]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/zsmalloc.c
f2fs: replace congestion_wait() calls with io_schedule_timeout()
[mirror_ubuntu-kernels.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34 * lock ordering:
35 * page_lock
36 * pool->migrate_lock
37 * class->lock
38 * zspage->lock
39 */
40
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/magic.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/mount.h>
63 #include <linux/pseudo_fs.h>
64 #include <linux/migrate.h>
65 #include <linux/wait.h>
66 #include <linux/pagemap.h>
67 #include <linux/fs.h>
68 #include <linux/local_lock.h>
69
70 #define ZSPAGE_MAGIC 0x58
71
72 /*
73 * This must be power of 2 and greater than or equal to sizeof(link_free).
74 * These two conditions ensure that any 'struct link_free' itself doesn't
75 * span more than 1 page which avoids complex case of mapping 2 pages simply
76 * to restore link_free pointer values.
77 */
78 #define ZS_ALIGN 8
79
80 /*
81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83 */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88
89 /*
90 * Object location (<PFN>, <obj_idx>) is encoded as
91 * a single (unsigned long) handle value.
92 *
93 * Note that object index <obj_idx> starts from 0.
94 *
95 * This is made more complicated by various memory models and PAE.
96 */
97
98 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
99 #ifdef MAX_PHYSMEM_BITS
100 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
101 #else
102 /*
103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104 * be PAGE_SHIFT
105 */
106 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
107 #endif
108 #endif
109
110 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
111
112 /*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define HUGE_BITS 1
125 #define FULLNESS_BITS 2
126 #define CLASS_BITS 8
127 #define ISOLATED_BITS 3
128 #define MAGIC_VAL_BITS 8
129
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136
137 /*
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
151 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152 ZS_SIZE_CLASS_DELTA) + 1)
153
154 enum fullness_group {
155 ZS_EMPTY,
156 ZS_ALMOST_EMPTY,
157 ZS_ALMOST_FULL,
158 ZS_FULL,
159 NR_ZS_FULLNESS,
160 };
161
162 enum class_stat_type {
163 CLASS_EMPTY,
164 CLASS_ALMOST_EMPTY,
165 CLASS_ALMOST_FULL,
166 CLASS_FULL,
167 OBJ_ALLOCATED,
168 OBJ_USED,
169 NR_ZS_STAT_TYPE,
170 };
171
172 struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174 };
175
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry *zs_stat_root;
178 #endif
179
180 #ifdef CONFIG_COMPACTION
181 static struct vfsmount *zsmalloc_mnt;
182 #endif
183
184 /*
185 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186 * n <= N / f, where
187 * n = number of allocated objects
188 * N = total number of objects zspage can store
189 * f = fullness_threshold_frac
190 *
191 * Similarly, we assign zspage to:
192 * ZS_ALMOST_FULL when n > N / f
193 * ZS_EMPTY when n == 0
194 * ZS_FULL when n == N
195 *
196 * (see: fix_fullness_group())
197 */
198 static const int fullness_threshold_frac = 4;
199 static size_t huge_class_size;
200
201 struct size_class {
202 spinlock_t lock;
203 struct list_head fullness_list[NR_ZS_FULLNESS];
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 int objs_per_zspage;
210 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211 int pages_per_zspage;
212
213 unsigned int index;
214 struct zs_size_stat stats;
215 };
216
217 /*
218 * Placed within free objects to form a singly linked list.
219 * For every zspage, zspage->freeobj gives head of this list.
220 *
221 * This must be power of 2 and less than or equal to ZS_ALIGN
222 */
223 struct link_free {
224 union {
225 /*
226 * Free object index;
227 * It's valid for non-allocated object
228 */
229 unsigned long next;
230 /*
231 * Handle of allocated object.
232 */
233 unsigned long handle;
234 };
235 };
236
237 struct zs_pool {
238 const char *name;
239
240 struct size_class *size_class[ZS_SIZE_CLASSES];
241 struct kmem_cache *handle_cachep;
242 struct kmem_cache *zspage_cachep;
243
244 atomic_long_t pages_allocated;
245
246 struct zs_pool_stats stats;
247
248 /* Compact classes */
249 struct shrinker shrinker;
250
251 #ifdef CONFIG_ZSMALLOC_STAT
252 struct dentry *stat_dentry;
253 #endif
254 #ifdef CONFIG_COMPACTION
255 struct inode *inode;
256 struct work_struct free_work;
257 #endif
258 /* protect page/zspage migration */
259 rwlock_t migrate_lock;
260 };
261
262 struct zspage {
263 struct {
264 unsigned int huge:HUGE_BITS;
265 unsigned int fullness:FULLNESS_BITS;
266 unsigned int class:CLASS_BITS + 1;
267 unsigned int isolated:ISOLATED_BITS;
268 unsigned int magic:MAGIC_VAL_BITS;
269 };
270 unsigned int inuse;
271 unsigned int freeobj;
272 struct page *first_page;
273 struct list_head list; /* fullness list */
274 #ifdef CONFIG_COMPACTION
275 rwlock_t lock;
276 #endif
277 };
278
279 struct mapping_area {
280 local_lock_t lock;
281 char *vm_buf; /* copy buffer for objects that span pages */
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284 };
285
286 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
287 static void SetZsHugePage(struct zspage *zspage)
288 {
289 zspage->huge = 1;
290 }
291
292 static bool ZsHugePage(struct zspage *zspage)
293 {
294 return zspage->huge;
295 }
296
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool *pool);
299 static void zs_unregister_migration(struct zs_pool *pool);
300 static void migrate_lock_init(struct zspage *zspage);
301 static void migrate_read_lock(struct zspage *zspage);
302 static void migrate_read_unlock(struct zspage *zspage);
303 static void migrate_write_lock(struct zspage *zspage);
304 static void migrate_write_lock_nested(struct zspage *zspage);
305 static void migrate_write_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void migrate_write_lock(struct zspage *zspage) {}
318 static void migrate_write_lock_nested(struct zspage *zspage) {}
319 static void migrate_write_unlock(struct zspage *zspage) {}
320 static void kick_deferred_free(struct zs_pool *pool) {}
321 static void init_deferred_free(struct zs_pool *pool) {}
322 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
323 #endif
324
325 static int create_cache(struct zs_pool *pool)
326 {
327 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
328 0, 0, NULL);
329 if (!pool->handle_cachep)
330 return 1;
331
332 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
333 0, 0, NULL);
334 if (!pool->zspage_cachep) {
335 kmem_cache_destroy(pool->handle_cachep);
336 pool->handle_cachep = NULL;
337 return 1;
338 }
339
340 return 0;
341 }
342
343 static void destroy_cache(struct zs_pool *pool)
344 {
345 kmem_cache_destroy(pool->handle_cachep);
346 kmem_cache_destroy(pool->zspage_cachep);
347 }
348
349 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
350 {
351 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
352 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
353 }
354
355 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
356 {
357 kmem_cache_free(pool->handle_cachep, (void *)handle);
358 }
359
360 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
361 {
362 return kmem_cache_zalloc(pool->zspage_cachep,
363 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
364 }
365
366 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
367 {
368 kmem_cache_free(pool->zspage_cachep, zspage);
369 }
370
371 /* class->lock(which owns the handle) synchronizes races */
372 static void record_obj(unsigned long handle, unsigned long obj)
373 {
374 *(unsigned long *)handle = obj;
375 }
376
377 /* zpool driver */
378
379 #ifdef CONFIG_ZPOOL
380
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 const struct zpool_ops *zpool_ops,
383 struct zpool *zpool)
384 {
385 /*
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
389 */
390 return zs_create_pool(name);
391 }
392
393 static void zs_zpool_destroy(void *pool)
394 {
395 zs_destroy_pool(pool);
396 }
397
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
400 {
401 *handle = zs_malloc(pool, size, gfp);
402 return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406 zs_free(pool, handle);
407 }
408
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
411 {
412 enum zs_mapmode zs_mm;
413
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW:
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
425 }
426
427 return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431 zs_unmap_object(pool, handle);
432 }
433
434 static u64 zs_zpool_total_size(void *pool)
435 {
436 return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438
439 static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc_support_movable = true,
445 .malloc = zs_zpool_malloc,
446 .free = zs_zpool_free,
447 .map = zs_zpool_map,
448 .unmap = zs_zpool_unmap,
449 .total_size = zs_zpool_total_size,
450 };
451
452 MODULE_ALIAS("zpool-zsmalloc");
453 #endif /* CONFIG_ZPOOL */
454
455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
457 .lock = INIT_LOCAL_LOCK(lock),
458 };
459
460 static __maybe_unused int is_first_page(struct page *page)
461 {
462 return PagePrivate(page);
463 }
464
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage *zspage)
467 {
468 return zspage->inuse;
469 }
470
471
472 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
473 {
474 zspage->inuse += val;
475 }
476
477 static inline struct page *get_first_page(struct zspage *zspage)
478 {
479 struct page *first_page = zspage->first_page;
480
481 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
482 return first_page;
483 }
484
485 static inline int get_first_obj_offset(struct page *page)
486 {
487 return page->page_type;
488 }
489
490 static inline void set_first_obj_offset(struct page *page, int offset)
491 {
492 page->page_type = offset;
493 }
494
495 static inline unsigned int get_freeobj(struct zspage *zspage)
496 {
497 return zspage->freeobj;
498 }
499
500 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
501 {
502 zspage->freeobj = obj;
503 }
504
505 static void get_zspage_mapping(struct zspage *zspage,
506 unsigned int *class_idx,
507 enum fullness_group *fullness)
508 {
509 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
510
511 *fullness = zspage->fullness;
512 *class_idx = zspage->class;
513 }
514
515 static struct size_class *zspage_class(struct zs_pool *pool,
516 struct zspage *zspage)
517 {
518 return pool->size_class[zspage->class];
519 }
520
521 static void set_zspage_mapping(struct zspage *zspage,
522 unsigned int class_idx,
523 enum fullness_group fullness)
524 {
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
527 }
528
529 /*
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the given size.
