]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/zsmalloc.c
perf report: Show branch info in callchain entry for browser mode
[mirror_ubuntu-artful-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_private2: identifies the last component page
28 * PG_owner_priv_1: indentifies the huge component page
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56
57 #define ZSPAGE_MAGIC 0x58
58
59 /*
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
64 */
65 #define ZS_ALIGN 8
66
67 /*
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70 */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75
76 /*
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
79 *
80 * Note that object index <obj_idx> starts from 0.
81 *
82 * This is made more complicated by various memory models and PAE.
83 */
84
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91 * be PAGE_SHIFT
92 */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
97
98 /*
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
104 */
105 #define HANDLE_PIN_BIT 0
106
107 /*
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
113 */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
125
126 /*
127 * On systems with 4K page size, this gives 255 size classes! There is a
128 * trader-off here:
129 * - Large number of size classes is potentially wasteful as free page are
130 * spread across these classes
131 * - Small number of size classes causes large internal fragmentation
132 * - Probably its better to use specific size classes (empirically
133 * determined). NOTE: all those class sizes must be set as multiple of
134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
135 *
136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137 * (reason above)
138 */
139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
140
141 enum fullness_group {
142 ZS_EMPTY,
143 ZS_ALMOST_EMPTY,
144 ZS_ALMOST_FULL,
145 ZS_FULL,
146 NR_ZS_FULLNESS,
147 };
148
149 enum zs_stat_type {
150 CLASS_EMPTY,
151 CLASS_ALMOST_EMPTY,
152 CLASS_ALMOST_FULL,
153 CLASS_FULL,
154 OBJ_ALLOCATED,
155 OBJ_USED,
156 NR_ZS_STAT_TYPE,
157 };
158
159 struct zs_size_stat {
160 unsigned long objs[NR_ZS_STAT_TYPE];
161 };
162
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
166
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
170
171 /*
172 * number of size_classes
173 */
174 static int zs_size_classes;
175
176 /*
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178 * n <= N / f, where
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
182 *
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
187 *
188 * (see: fix_fullness_group())
189 */
190 static const int fullness_threshold_frac = 4;
191
192 struct size_class {
193 spinlock_t lock;
194 struct list_head fullness_list[NR_ZS_FULLNESS];
195 /*
196 * Size of objects stored in this class. Must be multiple
197 * of ZS_ALIGN.
198 */
199 int size;
200 int objs_per_zspage;
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
203
204 unsigned int index;
205 struct zs_size_stat stats;
206 };
207
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
210 {
211 SetPageOwnerPriv1(page);
212 }
213
214 static void ClearPageHugeObject(struct page *page)
215 {
216 ClearPageOwnerPriv1(page);
217 }
218
219 static int PageHugeObject(struct page *page)
220 {
221 return PageOwnerPriv1(page);
222 }
223
224 /*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230 struct link_free {
231 union {
232 /*
233 * Free object index;
234 * It's valid for non-allocated object
235 */
236 unsigned long next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
242 };
243
244 struct zs_pool {
245 const char *name;
246
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249 struct kmem_cache *zspage_cachep;
250
251 atomic_long_t pages_allocated;
252
253 struct zs_pool_stats stats;
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 struct inode *inode;
267 struct work_struct free_work;
268 #endif
269 };
270
271 /*
272 * A zspage's class index and fullness group
273 * are encoded in its (first)page->mapping
274 */
275 #define FULLNESS_BITS 2
276 #define CLASS_BITS 8
277 #define ISOLATED_BITS 3
278 #define MAGIC_VAL_BITS 8
279
280 struct zspage {
281 struct {
282 unsigned int fullness:FULLNESS_BITS;
283 unsigned int class:CLASS_BITS;
284 unsigned int isolated:ISOLATED_BITS;
