]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/zsmalloc.c
zsmalloc: drop unused variable `nr_to_migrate'
[mirror_ubuntu-artful-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/hardirq.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
67
68 /*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74 #define ZS_ALIGN 8
75
76 /*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85 /*
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
100 /*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
108
109 /*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116 #define HANDLE_PIN_BIT 0
117
118 /*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137 /*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
151
152 /*
153 * We do not maintain any list for completely empty or full pages
154 */
155 enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162 };
163
164 enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169 NR_ZS_STAT_TYPE,
170 };
171
172 #ifdef CONFIG_ZSMALLOC_STAT
173
174 static struct dentry *zs_stat_root;
175
176 struct zs_size_stat {
177 unsigned long objs[NR_ZS_STAT_TYPE];
178 };
179
180 #endif
181
182 /*
183 * number of size_classes
184 */
185 static int zs_size_classes;
186
187 /*
188 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
189 * n <= N / f, where
190 * n = number of allocated objects
191 * N = total number of objects zspage can store
192 * f = fullness_threshold_frac
193 *
194 * Similarly, we assign zspage to:
195 * ZS_ALMOST_FULL when n > N / f
196 * ZS_EMPTY when n == 0
197 * ZS_FULL when n == N
198 *
199 * (see: fix_fullness_group())
200 */
201 static const int fullness_threshold_frac = 4;
202
203 struct size_class {
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 unsigned int index;
210
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 bool huge;
215
216 #ifdef CONFIG_ZSMALLOC_STAT
217 struct zs_size_stat stats;
218 #endif
219
220 spinlock_t lock;
221
222 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
223 };
224
225 /*
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
228 *
229 * This must be power of 2 and less than or equal to ZS_ALIGN
230 */
231 struct link_free {
232 union {
233 /*
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
236 */
237 void *next;
238 /*
239 * Handle of allocated object.
240 */
241 unsigned long handle;
242 };
243 };
244
245 struct zs_pool {
246 char *name;
247
248 struct size_class **size_class;
249 struct kmem_cache *handle_cachep;
250
251 gfp_t flags; /* allocation flags used when growing pool */
252 atomic_long_t pages_allocated;
253
254 #ifdef CONFIG_ZSMALLOC_STAT
255 struct dentry *stat_dentry;
256 #endif
257 };
258
259 /*
260 * A zspage's class index and fullness group
261 * are encoded in its (first)page->mapping
262 */
263 #define CLASS_IDX_BITS 28
264 #define FULLNESS_BITS 4
265 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
266 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
267
268 struct mapping_area {
269 #ifdef CONFIG_PGTABLE_MAPPING
270 struct vm_struct *vm; /* vm area for mapping object that span pages */
271 #else
272 char *vm_buf; /* copy buffer for objects that span pages */
273 #endif
274 char *vm_addr; /* address of kmap_atomic()'ed pages */
275 enum zs_mapmode vm_mm; /* mapping mode */
276 bool huge;
277 };
278
279 static int create_handle_cache(struct zs_pool *pool)
280 {
281 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
282 0, 0, NULL);
283 return pool->handle_cachep ? 0 : 1;
284 }
285
286 static void destroy_handle_cache(struct zs_pool *pool)
287 {
288 if (pool->handle_cachep)
289 kmem_cache_destroy(pool->handle_cachep);
290 }
291
292 static unsigned long alloc_handle(struct zs_pool *pool)
293 {
294 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
295 pool->flags & ~__GFP_HIGHMEM);
296 }
297
298 static void free_handle(struct zs_pool *pool, unsigned long handle)
299 {
300 kmem_cache_free(pool->handle_cachep, (void *)handle);
301 }
302
303 static void record_obj(unsigned long handle, unsigned long obj)
304 {
305 *(unsigned long *)handle = obj;
306 }
307
308 /* zpool driver */
309
310 #ifdef CONFIG_ZPOOL
311
312 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
313 struct zpool *zpool)
314 {
315 return zs_create_pool(name, gfp);
316 }
317
318 static void zs_zpool_destroy(void *pool)
319 {
320 zs_destroy_pool(pool);
321 }
322
323 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
324 unsigned long *handle)
325 {
326 *handle = zs_malloc(pool, size);
327 return *handle ? 0 : -1;
328 }
329 static void zs_zpool_free(void *pool, unsigned long handle)
330 {
331 zs_free(pool, handle);
332 }
333
334 static int zs_zpool_shrink(void *pool, unsigned int pages,
335 unsigned int *reclaimed)
336 {
337 return -EINVAL;
338 }
339
340 static void *zs_zpool_map(void *pool, unsigned long handle,
341 enum zpool_mapmode mm)
342 {
343 enum zs_mapmode zs_mm;
344
345 switch (mm) {
346 case ZPOOL_MM_RO:
347 zs_mm = ZS_MM_RO;
348 break;
349 case ZPOOL_MM_WO:
350 zs_mm = ZS_MM_WO;
351 break;
352 case ZPOOL_MM_RW: /* fallthru */
353 default:
354 zs_mm = ZS_MM_RW;
355 break;
356 }
357
358 return zs_map_object(pool, handle, zs_mm);
359 }
360 static void zs_zpool_unmap(void *pool, unsigned long handle)
361 {
362 zs_unmap_object(pool, handle);
363 }
364
365 static u64 zs_zpool_total_size(void *pool)
366 {
367 return zs_get_total_pages(pool) << PAGE_SHIFT;
368 }
369
370 static struct zpool_driver zs_zpool_driver = {
371 .type = "zsmalloc",
372 .owner = THIS_MODULE,
373 .create = zs_zpool_create,
374 .destroy = zs_zpool_destroy,
375 .malloc = zs_zpool_malloc,
376 .free = zs_zpool_free,
377 .shrink = zs_zpool_shrink,
378 .map = zs_zpool_map,
379 .unmap = zs_zpool_unmap,
380 .total_size = zs_zpool_total_size,
381 };
382
383 MODULE_ALIAS("zpool-zsmalloc");
384 #endif /* CONFIG_ZPOOL */
385
386 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
387 {
388 return pages_per_zspage * PAGE_SIZE / size;
389 }
390
391 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
392 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
393
394 static int is_first_page(struct page *page)
395 {
396 return PagePrivate(page);
397 }
398
399 static int is_last_page(struct page *page)
400 {
401 return PagePrivate2(page);
402 }
403
404 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
405 enum fullness_group *fullness)
406 {
407 unsigned long m;
408 BUG_ON(!is_first_page(page));
409
410 m = (unsigned long)page->mapping;
411 *fullness = m & FULLNESS_MASK;
412 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
413 }
414
415 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
416 enum fullness_group fullness)
417 {
418 unsigned long m;
419 BUG_ON(!is_first_page(page));
420
421 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
422 (fullness & FULLNESS_MASK);
423 page->mapping = (struct address_space *)m;
424 }
425
426 /*
427 * zsmalloc divides the pool into various size classes where each
428 * class maintains a list of zspages where each zspage is divided
429 * into equal sized chunks. Each allocation falls into one of these
430 * classes depending on its size. This function returns index of the
431 * size class which has chunk size big enough to hold the give size.