535 */
536 static int get_size_class_index(int size)
537 {
538 int idx = 0;
539
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
543
544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546
547 /* type can be of enum type class_stat_type or fullness_group */
548 static inline void class_stat_inc(struct size_class *class,
549 int type, unsigned long cnt)
550 {
551 class->stats.objs[type] += cnt;
552 }
553
554 /* type can be of enum type class_stat_type or fullness_group */
555 static inline void class_stat_dec(struct size_class *class,
556 int type, unsigned long cnt)
557 {
558 class->stats.objs[type] -= cnt;
559 }
560
561 /* type can be of enum type class_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 int type)
564 {
565 return class->stats.objs[type];
566 }
567
568 #ifdef CONFIG_ZSMALLOC_STAT
569
570 static void __init zs_stat_init(void)
571 {
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
575 }
576
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 }
579
580 static void __exit zs_stat_exit(void)
581 {
582 debugfs_remove_recursive(zs_stat_root);
583 }
584
585 static unsigned long zs_can_compact(struct size_class *class);
586
587 static int zs_stats_size_show(struct seq_file *s, void *v)
588 {
589 int i;
590 struct zs_pool *pool = s->private;
591 struct size_class *class;
592 int objs_per_zspage;
593 unsigned long class_almost_full, class_almost_empty;
594 unsigned long obj_allocated, obj_used, pages_used, freeable;
595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 unsigned long total_freeable = 0;
598
599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
602 "pages_per_zspage", "freeable");
603
604 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 class = pool->size_class[i];
606
607 if (class->index != i)
608 continue;
609
610 spin_lock(&class->lock);
611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 obj_used = zs_stat_get(class, OBJ_USED);
615 freeable = zs_can_compact(class);
616 spin_unlock(&class->lock);
617
618 objs_per_zspage = class->objs_per_zspage;
619 pages_used = obj_allocated / objs_per_zspage *
620 class->pages_per_zspage;
621
622 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
624 i, class->size, class_almost_full, class_almost_empty,
625 obj_allocated, obj_used, pages_used,
626 class->pages_per_zspage, freeable);
627
628 total_class_almost_full += class_almost_full;
629 total_class_almost_empty += class_almost_empty;
630 total_objs += obj_allocated;
631 total_used_objs += obj_used;
632 total_pages += pages_used;
633 total_freeable += freeable;
634 }
635
636 seq_puts(s, "\n");
637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 "Total", "", total_class_almost_full,
639 total_class_almost_empty, total_objs,
640 total_used_objs, total_pages, "", total_freeable);
641
642 return 0;
643 }
644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
645
646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 {
648 if (!zs_stat_root) {
649 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
650 return;
651 }
652
653 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
654
655 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656 &zs_stats_size_fops);
657 }
658
659 static void zs_pool_stat_destroy(struct zs_pool *pool)
660 {
661 debugfs_remove_recursive(pool->stat_dentry);
662 }
663
664 #else /* CONFIG_ZSMALLOC_STAT */
665 static void __init zs_stat_init(void)
666 {
667 }
668
669 static void __exit zs_stat_exit(void)
670 {
671 }
672
673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
674 {
675 }
676
677 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
678 {
679 }
680 #endif
681
682
683 /*
684 * For each size class, zspages are divided into different groups
685 * depending on how "full" they are. This was done so that we could
686 * easily find empty or nearly empty zspages when we try to shrink
687 * the pool (not yet implemented). This function returns fullness
688 * status of the given page.
689 */
690 static enum fullness_group get_fullness_group(struct size_class *class,
691 struct zspage *zspage)
692 {
693 int inuse, objs_per_zspage;
694 enum fullness_group fg;
695
696 inuse = get_zspage_inuse(zspage);
697 objs_per_zspage = class->objs_per_zspage;
698
699 if (inuse == 0)
700 fg = ZS_EMPTY;
701 else if (inuse == objs_per_zspage)
702 fg = ZS_FULL;
703 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
704 fg = ZS_ALMOST_EMPTY;
705 else
706 fg = ZS_ALMOST_FULL;
707
708 return fg;
709 }
710
711 /*
712 * Each size class maintains various freelists and zspages are assigned
713 * to one of these freelists based on the number of live objects they
714 * have. This functions inserts the given zspage into the freelist
715 * identified by <class, fullness_group>.
716 */
717 static void insert_zspage(struct size_class *class,
718 struct zspage *zspage,
719 enum fullness_group fullness)
720 {
721 struct zspage *head;
722
723 class_stat_inc(class, fullness, 1);
724 head = list_first_entry_or_null(&class->fullness_list[fullness],
725 struct zspage, list);
726 /*
727 * We want to see more ZS_FULL pages and less almost empty/full.
728 * Put pages with higher ->inuse first.
729 */
730 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
731 list_add(&zspage->list, &head->list);
732 else
733 list_add(&zspage->list, &class->fullness_list[fullness]);
734 }
735
736 /*
737 * This function removes the given zspage from the freelist identified
738 * by <class, fullness_group>.
739 */
740 static void remove_zspage(struct size_class *class,
741 struct zspage *zspage,
742 enum fullness_group fullness)
743 {
744 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
745
746 list_del_init(&zspage->list);
747 class_stat_dec(class, fullness, 1);
748 }
749
750 /*
751 * Each size class maintains zspages in different fullness groups depending
752 * on the number of live objects they contain. When allocating or freeing
753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
754 * to ALMOST_EMPTY when freeing an object. This function checks if such
755 * a status change has occurred for the given page and accordingly moves the
756 * page from the freelist of the old fullness group to that of the new
757 * fullness group.
