]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/zsmalloc.c
net: rtnetlink: prevent underflows in do_setvfinfo()
[mirror_ubuntu-bionic-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/wait.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58
59 #define ZSPAGE_MAGIC 0x58
60
61 /*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67 #define ZS_ALIGN 8
68
69 /*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
81 *
82 * Note that object index <obj_idx> starts from 0.
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
87 #ifndef MAX_PHYSMEM_BITS
88 #ifdef CONFIG_HIGHMEM64G
89 #define MAX_PHYSMEM_BITS 36
90 #else /* !CONFIG_HIGHMEM64G */
91 /*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
95 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99
100 /*
101 * Memory for allocating for handle keeps object position by
102 * encoding <page, obj_idx> and the encoded value has a room
103 * in least bit(ie, look at obj_to_location).
104 * We use the bit to synchronize between object access by
105 * user and migration.
106 */
107 #define HANDLE_PIN_BIT 0
108
109 /*
110 * Head in allocated object should have OBJ_ALLOCATED_TAG
111 * to identify the object was allocated or not.
112 * It's okay to add the status bit in the least bit because
113 * header keeps handle which is 4byte-aligned address so we
114 * have room for two bit at least.
115 */
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120
121 #define FULLNESS_BITS 2
122 #define CLASS_BITS 8
123 #define ISOLATED_BITS 3
124 #define MAGIC_VAL_BITS 8
125
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
132
133 /*
134 * On systems with 4K page size, this gives 255 size classes! There is a
135 * trader-off here:
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 *
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 * (reason above)
145 */
146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
149
150 enum fullness_group {
151 ZS_EMPTY,
152 ZS_ALMOST_EMPTY,
153 ZS_ALMOST_FULL,
154 ZS_FULL,
155 NR_ZS_FULLNESS,
156 };
157
158 enum zs_stat_type {
159 CLASS_EMPTY,
160 CLASS_ALMOST_EMPTY,
161 CLASS_ALMOST_FULL,
162 CLASS_FULL,
163 OBJ_ALLOCATED,
164 OBJ_USED,
165 NR_ZS_STAT_TYPE,
166 };
167
168 struct zs_size_stat {
169 unsigned long objs[NR_ZS_STAT_TYPE];
170 };
171
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry *zs_stat_root;
174 #endif
175
176 #ifdef CONFIG_COMPACTION
177 static struct vfsmount *zsmalloc_mnt;
178 #endif
179
180 /*
181 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
182 * n <= N / f, where
183 * n = number of allocated objects
184 * N = total number of objects zspage can store
185 * f = fullness_threshold_frac
186 *
187 * Similarly, we assign zspage to:
188 * ZS_ALMOST_FULL when n > N / f
189 * ZS_EMPTY when n == 0
190 * ZS_FULL when n == N
191 *
192 * (see: fix_fullness_group())
193 */
194 static const int fullness_threshold_frac = 4;
195
196 struct size_class {
197 spinlock_t lock;
198 struct list_head fullness_list[NR_ZS_FULLNESS];
199 /*
200 * Size of objects stored in this class. Must be multiple
201 * of ZS_ALIGN.
202 */
203 int size;
204 int objs_per_zspage;
205 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
206 int pages_per_zspage;
207
208 unsigned int index;
209 struct zs_size_stat stats;
210 };
211
212 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
213 static void SetPageHugeObject(struct page *page)
214 {
215 SetPageOwnerPriv1(page);
216 }
217
218 static void ClearPageHugeObject(struct page *page)
219 {
220 ClearPageOwnerPriv1(page);
221 }
222
223 static int PageHugeObject(struct page *page)
224 {
225 return PageOwnerPriv1(page);
226 }
227
228 /*
229 * Placed within free objects to form a singly linked list.
230 * For every zspage, zspage->freeobj gives head of this list.
231 *
232 * This must be power of 2 and less than or equal to ZS_ALIGN
233 */
234 struct link_free {
235 union {
236 /*
237 * Free object index;
238 * It's valid for non-allocated object
239 */
240 unsigned long next;
241 /*
242 * Handle of allocated object.
243 */
244 unsigned long handle;
245 };
246 };
247
248 struct zs_pool {
249 const char *name;
250
251 struct size_class *size_class[ZS_SIZE_CLASSES];
252 struct kmem_cache *handle_cachep;
253 struct kmem_cache *zspage_cachep;
254
255 atomic_long_t pages_allocated;
256
257 struct zs_pool_stats stats;
258
259 /* Compact classes */
260 struct shrinker shrinker;
261 /*
262 * To signify that register_shrinker() was successful
263 * and unregister_shrinker() will not Oops.
264 */
265 bool shrinker_enabled;
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
276 #endif
277 };
278
279 struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
285 };
286 unsigned int inuse;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 #ifdef CONFIG_PGTABLE_MAPPING
297 struct vm_struct *vm; /* vm area for mapping object that span pages */
298 #else
299 char *vm_buf; /* copy buffer for objects that span pages */
300 #endif
301 char *vm_addr; /* address of kmap_atomic()'ed pages */
302 enum zs_mapmode vm_mm; /* mapping mode */
303 };
304
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool *pool);
307 static void zs_unregister_migration(struct zs_pool *pool);
308 static void migrate_lock_init(struct zspage *zspage);
309 static void migrate_read_lock(struct zspage *zspage);
310 static void migrate_read_unlock(struct zspage *zspage);
311 static void kick_deferred_free(struct zs_pool *pool);
312 static void init_deferred_free(struct zs_pool *pool);
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314 #else
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool *pool) { return 0; }
318 static void zs_unregister_migration(struct zs_pool *pool) {}
319 static void migrate_lock_init(struct zspage *zspage) {}
320 static void migrate_read_lock(struct zspage *zspage) {}
321 static void migrate_read_unlock(struct zspage *zspage) {}
322 static void kick_deferred_free(struct zs_pool *pool) {}
323 static void init_deferred_free(struct zs_pool *pool) {}
324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325 #endif
326
327 static int create_cache(struct zs_pool *pool)
328 {
329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330 0, 0, NULL);
331 if (!pool->handle_cachep)
332 return 1;
333
334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335 0, 0, NULL);
336 if (!pool->zspage_cachep) {
337 kmem_cache_destroy(pool->handle_cachep);
338 pool->handle_cachep = NULL;
339 return 1;
340 }
341
342 return 0;
343 }
344
345 static void destroy_cache(struct zs_pool *pool)
346 {
347 kmem_cache_destroy(pool->handle_cachep);
348 kmem_cache_destroy(pool->zspage_cachep);
349 }
350
351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 {
353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 }
356
357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 {
359 kmem_cache_free(pool->handle_cachep, (void *)handle);
360 }
361
362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 {
364 return kmem_cache_alloc(pool->zspage_cachep,
365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
366 }
367
368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 {
370 kmem_cache_free(pool->zspage_cachep, zspage);
371 }
372
373 static void record_obj(unsigned long handle, unsigned long obj)
374 {
375 /*
376 * lsb of @obj represents handle lock while other bits
377 * represent object value the handle is pointing so
378 * updating shouldn't do store tearing.
379 */
380 WRITE_ONCE(*(unsigned long *)handle, obj);
381 }
382
383 /* zpool driver */
384
385 #ifdef CONFIG_ZPOOL
386
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388 const struct zpool_ops *zpool_ops,
389 struct zpool *zpool)
390 {
391 /*
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
394 * gfp mask.