432 */
433 static int get_size_class_index(int size)
434 {
435 int idx = 0;
436
437 if (likely(size > ZS_MIN_ALLOC_SIZE))
438 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
439 ZS_SIZE_CLASS_DELTA);
440
441 return min(zs_size_classes - 1, idx);
442 }
443
444 #ifdef CONFIG_ZSMALLOC_STAT
445
446 static inline void zs_stat_inc(struct size_class *class,
447 enum zs_stat_type type, unsigned long cnt)
448 {
449 class->stats.objs[type] += cnt;
450 }
451
452 static inline void zs_stat_dec(struct size_class *class,
453 enum zs_stat_type type, unsigned long cnt)
454 {
455 class->stats.objs[type] -= cnt;
456 }
457
458 static inline unsigned long zs_stat_get(struct size_class *class,
459 enum zs_stat_type type)
460 {
461 return class->stats.objs[type];
462 }
463
464 static int __init zs_stat_init(void)
465 {
466 if (!debugfs_initialized())
467 return -ENODEV;
468
469 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
470 if (!zs_stat_root)
471 return -ENOMEM;
472
473 return 0;
474 }
475
476 static void __exit zs_stat_exit(void)
477 {
478 debugfs_remove_recursive(zs_stat_root);
479 }
480
481 static int zs_stats_size_show(struct seq_file *s, void *v)
482 {
483 int i;
484 struct zs_pool *pool = s->private;
485 struct size_class *class;
486 int objs_per_zspage;
487 unsigned long class_almost_full, class_almost_empty;
488 unsigned long obj_allocated, obj_used, pages_used;
489 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
490 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
491
492 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
493 "class", "size", "almost_full", "almost_empty",
494 "obj_allocated", "obj_used", "pages_used",
495 "pages_per_zspage");
496
497 for (i = 0; i < zs_size_classes; i++) {
498 class = pool->size_class[i];
499
500 if (class->index != i)
501 continue;
502
503 spin_lock(&class->lock);
504 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
505 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
506 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
507 obj_used = zs_stat_get(class, OBJ_USED);
508 spin_unlock(&class->lock);
509
510 objs_per_zspage = get_maxobj_per_zspage(class->size,
511 class->pages_per_zspage);
512 pages_used = obj_allocated / objs_per_zspage *
513 class->pages_per_zspage;
514
515 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
516 i, class->size, class_almost_full, class_almost_empty,
517 obj_allocated, obj_used, pages_used,
518 class->pages_per_zspage);
519
520 total_class_almost_full += class_almost_full;
521 total_class_almost_empty += class_almost_empty;
522 total_objs += obj_allocated;
523 total_used_objs += obj_used;
524 total_pages += pages_used;
525 }
526
527 seq_puts(s, "\n");
528 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
529 "Total", "", total_class_almost_full,
530 total_class_almost_empty, total_objs,
531 total_used_objs, total_pages);
532
533 return 0;
534 }
535
536 static int zs_stats_size_open(struct inode *inode, struct file *file)
537 {
538 return single_open(file, zs_stats_size_show, inode->i_private);
539 }
540
541 static const struct file_operations zs_stat_size_ops = {
542 .open = zs_stats_size_open,
543 .read = seq_read,
544 .llseek = seq_lseek,
545 .release = single_release,
546 };
547
548 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
549 {
550 struct dentry *entry;
551
552 if (!zs_stat_root)
553 return -ENODEV;
554
555 entry = debugfs_create_dir(name, zs_stat_root);
556 if (!entry) {
557 pr_warn("debugfs dir <%s> creation failed\n", name);
558 return -ENOMEM;
559 }
560 pool->stat_dentry = entry;
561
562 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
563 pool->stat_dentry, pool, &zs_stat_size_ops);
564 if (!entry) {
565 pr_warn("%s: debugfs file entry <%s> creation failed\n",
566 name, "classes");
567 return -ENOMEM;
568 }
569
570 return 0;
571 }
572
573 static void zs_pool_stat_destroy(struct zs_pool *pool)
574 {
575 debugfs_remove_recursive(pool->stat_dentry);
576 }
577
578 #else /* CONFIG_ZSMALLOC_STAT */
579
580 static inline void zs_stat_inc(struct size_class *class,
581 enum zs_stat_type type, unsigned long cnt)
582 {
583 }
584
585 static inline void zs_stat_dec(struct size_class *class,
586 enum zs_stat_type type, unsigned long cnt)
587 {
588 }
589
590 static inline unsigned long zs_stat_get(struct size_class *class,
591 enum zs_stat_type type)
592 {
593 return 0;
594 }
595
596 static int __init zs_stat_init(void)
597 {
598 return 0;
599 }
600
601 static void __exit zs_stat_exit(void)
602 {
603 }
604
605 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
606 {
607 return 0;
608 }
609
610 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
611 {
612 }
613
614 #endif
615
616
617 /*
618 * For each size class, zspages are divided into different groups
619 * depending on how "full" they are. This was done so that we could
620 * easily find empty or nearly empty zspages when we try to shrink
621 * the pool (not yet implemented). This function returns fullness
622 * status of the given page.
623 */
624 static enum fullness_group get_fullness_group(struct page *page)
625 {
626 int inuse, max_objects;
627 enum fullness_group fg;
628 BUG_ON(!is_first_page(page));
629
630 inuse = page->inuse;
631 max_objects = page->objects;
632
633 if (inuse == 0)
634 fg = ZS_EMPTY;
635 else if (inuse == max_objects)
636 fg = ZS_FULL;
637 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
638 fg = ZS_ALMOST_EMPTY;
639 else
640 fg = ZS_ALMOST_FULL;
641
642 return fg;
643 }
644
645 /*
646 * Each size class maintains various freelists and zspages are assigned
647 * to one of these freelists based on the number of live objects they
648 * have. This functions inserts the given zspage into the freelist
649 * identified by <class, fullness_group>.