758 */
759 static enum fullness_group fix_fullness_group(struct size_class *class,
760 struct zspage *zspage)
761 {
762 int class_idx;
763 enum fullness_group currfg, newfg;
764
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
767 if (newfg == currfg)
768 goto out;
769
770 remove_zspage(class, zspage, currfg);
771 insert_zspage(class, zspage, newfg);
772 set_zspage_mapping(zspage, class_idx, newfg);
773 out:
774 return newfg;
775 }
776
777 /*
778 * We have to decide on how many pages to link together
779 * to form a zspage for each size class. This is important
780 * to reduce wastage due to unusable space left at end of
781 * each zspage which is given as:
782 * wastage = Zp % class_size
783 * usage = Zp - wastage
784 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
785 *
786 * For example, for size class of 3/8 * PAGE_SIZE, we should
787 * link together 3 PAGE_SIZE sized pages to form a zspage
788 * since then we can perfectly fit in 8 such objects.
789 */
790 static int get_pages_per_zspage(int class_size)
791 {
792 int i, max_usedpc = 0;
793 /* zspage order which gives maximum used size per KB */
794 int max_usedpc_order = 1;
795
796 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
797 int zspage_size;
798 int waste, usedpc;
799
800 zspage_size = i * PAGE_SIZE;
801 waste = zspage_size % class_size;
802 usedpc = (zspage_size - waste) * 100 / zspage_size;
803
804 if (usedpc > max_usedpc) {
805 max_usedpc = usedpc;
806 max_usedpc_order = i;
807 }
808 }
809
810 return max_usedpc_order;
811 }
812
813 static struct zspage *get_zspage(struct page *page)
814 {
815 struct zspage *zspage = (struct zspage *)page_private(page);
816
817 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
818 return zspage;
819 }
820
821 static struct page *get_next_page(struct page *page)
822 {
823 struct zspage *zspage = get_zspage(page);
824
825 if (unlikely(ZsHugePage(zspage)))
826 return NULL;
827
828 return (struct page *)page->index;
829 }
830
831 /**
832 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
833 * @obj: the encoded object value
834 * @page: page object resides in zspage
835 * @obj_idx: object index
836 */
837 static void obj_to_location(unsigned long obj, struct page **page,
838 unsigned int *obj_idx)
839 {
840 obj >>= OBJ_TAG_BITS;
841 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 *obj_idx = (obj & OBJ_INDEX_MASK);
843 }
844
845 static void obj_to_page(unsigned long obj, struct page **page)
846 {
847 obj >>= OBJ_TAG_BITS;
848 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
849 }
850
851 /**
852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
853 * @page: page object resides in zspage
854 * @obj_idx: object index
855 */
856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
857 {
858 unsigned long obj;
859
860 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
861 obj |= obj_idx & OBJ_INDEX_MASK;
862 obj <<= OBJ_TAG_BITS;
863
864 return obj;
865 }
866
867 static unsigned long handle_to_obj(unsigned long handle)
868 {
869 return *(unsigned long *)handle;
870 }
871
872 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
873 {
874 unsigned long handle;
875 struct zspage *zspage = get_zspage(page);
876
877 if (unlikely(ZsHugePage(zspage))) {
878 VM_BUG_ON_PAGE(!is_first_page(page), page);
879 handle = page->index;
880 } else
881 handle = *(unsigned long *)obj;
882
883 if (!(handle & OBJ_ALLOCATED_TAG))
884 return false;
885
886 *phandle = handle & ~OBJ_ALLOCATED_TAG;
887 return true;
888 }
889
890 static void reset_page(struct page *page)
891 {
892 __ClearPageMovable(page);
893 ClearPagePrivate(page);
894 set_page_private(page, 0);
895 page_mapcount_reset(page);
896 page->index = 0;
897 }
898
899 static int trylock_zspage(struct zspage *zspage)
900 {
901 struct page *cursor, *fail;
902
903 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
904 get_next_page(cursor)) {
905 if (!trylock_page(cursor)) {
906 fail = cursor;
907 goto unlock;
908 }
909 }
910
911 return 1;
912 unlock:
913 for (cursor = get_first_page(zspage); cursor != fail; cursor =
914 get_next_page(cursor))
915 unlock_page(cursor);
916
917 return 0;
918 }
919
920 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
921 struct zspage *zspage)
922 {
923 struct page *page, *next;
924 enum fullness_group fg;
925 unsigned int class_idx;
926
927 get_zspage_mapping(zspage, &class_idx, &fg);
928
929 assert_spin_locked(&class->lock);
930
931 VM_BUG_ON(get_zspage_inuse(zspage));
932 VM_BUG_ON(fg != ZS_EMPTY);
933
934 next = page = get_first_page(zspage);
935 do {
936 VM_BUG_ON_PAGE(!PageLocked(page), page);
937 next = get_next_page(page);
938 reset_page(page);
939 unlock_page(page);
940 dec_zone_page_state(page, NR_ZSPAGES);
941 put_page(page);
942 page = next;
943 } while (page != NULL);
944
945 cache_free_zspage(pool, zspage);
946
947 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
948 atomic_long_sub(class->pages_per_zspage,
949 &pool->pages_allocated);
950 }
951
952 static void free_zspage(struct zs_pool *pool, struct size_class *class,
953 struct zspage *zspage)
954 {
955 VM_BUG_ON(get_zspage_inuse(zspage));
956 VM_BUG_ON(list_empty(&zspage->list));
957
958 /*
959 * Since zs_free couldn't be sleepable, this function cannot call
960 * lock_page. The page locks trylock_zspage got will be released
961 * by __free_zspage.
962 */
963 if (!trylock_zspage(zspage)) {
964 kick_deferred_free(pool);
965 return;
966 }
967
968 remove_zspage(class, zspage, ZS_EMPTY);
969 __free_zspage(pool, class, zspage);
970 }
971
972 /* Initialize a newly allocated zspage */
973 static void init_zspage(struct size_class *class, struct zspage *zspage)
974 {
975 unsigned int freeobj = 1;
976 unsigned long off = 0;
977 struct page *page = get_first_page(zspage);
978
979 while (page) {
980 struct page *next_page;
981 struct link_free *link;
982 void *vaddr;
983
984 set_first_obj_offset(page, off);
985
986 vaddr = kmap_atomic(page);
987 link = (struct link_free *)vaddr + off / sizeof(*link);
988
989 while ((off += class->size) < PAGE_SIZE) {
990 link->next = freeobj++ << OBJ_TAG_BITS;
991 link += class->size / sizeof(*link);
992 }
993
994 /*
995 * We now come to the last (full or partial) object on this
996 * page, which must point to the first object on the next
997 * page (if present)
998 */
999 next_page = get_next_page(page);
1000 if (next_page) {
1001 link->next = freeobj++ << OBJ_TAG_BITS;
1002 } else {
1003 /*
1004 * Reset OBJ_TAG_BITS bit to last link to tell
1005 * whether it's allocated object or not.
1006 */
1007 link->next = -1UL << OBJ_TAG_BITS;
1008 }
1009 kunmap_atomic(vaddr);
1010 page = next_page;
1011 off %= PAGE_SIZE;
1012 }
1013
1014 set_freeobj(zspage, 0);
1015 }
1016
1017 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018 struct page *pages[])
1019 {
1020 int i;
1021 struct page *page;
1022 struct page *prev_page = NULL;
1023 int nr_pages = class->pages_per_zspage;
1024
1025 /*
1026 * Allocate individual pages and link them together as:
1027 * 1. all pages are linked together using page->index
1028 * 2. each sub-page point to zspage using page->private
1029 *
1030 * we set PG_private to identify the first page (i.e. no other sub-page
1031 * has this flag set).