395 */
396 return zs_create_pool(name);
397 }
398
399 static void zs_zpool_destroy(void *pool)
400 {
401 zs_destroy_pool(pool);
402 }
403
404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405 unsigned long *handle)
406 {
407 *handle = zs_malloc(pool, size, gfp);
408 return *handle ? 0 : -1;
409 }
410 static void zs_zpool_free(void *pool, unsigned long handle)
411 {
412 zs_free(pool, handle);
413 }
414
415 static int zs_zpool_shrink(void *pool, unsigned int pages,
416 unsigned int *reclaimed)
417 {
418 return -EINVAL;
419 }
420
421 static void *zs_zpool_map(void *pool, unsigned long handle,
422 enum zpool_mapmode mm)
423 {
424 enum zs_mapmode zs_mm;
425
426 switch (mm) {
427 case ZPOOL_MM_RO:
428 zs_mm = ZS_MM_RO;
429 break;
430 case ZPOOL_MM_WO:
431 zs_mm = ZS_MM_WO;
432 break;
433 case ZPOOL_MM_RW: /* fallthru */
434 default:
435 zs_mm = ZS_MM_RW;
436 break;
437 }
438
439 return zs_map_object(pool, handle, zs_mm);
440 }
441 static void zs_zpool_unmap(void *pool, unsigned long handle)
442 {
443 zs_unmap_object(pool, handle);
444 }
445
446 static u64 zs_zpool_total_size(void *pool)
447 {
448 return zs_get_total_pages(pool) << PAGE_SHIFT;
449 }
450
451 static struct zpool_driver zs_zpool_driver = {
452 .type = "zsmalloc",
453 .owner = THIS_MODULE,
454 .create = zs_zpool_create,
455 .destroy = zs_zpool_destroy,
456 .malloc = zs_zpool_malloc,
457 .free = zs_zpool_free,
458 .shrink = zs_zpool_shrink,
459 .map = zs_zpool_map,
460 .unmap = zs_zpool_unmap,
461 .total_size = zs_zpool_total_size,
462 };
463
464 MODULE_ALIAS("zpool-zsmalloc");
465 #endif /* CONFIG_ZPOOL */
466
467 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
468 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
469
470 static bool is_zspage_isolated(struct zspage *zspage)
471 {
472 return zspage->isolated;
473 }
474
475 static __maybe_unused int is_first_page(struct page *page)
476 {
477 return PagePrivate(page);
478 }
479
480 /* Protected by class->lock */
481 static inline int get_zspage_inuse(struct zspage *zspage)
482 {
483 return zspage->inuse;
484 }
485
486 static inline void set_zspage_inuse(struct zspage *zspage, int val)
487 {
488 zspage->inuse = val;
489 }
490
491 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
492 {
493 zspage->inuse += val;
494 }
495
496 static inline struct page *get_first_page(struct zspage *zspage)
497 {
498 struct page *first_page = zspage->first_page;
499
500 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
501 return first_page;
502 }
503
504 static inline int get_first_obj_offset(struct page *page)
505 {
506 return page->units;
507 }
508
509 static inline void set_first_obj_offset(struct page *page, int offset)
510 {
511 page->units = offset;
512 }
513
514 static inline unsigned int get_freeobj(struct zspage *zspage)
515 {
516 return zspage->freeobj;
517 }
518
519 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
520 {
521 zspage->freeobj = obj;
522 }
523
524 static void get_zspage_mapping(struct zspage *zspage,
525 unsigned int *class_idx,
526 enum fullness_group *fullness)
527 {
528 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
529
530 *fullness = zspage->fullness;
531 *class_idx = zspage->class;
532 }
533
534 static void set_zspage_mapping(struct zspage *zspage,
535 unsigned int class_idx,
536 enum fullness_group fullness)
537 {
538 zspage->class = class_idx;
539 zspage->fullness = fullness;
540 }
541
542 /*
543 * zsmalloc divides the pool into various size classes where each
544 * class maintains a list of zspages where each zspage is divided
545 * into equal sized chunks. Each allocation falls into one of these
546 * classes depending on its size. This function returns index of the
547 * size class which has chunk size big enough to hold the give size.
548 */
549 static int get_size_class_index(int size)
550 {
551 int idx = 0;
552
553 if (likely(size > ZS_MIN_ALLOC_SIZE))
554 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
555 ZS_SIZE_CLASS_DELTA);
556
557 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline void zs_stat_inc(struct size_class *class,
562 int type, unsigned long cnt)
563 {
564 class->stats.objs[type] += cnt;
565 }
566
567 /* type can be of enum type zs_stat_type or fullness_group */
568 static inline void zs_stat_dec(struct size_class *class,
569 int type, unsigned long cnt)
570 {
571 class->stats.objs[type] -= cnt;
572 }
573
574 /* type can be of enum type zs_stat_type or fullness_group */
575 static inline unsigned long zs_stat_get(struct size_class *class,
576 int type)
577 {
578 return class->stats.objs[type];
579 }
580
581 #ifdef CONFIG_ZSMALLOC_STAT
582
583 static void __init zs_stat_init(void)
584 {
585 if (!debugfs_initialized()) {
586 pr_warn("debugfs not available, stat dir not created\n");
587 return;
588 }
589
590 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
591 if (!zs_stat_root)
592 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
593 }
594
595 static void __exit zs_stat_exit(void)
596 {
597 debugfs_remove_recursive(zs_stat_root);
598 }
599
600 static unsigned long zs_can_compact(struct size_class *class);
601
602 static int zs_stats_size_show(struct seq_file *s, void *v)
603 {
604 int i;
605 struct zs_pool *pool = s->private;
606 struct size_class *class;
607 int objs_per_zspage;
608 unsigned long class_almost_full, class_almost_empty;
609 unsigned long obj_allocated, obj_used, pages_used, freeable;
610 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
611 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
612 unsigned long total_freeable = 0;
613
614 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
615 "class", "size", "almost_full", "almost_empty",
616 "obj_allocated", "obj_used", "pages_used",
617 "pages_per_zspage", "freeable");
618
619 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
620 class = pool->size_class[i];
621
622 if (class->index != i)
623 continue;
624
625 spin_lock(&class->lock);
626 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
627 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
628 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
629 obj_used = zs_stat_get(class, OBJ_USED);
630 freeable = zs_can_compact(class);
631 spin_unlock(&class->lock);
632
633 objs_per_zspage = class->objs_per_zspage;
634 pages_used = obj_allocated / objs_per_zspage *
635 class->pages_per_zspage;
636
637 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
638 " %10lu %10lu %16d %8lu\n",
639 i, class->size, class_almost_full, class_almost_empty,
640 obj_allocated, obj_used, pages_used,
641 class->pages_per_zspage, freeable);
642
643 total_class_almost_full += class_almost_full;
644 total_class_almost_empty += class_almost_empty;
645 total_objs += obj_allocated;
646 total_used_objs += obj_used;
647 total_pages += pages_used;
648 total_freeable += freeable;
649 }
650
651 seq_puts(s, "\n");
652 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
653 "Total", "", total_class_almost_full,
654 total_class_almost_empty, total_objs,
655 total_used_objs, total_pages, "", total_freeable);
656
657 return 0;
658 }
659
660 static int zs_stats_size_open(struct inode *inode, struct file *file)
661 {
662 return single_open(file, zs_stats_size_show, inode->i_private);
663 }
664
665 static const struct file_operations zs_stat_size_ops = {
666 .open = zs_stats_size_open,
667 .read = seq_read,
668 .llseek = seq_lseek,
669 .release = single_release,
670 };
671
672 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 struct dentry *entry;
675
676 if (!zs_stat_root) {
677 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
678 return;
679 }
680
681 entry = debugfs_create_dir(name, zs_stat_root);
682 if (!entry) {
683 pr_warn("debugfs dir <%s> creation failed\n", name);
684 return;
685 }
686 pool->stat_dentry = entry;
687
688 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
689 pool->stat_dentry, pool, &zs_stat_size_ops);
690 if (!entry) {
691 pr_warn("%s: debugfs file entry <%s> creation failed\n",
692 name, "classes");
693 debugfs_remove_recursive(pool->stat_dentry);
694 pool->stat_dentry = NULL;
695 }
696 }
697
698 static void zs_pool_stat_destroy(struct zs_pool *pool)
699 {
700 debugfs_remove_recursive(pool->stat_dentry);
701 }
702
703 #else /* CONFIG_ZSMALLOC_STAT */
704 static void __init zs_stat_init(void)
705 {
706 }
707
708 static void __exit zs_stat_exit(void)
709 {
710 }
711
712 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
713 {
714 }
715
716 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
717 {
718 }
719 #endif
720
721
722 /*
723 * For each size class, zspages are divided into different groups
724 * depending on how "full" they are. This was done so that we could
725 * easily find empty or nearly empty zspages when we try to shrink
726 * the pool (not yet implemented). This function returns fullness
727 * status of the given page.
728 */
729 static enum fullness_group get_fullness_group(struct size_class *class,
730 struct zspage *zspage)
731 {
732 int inuse, objs_per_zspage;
733 enum fullness_group fg;
734
735 inuse = get_zspage_inuse(zspage);
736 objs_per_zspage = class->objs_per_zspage;
737
738 if (inuse == 0)
739 fg = ZS_EMPTY;
740 else if (inuse == objs_per_zspage)
741 fg = ZS_FULL;
742 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
743 fg = ZS_ALMOST_EMPTY;
744 else
745 fg = ZS_ALMOST_FULL;
746
747 return fg;
748 }
749
750 /*
751 * Each size class maintains various freelists and zspages are assigned
752 * to one of these freelists based on the number of live objects they
753 * have. This functions inserts the given zspage into the freelist
754 * identified by <class, fullness_group>.
755 */
756 static void insert_zspage(struct size_class *class,
757 struct zspage *zspage,
758 enum fullness_group fullness)
759 {
760 struct zspage *head;
761
762 zs_stat_inc(class, fullness, 1);
763 head = list_first_entry_or_null(&class->fullness_list[fullness],
764 struct zspage, list);
765 /*
766 * We want to see more ZS_FULL pages and less almost empty/full.
767 * Put pages with higher ->inuse first.
768 */
769 if (head) {
770 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
771 list_add(&zspage->list, &head->list);
772 return;
773 }
774 }
775 list_add(&zspage->list, &class->fullness_list[fullness]);
776 }
777
778 /*
779 * This function removes the given zspage from the freelist identified
780 * by <class, fullness_group>.