650 */
651 static void insert_zspage(struct page *page, struct size_class *class,
652 enum fullness_group fullness)
653 {
654 struct page **head;
655
656 BUG_ON(!is_first_page(page));
657
658 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
659 return;
660
661 head = &class->fullness_list[fullness];
662 if (*head)
663 list_add_tail(&page->lru, &(*head)->lru);
664
665 *head = page;
666 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
667 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
668 }
669
670 /*
671 * This function removes the given zspage from the freelist identified
672 * by <class, fullness_group>.
673 */
674 static void remove_zspage(struct page *page, struct size_class *class,
675 enum fullness_group fullness)
676 {
677 struct page **head;
678
679 BUG_ON(!is_first_page(page));
680
681 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
682 return;
683
684 head = &class->fullness_list[fullness];
685 BUG_ON(!*head);
686 if (list_empty(&(*head)->lru))
687 *head = NULL;
688 else if (*head == page)
689 *head = (struct page *)list_entry((*head)->lru.next,
690 struct page, lru);
691
692 list_del_init(&page->lru);
693 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
694 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
695 }
696
697 /*
698 * Each size class maintains zspages in different fullness groups depending
699 * on the number of live objects they contain. When allocating or freeing
700 * objects, the fullness status of the page can change, say, from ALMOST_FULL
701 * to ALMOST_EMPTY when freeing an object. This function checks if such
702 * a status change has occurred for the given page and accordingly moves the
703 * page from the freelist of the old fullness group to that of the new
704 * fullness group.
705 */
706 static enum fullness_group fix_fullness_group(struct size_class *class,
707 struct page *page)
708 {
709 int class_idx;
710 enum fullness_group currfg, newfg;
711
712 BUG_ON(!is_first_page(page));
713
714 get_zspage_mapping(page, &class_idx, &currfg);
715 newfg = get_fullness_group(page);
716 if (newfg == currfg)
717 goto out;
718
719 remove_zspage(page, class, currfg);
720 insert_zspage(page, class, newfg);
721 set_zspage_mapping(page, class_idx, newfg);
722
723 out:
724 return newfg;
725 }
726
727 /*
728 * We have to decide on how many pages to link together
729 * to form a zspage for each size class. This is important
730 * to reduce wastage due to unusable space left at end of
731 * each zspage which is given as:
732 * wastage = Zp % class_size
733 * usage = Zp - wastage
734 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
735 *
736 * For example, for size class of 3/8 * PAGE_SIZE, we should
737 * link together 3 PAGE_SIZE sized pages to form a zspage
738 * since then we can perfectly fit in 8 such objects.
739 */
740 static int get_pages_per_zspage(int class_size)
741 {
742 int i, max_usedpc = 0;
743 /* zspage order which gives maximum used size per KB */
744 int max_usedpc_order = 1;
745
746 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
747 int zspage_size;
748 int waste, usedpc;
749
750 zspage_size = i * PAGE_SIZE;
751 waste = zspage_size % class_size;
752 usedpc = (zspage_size - waste) * 100 / zspage_size;
753
754 if (usedpc > max_usedpc) {
755 max_usedpc = usedpc;
756 max_usedpc_order = i;
757 }
758 }
759
760 return max_usedpc_order;
761 }
762
763 /*
764 * A single 'zspage' is composed of many system pages which are
765 * linked together using fields in struct page. This function finds
766 * the first/head page, given any component page of a zspage.
767 */
768 static struct page *get_first_page(struct page *page)
769 {
770 if (is_first_page(page))
771 return page;
772 else
773 return page->first_page;
774 }
775
776 static struct page *get_next_page(struct page *page)
777 {
778 struct page *next;
779
780 if (is_last_page(page))
781 next = NULL;
782 else if (is_first_page(page))
783 next = (struct page *)page_private(page);
784 else
785 next = list_entry(page->lru.next, struct page, lru);
786
787 return next;
788 }
789
790 /*
791 * Encode <page, obj_idx> as a single handle value.
792 * We use the least bit of handle for tagging.
793 */
794 static void *location_to_obj(struct page *page, unsigned long obj_idx)
795 {
796 unsigned long obj;
797
798 if (!page) {
799 BUG_ON(obj_idx);
800 return NULL;
801 }
802
803 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
804 obj |= ((obj_idx) & OBJ_INDEX_MASK);
805 obj <<= OBJ_TAG_BITS;
806
807 return (void *)obj;
808 }
809
810 /*
811 * Decode <page, obj_idx> pair from the given object handle. We adjust the
812 * decoded obj_idx back to its original value since it was adjusted in
813 * location_to_obj().
814 */
815 static void obj_to_location(unsigned long obj, struct page **page,
816 unsigned long *obj_idx)
817 {
818 obj >>= OBJ_TAG_BITS;
819 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
820 *obj_idx = (obj & OBJ_INDEX_MASK);
821 }
822
823 static unsigned long handle_to_obj(unsigned long handle)
824 {
825 return *(unsigned long *)handle;
826 }
827
828 static unsigned long obj_to_head(struct size_class *class, struct page *page,
829 void *obj)
830 {
831 if (class->huge) {
832 VM_BUG_ON(!is_first_page(page));
833 return *(unsigned long *)page_private(page);
834 } else
835 return *(unsigned long *)obj;
836 }
837
838 static unsigned long obj_idx_to_offset(struct page *page,
839 unsigned long obj_idx, int class_size)
840 {
841 unsigned long off = 0;
842
843 if (!is_first_page(page))
844 off = page->index;
845
846 return off + obj_idx * class_size;
847 }
848
849 static inline int trypin_tag(unsigned long handle)
850 {
851 unsigned long *ptr = (unsigned long *)handle;
852
853 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
854 }
855
856 static void pin_tag(unsigned long handle)
857 {
858 while (!trypin_tag(handle));
859 }
860
861 static void unpin_tag(unsigned long handle)
862 {
863 unsigned long *ptr = (unsigned long *)handle;
864
865 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
866 }
867
868 static void reset_page(struct page *page)
869 {
870 clear_bit(PG_private, &page->flags);
871 clear_bit(PG_private_2, &page->flags);
872 set_page_private(page, 0);
873 page->mapping = NULL;
874 page->freelist = NULL;
875 page_mapcount_reset(page);
876 }
877
878 static void free_zspage(struct page *first_page)
879 {
880 struct page *nextp, *tmp, *head_extra;
881
882 BUG_ON(!is_first_page(first_page));
883 BUG_ON(first_page->inuse);
884
885 head_extra = (struct page *)page_private(first_page);
886
887 reset_page(first_page);
888 __free_page(first_page);
889
890 /* zspage with only 1 system page */
891 if (!head_extra)
892 return;
893
894 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
895 list_del(&nextp->lru);
896 reset_page(nextp);
897 __free_page(nextp);
898 }
899 reset_page(head_extra);
900 __free_page(head_extra);
901 }
902
903 /* Initialize a newly allocated zspage */
904 static void init_zspage(struct page *first_page, struct size_class *class)
905 {
906 unsigned long off = 0;
907 struct page *page = first_page;
908
909 BUG_ON(!is_first_page(first_page));
910 while (page) {
911 struct page *next_page;
912 struct link_free *link;
913 unsigned int i = 1;
914 void *vaddr;
915
916 /*
917 * page->index stores offset of first object starting
918 * in the page. For the first page, this is always 0,
919 * so we use first_page->index (aka ->freelist) to store
920 * head of corresponding zspage's freelist.