1032 */
1033 for (i = 0; i < nr_pages; i++) {
1034 page = pages[i];
1035 set_page_private(page, (unsigned long)zspage);
1036 page->index = 0;
1037 if (i == 0) {
1038 zspage->first_page = page;
1039 SetPagePrivate(page);
1040 if (unlikely(class->objs_per_zspage == 1 &&
1041 class->pages_per_zspage == 1))
1042 SetZsHugePage(zspage);
1043 } else {
1044 prev_page->index = (unsigned long)page;
1045 }
1046 prev_page = page;
1047 }
1048 }
1049
1050 /*
1051 * Allocate a zspage for the given size class
1052 */
1053 static struct zspage *alloc_zspage(struct zs_pool *pool,
1054 struct size_class *class,
1055 gfp_t gfp)
1056 {
1057 int i;
1058 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1059 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1060
1061 if (!zspage)
1062 return NULL;
1063
1064 zspage->magic = ZSPAGE_MAGIC;
1065 migrate_lock_init(zspage);
1066
1067 for (i = 0; i < class->pages_per_zspage; i++) {
1068 struct page *page;
1069
1070 page = alloc_page(gfp);
1071 if (!page) {
1072 while (--i >= 0) {
1073 dec_zone_page_state(pages[i], NR_ZSPAGES);
1074 __free_page(pages[i]);
1075 }
1076 cache_free_zspage(pool, zspage);
1077 return NULL;
1078 }
1079
1080 inc_zone_page_state(page, NR_ZSPAGES);
1081 pages[i] = page;
1082 }
1083
1084 create_page_chain(class, zspage, pages);
1085 init_zspage(class, zspage);
1086
1087 return zspage;
1088 }
1089
1090 static struct zspage *find_get_zspage(struct size_class *class)
1091 {
1092 int i;
1093 struct zspage *zspage;
1094
1095 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1096 zspage = list_first_entry_or_null(&class->fullness_list[i],
1097 struct zspage, list);
1098 if (zspage)
1099 break;
1100 }
1101
1102 return zspage;
1103 }
1104
1105 static inline int __zs_cpu_up(struct mapping_area *area)
1106 {
1107 /*
1108 * Make sure we don't leak memory if a cpu UP notification
1109 * and zs_init() race and both call zs_cpu_up() on the same cpu
1110 */
1111 if (area->vm_buf)
1112 return 0;
1113 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1114 if (!area->vm_buf)
1115 return -ENOMEM;
1116 return 0;
1117 }
1118
1119 static inline void __zs_cpu_down(struct mapping_area *area)
1120 {
1121 kfree(area->vm_buf);
1122 area->vm_buf = NULL;
1123 }
1124
1125 static void *__zs_map_object(struct mapping_area *area,
1126 struct page *pages[2], int off, int size)
1127 {
1128 int sizes[2];
1129 void *addr;
1130 char *buf = area->vm_buf;
1131
1132 /* disable page faults to match kmap_atomic() return conditions */
1133 pagefault_disable();
1134
1135 /* no read fastpath */
1136 if (area->vm_mm == ZS_MM_WO)
1137 goto out;
1138
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1141
1142 /* copy object to per-cpu buffer */
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(buf, addr + off, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(buf + sizes[0], addr, sizes[1]);
1148 kunmap_atomic(addr);
1149 out:
1150 return area->vm_buf;
1151 }
1152
1153 static void __zs_unmap_object(struct mapping_area *area,
1154 struct page *pages[2], int off, int size)
1155 {
1156 int sizes[2];
1157 void *addr;
1158 char *buf;
1159
1160 /* no write fastpath */
1161 if (area->vm_mm == ZS_MM_RO)
1162 goto out;
1163
1164 buf = area->vm_buf;
1165 buf = buf + ZS_HANDLE_SIZE;
1166 size -= ZS_HANDLE_SIZE;
1167 off += ZS_HANDLE_SIZE;
1168
1169 sizes[0] = PAGE_SIZE - off;
1170 sizes[1] = size - sizes[0];
1171
1172 /* copy per-cpu buffer to object */
1173 addr = kmap_atomic(pages[0]);
1174 memcpy(addr + off, buf, sizes[0]);
1175 kunmap_atomic(addr);
1176 addr = kmap_atomic(pages[1]);
1177 memcpy(addr, buf + sizes[0], sizes[1]);
1178 kunmap_atomic(addr);
1179
1180 out:
1181 /* enable page faults to match kunmap_atomic() return conditions */
1182 pagefault_enable();
1183 }
1184
1185 static int zs_cpu_prepare(unsigned int cpu)
1186 {
1187 struct mapping_area *area;
1188
1189 area = &per_cpu(zs_map_area, cpu);
1190 return __zs_cpu_up(area);
1191 }
1192
1193 static int zs_cpu_dead(unsigned int cpu)
1194 {
1195 struct mapping_area *area;
1196
1197 area = &per_cpu(zs_map_area, cpu);
1198 __zs_cpu_down(area);
1199 return 0;
1200 }
1201
1202 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203 int objs_per_zspage)
1204 {
1205 if (prev->pages_per_zspage == pages_per_zspage &&
1206 prev->objs_per_zspage == objs_per_zspage)
1207 return true;
1208
1209 return false;
1210 }
1211
1212 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1213 {
1214 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1215 }
1216
1217 unsigned long zs_get_total_pages(struct zs_pool *pool)
1218 {
1219 return atomic_long_read(&pool->pages_allocated);
1220 }
1221 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1222
1223 /**
1224 * zs_map_object - get address of allocated object from handle.
1225 * @pool: pool from which the object was allocated
1226 * @handle: handle returned from zs_malloc
1227 * @mm: mapping mode to use
1228 *
1229 * Before using an object allocated from zs_malloc, it must be mapped using
1230 * this function. When done with the object, it must be unmapped using
1231 * zs_unmap_object.
1232 *
1233 * Only one object can be mapped per cpu at a time. There is no protection
1234 * against nested mappings.
1235 *
1236 * This function returns with preemption and page faults disabled.
1237 */
1238 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239 enum zs_mapmode mm)
1240 {
1241 struct zspage *zspage;
1242 struct page *page;
1243 unsigned long obj, off;
1244 unsigned int obj_idx;
1245
1246 struct size_class *class;
1247 struct mapping_area *area;
1248 struct page *pages[2];
1249 void *ret;
1250
1251 /*
1252 * Because we use per-cpu mapping areas shared among the
1253 * pools/users, we can't allow mapping in interrupt context
1254 * because it can corrupt another users mappings.
1255 */
1256 BUG_ON(in_interrupt());
1257
1258 /* It guarantees it can get zspage from handle safely */
1259 read_lock(&pool->migrate_lock);
1260 obj = handle_to_obj(handle);
1261 obj_to_location(obj, &page, &obj_idx);
1262 zspage = get_zspage(page);
1263
1264 /*
1265 * migration cannot move any zpages in this zspage. Here, class->lock
1266 * is too heavy since callers would take some time until they calls
1267 * zs_unmap_object API so delegate the locking from class to zspage
1268 * which is smaller granularity.
1269 */
1270 migrate_read_lock(zspage);
1271 read_unlock(&pool->migrate_lock);
1272
1273 class = zspage_class(pool, zspage);
1274 off = (class->size * obj_idx) & ~PAGE_MASK;
1275
1276 local_lock(&zs_map_area.lock);
1277 area = this_cpu_ptr(&zs_map_area);
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280 /* this object is contained entirely within a page */
1281 area->vm_addr = kmap_atomic(page);
1282 ret = area->vm_addr + off;
1283 goto out;
1284 }
1285
1286 /* this object spans two pages */
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
1290
1291 ret = __zs_map_object(area, pages, off, class->size);
1292 out:
1293 if (likely(!ZsHugePage(zspage)))
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301 {
1302 struct zspage *zspage;
1303 struct page *page;
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
1306
1307 struct size_class *class;
1308 struct mapping_area *area;
1309
1310 obj = handle_to_obj(handle);
1311 obj_to_location(obj, &page, &obj_idx);
1312 zspage = get_zspage(page);
1313 class = zspage_class(pool, zspage);
1314 off = (class->size * obj_idx) & ~PAGE_MASK;
1315
1316 area = this_cpu_ptr(&zs_map_area);
1317 if (off + class->size <= PAGE_SIZE)
1318 kunmap_atomic(area->vm_addr);
1319 else {
1320 struct page *pages[2];
1321
1322 pages[0] = page;
1323 pages[1] = get_next_page(page);
1324 BUG_ON(!pages[1]);
1325
1326 __zs_unmap_object(area, pages, off, class->size);
1327 }
1328 local_unlock(&zs_map_area.lock);
1329
1330 migrate_read_unlock(zspage);
1331 }
1332 EXPORT_SYMBOL_GPL(zs_unmap_object);
1333
1334 /**
1335 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1336 * zsmalloc &size_class.