781 */
782 static void remove_zspage(struct size_class *class,
783 struct zspage *zspage,
784 enum fullness_group fullness)
785 {
786 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
787 VM_BUG_ON(is_zspage_isolated(zspage));
788
789 list_del_init(&zspage->list);
790 zs_stat_dec(class, fullness, 1);
791 }
792
793 /*
794 * Each size class maintains zspages in different fullness groups depending
795 * on the number of live objects they contain. When allocating or freeing
796 * objects, the fullness status of the page can change, say, from ALMOST_FULL
797 * to ALMOST_EMPTY when freeing an object. This function checks if such
798 * a status change has occurred for the given page and accordingly moves the
799 * page from the freelist of the old fullness group to that of the new
800 * fullness group.
801 */
802 static enum fullness_group fix_fullness_group(struct size_class *class,
803 struct zspage *zspage)
804 {
805 int class_idx;
806 enum fullness_group currfg, newfg;
807
808 get_zspage_mapping(zspage, &class_idx, &currfg);
809 newfg = get_fullness_group(class, zspage);
810 if (newfg == currfg)
811 goto out;
812
813 if (!is_zspage_isolated(zspage)) {
814 remove_zspage(class, zspage, currfg);
815 insert_zspage(class, zspage, newfg);
816 }
817
818 set_zspage_mapping(zspage, class_idx, newfg);
819
820 out:
821 return newfg;
822 }
823
824 /*
825 * We have to decide on how many pages to link together
826 * to form a zspage for each size class. This is important
827 * to reduce wastage due to unusable space left at end of
828 * each zspage which is given as:
829 * wastage = Zp % class_size
830 * usage = Zp - wastage
831 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
832 *
833 * For example, for size class of 3/8 * PAGE_SIZE, we should
834 * link together 3 PAGE_SIZE sized pages to form a zspage
835 * since then we can perfectly fit in 8 such objects.
836 */
837 static int get_pages_per_zspage(int class_size)
838 {
839 int i, max_usedpc = 0;
840 /* zspage order which gives maximum used size per KB */
841 int max_usedpc_order = 1;
842
843 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
844 int zspage_size;
845 int waste, usedpc;
846
847 zspage_size = i * PAGE_SIZE;
848 waste = zspage_size % class_size;
849 usedpc = (zspage_size - waste) * 100 / zspage_size;
850
851 if (usedpc > max_usedpc) {
852 max_usedpc = usedpc;
853 max_usedpc_order = i;
854 }
855 }
856
857 return max_usedpc_order;
858 }
859
860 static struct zspage *get_zspage(struct page *page)
861 {
862 struct zspage *zspage = (struct zspage *)page->private;
863
864 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
865 return zspage;
866 }
867
868 static struct page *get_next_page(struct page *page)
869 {
870 if (unlikely(PageHugeObject(page)))
871 return NULL;
872
873 return page->freelist;
874 }
875
876 /**
877 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
878 * @page: page object resides in zspage
879 * @obj_idx: object index
880 */
881 static void obj_to_location(unsigned long obj, struct page **page,
882 unsigned int *obj_idx)
883 {
884 obj >>= OBJ_TAG_BITS;
885 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
886 *obj_idx = (obj & OBJ_INDEX_MASK);
887 }
888
889 /**
890 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
891 * @page: page object resides in zspage
892 * @obj_idx: object index
893 */
894 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
895 {
896 unsigned long obj;
897
898 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
899 obj |= obj_idx & OBJ_INDEX_MASK;
900 obj <<= OBJ_TAG_BITS;
901
902 return obj;
903 }
904
905 static unsigned long handle_to_obj(unsigned long handle)
906 {
907 return *(unsigned long *)handle;
908 }
909
910 static unsigned long obj_to_head(struct page *page, void *obj)
911 {
912 if (unlikely(PageHugeObject(page))) {
913 VM_BUG_ON_PAGE(!is_first_page(page), page);
914 return page->index;
915 } else
916 return *(unsigned long *)obj;
917 }
918
919 static inline int testpin_tag(unsigned long handle)
920 {
921 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
922 }
923
924 static inline int trypin_tag(unsigned long handle)
925 {
926 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
927 }
928
929 static void pin_tag(unsigned long handle)
930 {
931 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
932 }
933
934 static void unpin_tag(unsigned long handle)
935 {
936 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
937 }
938
939 static void reset_page(struct page *page)
940 {
941 __ClearPageMovable(page);
942 ClearPagePrivate(page);
943 set_page_private(page, 0);
944 page_mapcount_reset(page);
945 ClearPageHugeObject(page);
946 page->freelist = NULL;
947 }
948
949 /*
950 * To prevent zspage destroy during migration, zspage freeing should
951 * hold locks of all pages in the zspage.
952 */
953 void lock_zspage(struct zspage *zspage)
954 {
955 struct page *page = get_first_page(zspage);
956
957 do {
958 lock_page(page);
959 } while ((page = get_next_page(page)) != NULL);
960 }
961
962 int trylock_zspage(struct zspage *zspage)
963 {
964 struct page *cursor, *fail;
965
966 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
967 get_next_page(cursor)) {
968 if (!trylock_page(cursor)) {
969 fail = cursor;
970 goto unlock;
971 }
972 }
973
974 return 1;
975 unlock:
976 for (cursor = get_first_page(zspage); cursor != fail; cursor =
977 get_next_page(cursor))
978 unlock_page(cursor);
979
980 return 0;
981 }
982
983 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
984 struct zspage *zspage)
985 {
986 struct page *page, *next;
987 enum fullness_group fg;
988 unsigned int class_idx;
989
990 get_zspage_mapping(zspage, &class_idx, &fg);
991
992 assert_spin_locked(&class->lock);
993
994 VM_BUG_ON(get_zspage_inuse(zspage));
995 VM_BUG_ON(fg != ZS_EMPTY);
996
997 next = page = get_first_page(zspage);
998 do {
999 VM_BUG_ON_PAGE(!PageLocked(page), page);
1000 next = get_next_page(page);
1001 reset_page(page);
1002 unlock_page(page);
1003 dec_zone_page_state(page, NR_ZSPAGES);
1004 put_page(page);
1005 page = next;
1006 } while (page != NULL);
1007
1008 cache_free_zspage(pool, zspage);
1009
1010 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1011 atomic_long_sub(class->pages_per_zspage,
1012 &pool->pages_allocated);
1013 }
1014
1015 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1016 struct zspage *zspage)
1017 {
1018 VM_BUG_ON(get_zspage_inuse(zspage));
1019 VM_BUG_ON(list_empty(&zspage->list));
1020
1021 if (!trylock_zspage(zspage)) {
1022 kick_deferred_free(pool);
1023 return;
1024 }
1025
1026 remove_zspage(class, zspage, ZS_EMPTY);
1027 __free_zspage(pool, class, zspage);
1028 }
1029
1030 /* Initialize a newly allocated zspage */
1031 static void init_zspage(struct size_class *class, struct zspage *zspage)
1032 {
1033 unsigned int freeobj = 1;
1034 unsigned long off = 0;
1035 struct page *page = get_first_page(zspage);
1036
1037 while (page) {
1038 struct page *next_page;
1039 struct link_free *link;
1040 void *vaddr;
1041
1042 set_first_obj_offset(page, off);
1043
1044 vaddr = kmap_atomic(page);
1045 link = (struct link_free *)vaddr + off / sizeof(*link);
1046
1047 while ((off += class->size) < PAGE_SIZE) {
1048 link->next = freeobj++ << OBJ_TAG_BITS;
1049 link += class->size / sizeof(*link);
1050 }
1051
1052 /*
1053 * We now come to the last (full or partial) object on this
1054 * page, which must point to the first object on the next
1055 * page (if present)
1056 */
1057 next_page = get_next_page(page);
1058 if (next_page) {
1059 link->next = freeobj++ << OBJ_TAG_BITS;
1060 } else {
1061 /*
1062 * Reset OBJ_TAG_BITS bit to last link to tell
1063 * whether it's allocated object or not.
1064 */
1065 link->next = -1 << OBJ_TAG_BITS;
1066 }
1067 kunmap_atomic(vaddr);
1068 page = next_page;
1069 off %= PAGE_SIZE;
1070 }
1071
1072 set_freeobj(zspage, 0);
1073 }
1074
1075 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1076 struct page *pages[])
1077 {
1078 int i;
1079 struct page *page;
1080 struct page *prev_page = NULL;
1081 int nr_pages = class->pages_per_zspage;
1082
1083 /*
1084 * Allocate individual pages and link them together as:
1085 * 1. all pages are linked together using page->freelist
1086 * 2. each sub-page point to zspage using page->private
1087 *
1088 * we set PG_private to identify the first page (i.e. no other sub-page
1089 * has this flag set).