921 */
922 if (page != first_page)
923 page->index = off;
924
925 vaddr = kmap_atomic(page);
926 link = (struct link_free *)vaddr + off / sizeof(*link);
927
928 while ((off += class->size) < PAGE_SIZE) {
929 link->next = location_to_obj(page, i++);
930 link += class->size / sizeof(*link);
931 }
932
933 /*
934 * We now come to the last (full or partial) object on this
935 * page, which must point to the first object on the next
936 * page (if present)
937 */
938 next_page = get_next_page(page);
939 link->next = location_to_obj(next_page, 0);
940 kunmap_atomic(vaddr);
941 page = next_page;
942 off %= PAGE_SIZE;
943 }
944 }
945
946 /*
947 * Allocate a zspage for the given size class
948 */
949 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
950 {
951 int i, error;
952 struct page *first_page = NULL, *uninitialized_var(prev_page);
953
954 /*
955 * Allocate individual pages and link them together as:
956 * 1. first page->private = first sub-page
957 * 2. all sub-pages are linked together using page->lru
958 * 3. each sub-page is linked to the first page using page->first_page
959 *
960 * For each size class, First/Head pages are linked together using
961 * page->lru. Also, we set PG_private to identify the first page
962 * (i.e. no other sub-page has this flag set) and PG_private_2 to
963 * identify the last page.
964 */
965 error = -ENOMEM;
966 for (i = 0; i < class->pages_per_zspage; i++) {
967 struct page *page;
968
969 page = alloc_page(flags);
970 if (!page)
971 goto cleanup;
972
973 INIT_LIST_HEAD(&page->lru);
974 if (i == 0) { /* first page */
975 SetPagePrivate(page);
976 set_page_private(page, 0);
977 first_page = page;
978 first_page->inuse = 0;
979 }
980 if (i == 1)
981 set_page_private(first_page, (unsigned long)page);
982 if (i >= 1)
983 page->first_page = first_page;
984 if (i >= 2)
985 list_add(&page->lru, &prev_page->lru);
986 if (i == class->pages_per_zspage - 1) /* last page */
987 SetPagePrivate2(page);
988 prev_page = page;
989 }
990
991 init_zspage(first_page, class);
992
993 first_page->freelist = location_to_obj(first_page, 0);
994 /* Maximum number of objects we can store in this zspage */
995 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
996
997 error = 0; /* Success */
998
999 cleanup:
1000 if (unlikely(error) && first_page) {
1001 free_zspage(first_page);
1002 first_page = NULL;
1003 }
1004
1005 return first_page;
1006 }
1007
1008 static struct page *find_get_zspage(struct size_class *class)
1009 {
1010 int i;
1011 struct page *page;
1012
1013 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1014 page = class->fullness_list[i];
1015 if (page)
1016 break;
1017 }
1018
1019 return page;
1020 }
1021
1022 #ifdef CONFIG_PGTABLE_MAPPING
1023 static inline int __zs_cpu_up(struct mapping_area *area)
1024 {
1025 /*
1026 * Make sure we don't leak memory if a cpu UP notification
1027 * and zs_init() race and both call zs_cpu_up() on the same cpu
1028 */
1029 if (area->vm)
1030 return 0;
1031 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1032 if (!area->vm)
1033 return -ENOMEM;
1034 return 0;
1035 }
1036
1037 static inline void __zs_cpu_down(struct mapping_area *area)
1038 {
1039 if (area->vm)
1040 free_vm_area(area->vm);
1041 area->vm = NULL;
1042 }
1043
1044 static inline void *__zs_map_object(struct mapping_area *area,
1045 struct page *pages[2], int off, int size)
1046 {
1047 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1048 area->vm_addr = area->vm->addr;
1049 return area->vm_addr + off;
1050 }
1051
1052 static inline void __zs_unmap_object(struct mapping_area *area,
1053 struct page *pages[2], int off, int size)
1054 {
1055 unsigned long addr = (unsigned long)area->vm_addr;
1056
1057 unmap_kernel_range(addr, PAGE_SIZE * 2);
1058 }
1059
1060 #else /* CONFIG_PGTABLE_MAPPING */
1061
1062 static inline int __zs_cpu_up(struct mapping_area *area)
1063 {
1064 /*
1065 * Make sure we don't leak memory if a cpu UP notification
1066 * and zs_init() race and both call zs_cpu_up() on the same cpu
1067 */
1068 if (area->vm_buf)
1069 return 0;
1070 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1071 if (!area->vm_buf)
1072 return -ENOMEM;
1073 return 0;
1074 }
1075
1076 static inline void __zs_cpu_down(struct mapping_area *area)
1077 {
1078 kfree(area->vm_buf);
1079 area->vm_buf = NULL;
1080 }
1081
1082 static void *__zs_map_object(struct mapping_area *area,
1083 struct page *pages[2], int off, int size)
1084 {
1085 int sizes[2];
1086 void *addr;
1087 char *buf = area->vm_buf;
1088
1089 /* disable page faults to match kmap_atomic() return conditions */
1090 pagefault_disable();
1091
1092 /* no read fastpath */