1337 * @pool: zsmalloc pool to use
1338 *
1339 * The function returns the size of the first huge class - any object of equal
1340 * or bigger size will be stored in zspage consisting of a single physical
1341 * page.
1342 *
1343 * Context: Any context.
1344 *
1345 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1346 */
1347 size_t zs_huge_class_size(struct zs_pool *pool)
1348 {
1349 return huge_class_size;
1350 }
1351 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1352
1353 static unsigned long obj_malloc(struct zs_pool *pool,
1354 struct zspage *zspage, unsigned long handle)
1355 {
1356 int i, nr_page, offset;
1357 unsigned long obj;
1358 struct link_free *link;
1359 struct size_class *class;
1360
1361 struct page *m_page;
1362 unsigned long m_offset;
1363 void *vaddr;
1364
1365 class = pool->size_class[zspage->class];
1366 handle |= OBJ_ALLOCATED_TAG;
1367 obj = get_freeobj(zspage);
1368
1369 offset = obj * class->size;
1370 nr_page = offset >> PAGE_SHIFT;
1371 m_offset = offset & ~PAGE_MASK;
1372 m_page = get_first_page(zspage);
1373
1374 for (i = 0; i < nr_page; i++)
1375 m_page = get_next_page(m_page);
1376
1377 vaddr = kmap_atomic(m_page);
1378 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1379 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1380 if (likely(!ZsHugePage(zspage)))
1381 /* record handle in the header of allocated chunk */
1382 link->handle = handle;
1383 else
1384 /* record handle to page->index */
1385 zspage->first_page->index = handle;
1386
1387 kunmap_atomic(vaddr);
1388 mod_zspage_inuse(zspage, 1);
1389
1390 obj = location_to_obj(m_page, obj);
1391
1392 return obj;
1393 }
1394
1395
1396 /**
1397 * zs_malloc - Allocate block of given size from pool.
1398 * @pool: pool to allocate from
1399 * @size: size of block to allocate
1400 * @gfp: gfp flags when allocating object
1401 *
1402 * On success, handle to the allocated object is returned,
1403 * otherwise 0.
1404 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1405 */
1406 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1407 {
1408 unsigned long handle, obj;
1409 struct size_class *class;
1410 enum fullness_group newfg;
1411 struct zspage *zspage;
1412
1413 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1414 return 0;
1415
1416 handle = cache_alloc_handle(pool, gfp);
1417 if (!handle)
1418 return 0;
1419
1420 /* extra space in chunk to keep the handle */
1421 size += ZS_HANDLE_SIZE;
1422 class = pool->size_class[get_size_class_index(size)];
1423
1424 /* class->lock effectively protects the zpage migration */
1425 spin_lock(&class->lock);
1426 zspage = find_get_zspage(class);
1427 if (likely(zspage)) {
1428 obj = obj_malloc(pool, zspage, handle);
1429 /* Now move the zspage to another fullness group, if required */
1430 fix_fullness_group(class, zspage);
1431 record_obj(handle, obj);
1432 class_stat_inc(class, OBJ_USED, 1);
1433 spin_unlock(&class->lock);
1434
1435 return handle;
1436 }
1437
1438 spin_unlock(&class->lock);
1439
1440 zspage = alloc_zspage(pool, class, gfp);
1441 if (!zspage) {
1442 cache_free_handle(pool, handle);
1443 return 0;
1444 }
1445
1446 spin_lock(&class->lock);
1447 obj = obj_malloc(pool, zspage, handle);
1448 newfg = get_fullness_group(class, zspage);
1449 insert_zspage(class, zspage, newfg);
1450 set_zspage_mapping(zspage, class->index, newfg);
1451 record_obj(handle, obj);
1452 atomic_long_add(class->pages_per_zspage,
1453 &pool->pages_allocated);
1454 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1455 class_stat_inc(class, OBJ_USED, 1);
1456
1457 /* We completely set up zspage so mark them as movable */
1458 SetZsPageMovable(pool, zspage);
1459 spin_unlock(&class->lock);
1460
1461 return handle;
1462 }
1463 EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465 static void obj_free(int class_size, unsigned long obj)
1466 {
1467 struct link_free *link;
1468 struct zspage *zspage;
1469 struct page *f_page;
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
1472 void *vaddr;
1473
1474 obj_to_location(obj, &f_page, &f_objidx);
1475 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1476 zspage = get_zspage(f_page);
1477
1478 vaddr = kmap_atomic(f_page);
1479
1480 /* Insert this object in containing zspage's freelist */
1481 link = (struct link_free *)(vaddr + f_offset);
1482 if (likely(!ZsHugePage(zspage)))
1483 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484 else
1485 f_page->index = 0;
1486 kunmap_atomic(vaddr);
1487 set_freeobj(zspage, f_objidx);
1488 mod_zspage_inuse(zspage, -1);
1489 }
1490
1491 void zs_free(struct zs_pool *pool, unsigned long handle)
1492 {
1493 struct zspage *zspage;
1494 struct page *f_page;
1495 unsigned long obj;
1496 struct size_class *class;
1497 enum fullness_group fullness;
1498
1499 if (unlikely(!handle))
1500 return;
1501
1502 /*
1503 * The pool->migrate_lock protects the race with zpage's migration
1504 * so it's safe to get the page from handle.
1505 */
1506 read_lock(&pool->migrate_lock);
1507 obj = handle_to_obj(handle);
1508 obj_to_page(obj, &f_page);
1509 zspage = get_zspage(f_page);
1510 class = zspage_class(pool, zspage);
1511 spin_lock(&class->lock);
1512 read_unlock(&pool->migrate_lock);
1513
1514 obj_free(class->size, obj);
1515 class_stat_dec(class, OBJ_USED, 1);
1516 fullness = fix_fullness_group(class, zspage);
1517 if (fullness != ZS_EMPTY)
1518 goto out;
1519
1520 free_zspage(pool, class, zspage);
1521 out:
1522 spin_unlock(&class->lock);
1523 cache_free_handle(pool, handle);
1524 }
1525 EXPORT_SYMBOL_GPL(zs_free);
1526
1527 static void zs_object_copy(struct size_class *class, unsigned long dst,
1528 unsigned long src)
1529 {
1530 struct page *s_page, *d_page;
1531 unsigned int s_objidx, d_objidx;
1532 unsigned long s_off, d_off;
1533 void *s_addr, *d_addr;
1534 int s_size, d_size, size;
1535 int written = 0;
1536
1537 s_size = d_size = class->size;
1538
1539 obj_to_location(src, &s_page, &s_objidx);
1540 obj_to_location(dst, &d_page, &d_objidx);
1541
1542 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1544
1545 if (s_off + class->size > PAGE_SIZE)
1546 s_size = PAGE_SIZE - s_off;
1547
1548 if (d_off + class->size > PAGE_SIZE)
1549 d_size = PAGE_SIZE - d_off;
1550
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553
1554 while (1) {
1555 size = min(s_size, d_size);
1556 memcpy(d_addr + d_off, s_addr + s_off, size);
1557 written += size;
1558
1559 if (written == class->size)
1560 break;
1561
1562 s_off += size;
1563 s_size -= size;
1564 d_off += size;
1565 d_size -= size;
1566
1567 if (s_off >= PAGE_SIZE) {
1568 kunmap_atomic(d_addr);
1569 kunmap_atomic(s_addr);
1570 s_page = get_next_page(s_page);
1571 s_addr = kmap_atomic(s_page);
1572 d_addr = kmap_atomic(d_page);
1573 s_size = class->size - written;
1574 s_off = 0;
1575 }
1576
1577 if (d_off >= PAGE_SIZE) {
1578 kunmap_atomic(d_addr);
1579 d_page = get_next_page(d_page);
1580 d_addr = kmap_atomic(d_page);
1581 d_size = class->size - written;
1582 d_off = 0;
1583 }
1584 }
1585
1586 kunmap_atomic(d_addr);
1587 kunmap_atomic(s_addr);
1588 }
1589
1590 /*
1591 * Find alloced object in zspage from index object and
1592 * return handle.