1090 */
1091 for (i = 0; i < nr_pages; i++) {
1092 page = pages[i];
1093 set_page_private(page, (unsigned long)zspage);
1094 page->freelist = NULL;
1095 if (i == 0) {
1096 zspage->first_page = page;
1097 SetPagePrivate(page);
1098 if (unlikely(class->objs_per_zspage == 1 &&
1099 class->pages_per_zspage == 1))
1100 SetPageHugeObject(page);
1101 } else {
1102 prev_page->freelist = page;
1103 }
1104 prev_page = page;
1105 }
1106 }
1107
1108 /*
1109 * Allocate a zspage for the given size class
1110 */
1111 static struct zspage *alloc_zspage(struct zs_pool *pool,
1112 struct size_class *class,
1113 gfp_t gfp)
1114 {
1115 int i;
1116 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1117 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1118
1119 if (!zspage)
1120 return NULL;
1121
1122 memset(zspage, 0, sizeof(struct zspage));
1123 zspage->magic = ZSPAGE_MAGIC;
1124 migrate_lock_init(zspage);
1125
1126 for (i = 0; i < class->pages_per_zspage; i++) {
1127 struct page *page;
1128
1129 page = alloc_page(gfp);
1130 if (!page) {
1131 while (--i >= 0) {
1132 dec_zone_page_state(pages[i], NR_ZSPAGES);
1133 __free_page(pages[i]);
1134 }
1135 cache_free_zspage(pool, zspage);
1136 return NULL;
1137 }
1138
1139 inc_zone_page_state(page, NR_ZSPAGES);
1140 pages[i] = page;
1141 }
1142
1143 create_page_chain(class, zspage, pages);
1144 init_zspage(class, zspage);
1145
1146 return zspage;
1147 }
1148
1149 static struct zspage *find_get_zspage(struct size_class *class)
1150 {
1151 int i;
1152 struct zspage *zspage;
1153
1154 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1155 zspage = list_first_entry_or_null(&class->fullness_list[i],
1156 struct zspage, list);
1157 if (zspage)
1158 break;
1159 }
1160
1161 return zspage;
1162 }
1163
1164 #ifdef CONFIG_PGTABLE_MAPPING
1165 static inline int __zs_cpu_up(struct mapping_area *area)
1166 {
1167 /*
1168 * Make sure we don't leak memory if a cpu UP notification
1169 * and zs_init() race and both call zs_cpu_up() on the same cpu
1170 */
1171 if (area->vm)
1172 return 0;
1173 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1174 if (!area->vm)
1175 return -ENOMEM;
1176 return 0;
1177 }
1178
1179 static inline void __zs_cpu_down(struct mapping_area *area)
1180 {
1181 if (area->vm)
1182 free_vm_area(area->vm);
1183 area->vm = NULL;
1184 }
1185
1186 static inline void *__zs_map_object(struct mapping_area *area,
1187 struct page *pages[2], int off, int size)
1188 {
1189 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1190 area->vm_addr = area->vm->addr;
1191 return area->vm_addr + off;
1192 }
1193
1194 static inline void __zs_unmap_object(struct mapping_area *area,
1195 struct page *pages[2], int off, int size)
1196 {
1197 unsigned long addr = (unsigned long)area->vm_addr;
1198
1199 unmap_kernel_range(addr, PAGE_SIZE * 2);
1200 }
1201
1202 #else /* CONFIG_PGTABLE_MAPPING */
1203
1204 static inline int __zs_cpu_up(struct mapping_area *area)
1205 {
1206 /*
1207 * Make sure we don't leak memory if a cpu UP notification
1208 * and zs_init() race and both call zs_cpu_up() on the same cpu
1209 */
1210 if (area->vm_buf)
1211 return 0;
1212 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1213 if (!area->vm_buf)
1214 return -ENOMEM;
1215 return 0;
1216 }
1217
1218 static inline void __zs_cpu_down(struct mapping_area *area)
1219 {
1220 kfree(area->vm_buf);
1221 area->vm_buf = NULL;
1222 }
1223
1224 static void *__zs_map_object(struct mapping_area *area,
1225 struct page *pages[2], int off, int size)
1226 {
1227 int sizes[2];
1228 void *addr;
1229 char *buf = area->vm_buf;
1230
1231 /* disable page faults to match kmap_atomic() return conditions */
1232 pagefault_disable();
1233
1234 /* no read fastpath */
1235 if (area->vm_mm == ZS_MM_WO)
1236 goto out;
1237
1238 sizes[0] = PAGE_SIZE - off;
1239 sizes[1] = size - sizes[0];
1240
1241 /* copy object to per-cpu buffer */
1242 addr = kmap_atomic(pages[0]);
1243 memcpy(buf, addr + off, sizes[0]);
1244 kunmap_atomic(addr);
1245 addr = kmap_atomic(pages[1]);
1246 memcpy(buf + sizes[0], addr, sizes[1]);
1247 kunmap_atomic(addr);
1248 out:
1249 return area->vm_buf;
1250 }
1251
1252 static void __zs_unmap_object(struct mapping_area *area,
1253 struct page *pages[2], int off, int size)
1254 {
1255 int sizes[2];
1256 void *addr;
1257 char *buf;
1258
1259 /* no write fastpath */
1260 if (area->vm_mm == ZS_MM_RO)
1261 goto out;
1262
1263 buf = area->vm_buf;
1264 buf = buf + ZS_HANDLE_SIZE;
1265 size -= ZS_HANDLE_SIZE;
1266 off += ZS_HANDLE_SIZE;
1267
1268 sizes[0] = PAGE_SIZE - off;
1269 sizes[1] = size - sizes[0];
1270
1271 /* copy per-cpu buffer to object */
1272 addr = kmap_atomic(pages[0]);
1273 memcpy(addr + off, buf, sizes[0]);
1274 kunmap_atomic(addr);
1275 addr = kmap_atomic(pages[1]);
1276 memcpy(addr, buf + sizes[0], sizes[1]);
1277 kunmap_atomic(addr);
1278
1279 out:
1280 /* enable page faults to match kunmap_atomic() return conditions */
1281 pagefault_enable();
1282 }
1283
1284 #endif /* CONFIG_PGTABLE_MAPPING */
1285
1286 static int zs_cpu_prepare(unsigned int cpu)
1287 {
1288 struct mapping_area *area;
1289
1290 area = &per_cpu(zs_map_area, cpu);
1291 return __zs_cpu_up(area);
1292 }
1293
1294 static int zs_cpu_dead(unsigned int cpu)
1295 {
1296 struct mapping_area *area;
1297
1298 area = &per_cpu(zs_map_area, cpu);
1299 __zs_cpu_down(area);
1300 return 0;
1301 }
1302
1303 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1304 int objs_per_zspage)
1305 {
1306 if (prev->pages_per_zspage == pages_per_zspage &&
1307 prev->objs_per_zspage == objs_per_zspage)
1308 return true;
1309
1310 return false;
1311 }
1312
1313 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1314 {
1315 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1316 }
1317
1318 unsigned long zs_get_total_pages(struct zs_pool *pool)
1319 {
1320 return atomic_long_read(&pool->pages_allocated);
1321 }
1322 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1323
1324 /**
1325 * zs_map_object - get address of allocated object from handle.
1326 * @pool: pool from which the object was allocated
1327 * @handle: handle returned from zs_malloc
1328 *
1329 * Before using an object allocated from zs_malloc, it must be mapped using
1330 * this function. When done with the object, it must be unmapped using
1331 * zs_unmap_object.
1332 *
1333 * Only one object can be mapped per cpu at a time. There is no protection
1334 * against nested mappings.
1335 *
1336 * This function returns with preemption and page faults disabled.
1337 */
1338 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1339 enum zs_mapmode mm)
1340 {
1341 struct zspage *zspage;
1342 struct page *page;
1343 unsigned long obj, off;
1344 unsigned int obj_idx;
1345
1346 unsigned int class_idx;
1347 enum fullness_group fg;
1348 struct size_class *class;
1349 struct mapping_area *area;
1350 struct page *pages[2];
1351 void *ret;
1352
1353 /*
1354 * Because we use per-cpu mapping areas shared among the
1355 * pools/users, we can't allow mapping in interrupt context
1356 * because it can corrupt another users mappings.