1093 if (area->vm_mm == ZS_MM_WO)
1094 goto out;
1095
1096 sizes[0] = PAGE_SIZE - off;
1097 sizes[1] = size - sizes[0];
1098
1099 /* copy object to per-cpu buffer */
1100 addr = kmap_atomic(pages[0]);
1101 memcpy(buf, addr + off, sizes[0]);
1102 kunmap_atomic(addr);
1103 addr = kmap_atomic(pages[1]);
1104 memcpy(buf + sizes[0], addr, sizes[1]);
1105 kunmap_atomic(addr);
1106 out:
1107 return area->vm_buf;
1108 }
1109
1110 static void __zs_unmap_object(struct mapping_area *area,
1111 struct page *pages[2], int off, int size)
1112 {
1113 int sizes[2];
1114 void *addr;
1115 char *buf;
1116
1117 /* no write fastpath */
1118 if (area->vm_mm == ZS_MM_RO)
1119 goto out;
1120
1121 buf = area->vm_buf;
1122 if (!area->huge) {
1123 buf = buf + ZS_HANDLE_SIZE;
1124 size -= ZS_HANDLE_SIZE;
1125 off += ZS_HANDLE_SIZE;
1126 }
1127
1128 sizes[0] = PAGE_SIZE - off;
1129 sizes[1] = size - sizes[0];
1130
1131 /* copy per-cpu buffer to object */
1132 addr = kmap_atomic(pages[0]);
1133 memcpy(addr + off, buf, sizes[0]);
1134 kunmap_atomic(addr);
1135 addr = kmap_atomic(pages[1]);
1136 memcpy(addr, buf + sizes[0], sizes[1]);
1137 kunmap_atomic(addr);
1138
1139 out:
1140 /* enable page faults to match kunmap_atomic() return conditions */
1141 pagefault_enable();
1142 }
1143
1144 #endif /* CONFIG_PGTABLE_MAPPING */
1145
1146 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1147 void *pcpu)
1148 {
1149 int ret, cpu = (long)pcpu;
1150 struct mapping_area *area;
1151
1152 switch (action) {
1153 case CPU_UP_PREPARE:
1154 area = &per_cpu(zs_map_area, cpu);
1155 ret = __zs_cpu_up(area);
1156 if (ret)
1157 return notifier_from_errno(ret);
1158 break;
1159 case CPU_DEAD:
1160 case CPU_UP_CANCELED:
1161 area = &per_cpu(zs_map_area, cpu);
1162 __zs_cpu_down(area);
1163 break;
1164 }
1165
1166 return NOTIFY_OK;
1167 }
1168
1169 static struct notifier_block zs_cpu_nb = {
1170 .notifier_call = zs_cpu_notifier
1171 };
1172
1173 static int zs_register_cpu_notifier(void)
1174 {
1175 int cpu, uninitialized_var(ret);
1176
1177 cpu_notifier_register_begin();
1178
1179 __register_cpu_notifier(&zs_cpu_nb);
1180 for_each_online_cpu(cpu) {
1181 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1182 if (notifier_to_errno(ret))
1183 break;
1184 }
1185
1186 cpu_notifier_register_done();
1187 return notifier_to_errno(ret);
1188 }
1189
1190 static void zs_unregister_cpu_notifier(void)
1191 {
1192 int cpu;
1193
1194 cpu_notifier_register_begin();
1195
1196 for_each_online_cpu(cpu)
1197 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1198 __unregister_cpu_notifier(&zs_cpu_nb);
1199
1200 cpu_notifier_register_done();
1201 }
1202
1203 static void init_zs_size_classes(void)
1204 {
1205 int nr;
1206
1207 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1208 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1209 nr += 1;
1210
1211 zs_size_classes = nr;
1212 }
1213
1214 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1215 {
1216 if (prev->pages_per_zspage != pages_per_zspage)
1217 return false;
1218
1219 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1220 != get_maxobj_per_zspage(size, pages_per_zspage))
1221 return false;
1222
1223 return true;
1224 }
1225
1226 static bool zspage_full(struct page *page)
1227 {
1228 BUG_ON(!is_first_page(page));
1229
1230 return page->inuse == page->objects;
1231 }
1232
1233 unsigned long zs_get_total_pages(struct zs_pool *pool)
1234 {
1235 return atomic_long_read(&pool->pages_allocated);
1236 }
1237 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1238
1239 /**
1240 * zs_map_object - get address of allocated object from handle.
1241 * @pool: pool from which the object was allocated
1242 * @handle: handle returned from zs_malloc
1243 *
1244 * Before using an object allocated from zs_malloc, it must be mapped using
1245 * this function. When done with the object, it must be unmapped using
1246 * zs_unmap_object.
1247 *
1248 * Only one object can be mapped per cpu at a time. There is no protection
1249 * against nested mappings.
1250 *
1251 * This function returns with preemption and page faults disabled.
1252 */
1253 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1254 enum zs_mapmode mm)
1255 {
1256 struct page *page;
1257 unsigned long obj, obj_idx, off;
1258
1259 unsigned int class_idx;
1260 enum fullness_group fg;
1261 struct size_class *class;
1262 struct mapping_area *area;
1263 struct page *pages[2];
1264 void *ret;
1265
1266 BUG_ON(!handle);
1267
1268 /*
1269 * Because we use per-cpu mapping areas shared among the
1270 * pools/users, we can't allow mapping in interrupt context
1271 * because it can corrupt another users mappings.