1593 */
1594 static unsigned long find_alloced_obj(struct size_class *class,
1595 struct page *page, int *obj_idx)
1596 {
1597 int offset = 0;
1598 int index = *obj_idx;
1599 unsigned long handle = 0;
1600 void *addr = kmap_atomic(page);
1601
1602 offset = get_first_obj_offset(page);
1603 offset += class->size * index;
1604
1605 while (offset < PAGE_SIZE) {
1606 if (obj_allocated(page, addr + offset, &handle))
1607 break;
1608
1609 offset += class->size;
1610 index++;
1611 }
1612
1613 kunmap_atomic(addr);
1614
1615 *obj_idx = index;
1616
1617 return handle;
1618 }
1619
1620 struct zs_compact_control {
1621 /* Source spage for migration which could be a subpage of zspage */
1622 struct page *s_page;
1623 /* Destination page for migration which should be a first page
1624 * of zspage. */
1625 struct page *d_page;
1626 /* Starting object index within @s_page which used for live object
1627 * in the subpage. */
1628 int obj_idx;
1629 };
1630
1631 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632 struct zs_compact_control *cc)
1633 {
1634 unsigned long used_obj, free_obj;
1635 unsigned long handle;
1636 struct page *s_page = cc->s_page;
1637 struct page *d_page = cc->d_page;
1638 int obj_idx = cc->obj_idx;
1639 int ret = 0;
1640
1641 while (1) {
1642 handle = find_alloced_obj(class, s_page, &obj_idx);
1643 if (!handle) {
1644 s_page = get_next_page(s_page);
1645 if (!s_page)
1646 break;
1647 obj_idx = 0;
1648 continue;
1649 }
1650
1651 /* Stop if there is no more space */
1652 if (zspage_full(class, get_zspage(d_page))) {
1653 ret = -ENOMEM;
1654 break;
1655 }
1656
1657 used_obj = handle_to_obj(handle);
1658 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1659 zs_object_copy(class, free_obj, used_obj);
1660 obj_idx++;
1661 record_obj(handle, free_obj);
1662 obj_free(class->size, used_obj);
1663 }
1664
1665 /* Remember last position in this iteration */
1666 cc->s_page = s_page;
1667 cc->obj_idx = obj_idx;
1668
1669 return ret;
1670 }
1671
1672 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1673 {
1674 int i;
1675 struct zspage *zspage;
1676 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1677
1678 if (!source) {
1679 fg[0] = ZS_ALMOST_FULL;
1680 fg[1] = ZS_ALMOST_EMPTY;
1681 }
1682
1683 for (i = 0; i < 2; i++) {
1684 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685 struct zspage, list);
1686 if (zspage) {
1687 remove_zspage(class, zspage, fg[i]);
1688 return zspage;
1689 }
1690 }
1691
1692 return zspage;
1693 }
1694
1695 /*
1696 * putback_zspage - add @zspage into right class's fullness list
1697 * @class: destination class
1698 * @zspage: target page
1699 *
1700 * Return @zspage's fullness_group
1701 */
1702 static enum fullness_group putback_zspage(struct size_class *class,
1703 struct zspage *zspage)
1704 {
1705 enum fullness_group fullness;
1706
1707 fullness = get_fullness_group(class, zspage);
1708 insert_zspage(class, zspage, fullness);
1709 set_zspage_mapping(zspage, class->index, fullness);
1710
1711 return fullness;
1712 }
1713
1714 #ifdef CONFIG_COMPACTION
1715 /*
1716 * To prevent zspage destroy during migration, zspage freeing should
1717 * hold locks of all pages in the zspage.
1718 */
1719 static void lock_zspage(struct zspage *zspage)
1720 {
1721 struct page *page = get_first_page(zspage);
1722
1723 do {
1724 lock_page(page);
1725 } while ((page = get_next_page(page)) != NULL);
1726 }
1727
1728 static int zs_init_fs_context(struct fs_context *fc)
1729 {
1730 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1731 }
1732
1733 static struct file_system_type zsmalloc_fs = {
1734 .name = "zsmalloc",
1735 .init_fs_context = zs_init_fs_context,
1736 .kill_sb = kill_anon_super,
1737 };
1738
1739 static int zsmalloc_mount(void)
1740 {
1741 int ret = 0;
1742
1743 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1744 if (IS_ERR(zsmalloc_mnt))
1745 ret = PTR_ERR(zsmalloc_mnt);
1746
1747 return ret;
1748 }
1749
1750 static void zsmalloc_unmount(void)
1751 {
1752 kern_unmount(zsmalloc_mnt);
1753 }
1754
1755 static void migrate_lock_init(struct zspage *zspage)
1756 {
1757 rwlock_init(&zspage->lock);
1758 }
1759
1760 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1761 {
1762 read_lock(&zspage->lock);
1763 }
1764
1765 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1766 {
1767 read_unlock(&zspage->lock);
1768 }
1769
1770 static void migrate_write_lock(struct zspage *zspage)
1771 {
1772 write_lock(&zspage->lock);
1773 }
1774
1775 static void migrate_write_lock_nested(struct zspage *zspage)
1776 {
1777 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1778 }
1779
1780 static void migrate_write_unlock(struct zspage *zspage)
1781 {
1782 write_unlock(&zspage->lock);
1783 }
1784
1785 /* Number of isolated subpage for *page migration* in this zspage */
1786 static void inc_zspage_isolation(struct zspage *zspage)
1787 {
1788 zspage->isolated++;
1789 }
1790
1791 static void dec_zspage_isolation(struct zspage *zspage)
1792 {
1793 VM_BUG_ON(zspage->isolated == 0);
1794 zspage->isolated--;
1795 }
1796
1797 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1798 struct page *newpage, struct page *oldpage)
1799 {
1800 struct page *page;
1801 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1802 int idx = 0;
1803
1804 page = get_first_page(zspage);
1805 do {
1806 if (page == oldpage)
1807 pages[idx] = newpage;
1808 else
1809 pages[idx] = page;
1810 idx++;
1811 } while ((page = get_next_page(page)) != NULL);
1812
1813 create_page_chain(class, zspage, pages);
1814 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1815 if (unlikely(ZsHugePage(zspage)))
1816 newpage->index = oldpage->index;
1817 __SetPageMovable(newpage, page_mapping(oldpage));
1818 }
1819
1820 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1821 {
1822 struct zspage *zspage;
1823
1824 /*
1825 * Page is locked so zspage couldn't be destroyed. For detail, look at
1826 * lock_zspage in free_zspage.
1827 */
1828 VM_BUG_ON_PAGE(!PageMovable(page), page);
1829 VM_BUG_ON_PAGE(PageIsolated(page), page);
1830
1831 zspage = get_zspage(page);
1832 migrate_write_lock(zspage);
1833 inc_zspage_isolation(zspage);
1834 migrate_write_unlock(zspage);
1835
1836 return true;
1837 }
1838
1839 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1840 struct page *page, enum migrate_mode mode)
1841 {
1842 struct zs_pool *pool;
1843 struct size_class *class;
1844 struct zspage *zspage;
1845 struct page *dummy;
1846 void *s_addr, *d_addr, *addr;
1847 int offset;
1848 unsigned long handle;
1849 unsigned long old_obj, new_obj;
1850 unsigned int obj_idx;
1851
1852 /*
1853 * We cannot support the _NO_COPY case here, because copy needs to
1854 * happen under the zs lock, which does not work with
1855 * MIGRATE_SYNC_NO_COPY workflow.