1357 */
1358 BUG_ON(in_interrupt());
1359
1360 /* From now on, migration cannot move the object */
1361 pin_tag(handle);
1362
1363 obj = handle_to_obj(handle);
1364 obj_to_location(obj, &page, &obj_idx);
1365 zspage = get_zspage(page);
1366
1367 /* migration cannot move any subpage in this zspage */
1368 migrate_read_lock(zspage);
1369
1370 get_zspage_mapping(zspage, &class_idx, &fg);
1371 class = pool->size_class[class_idx];
1372 off = (class->size * obj_idx) & ~PAGE_MASK;
1373
1374 area = &get_cpu_var(zs_map_area);
1375 area->vm_mm = mm;
1376 if (off + class->size <= PAGE_SIZE) {
1377 /* this object is contained entirely within a page */
1378 area->vm_addr = kmap_atomic(page);
1379 ret = area->vm_addr + off;
1380 goto out;
1381 }
1382
1383 /* this object spans two pages */
1384 pages[0] = page;
1385 pages[1] = get_next_page(page);
1386 BUG_ON(!pages[1]);
1387
1388 ret = __zs_map_object(area, pages, off, class->size);
1389 out:
1390 if (likely(!PageHugeObject(page)))
1391 ret += ZS_HANDLE_SIZE;
1392
1393 return ret;
1394 }
1395 EXPORT_SYMBOL_GPL(zs_map_object);
1396
1397 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1398 {
1399 struct zspage *zspage;
1400 struct page *page;
1401 unsigned long obj, off;
1402 unsigned int obj_idx;
1403
1404 unsigned int class_idx;
1405 enum fullness_group fg;
1406 struct size_class *class;
1407 struct mapping_area *area;
1408
1409 obj = handle_to_obj(handle);
1410 obj_to_location(obj, &page, &obj_idx);
1411 zspage = get_zspage(page);
1412 get_zspage_mapping(zspage, &class_idx, &fg);
1413 class = pool->size_class[class_idx];
1414 off = (class->size * obj_idx) & ~PAGE_MASK;
1415
1416 area = this_cpu_ptr(&zs_map_area);
1417 if (off + class->size <= PAGE_SIZE)
1418 kunmap_atomic(area->vm_addr);
1419 else {
1420 struct page *pages[2];
1421
1422 pages[0] = page;
1423 pages[1] = get_next_page(page);
1424 BUG_ON(!pages[1]);
1425
1426 __zs_unmap_object(area, pages, off, class->size);
1427 }
1428 put_cpu_var(zs_map_area);
1429
1430 migrate_read_unlock(zspage);
1431 unpin_tag(handle);
1432 }
1433 EXPORT_SYMBOL_GPL(zs_unmap_object);
1434
1435 static unsigned long obj_malloc(struct size_class *class,
1436 struct zspage *zspage, unsigned long handle)
1437 {
1438 int i, nr_page, offset;
1439 unsigned long obj;
1440 struct link_free *link;
1441
1442 struct page *m_page;
1443 unsigned long m_offset;
1444 void *vaddr;
1445
1446 handle |= OBJ_ALLOCATED_TAG;
1447 obj = get_freeobj(zspage);
1448
1449 offset = obj * class->size;
1450 nr_page = offset >> PAGE_SHIFT;
1451 m_offset = offset & ~PAGE_MASK;
1452 m_page = get_first_page(zspage);
1453
1454 for (i = 0; i < nr_page; i++)
1455 m_page = get_next_page(m_page);
1456
1457 vaddr = kmap_atomic(m_page);
1458 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1459 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1460 if (likely(!PageHugeObject(m_page)))
1461 /* record handle in the header of allocated chunk */
1462 link->handle = handle;
1463 else
1464 /* record handle to page->index */
1465 zspage->first_page->index = handle;
1466
1467 kunmap_atomic(vaddr);
1468 mod_zspage_inuse(zspage, 1);
1469 zs_stat_inc(class, OBJ_USED, 1);
1470
1471 obj = location_to_obj(m_page, obj);
1472
1473 return obj;
1474 }
1475
1476
1477 /**
1478 * zs_malloc - Allocate block of given size from pool.
1479 * @pool: pool to allocate from
1480 * @size: size of block to allocate
1481 * @gfp: gfp flags when allocating object
1482 *
1483 * On success, handle to the allocated object is returned,
1484 * otherwise 0.
1485 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1486 */
1487 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1488 {
1489 unsigned long handle, obj;
1490 struct size_class *class;
1491 enum fullness_group newfg;
1492 struct zspage *zspage;
1493
1494 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1495 return 0;
1496
1497 handle = cache_alloc_handle(pool, gfp);
1498 if (!handle)
1499 return 0;
1500
1501 /* extra space in chunk to keep the handle */
1502 size += ZS_HANDLE_SIZE;
1503 class = pool->size_class[get_size_class_index(size)];
1504
1505 spin_lock(&class->lock);
1506 zspage = find_get_zspage(class);
1507 if (likely(zspage)) {
1508 obj = obj_malloc(class, zspage, handle);
1509 /* Now move the zspage to another fullness group, if required */
1510 fix_fullness_group(class, zspage);
1511 record_obj(handle, obj);
1512 spin_unlock(&class->lock);
1513
1514 return handle;
1515 }
1516
1517 spin_unlock(&class->lock);
1518
1519 zspage = alloc_zspage(pool, class, gfp);
1520 if (!zspage) {
1521 cache_free_handle(pool, handle);
1522 return 0;
1523 }
1524
1525 spin_lock(&class->lock);
1526 obj = obj_malloc(class, zspage, handle);
1527 newfg = get_fullness_group(class, zspage);
1528 insert_zspage(class, zspage, newfg);
1529 set_zspage_mapping(zspage, class->index, newfg);
1530 record_obj(handle, obj);
1531 atomic_long_add(class->pages_per_zspage,
1532 &pool->pages_allocated);
1533 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1534
1535 /* We completely set up zspage so mark them as movable */
1536 SetZsPageMovable(pool, zspage);
1537 spin_unlock(&class->lock);
1538
1539 return handle;
1540 }
1541 EXPORT_SYMBOL_GPL(zs_malloc);
1542
1543 static void obj_free(struct size_class *class, unsigned long obj)
1544 {
1545 struct link_free *link;
1546 struct zspage *zspage;
1547 struct page *f_page;
1548 unsigned long f_offset;
1549 unsigned int f_objidx;
1550 void *vaddr;
1551
1552 obj &= ~OBJ_ALLOCATED_TAG;
1553 obj_to_location(obj, &f_page, &f_objidx);
1554 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1555 zspage = get_zspage(f_page);
1556
1557 vaddr = kmap_atomic(f_page);
1558
1559 /* Insert this object in containing zspage's freelist */
1560 link = (struct link_free *)(vaddr + f_offset);
1561 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1562 kunmap_atomic(vaddr);
1563 set_freeobj(zspage, f_objidx);
1564 mod_zspage_inuse(zspage, -1);
1565 zs_stat_dec(class, OBJ_USED, 1);
1566 }
1567
1568 void zs_free(struct zs_pool *pool, unsigned long handle)
1569 {
1570 struct zspage *zspage;
1571 struct page *f_page;
1572 unsigned long obj;
1573 unsigned int f_objidx;
1574 int class_idx;
1575 struct size_class *class;
1576 enum fullness_group fullness;
1577 bool isolated;
1578
1579 if (unlikely(!handle))
1580 return;
1581
1582 pin_tag(handle);
1583 obj = handle_to_obj(handle);
1584 obj_to_location(obj, &f_page, &f_objidx);
1585 zspage = get_zspage(f_page);
1586
1587 migrate_read_lock(zspage);
1588
1589 get_zspage_mapping(zspage, &class_idx, &fullness);
1590 class = pool->size_class[class_idx];
1591
1592 spin_lock(&class->lock);
1593 obj_free(class, obj);
1594 fullness = fix_fullness_group(class, zspage);
1595 if (fullness != ZS_EMPTY) {
1596 migrate_read_unlock(zspage);
1597 goto out;
1598 }
1599
1600 isolated = is_zspage_isolated(zspage);
1601 migrate_read_unlock(zspage);
1602 /* If zspage is isolated, zs_page_putback will free the zspage */
1603 if (likely(!isolated))
1604 free_zspage(pool, class, zspage);
1605 out:
1606
1607 spin_unlock(&class->lock);
1608 unpin_tag(handle);
1609 cache_free_handle(pool, handle);
1610 }
1611 EXPORT_SYMBOL_GPL(zs_free);
1612
1613 static void zs_object_copy(struct size_class *class, unsigned long dst,
1614 unsigned long src)
1615 {
1616 struct page *s_page, *d_page;
1617 unsigned int s_objidx, d_objidx;
1618 unsigned long s_off, d_off;
1619 void *s_addr, *d_addr;
1620 int s_size, d_size, size;
1621 int written = 0;
1622
1623 s_size = d_size = class->size;
1624
1625 obj_to_location(src, &s_page, &s_objidx);
1626 obj_to_location(dst, &d_page, &d_objidx);
1627
1628 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1629 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1630
1631 if (s_off + class->size > PAGE_SIZE)
1632 s_size = PAGE_SIZE - s_off;
1633
1634 if (d_off + class->size > PAGE_SIZE)
1635 d_size = PAGE_SIZE - d_off;
1636
1637 s_addr = kmap_atomic(s_page);
1638 d_addr = kmap_atomic(d_page);
1639
1640 while (1) {
1641 size = min(s_size, d_size);
1642 memcpy(d_addr + d_off, s_addr + s_off, size);
1643 written += size;
1644
1645 if (written == class->size)
1646 break;
1647
1648 s_off += size;
1649 s_size -= size;
1650 d_off += size;
1651 d_size -= size;
1652
1653 if (s_off >= PAGE_SIZE) {
1654 kunmap_atomic(d_addr);
1655 kunmap_atomic(s_addr);
1656 s_page = get_next_page(s_page);
1657 s_addr = kmap_atomic(s_page);
1658 d_addr = kmap_atomic(d_page);
1659 s_size = class->size - written;
1660 s_off = 0;
1661 }
1662
1663 if (d_off >= PAGE_SIZE) {
1664 kunmap_atomic(d_addr);
1665 d_page = get_next_page(d_page);
1666 d_addr = kmap_atomic(d_page);
1667 d_size = class->size - written;
1668 d_off = 0;
1669 }
1670 }
1671
1672 kunmap_atomic(d_addr);
1673 kunmap_atomic(s_addr);
1674 }
1675
1676 /*
1677 * Find alloced object in zspage from index object and
1678 * return handle.