1272 */
1273 BUG_ON(in_interrupt());
1274
1275 /* From now on, migration cannot move the object */
1276 pin_tag(handle);
1277
1278 obj = handle_to_obj(handle);
1279 obj_to_location(obj, &page, &obj_idx);
1280 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1281 class = pool->size_class[class_idx];
1282 off = obj_idx_to_offset(page, obj_idx, class->size);
1283
1284 area = &get_cpu_var(zs_map_area);
1285 area->vm_mm = mm;
1286 if (off + class->size <= PAGE_SIZE) {
1287 /* this object is contained entirely within a page */
1288 area->vm_addr = kmap_atomic(page);
1289 ret = area->vm_addr + off;
1290 goto out;
1291 }
1292
1293 /* this object spans two pages */
1294 pages[0] = page;
1295 pages[1] = get_next_page(page);
1296 BUG_ON(!pages[1]);
1297
1298 ret = __zs_map_object(area, pages, off, class->size);
1299 out:
1300 if (!class->huge)
1301 ret += ZS_HANDLE_SIZE;
1302
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(zs_map_object);
1306
1307 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1308 {
1309 struct page *page;
1310 unsigned long obj, obj_idx, off;
1311
1312 unsigned int class_idx;
1313 enum fullness_group fg;
1314 struct size_class *class;
1315 struct mapping_area *area;
1316
1317 BUG_ON(!handle);
1318
1319 obj = handle_to_obj(handle);
1320 obj_to_location(obj, &page, &obj_idx);
1321 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1322 class = pool->size_class[class_idx];
1323 off = obj_idx_to_offset(page, obj_idx, class->size);
1324
1325 area = this_cpu_ptr(&zs_map_area);
1326 if (off + class->size <= PAGE_SIZE)
1327 kunmap_atomic(area->vm_addr);
1328 else {
1329 struct page *pages[2];
1330
1331 pages[0] = page;
1332 pages[1] = get_next_page(page);
1333 BUG_ON(!pages[1]);
1334
1335 __zs_unmap_object(area, pages, off, class->size);
1336 }
1337 put_cpu_var(zs_map_area);
1338 unpin_tag(handle);
1339 }
1340 EXPORT_SYMBOL_GPL(zs_unmap_object);
1341
1342 static unsigned long obj_malloc(struct page *first_page,
1343 struct size_class *class, unsigned long handle)
1344 {
1345 unsigned long obj;
1346 struct link_free *link;
1347
1348 struct page *m_page;
1349 unsigned long m_objidx, m_offset;
1350 void *vaddr;
1351
1352 handle |= OBJ_ALLOCATED_TAG;
1353 obj = (unsigned long)first_page->freelist;
1354 obj_to_location(obj, &m_page, &m_objidx);
1355 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1356
1357 vaddr = kmap_atomic(m_page);
1358 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1359 first_page->freelist = link->next;
1360 if (!class->huge)
1361 /* record handle in the header of allocated chunk */
1362 link->handle = handle;
1363 else
1364 /* record handle in first_page->private */
1365 set_page_private(first_page, handle);
1366 kunmap_atomic(vaddr);
1367 first_page->inuse++;
1368 zs_stat_inc(class, OBJ_USED, 1);
1369
1370 return obj;
1371 }
1372
1373
1374 /**
1375 * zs_malloc - Allocate block of given size from pool.
1376 * @pool: pool to allocate from
1377 * @size: size of block to allocate
1378 *
1379 * On success, handle to the allocated object is returned,
1380 * otherwise 0.
1381 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1382 */
1383 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1384 {
1385 unsigned long handle, obj;
1386 struct size_class *class;
1387 struct page *first_page;
1388
1389 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1390 return 0;
1391
1392 handle = alloc_handle(pool);
1393 if (!handle)
1394 return 0;
1395
1396 /* extra space in chunk to keep the handle */
1397 size += ZS_HANDLE_SIZE;
1398 class = pool->size_class[get_size_class_index(size)];
1399
1400 spin_lock(&class->lock);
1401 first_page = find_get_zspage(class);
1402
1403 if (!first_page) {
1404 spin_unlock(&class->lock);
1405 first_page = alloc_zspage(class, pool->flags);
1406 if (unlikely(!first_page)) {
1407 free_handle(pool, handle);
1408 return 0;
1409 }
1410
1411 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1412 atomic_long_add(class->pages_per_zspage,
1413 &pool->pages_allocated);
1414
1415 spin_lock(&class->lock);
1416 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1417 class->size, class->pages_per_zspage));
1418 }
1419
1420 obj = obj_malloc(first_page, class, handle);
1421 /* Now move the zspage to another fullness group, if required */
1422 fix_fullness_group(class, first_page);
1423 record_obj(handle, obj);
1424 spin_unlock(&class->lock);
1425
1426 return handle;
1427 }
1428 EXPORT_SYMBOL_GPL(zs_malloc);
1429
1430 static void obj_free(struct zs_pool *pool, struct size_class *class,
1431 unsigned long obj)
1432 {
1433 struct link_free *link;
1434 struct page *first_page, *f_page;
1435 unsigned long f_objidx, f_offset;
1436 void *vaddr;
1437 int class_idx;
1438 enum fullness_group fullness;
1439
1440 BUG_ON(!obj);
1441
1442 obj &= ~OBJ_ALLOCATED_TAG;
1443 obj_to_location(obj, &f_page, &f_objidx);
1444 first_page = get_first_page(f_page);
1445
1446 get_zspage_mapping(first_page, &class_idx, &fullness);
1447 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1448
1449 vaddr = kmap_atomic(f_page);
1450
1451 /* Insert this object in containing zspage's freelist */
1452 link = (struct link_free *)(vaddr + f_offset);
1453 link->next = first_page->freelist;
1454 if (class->huge)
1455 set_page_private(first_page, 0);
1456 kunmap_atomic(vaddr);
1457 first_page->freelist = (void *)obj;
1458 first_page->inuse--;
1459 zs_stat_dec(class, OBJ_USED, 1);
1460 }
1461
1462 void zs_free(struct zs_pool *pool, unsigned long handle)
1463 {
1464 struct page *first_page, *f_page;
1465 unsigned long obj, f_objidx;
1466 int class_idx;
1467 struct size_class *class;
1468 enum fullness_group fullness;
1469
1470 if (unlikely(!handle))
1471 return;
1472
1473 pin_tag(handle);
1474 obj = handle_to_obj(handle);
1475 obj_to_location(obj, &f_page, &f_objidx);
1476 first_page = get_first_page(f_page);
1477
1478 get_zspage_mapping(first_page, &class_idx, &fullness);
1479 class = pool->size_class[class_idx];
1480
1481 spin_lock(&class->lock);
1482 obj_free(pool, class, obj);
1483 fullness = fix_fullness_group(class, first_page);
1484 if (fullness == ZS_EMPTY) {