1856 */
1857 if (mode == MIGRATE_SYNC_NO_COPY)
1858 return -EINVAL;
1859
1860 VM_BUG_ON_PAGE(!PageMovable(page), page);
1861 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1862
1863 pool = mapping->private_data;
1864
1865 /*
1866 * The pool migrate_lock protects the race between zpage migration
1867 * and zs_free.
1868 */
1869 write_lock(&pool->migrate_lock);
1870 zspage = get_zspage(page);
1871 class = zspage_class(pool, zspage);
1872
1873 /*
1874 * the class lock protects zpage alloc/free in the zspage.
1875 */
1876 spin_lock(&class->lock);
1877 /* the migrate_write_lock protects zpage access via zs_map_object */
1878 migrate_write_lock(zspage);
1879
1880 offset = get_first_obj_offset(page);
1881 s_addr = kmap_atomic(page);
1882
1883 /*
1884 * Here, any user cannot access all objects in the zspage so let's move.
1885 */
1886 d_addr = kmap_atomic(newpage);
1887 memcpy(d_addr, s_addr, PAGE_SIZE);
1888 kunmap_atomic(d_addr);
1889
1890 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1891 addr += class->size) {
1892 if (obj_allocated(page, addr, &handle)) {
1893
1894 old_obj = handle_to_obj(handle);
1895 obj_to_location(old_obj, &dummy, &obj_idx);
1896 new_obj = (unsigned long)location_to_obj(newpage,
1897 obj_idx);
1898 record_obj(handle, new_obj);
1899 }
1900 }
1901 kunmap_atomic(s_addr);
1902
1903 replace_sub_page(class, zspage, newpage, page);
1904 /*
1905 * Since we complete the data copy and set up new zspage structure,
1906 * it's okay to release migration_lock.
1907 */
1908 write_unlock(&pool->migrate_lock);
1909 spin_unlock(&class->lock);
1910 dec_zspage_isolation(zspage);
1911 migrate_write_unlock(zspage);
1912
1913 get_page(newpage);
1914 if (page_zone(newpage) != page_zone(page)) {
1915 dec_zone_page_state(page, NR_ZSPAGES);
1916 inc_zone_page_state(newpage, NR_ZSPAGES);
1917 }
1918
1919 reset_page(page);
1920 put_page(page);
1921
1922 return MIGRATEPAGE_SUCCESS;
1923 }
1924
1925 static void zs_page_putback(struct page *page)
1926 {
1927 struct zspage *zspage;
1928
1929 VM_BUG_ON_PAGE(!PageMovable(page), page);
1930 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1931
1932 zspage = get_zspage(page);
1933 migrate_write_lock(zspage);
1934 dec_zspage_isolation(zspage);
1935 migrate_write_unlock(zspage);
1936 }
1937
1938 static const struct address_space_operations zsmalloc_aops = {
1939 .isolate_page = zs_page_isolate,
1940 .migratepage = zs_page_migrate,
1941 .putback_page = zs_page_putback,
1942 };
1943
1944 static int zs_register_migration(struct zs_pool *pool)
1945 {
1946 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1947 if (IS_ERR(pool->inode)) {
1948 pool->inode = NULL;
1949 return 1;
1950 }
1951
1952 pool->inode->i_mapping->private_data = pool;
1953 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1954 return 0;
1955 }
1956
1957 static void zs_unregister_migration(struct zs_pool *pool)
1958 {
1959 flush_work(&pool->free_work);
1960 iput(pool->inode);
1961 }
1962
1963 /*
1964 * Caller should hold page_lock of all pages in the zspage
1965 * In here, we cannot use zspage meta data.
1966 */
1967 static void async_free_zspage(struct work_struct *work)
1968 {
1969 int i;
1970 struct size_class *class;
1971 unsigned int class_idx;
1972 enum fullness_group fullness;
1973 struct zspage *zspage, *tmp;
1974 LIST_HEAD(free_pages);
1975 struct zs_pool *pool = container_of(work, struct zs_pool,
1976 free_work);
1977
1978 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1979 class = pool->size_class[i];
1980 if (class->index != i)
1981 continue;
1982
1983 spin_lock(&class->lock);
1984 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1985 spin_unlock(&class->lock);
1986 }
1987
1988 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1989 list_del(&zspage->list);
1990 lock_zspage(zspage);
1991
1992 get_zspage_mapping(zspage, &class_idx, &fullness);
1993 VM_BUG_ON(fullness != ZS_EMPTY);
1994 class = pool->size_class[class_idx];
1995 spin_lock(&class->lock);
1996 __free_zspage(pool, class, zspage);
1997 spin_unlock(&class->lock);
1998 }
1999 };
2000
2001 static void kick_deferred_free(struct zs_pool *pool)
2002 {
2003 schedule_work(&pool->free_work);
2004 }
2005
2006 static void init_deferred_free(struct zs_pool *pool)
2007 {
2008 INIT_WORK(&pool->free_work, async_free_zspage);
2009 }
2010
2011 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2012 {
2013 struct page *page = get_first_page(zspage);
2014
2015 do {
2016 WARN_ON(!trylock_page(page));
2017 __SetPageMovable(page, pool->inode->i_mapping);
2018 unlock_page(page);
2019 } while ((page = get_next_page(page)) != NULL);
2020 }
2021 #endif
2022
2023 /*
2024 *
2025 * Based on the number of unused allocated objects calculate
2026 * and return the number of pages that we can free.
2027 */
2028 static unsigned long zs_can_compact(struct size_class *class)
2029 {
2030 unsigned long obj_wasted;
2031 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2032 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2033
2034 if (obj_allocated <= obj_used)
2035 return 0;
2036
2037 obj_wasted = obj_allocated - obj_used;
2038 obj_wasted /= class->objs_per_zspage;
2039
2040 return obj_wasted * class->pages_per_zspage;
2041 }
2042
2043 static unsigned long __zs_compact(struct zs_pool *pool,
2044 struct size_class *class)
2045 {
2046 struct zs_compact_control cc;
2047 struct zspage *src_zspage;
2048 struct zspage *dst_zspage = NULL;
2049 unsigned long pages_freed = 0;
2050
2051 /* protect the race between zpage migration and zs_free */
2052 write_lock(&pool->migrate_lock);
2053 /* protect zpage allocation/free */
2054 spin_lock(&class->lock);
2055 while ((src_zspage = isolate_zspage(class, true))) {
2056 /* protect someone accessing the zspage(i.e., zs_map_object) */
2057 migrate_write_lock(src_zspage);
2058
2059 if (!zs_can_compact(class))
2060 break;
2061
2062 cc.obj_idx = 0;
2063 cc.s_page = get_first_page(src_zspage);
2064
2065 while ((dst_zspage = isolate_zspage(class, false))) {
2066 migrate_write_lock_nested(dst_zspage);
2067
2068 cc.d_page = get_first_page(dst_zspage);
2069 /*
2070 * If there is no more space in dst_page, resched
2071 * and see if anyone had allocated another zspage.