1679 */
1680 static unsigned long find_alloced_obj(struct size_class *class,
1681 struct page *page, int *obj_idx)
1682 {
1683 unsigned long head;
1684 int offset = 0;
1685 int index = *obj_idx;
1686 unsigned long handle = 0;
1687 void *addr = kmap_atomic(page);
1688
1689 offset = get_first_obj_offset(page);
1690 offset += class->size * index;
1691
1692 while (offset < PAGE_SIZE) {
1693 head = obj_to_head(page, addr + offset);
1694 if (head & OBJ_ALLOCATED_TAG) {
1695 handle = head & ~OBJ_ALLOCATED_TAG;
1696 if (trypin_tag(handle))
1697 break;
1698 handle = 0;
1699 }
1700
1701 offset += class->size;
1702 index++;
1703 }
1704
1705 kunmap_atomic(addr);
1706
1707 *obj_idx = index;
1708
1709 return handle;
1710 }
1711
1712 struct zs_compact_control {
1713 /* Source spage for migration which could be a subpage of zspage */
1714 struct page *s_page;
1715 /* Destination page for migration which should be a first page
1716 * of zspage. */
1717 struct page *d_page;
1718 /* Starting object index within @s_page which used for live object
1719 * in the subpage. */
1720 int obj_idx;
1721 };
1722
1723 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1724 struct zs_compact_control *cc)
1725 {
1726 unsigned long used_obj, free_obj;
1727 unsigned long handle;
1728 struct page *s_page = cc->s_page;
1729 struct page *d_page = cc->d_page;
1730 int obj_idx = cc->obj_idx;
1731 int ret = 0;
1732
1733 while (1) {
1734 handle = find_alloced_obj(class, s_page, &obj_idx);
1735 if (!handle) {
1736 s_page = get_next_page(s_page);
1737 if (!s_page)
1738 break;
1739 obj_idx = 0;
1740 continue;
1741 }
1742
1743 /* Stop if there is no more space */
1744 if (zspage_full(class, get_zspage(d_page))) {
1745 unpin_tag(handle);
1746 ret = -ENOMEM;
1747 break;
1748 }
1749
1750 used_obj = handle_to_obj(handle);
1751 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1752 zs_object_copy(class, free_obj, used_obj);
1753 obj_idx++;
1754 /*
1755 * record_obj updates handle's value to free_obj and it will
1756 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1757 * breaks synchronization using pin_tag(e,g, zs_free) so
1758 * let's keep the lock bit.
1759 */
1760 free_obj |= BIT(HANDLE_PIN_BIT);
1761 record_obj(handle, free_obj);
1762 unpin_tag(handle);
1763 obj_free(class, used_obj);
1764 }
1765
1766 /* Remember last position in this iteration */
1767 cc->s_page = s_page;
1768 cc->obj_idx = obj_idx;
1769
1770 return ret;
1771 }
1772
1773 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1774 {
1775 int i;
1776 struct zspage *zspage;
1777 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1778
1779 if (!source) {
1780 fg[0] = ZS_ALMOST_FULL;
1781 fg[1] = ZS_ALMOST_EMPTY;
1782 }
1783
1784 for (i = 0; i < 2; i++) {
1785 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1786 struct zspage, list);
1787 if (zspage) {
1788 VM_BUG_ON(is_zspage_isolated(zspage));
1789 remove_zspage(class, zspage, fg[i]);
1790 return zspage;
1791 }
1792 }
1793
1794 return zspage;
1795 }
1796
1797 /*
1798 * putback_zspage - add @zspage into right class's fullness list
1799 * @class: destination class
1800 * @zspage: target page
1801 *
1802 * Return @zspage's fullness_group
1803 */
1804 static enum fullness_group putback_zspage(struct size_class *class,
1805 struct zspage *zspage)
1806 {
1807 enum fullness_group fullness;
1808
1809 VM_BUG_ON(is_zspage_isolated(zspage));
1810
1811 fullness = get_fullness_group(class, zspage);
1812 insert_zspage(class, zspage, fullness);
1813 set_zspage_mapping(zspage, class->index, fullness);
1814
1815 return fullness;
1816 }
1817
1818 #ifdef CONFIG_COMPACTION
1819 static struct dentry *zs_mount(struct file_system_type *fs_type,
1820 int flags, const char *dev_name, void *data)
1821 {
1822 static const struct dentry_operations ops = {
1823 .d_dname = simple_dname,
1824 };
1825
1826 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1827 }
1828
1829 static struct file_system_type zsmalloc_fs = {
1830 .name = "zsmalloc",
1831 .mount = zs_mount,
1832 .kill_sb = kill_anon_super,
1833 };
1834
1835 static int zsmalloc_mount(void)
1836 {
1837 int ret = 0;
1838
1839 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1840 if (IS_ERR(zsmalloc_mnt))
1841 ret = PTR_ERR(zsmalloc_mnt);
1842
1843 return ret;
1844 }
1845
1846 static void zsmalloc_unmount(void)
1847 {
1848 kern_unmount(zsmalloc_mnt);
1849 }
1850
1851 static void migrate_lock_init(struct zspage *zspage)
1852 {
1853 rwlock_init(&zspage->lock);
1854 }
1855
1856 static void migrate_read_lock(struct zspage *zspage)
1857 {
1858 read_lock(&zspage->lock);
1859 }
1860
1861 static void migrate_read_unlock(struct zspage *zspage)
1862 {
1863 read_unlock(&zspage->lock);
1864 }
1865
1866 static void migrate_write_lock(struct zspage *zspage)
1867 {
1868 write_lock(&zspage->lock);
1869 }
1870
1871 static void migrate_write_unlock(struct zspage *zspage)
1872 {
1873 write_unlock(&zspage->lock);
1874 }
1875
1876 /* Number of isolated subpage for *page migration* in this zspage */
1877 static void inc_zspage_isolation(struct zspage *zspage)
1878 {
1879 zspage->isolated++;
1880 }
1881
1882 static void dec_zspage_isolation(struct zspage *zspage)
1883 {
1884 zspage->isolated--;
1885 }
1886
1887 static void putback_zspage_deferred(struct zs_pool *pool,
1888 struct size_class *class,
1889 struct zspage *zspage)
1890 {
1891 enum fullness_group fg;
1892
1893 fg = putback_zspage(class, zspage);
1894 if (fg == ZS_EMPTY)
1895 schedule_work(&pool->free_work);
1896
1897 }
1898
1899 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1900 {
1901 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1902 atomic_long_dec(&pool->isolated_pages);
1903 /*
1904 * There's no possibility of racing, since wait_for_isolated_drain()
1905 * checks the isolated count under &class->lock after enqueuing
1906 * on migration_wait.
1907 */
1908 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1909 wake_up_all(&pool->migration_wait);
1910 }
1911
1912 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1913 struct page *newpage, struct page *oldpage)
1914 {
1915 struct page *page;
1916 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1917 int idx = 0;
1918
1919 page = get_first_page(zspage);
1920 do {
1921 if (page == oldpage)
1922 pages[idx] = newpage;
1923 else
1924 pages[idx] = page;
1925 idx++;
1926 } while ((page = get_next_page(page)) != NULL);
1927
1928 create_page_chain(class, zspage, pages);
1929 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1930 if (unlikely(PageHugeObject(oldpage)))
1931 newpage->index = oldpage->index;
1932 __SetPageMovable(newpage, page_mapping(oldpage));
1933 }
1934
1935 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1936 {
1937 struct zs_pool *pool;
1938 struct size_class *class;
1939 int class_idx;
1940 enum fullness_group fullness;
1941 struct zspage *zspage;
1942 struct address_space *mapping;
1943
1944 /*
1945 * Page is locked so zspage couldn't be destroyed. For detail, look at
1946 * lock_zspage in free_zspage.
1947 */
1948 VM_BUG_ON_PAGE(!PageMovable(page), page);
1949 VM_BUG_ON_PAGE(PageIsolated(page), page);
1950
1951 zspage = get_zspage(page);
1952
1953 /*
1954 * Without class lock, fullness could be stale while class_idx is okay
1955 * because class_idx is constant unless page is freed so we should get
1956 * fullness again under class lock.
1957 */
1958 get_zspage_mapping(zspage, &class_idx, &fullness);
1959 mapping = page_mapping(page);
1960 pool = mapping->private_data;
1961 class = pool->size_class[class_idx];
1962
1963 spin_lock(&class->lock);
1964 if (get_zspage_inuse(zspage) == 0) {
1965 spin_unlock(&class->lock);
1966 return false;
1967 }
1968
1969 /* zspage is isolated for object migration */
1970 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1971 spin_unlock(&class->lock);
1972 return false;
1973 }
1974
1975 /*
1976 * If this is first time isolation for the zspage, isolate zspage from
1977 * size_class to prevent further object allocation from the zspage.