1485 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1486 class->size, class->pages_per_zspage));
1487 atomic_long_sub(class->pages_per_zspage,
1488 &pool->pages_allocated);
1489 free_zspage(first_page);
1490 }
1491 spin_unlock(&class->lock);
1492 unpin_tag(handle);
1493
1494 free_handle(pool, handle);
1495 }
1496 EXPORT_SYMBOL_GPL(zs_free);
1497
1498 static void zs_object_copy(unsigned long src, unsigned long dst,
1499 struct size_class *class)
1500 {
1501 struct page *s_page, *d_page;
1502 unsigned long s_objidx, d_objidx;
1503 unsigned long s_off, d_off;
1504 void *s_addr, *d_addr;
1505 int s_size, d_size, size;
1506 int written = 0;
1507
1508 s_size = d_size = class->size;
1509
1510 obj_to_location(src, &s_page, &s_objidx);
1511 obj_to_location(dst, &d_page, &d_objidx);
1512
1513 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1514 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1515
1516 if (s_off + class->size > PAGE_SIZE)
1517 s_size = PAGE_SIZE - s_off;
1518
1519 if (d_off + class->size > PAGE_SIZE)
1520 d_size = PAGE_SIZE - d_off;
1521
1522 s_addr = kmap_atomic(s_page);
1523 d_addr = kmap_atomic(d_page);
1524
1525 while (1) {
1526 size = min(s_size, d_size);
1527 memcpy(d_addr + d_off, s_addr + s_off, size);
1528 written += size;
1529
1530 if (written == class->size)
1531 break;
1532
1533 s_off += size;
1534 s_size -= size;
1535 d_off += size;
1536 d_size -= size;
1537
1538 if (s_off >= PAGE_SIZE) {
1539 kunmap_atomic(d_addr);
1540 kunmap_atomic(s_addr);
1541 s_page = get_next_page(s_page);
1542 BUG_ON(!s_page);
1543 s_addr = kmap_atomic(s_page);
1544 d_addr = kmap_atomic(d_page);
1545 s_size = class->size - written;
1546 s_off = 0;
1547 }
1548
1549 if (d_off >= PAGE_SIZE) {
1550 kunmap_atomic(d_addr);
1551 d_page = get_next_page(d_page);
1552 BUG_ON(!d_page);
1553 d_addr = kmap_atomic(d_page);
1554 d_size = class->size - written;
1555 d_off = 0;
1556 }
1557 }
1558
1559 kunmap_atomic(d_addr);
1560 kunmap_atomic(s_addr);
1561 }
1562
1563 /*
1564 * Find alloced object in zspage from index object and
1565 * return handle.
1566 */
1567 static unsigned long find_alloced_obj(struct page *page, int index,
1568 struct size_class *class)
1569 {
1570 unsigned long head;
1571 int offset = 0;
1572 unsigned long handle = 0;
1573 void *addr = kmap_atomic(page);
1574
1575 if (!is_first_page(page))
1576 offset = page->index;
1577 offset += class->size * index;
1578
1579 while (offset < PAGE_SIZE) {
1580 head = obj_to_head(class, page, addr + offset);
1581 if (head & OBJ_ALLOCATED_TAG) {
1582 handle = head & ~OBJ_ALLOCATED_TAG;
1583 if (trypin_tag(handle))
1584 break;
1585 handle = 0;
1586 }
1587
1588 offset += class->size;
1589 index++;
1590 }
1591
1592 kunmap_atomic(addr);
1593 return handle;
1594 }
1595
1596 struct zs_compact_control {
1597 /* Source page for migration which could be a subpage of zspage. */
1598 struct page *s_page;
1599 /* Destination page for migration which should be a first page
1600 * of zspage. */
1601 struct page *d_page;
1602 /* Starting object index within @s_page which used for live object
1603 * in the subpage. */
1604 int index;
1605 /* how many of objects are migrated */
1606 int nr_migrated;
1607 };
1608
1609 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1610 struct zs_compact_control *cc)
1611 {
1612 unsigned long used_obj, free_obj;
1613 unsigned long handle;
1614 struct page *s_page = cc->s_page;
1615 struct page *d_page = cc->d_page;
1616 unsigned long index = cc->index;
1617 int nr_migrated = 0;
1618 int ret = 0;
1619
1620 while (1) {
1621 handle = find_alloced_obj(s_page, index, class);
1622 if (!handle) {
1623 s_page = get_next_page(s_page);
1624 if (!s_page)
1625 break;
1626 index = 0;
1627 continue;
1628 }
1629
1630 /* Stop if there is no more space */
1631 if (zspage_full(d_page)) {
1632 unpin_tag(handle);
1633 ret = -ENOMEM;
1634 break;
1635 }
1636
1637 used_obj = handle_to_obj(handle);
1638 free_obj = obj_malloc(d_page, class, handle);
1639 zs_object_copy(used_obj, free_obj, class);
1640 index++;
1641 record_obj(handle, free_obj);
1642 unpin_tag(handle);
1643 obj_free(pool, class, used_obj);
1644 nr_migrated++;
1645 }
1646
1647 /* Remember last position in this iteration */
1648 cc->s_page = s_page;
1649 cc->index = index;
1650 cc->nr_migrated = nr_migrated;
1651
1652 return ret;
1653 }
1654
1655 static struct page *alloc_target_page(struct size_class *class)
1656 {
1657 int i;
1658 struct page *page;
1659
1660 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1661 page = class->fullness_list[i];
1662 if (page) {
1663 remove_zspage(page, class, i);
1664 break;
1665 }
1666 }
1667
1668 return page;
1669 }
1670
1671 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1672 struct page *first_page)
1673 {
1674 enum fullness_group fullness;
1675
1676 BUG_ON(!is_first_page(first_page));
1677
1678 fullness = get_fullness_group(first_page);
1679 insert_zspage(first_page, class, fullness);
1680 set_zspage_mapping(first_page, class->index, fullness);
1681
1682 if (fullness == ZS_EMPTY) {
1683 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1684 class->size, class->pages_per_zspage));
1685 atomic_long_sub(class->pages_per_zspage,
1686 &pool->pages_allocated);
1687
1688 free_zspage(first_page);
1689 }
1690 }
1691
1692 static struct page *isolate_source_page(struct size_class *class)
1693 {
1694 struct page *page;
1695
1696 page = class->fullness_list[ZS_ALMOST_EMPTY];
1697 if (page)
1698 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1699
1700 return page;
1701 }
1702
1703 static unsigned long __zs_compact(struct zs_pool *pool,
1704 struct size_class *class)
1705 {
1706 struct zs_compact_control cc;
1707 struct page *src_page;
1708 struct page *dst_page = NULL;
1709 unsigned long nr_total_migrated = 0;
1710
1711 spin_lock(&class->lock);
1712 while ((src_page = isolate_source_page(class))) {
1713
1714 BUG_ON(!is_first_page(src_page));
1715
1716 cc.index = 0;
1717 cc.s_page = src_page;
1718
1719 while ((dst_page = alloc_target_page(class))) {
1720 cc.d_page = dst_page;
1721 /*
1722 * If there is no more space in dst_page, try to
1723 * allocate another zspage.