2072 */
2073 if (!migrate_zspage(pool, class, &cc))
2074 break;
2075
2076 putback_zspage(class, dst_zspage);
2077 migrate_write_unlock(dst_zspage);
2078 dst_zspage = NULL;
2079 if (rwlock_is_contended(&pool->migrate_lock))
2080 break;
2081 }
2082
2083 /* Stop if we couldn't find slot */
2084 if (dst_zspage == NULL)
2085 break;
2086
2087 putback_zspage(class, dst_zspage);
2088 migrate_write_unlock(dst_zspage);
2089
2090 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2091 migrate_write_unlock(src_zspage);
2092 free_zspage(pool, class, src_zspage);
2093 pages_freed += class->pages_per_zspage;
2094 } else
2095 migrate_write_unlock(src_zspage);
2096 spin_unlock(&class->lock);
2097 write_unlock(&pool->migrate_lock);
2098 cond_resched();
2099 write_lock(&pool->migrate_lock);
2100 spin_lock(&class->lock);
2101 }
2102
2103 if (src_zspage) {
2104 putback_zspage(class, src_zspage);
2105 migrate_write_unlock(src_zspage);
2106 }
2107
2108 spin_unlock(&class->lock);
2109 write_unlock(&pool->migrate_lock);
2110
2111 return pages_freed;
2112 }
2113
2114 unsigned long zs_compact(struct zs_pool *pool)
2115 {
2116 int i;
2117 struct size_class *class;
2118 unsigned long pages_freed = 0;
2119
2120 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2121 class = pool->size_class[i];
2122 if (!class)
2123 continue;
2124 if (class->index != i)
2125 continue;
2126 pages_freed += __zs_compact(pool, class);
2127 }
2128 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2129
2130 return pages_freed;
2131 }
2132 EXPORT_SYMBOL_GPL(zs_compact);
2133
2134 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2135 {
2136 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2137 }
2138 EXPORT_SYMBOL_GPL(zs_pool_stats);
2139
2140 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2141 struct shrink_control *sc)
2142 {
2143 unsigned long pages_freed;
2144 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2145 shrinker);
2146
2147 /*
2148 * Compact classes and calculate compaction delta.
2149 * Can run concurrently with a manually triggered
2150 * (by user) compaction.
2151 */
2152 pages_freed = zs_compact(pool);
2153
2154 return pages_freed ? pages_freed : SHRINK_STOP;
2155 }
2156
2157 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2158 struct shrink_control *sc)
2159 {
2160 int i;
2161 struct size_class *class;
2162 unsigned long pages_to_free = 0;
2163 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2164 shrinker);
2165
2166 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2167 class = pool->size_class[i];
2168 if (!class)
2169 continue;
2170 if (class->index != i)
2171 continue;
2172
2173 pages_to_free += zs_can_compact(class);
2174 }
2175
2176 return pages_to_free;
2177 }
2178
2179 static void zs_unregister_shrinker(struct zs_pool *pool)
2180 {
2181 unregister_shrinker(&pool->shrinker);
2182 }
2183
2184 static int zs_register_shrinker(struct zs_pool *pool)
2185 {
2186 pool->shrinker.scan_objects = zs_shrinker_scan;
2187 pool->shrinker.count_objects = zs_shrinker_count;
2188 pool->shrinker.batch = 0;
2189 pool->shrinker.seeks = DEFAULT_SEEKS;
2190
2191 return register_shrinker(&pool->shrinker);
2192 }
2193
2194 /**
2195 * zs_create_pool - Creates an allocation pool to work from.
2196 * @name: pool name to be created
2197 *
2198 * This function must be called before anything when using
2199 * the zsmalloc allocator.
2200 *
2201 * On success, a pointer to the newly created pool is returned,
2202 * otherwise NULL.
2203 */
2204 struct zs_pool *zs_create_pool(const char *name)
2205 {
2206 int i;
2207 struct zs_pool *pool;
2208 struct size_class *prev_class = NULL;
2209
2210 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2211 if (!pool)
2212 return NULL;
2213
2214 init_deferred_free(pool);
2215 rwlock_init(&pool->migrate_lock);
2216
2217 pool->name = kstrdup(name, GFP_KERNEL);
2218 if (!pool->name)
2219 goto err;
2220
2221 if (create_cache(pool))
2222 goto err;
2223
2224 /*
2225 * Iterate reversely, because, size of size_class that we want to use
2226 * for merging should be larger or equal to current size.
2227 */
2228 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2229 int size;
2230 int pages_per_zspage;
2231 int objs_per_zspage;
2232 struct size_class *class;
2233 int fullness = 0;
2234
2235 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2236 if (size > ZS_MAX_ALLOC_SIZE)
2237 size = ZS_MAX_ALLOC_SIZE;
2238 pages_per_zspage = get_pages_per_zspage(size);
2239 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2240
2241 /*
2242 * We iterate from biggest down to smallest classes,
2243 * so huge_class_size holds the size of the first huge
2244 * class. Any object bigger than or equal to that will
2245 * endup in the huge class.
2246 */
2247 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2248 !huge_class_size) {
2249 huge_class_size = size;
2250 /*
2251 * The object uses ZS_HANDLE_SIZE bytes to store the
2252 * handle. We need to subtract it, because zs_malloc()
2253 * unconditionally adds handle size before it performs
2254 * size class search - so object may be smaller than
2255 * huge class size, yet it still can end up in the huge
2256 * class because it grows by ZS_HANDLE_SIZE extra bytes
2257 * right before class lookup.
2258 */
2259 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2260 }
2261
2262 /*
2263 * size_class is used for normal zsmalloc operation such
2264 * as alloc/free for that size. Although it is natural that we
2265 * have one size_class for each size, there is a chance that we
2266 * can get more memory utilization if we use one size_class for
2267 * many different sizes whose size_class have same
2268 * characteristics. So, we makes size_class point to
2269 * previous size_class if possible.
2270 */
2271 if (prev_class) {
2272 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2273 pool->size_class[i] = prev_class;
2274 continue;
2275 }
2276 }
2277
2278 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2279 if (!class)
2280 goto err;
2281
2282 class->size = size;
2283 class->index = i;
2284 class->pages_per_zspage = pages_per_zspage;
2285 class->objs_per_zspage = objs_per_zspage;
2286 spin_lock_init(&class->lock);
2287 pool->size_class[i] = class;
2288 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2289 fullness++)
2290 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2291
2292 prev_class = class;
2293 }
2294
2295 /* debug only, don't abort if it fails */
2296 zs_pool_stat_create(pool, name);
2297
2298 if (zs_register_migration(pool))
2299 goto err;
2300
2301 /*
2302 * Not critical since shrinker is only used to trigger internal
2303 * defragmentation of the pool which is pretty optional thing. If
2304 * registration fails we still can use the pool normally and user can
2305 * trigger compaction manually. Thus, ignore return code.
2306 */
2307 zs_register_shrinker(pool);
2308
2309 return pool;
2310
2311 err:
2312 zs_destroy_pool(pool);
2313 return NULL;
2314 }
2315 EXPORT_SYMBOL_GPL(zs_create_pool);
2316
2317 void zs_destroy_pool(struct zs_pool *pool)
2318 {
2319 int i;
2320
2321 zs_unregister_shrinker(pool);
2322 zs_unregister_migration(pool);
2323 zs_pool_stat_destroy(pool);
2324
2325 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2326 int fg;
2327 struct size_class *class = pool->size_class[i];
2328
2329 if (!class)
2330 continue;
2331
2332 if (class->index != i)
2333 continue;
2334
2335 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2336 if (!list_empty(&class->fullness_list[fg])) {
2337 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2338 class->size, fg);
2339 }
2340 }
2341 kfree(class);
2342 }
2343
2344 destroy_cache(pool);
2345 kfree(pool->name);
2346 kfree(pool);
2347 }
2348 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2349
2350 static int __init zs_init(void)
2351 {
2352 int ret;
2353
2354 ret = zsmalloc_mount();
2355 if (ret)
2356 goto out;
2357
2358 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2359 zs_cpu_prepare, zs_cpu_dead);
2360 if (ret)
2361 goto hp_setup_fail;
2362
2363 #ifdef CONFIG_ZPOOL
2364 zpool_register_driver(&zs_zpool_driver);
2365 #endif
2366
2367 zs_stat_init();
2368
2369 return 0;
2370
2371 hp_setup_fail:
2372 zsmalloc_unmount();
2373 out:
2374 return ret;
2375 }
2376
2377 static void __exit zs_exit(void)
2378 {
2379 #ifdef CONFIG_ZPOOL
2380 zpool_unregister_driver(&zs_zpool_driver);
2381 #endif
2382 zsmalloc_unmount();
2383 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2384
2385 zs_stat_exit();
2386 }
2387
2388 module_init(zs_init);
2389 module_exit(zs_exit);
2390
2391 MODULE_LICENSE("Dual BSD/GPL");
2392 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");