1978 */
1979 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1980 get_zspage_mapping(zspage, &class_idx, &fullness);
1981 atomic_long_inc(&pool->isolated_pages);
1982 remove_zspage(class, zspage, fullness);
1983 }
1984
1985 inc_zspage_isolation(zspage);
1986 spin_unlock(&class->lock);
1987
1988 return true;
1989 }
1990
1991 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1992 struct page *page, enum migrate_mode mode)
1993 {
1994 struct zs_pool *pool;
1995 struct size_class *class;
1996 int class_idx;
1997 enum fullness_group fullness;
1998 struct zspage *zspage;
1999 struct page *dummy;
2000 void *s_addr, *d_addr, *addr;
2001 int offset, pos;
2002 unsigned long handle, head;
2003 unsigned long old_obj, new_obj;
2004 unsigned int obj_idx;
2005 int ret = -EAGAIN;
2006
2007 /*
2008 * We cannot support the _NO_COPY case here, because copy needs to
2009 * happen under the zs lock, which does not work with
2010 * MIGRATE_SYNC_NO_COPY workflow.
2011 */
2012 if (mode == MIGRATE_SYNC_NO_COPY)
2013 return -EINVAL;
2014
2015 VM_BUG_ON_PAGE(!PageMovable(page), page);
2016 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2017
2018 zspage = get_zspage(page);
2019
2020 /* Concurrent compactor cannot migrate any subpage in zspage */
2021 migrate_write_lock(zspage);
2022 get_zspage_mapping(zspage, &class_idx, &fullness);
2023 pool = mapping->private_data;
2024 class = pool->size_class[class_idx];
2025 offset = get_first_obj_offset(page);
2026
2027 spin_lock(&class->lock);
2028 if (!get_zspage_inuse(zspage)) {
2029 /*
2030 * Set "offset" to end of the page so that every loops
2031 * skips unnecessary object scanning.
2032 */
2033 offset = PAGE_SIZE;
2034 }
2035
2036 pos = offset;
2037 s_addr = kmap_atomic(page);
2038 while (pos < PAGE_SIZE) {
2039 head = obj_to_head(page, s_addr + pos);
2040 if (head & OBJ_ALLOCATED_TAG) {
2041 handle = head & ~OBJ_ALLOCATED_TAG;
2042 if (!trypin_tag(handle))
2043 goto unpin_objects;
2044 }
2045 pos += class->size;
2046 }
2047
2048 /*
2049 * Here, any user cannot access all objects in the zspage so let's move.
2050 */
2051 d_addr = kmap_atomic(newpage);
2052 memcpy(d_addr, s_addr, PAGE_SIZE);
2053 kunmap_atomic(d_addr);
2054
2055 for (addr = s_addr + offset; addr < s_addr + pos;
2056 addr += class->size) {
2057 head = obj_to_head(page, addr);
2058 if (head & OBJ_ALLOCATED_TAG) {
2059 handle = head & ~OBJ_ALLOCATED_TAG;
2060 if (!testpin_tag(handle))
2061 BUG();
2062
2063 old_obj = handle_to_obj(handle);
2064 obj_to_location(old_obj, &dummy, &obj_idx);
2065 new_obj = (unsigned long)location_to_obj(newpage,
2066 obj_idx);
2067 new_obj |= BIT(HANDLE_PIN_BIT);
2068 record_obj(handle, new_obj);
2069 }
2070 }
2071
2072 replace_sub_page(class, zspage, newpage, page);
2073 get_page(newpage);
2074
2075 dec_zspage_isolation(zspage);
2076
2077 /*
2078 * Page migration is done so let's putback isolated zspage to
2079 * the list if @page is final isolated subpage in the zspage.
2080 */
2081 if (!is_zspage_isolated(zspage)) {
2082 /*
2083 * We cannot race with zs_destroy_pool() here because we wait
2084 * for isolation to hit zero before we start destroying.
2085 * Also, we ensure that everyone can see pool->destroying before
2086 * we start waiting.
2087 */
2088 putback_zspage_deferred(pool, class, zspage);
2089 zs_pool_dec_isolated(pool);
2090 }
2091
2092 reset_page(page);
2093 put_page(page);
2094 page = newpage;
2095
2096 ret = MIGRATEPAGE_SUCCESS;
2097 unpin_objects:
2098 for (addr = s_addr + offset; addr < s_addr + pos;
2099 addr += class->size) {
2100 head = obj_to_head(page, addr);
2101 if (head & OBJ_ALLOCATED_TAG) {
2102 handle = head & ~OBJ_ALLOCATED_TAG;
2103 if (!testpin_tag(handle))
2104 BUG();
2105 unpin_tag(handle);
2106 }
2107 }
2108 kunmap_atomic(s_addr);
2109 spin_unlock(&class->lock);
2110 migrate_write_unlock(zspage);
2111
2112 return ret;
2113 }
2114
2115 void zs_page_putback(struct page *page)
2116 {
2117 struct zs_pool *pool;
2118 struct size_class *class;
2119 int class_idx;
2120 enum fullness_group fg;
2121 struct address_space *mapping;
2122 struct zspage *zspage;
2123
2124 VM_BUG_ON_PAGE(!PageMovable(page), page);
2125 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2126
2127 zspage = get_zspage(page);
2128 get_zspage_mapping(zspage, &class_idx, &fg);
2129 mapping = page_mapping(page);
2130 pool = mapping->private_data;
2131 class = pool->size_class[class_idx];
2132
2133 spin_lock(&class->lock);
2134 dec_zspage_isolation(zspage);
2135 if (!is_zspage_isolated(zspage)) {
2136 /*
2137 * Due to page_lock, we cannot free zspage immediately
2138 * so let's defer.
2139 */
2140 putback_zspage_deferred(pool, class, zspage);
2141 zs_pool_dec_isolated(pool);
2142 }
2143 spin_unlock(&class->lock);
2144 }
2145
2146 const struct address_space_operations zsmalloc_aops = {
2147 .isolate_page = zs_page_isolate,
2148 .migratepage = zs_page_migrate,
2149 .putback_page = zs_page_putback,
2150 };
2151
2152 static int zs_register_migration(struct zs_pool *pool)
2153 {
2154 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2155 if (IS_ERR(pool->inode)) {
2156 pool->inode = NULL;
2157 return 1;
2158 }
2159
2160 pool->inode->i_mapping->private_data = pool;
2161 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2162 return 0;
2163 }
2164
2165 static bool pool_isolated_are_drained(struct zs_pool *pool)
2166 {
2167 return atomic_long_read(&pool->isolated_pages) == 0;
2168 }
2169
2170 /* Function for resolving migration */
2171 static void wait_for_isolated_drain(struct zs_pool *pool)
2172 {
2173
2174 /*
2175 * We're in the process of destroying the pool, so there are no
2176 * active allocations. zs_page_isolate() fails for completely free
2177 * zspages, so we need only wait for the zs_pool's isolated
2178 * count to hit zero.
2179 */
2180 wait_event(pool->migration_wait,
2181 pool_isolated_are_drained(pool));
2182 }
2183
2184 static void zs_unregister_migration(struct zs_pool *pool)
2185 {
2186 pool->destroying = true;
2187 /*
2188 * We need a memory barrier here to ensure global visibility of
2189 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2190 * case we don't care, or it will be > 0 and pool->destroying will
2191 * ensure that we wake up once isolation hits 0.
2192 */
2193 smp_mb();
2194 wait_for_isolated_drain(pool); /* This can block */
2195 flush_work(&pool->free_work);
2196 iput(pool->inode);
2197 }
2198
2199 /*
2200 * Caller should hold page_lock of all pages in the zspage
2201 * In here, we cannot use zspage meta data.
2202 */
2203 static void async_free_zspage(struct work_struct *work)
2204 {
2205 int i;
2206 struct size_class *class;
2207 unsigned int class_idx;
2208 enum fullness_group fullness;
2209 struct zspage *zspage, *tmp;
2210 LIST_HEAD(free_pages);
2211 struct zs_pool *pool = container_of(work, struct zs_pool,
2212 free_work);
2213
2214 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2215 class = pool->size_class[i];
2216 if (class->index != i)
2217 continue;
2218
2219 spin_lock(&class->lock);
2220 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2221 spin_unlock(&class->lock);
2222 }
2223
2224
2225 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2226 list_del(&zspage->list);
2227 lock_zspage(zspage);
2228
2229 get_zspage_mapping(zspage, &class_idx, &fullness);
2230 VM_BUG_ON(fullness != ZS_EMPTY);
2231 class = pool->size_class[class_idx];
2232 spin_lock(&class->lock);
2233 __free_zspage(pool, pool->size_class[class_idx], zspage);
2234 spin_unlock(&class->lock);
2235 }
2236 };
2237
2238 static void kick_deferred_free(struct zs_pool *pool)
2239 {
2240 schedule_work(&pool->free_work);
2241 }
2242
2243 static void init_deferred_free(struct zs_pool *pool)
2244 {
2245 INIT_WORK(&pool->free_work, async_free_zspage);
2246 }
2247
2248 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2249 {
2250 struct page *page = get_first_page(zspage);
2251
2252 do {
2253 WARN_ON(!trylock_page(page));
2254 __SetPageMovable(page, pool->inode->i_mapping);
2255 unlock_page(page);
2256 } while ((page = get_next_page(page)) != NULL);
2257 }
2258 #endif
2259
2260 /*
2261 *
2262 * Based on the number of unused allocated objects calculate
2263 * and return the number of pages that we can free.