1724 */
1725 if (!migrate_zspage(pool, class, &cc))
1726 break;
1727
1728 putback_zspage(pool, class, dst_page);
1729 nr_total_migrated += cc.nr_migrated;
1730 }
1731
1732 /* Stop if we couldn't find slot */
1733 if (dst_page == NULL)
1734 break;
1735
1736 putback_zspage(pool, class, dst_page);
1737 putback_zspage(pool, class, src_page);
1738 spin_unlock(&class->lock);
1739 nr_total_migrated += cc.nr_migrated;
1740 cond_resched();
1741 spin_lock(&class->lock);
1742 }
1743
1744 if (src_page)
1745 putback_zspage(pool, class, src_page);
1746
1747 spin_unlock(&class->lock);
1748
1749 return nr_total_migrated;
1750 }
1751
1752 unsigned long zs_compact(struct zs_pool *pool)
1753 {
1754 int i;
1755 unsigned long nr_migrated = 0;
1756 struct size_class *class;
1757
1758 for (i = zs_size_classes - 1; i >= 0; i--) {
1759 class = pool->size_class[i];
1760 if (!class)
1761 continue;
1762 if (class->index != i)
1763 continue;
1764 nr_migrated += __zs_compact(pool, class);
1765 }
1766
1767 return nr_migrated;
1768 }
1769 EXPORT_SYMBOL_GPL(zs_compact);
1770
1771 /**
1772 * zs_create_pool - Creates an allocation pool to work from.
1773 * @flags: allocation flags used to allocate pool metadata
1774 *
1775 * This function must be called before anything when using
1776 * the zsmalloc allocator.
1777 *
1778 * On success, a pointer to the newly created pool is returned,
1779 * otherwise NULL.
1780 */
1781 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1782 {
1783 int i;
1784 struct zs_pool *pool;
1785 struct size_class *prev_class = NULL;
1786
1787 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1788 if (!pool)
1789 return NULL;
1790
1791 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1792 GFP_KERNEL);
1793 if (!pool->size_class) {
1794 kfree(pool);
1795 return NULL;
1796 }
1797
1798 pool->name = kstrdup(name, GFP_KERNEL);
1799 if (!pool->name)
1800 goto err;
1801
1802 if (create_handle_cache(pool))
1803 goto err;
1804
1805 /*
1806 * Iterate reversly, because, size of size_class that we want to use
1807 * for merging should be larger or equal to current size.
1808 */
1809 for (i = zs_size_classes - 1; i >= 0; i--) {
1810 int size;
1811 int pages_per_zspage;
1812 struct size_class *class;
1813
1814 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1815 if (size > ZS_MAX_ALLOC_SIZE)
1816 size = ZS_MAX_ALLOC_SIZE;
1817 pages_per_zspage = get_pages_per_zspage(size);
1818
1819 /*
1820 * size_class is used for normal zsmalloc operation such
1821 * as alloc/free for that size. Although it is natural that we
1822 * have one size_class for each size, there is a chance that we
1823 * can get more memory utilization if we use one size_class for
1824 * many different sizes whose size_class have same
1825 * characteristics. So, we makes size_class point to
1826 * previous size_class if possible.
1827 */
1828 if (prev_class) {
1829 if (can_merge(prev_class, size, pages_per_zspage)) {
1830 pool->size_class[i] = prev_class;
1831 continue;
1832 }
1833 }
1834
1835 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1836 if (!class)
1837 goto err;
1838
1839 class->size = size;
1840 class->index = i;
1841 class->pages_per_zspage = pages_per_zspage;
1842 if (pages_per_zspage == 1 &&
1843 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1844 class->huge = true;
1845 spin_lock_init(&class->lock);
1846 pool->size_class[i] = class;
1847
1848 prev_class = class;
1849 }
1850
1851 pool->flags = flags;
1852
1853 if (zs_pool_stat_create(name, pool))
1854 goto err;
1855
1856 return pool;
1857
1858 err:
1859 zs_destroy_pool(pool);
1860 return NULL;
1861 }
1862 EXPORT_SYMBOL_GPL(zs_create_pool);
1863
1864 void zs_destroy_pool(struct zs_pool *pool)
1865 {
1866 int i;
1867
1868 zs_pool_stat_destroy(pool);
1869
1870 for (i = 0; i < zs_size_classes; i++) {
1871 int fg;
1872 struct size_class *class = pool->size_class[i];
1873
1874 if (!class)
1875 continue;
1876
1877 if (class->index != i)
1878 continue;
1879
1880 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1881 if (class->fullness_list[fg]) {
1882 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1883 class->size, fg);
1884 }
1885 }
1886 kfree(class);
1887 }
1888
1889 destroy_handle_cache(pool);
1890 kfree(pool->size_class);
1891 kfree(pool->name);
1892 kfree(pool);
1893 }
1894 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1895
1896 static int __init zs_init(void)
1897 {
1898 int ret = zs_register_cpu_notifier();
1899
1900 if (ret)
1901 goto notifier_fail;
1902
1903 init_zs_size_classes();
1904
1905 #ifdef CONFIG_ZPOOL
1906 zpool_register_driver(&zs_zpool_driver);
1907 #endif
1908
1909 ret = zs_stat_init();
1910 if (ret) {
1911 pr_err("zs stat initialization failed\n");
1912 goto stat_fail;
1913 }
1914 return 0;
1915
1916 stat_fail:
1917 #ifdef CONFIG_ZPOOL
1918 zpool_unregister_driver(&zs_zpool_driver);
1919 #endif
1920 notifier_fail:
1921 zs_unregister_cpu_notifier();
1922
1923 return ret;
1924 }
1925
1926 static void __exit zs_exit(void)
1927 {
1928 #ifdef CONFIG_ZPOOL
1929 zpool_unregister_driver(&zs_zpool_driver);
1930 #endif
1931 zs_unregister_cpu_notifier();
1932
1933 zs_stat_exit();
1934 }
1935
1936 module_init(zs_init);
1937 module_exit(zs_exit);
1938
1939 MODULE_LICENSE("Dual BSD/GPL");
1940 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");