrinker(struct zs_pool *pool)
2385 {
2386 pool->shrinker.scan_objects = zs_shrinker_scan;
2387 pool->shrinker.count_objects = zs_shrinker_count;
2388 pool->shrinker.batch = 0;
2389 pool->shrinker.seeks = DEFAULT_SEEKS;
2390
2391 return register_shrinker(&pool->shrinker);
2392 }
2393
2394 /**
2395 * zs_create_pool - Creates an allocation pool to work from.
2396 * @flags: allocation flags used to allocate pool metadata
2397 *
2398 * This function must be called before anything when using
2399 * the zsmalloc allocator.
2400 *
2401 * On success, a pointer to the newly created pool is returned,
2402 * otherwise NULL.
2403 */
2404 struct zs_pool *zs_create_pool(const char *name)
2405 {
2406 int i;
2407 struct zs_pool *pool;
2408 struct size_class *prev_class = NULL;
2409
2410 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2411 if (!pool)
2412 return NULL;
2413
2414 init_deferred_free(pool);
2415 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2416 GFP_KERNEL);
2417 if (!pool->size_class) {
2418 kfree(pool);
2419 return NULL;
2420 }
2421
2422 pool->name = kstrdup(name, GFP_KERNEL);
2423 if (!pool->name)
2424 goto err;
2425
2426 if (create_cache(pool))
2427 goto err;
2428
2429 /*
2430 * Iterate reversly, because, size of size_class that we want to use
2431 * for merging should be larger or equal to current size.
2432 */
2433 for (i = zs_size_classes - 1; i >= 0; i--) {
2434 int size;
2435 int pages_per_zspage;
2436 struct size_class *class;
2437 int fullness = 0;
2438
2439 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2440 if (size > ZS_MAX_ALLOC_SIZE)
2441 size = ZS_MAX_ALLOC_SIZE;
2442 pages_per_zspage = get_pages_per_zspage(size);
2443
2444 /*
2445 * size_class is used for normal zsmalloc operation such
2446 * as alloc/free for that size. Although it is natural that we
2447 * have one size_class for each size, there is a chance that we
2448 * can get more memory utilization if we use one size_class for
2449 * many different sizes whose size_class have same
2450 * characteristics. So, we makes size_class point to
2451 * previous size_class if possible.
2452 */
2453 if (prev_class) {
2454 if (can_merge(prev_class, size, pages_per_zspage)) {
2455 pool->size_class[i] = prev_class;
2456 continue;
2457 }
2458 }
2459
2460 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2461 if (!class)
2462 goto err;
2463
2464 class->size = size;
2465 class->index = i;
2466 class->pages_per_zspage = pages_per_zspage;
2467 class->objs_per_zspage = class->pages_per_zspage *
2468 PAGE_SIZE / class->size;
2469 spin_lock_init(&class->lock);
2470 pool->size_class[i] = class;
2471 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2472 fullness++)
2473 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2474
2475 prev_class = class;
2476 }
2477
2478 /* debug only, don't abort if it fails */
2479 zs_pool_stat_create(pool, name);
2480
2481 if (zs_register_migration(pool))
2482 goto err;
2483
2484 /*
2485 * Not critical, we still can use the pool
2486 * and user can trigger compaction manually.
2487 */
2488 if (zs_register_shrinker(pool) == 0)
2489 pool->shrinker_enabled = true;
2490 return pool;
2491
2492 err:
2493 zs_destroy_pool(pool);
2494 return NULL;
2495 }
2496 EXPORT_SYMBOL_GPL(zs_create_pool);
2497
2498 void zs_destroy_pool(struct zs_pool *pool)
2499 {
2500 int i;
2501
2502 zs_unregister_shrinker(pool);
2503 zs_unregister_migration(pool);
2504 zs_pool_stat_destroy(pool);
2505
2506 for (i = 0; i < zs_size_classes; i++) {
2507 int fg;
2508 struct size_class *class = pool->size_class[i];
2509
2510 if (!class)
2511 continue;
2512
2513 if (class->index != i)
2514 continue;
2515
2516 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2517 if (!list_empty(&class->fullness_list[fg])) {
2518 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2519 class->size, fg);
2520 }
2521 }
2522 kfree(class);
2523 }
2524
2525 destroy_cache(pool);
2526 kfree(pool->size_class);
2527 kfree(pool->name);
2528 kfree(pool);
2529 }
2530 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2531
2532 static int __init zs_init(void)
2533 {
2534 int ret;
2535
2536 ret = zsmalloc_mount();
2537 if (ret)
2538 goto out;
2539
2540 ret = zs_register_cpu_notifier();
2541
2542 if (ret)
2543 goto notifier_fail;
2544
2545 init_zs_size_classes();
2546
2547 #ifdef CONFIG_ZPOOL
2548 zpool_register_driver(&zs_zpool_driver);
2549 #endif
2550
2551 zs_stat_init();
2552
2553 return 0;
2554
2555 notifier_fail:
2556 zs_unregister_cpu_notifier();
2557 zsmalloc_unmount();
2558 out:
2559 return ret;
2560 }
2561
2562 static void __exit zs_exit(void)
2563 {
2564 #ifdef CONFIG_ZPOOL
2565 zpool_unregister_driver(&zs_zpool_driver);
2566 #endif
2567 zsmalloc_unmount();
2568 zs_unregister_cpu_notifier();
2569
2570 zs_stat_exit();
2571 }
2572
2573 module_init(zs_init);
2574 module_exit(zs_exit);
2575
2576 MODULE_LICENSE("Dual BSD/GPL");
2577 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");