2264 */
2265 static unsigned long zs_can_compact(struct size_class *class)
2266 {
2267 unsigned long obj_wasted;
2268 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2269 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2270
2271 if (obj_allocated <= obj_used)
2272 return 0;
2273
2274 obj_wasted = obj_allocated - obj_used;
2275 obj_wasted /= class->objs_per_zspage;
2276
2277 return obj_wasted * class->pages_per_zspage;
2278 }
2279
2280 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2281 {
2282 struct zs_compact_control cc;
2283 struct zspage *src_zspage;
2284 struct zspage *dst_zspage = NULL;
2285
2286 spin_lock(&class->lock);
2287 while ((src_zspage = isolate_zspage(class, true))) {
2288
2289 if (!zs_can_compact(class))
2290 break;
2291
2292 cc.obj_idx = 0;
2293 cc.s_page = get_first_page(src_zspage);
2294
2295 while ((dst_zspage = isolate_zspage(class, false))) {
2296 cc.d_page = get_first_page(dst_zspage);
2297 /*
2298 * If there is no more space in dst_page, resched
2299 * and see if anyone had allocated another zspage.
2300 */
2301 if (!migrate_zspage(pool, class, &cc))
2302 break;
2303
2304 putback_zspage(class, dst_zspage);
2305 }
2306
2307 /* Stop if we couldn't find slot */
2308 if (dst_zspage == NULL)
2309 break;
2310
2311 putback_zspage(class, dst_zspage);
2312 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2313 free_zspage(pool, class, src_zspage);
2314 pool->stats.pages_compacted += class->pages_per_zspage;
2315 }
2316 spin_unlock(&class->lock);
2317 cond_resched();
2318 spin_lock(&class->lock);
2319 }
2320
2321 if (src_zspage)
2322 putback_zspage(class, src_zspage);
2323
2324 spin_unlock(&class->lock);
2325 }
2326
2327 unsigned long zs_compact(struct zs_pool *pool)
2328 {
2329 int i;
2330 struct size_class *class;
2331
2332 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2333 class = pool->size_class[i];
2334 if (!class)
2335 continue;
2336 if (class->index != i)
2337 continue;
2338 __zs_compact(pool, class);
2339 }
2340
2341 return pool->stats.pages_compacted;
2342 }
2343 EXPORT_SYMBOL_GPL(zs_compact);
2344
2345 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2346 {
2347 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2348 }
2349 EXPORT_SYMBOL_GPL(zs_pool_stats);
2350
2351 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2352 struct shrink_control *sc)
2353 {
2354 unsigned long pages_freed;
2355 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2356 shrinker);
2357
2358 pages_freed = pool->stats.pages_compacted;
2359 /*
2360 * Compact classes and calculate compaction delta.
2361 * Can run concurrently with a manually triggered
2362 * (by user) compaction.
2363 */
2364 pages_freed = zs_compact(pool) - pages_freed;
2365
2366 return pages_freed ? pages_freed : SHRINK_STOP;
2367 }
2368
2369 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2370 struct shrink_control *sc)
2371 {
2372 int i;
2373 struct size_class *class;
2374 unsigned long pages_to_free = 0;
2375 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2376 shrinker);
2377
2378 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2379 class = pool->size_class[i];
2380 if (!class)
2381 continue;
2382 if (class->index != i)
2383 continue;
2384
2385 pages_to_free += zs_can_compact(class);
2386 }
2387
2388 return pages_to_free;
2389 }
2390
2391 static void zs_unregister_shrinker(struct zs_pool *pool)
2392 {
2393 if (pool->shrinker_enabled) {
2394 unregister_shrinker(&pool->shrinker);
2395 pool->shrinker_enabled = false;
2396 }
2397 }
2398
2399 static int zs_register_shrinker(struct zs_pool *pool)
2400 {
2401 pool->shrinker.scan_objects = zs_shrinker_scan;
2402 pool->shrinker.count_objects = zs_shrinker_count;
2403 pool->shrinker.batch = 0;
2404 pool->shrinker.seeks = DEFAULT_SEEKS;
2405
2406 return register_shrinker(&pool->shrinker);
2407 }
2408
2409 /**
2410 * zs_create_pool - Creates an allocation pool to work from.
2411 * @name: pool name to be created
2412 *
2413 * This function must be called before anything when using
2414 * the zsmalloc allocator.
2415 *
2416 * On success, a pointer to the newly created pool is returned,
2417 * otherwise NULL.
2418 */
2419 struct zs_pool *zs_create_pool(const char *name)
2420 {
2421 int i;
2422 struct zs_pool *pool;
2423 struct size_class *prev_class = NULL;
2424
2425 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2426 if (!pool)
2427 return NULL;
2428
2429 init_deferred_free(pool);
2430
2431 pool->name = kstrdup(name, GFP_KERNEL);
2432 if (!pool->name)
2433 goto err;
2434
2435 #ifdef CONFIG_COMPACTION
2436 init_waitqueue_head(&pool->migration_wait);
2437 #endif
2438
2439 if (create_cache(pool))
2440 goto err;
2441
2442 /*
2443 * Iterate reversely, because, size of size_class that we want to use
2444 * for merging should be larger or equal to current size.
2445 */
2446 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2447 int size;
2448 int pages_per_zspage;
2449 int objs_per_zspage;
2450 struct size_class *class;
2451 int fullness = 0;
2452
2453 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2454 if (size > ZS_MAX_ALLOC_SIZE)
2455 size = ZS_MAX_ALLOC_SIZE;
2456 pages_per_zspage = get_pages_per_zspage(size);
2457 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2458
2459 /*
2460 * size_class is used for normal zsmalloc operation such
2461 * as alloc/free for that size. Although it is natural that we
2462 * have one size_class for each size, there is a chance that we
2463 * can get more memory utilization if we use one size_class for
2464 * many different sizes whose size_class have same
2465 * characteristics. So, we makes size_class point to
2466 * previous size_class if possible.
2467 */
2468 if (prev_class) {
2469 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2470 pool->size_class[i] = prev_class;
2471 continue;
2472 }
2473 }
2474
2475 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2476 if (!class)
2477 goto err;
2478
2479 class->size = size;
2480 class->index = i;
2481 class->pages_per_zspage = pages_per_zspage;
2482 class->objs_per_zspage = objs_per_zspage;
2483 spin_lock_init(&class->lock);
2484 pool->size_class[i] = class;
2485 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2486 fullness++)
2487 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2488
2489 prev_class = class;
2490 }
2491
2492 /* debug only, don't abort if it fails */
2493 zs_pool_stat_create(pool, name);
2494
2495 if (zs_register_migration(pool))
2496 goto err;
2497
2498 /*
2499 * Not critical, we still can use the pool
2500 * and user can trigger compaction manually.
2501 */
2502 if (zs_register_shrinker(pool) == 0)
2503 pool->shrinker_enabled = true;
2504 return pool;
2505
2506 err:
2507 zs_destroy_pool(pool);
2508 return NULL;
2509 }
2510 EXPORT_SYMBOL_GPL(zs_create_pool);
2511
2512 void zs_destroy_pool(struct zs_pool *pool)
2513 {
2514 int i;
2515
2516 zs_unregister_shrinker(pool);
2517 zs_unregister_migration(pool);
2518 zs_pool_stat_destroy(pool);
2519
2520 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2521 int fg;
2522 struct size_class *class = pool->size_class[i];
2523
2524 if (!class)
2525 continue;
2526
2527 if (class->index != i)
2528 continue;
2529
2530 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2531 if (!list_empty(&class->fullness_list[fg])) {
2532 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2533 class->size, fg);
2534 }
2535 }
2536 kfree(class);
2537 }
2538
2539 destroy_cache(pool);
2540 kfree(pool->name);
2541 kfree(pool);
2542 }
2543 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2544
2545 static int __init zs_init(void)
2546 {
2547 int ret;
2548
2549 ret = zsmalloc_mount();
2550 if (ret)
2551 goto out;
2552
2553 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2554 zs_cpu_prepare, zs_cpu_dead);
2555 if (ret)
2556 goto hp_setup_fail;
2557
2558 #ifdef CONFIG_ZPOOL
2559 zpool_register_driver(&zs_zpool_driver);
2560 #endif
2561
2562 zs_stat_init();
2563
2564 return 0;
2565
2566 hp_setup_fail:
2567 zsmalloc_unmount();
2568 out:
2569 return ret;
2570 }
2571
2572 static void __exit zs_exit(void)
2573 {
2574 #ifdef CONFIG_ZPOOL
2575 zpool_unregister_driver(&zs_zpool_driver);
2576 #endif
2577 zsmalloc_unmount();
2578 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2579
2580 zs_stat_exit();
2581 }
2582
2583 module_init(zs_init);
2584 module_exit(zs_exit);
2585
2586 MODULE_LICENSE("Dual BSD/GPL");
2587 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");