285 unsigned int magic:MAGIC_VAL_BITS;
286 };
287 unsigned int inuse;
288 unsigned int freeobj;
289 struct page *first_page;
290 struct list_head list; /* fullness list */
291 #ifdef CONFIG_COMPACTION
292 rwlock_t lock;
293 #endif
294 };
295
296 struct mapping_area {
297 #ifdef CONFIG_PGTABLE_MAPPING
298 struct vm_struct *vm; /* vm area for mapping object that span pages */
299 #else
300 char *vm_buf; /* copy buffer for objects that span pages */
301 #endif
302 char *vm_addr; /* address of kmap_atomic()'ed pages */
303 enum zs_mapmode vm_mm; /* mapping mode */
304 };
305
306 #ifdef CONFIG_COMPACTION
307 static int zs_register_migration(struct zs_pool *pool);
308 static void zs_unregister_migration(struct zs_pool *pool);
309 static void migrate_lock_init(struct zspage *zspage);
310 static void migrate_read_lock(struct zspage *zspage);
311 static void migrate_read_unlock(struct zspage *zspage);
312 static void kick_deferred_free(struct zs_pool *pool);
313 static void init_deferred_free(struct zs_pool *pool);
314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
315 #else
316 static int zsmalloc_mount(void) { return 0; }
317 static void zsmalloc_unmount(void) {}
318 static int zs_register_migration(struct zs_pool *pool) { return 0; }
319 static void zs_unregister_migration(struct zs_pool *pool) {}
320 static void migrate_lock_init(struct zspage *zspage) {}
321 static void migrate_read_lock(struct zspage *zspage) {}
322 static void migrate_read_unlock(struct zspage *zspage) {}
323 static void kick_deferred_free(struct zs_pool *pool) {}
324 static void init_deferred_free(struct zs_pool *pool) {}
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
326 #endif
327
328 static int create_cache(struct zs_pool *pool)
329 {
330 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
331 0, 0, NULL);
332 if (!pool->handle_cachep)
333 return 1;
334
335 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
336 0, 0, NULL);
337 if (!pool->zspage_cachep) {
338 kmem_cache_destroy(pool->handle_cachep);
339 pool->handle_cachep = NULL;
340 return 1;
341 }
342
343 return 0;
344 }
345
346 static void destroy_cache(struct zs_pool *pool)
347 {
348 kmem_cache_destroy(pool->handle_cachep);
349 kmem_cache_destroy(pool->zspage_cachep);
350 }
351
352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
353 {
354 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
355 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
356 }
357
358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
359 {
360 kmem_cache_free(pool->handle_cachep, (void *)handle);
361 }
362
363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
364 {
365 return kmem_cache_alloc(pool->zspage_cachep,
366 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
367 };
368
369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
370 {
371 kmem_cache_free(pool->zspage_cachep, zspage);
372 }
373
374 static void record_obj(unsigned long handle, unsigned long obj)
375 {
376 /*
377 * lsb of @obj represents handle lock while other bits
378 * represent object value the handle is pointing so
379 * updating shouldn't do store tearing.
380 */
381 WRITE_ONCE(*(unsigned long *)handle, obj);
382 }
383
384 /* zpool driver */
385
386 #ifdef CONFIG_ZPOOL
387
388 static void *zs_zpool_create(const char *name, gfp_t gfp,
389 const struct zpool_ops *zpool_ops,
390 struct zpool *zpool)
391 {
392 /*
393 * Ignore global gfp flags: zs_malloc() may be invoked from
394 * different contexts and its caller must provide a valid
395 * gfp mask.
396 */
397 return zs_create_pool(name);
398 }
399
400 static void zs_zpool_destroy(void *pool)
401 {
402 zs_destroy_pool(pool);
403 }
404
405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
406 unsigned long *handle)
407 {
408 *handle = zs_malloc(pool, size, gfp);
409 return *handle ? 0 : -1;
410 }
411 static void zs_zpool_free(void *pool, unsigned long handle)
412 {
413 zs_free(pool, handle);
414 }
415
416 static int zs_zpool_shrink(void *pool, unsigned int pages,
417 unsigned int *reclaimed)
418 {
419 return -EINVAL;
420 }
421
422 static void *zs_zpool_map(void *pool, unsigned long handle,
423 enum zpool_mapmode mm)
424 {
425 enum zs_mapmode zs_mm;
426
427 switch (mm) {
428 case ZPOOL_MM_RO:
429 zs_mm = ZS_MM_RO;
430 break;
431 case ZPOOL_MM_WO:
432 zs_mm = ZS_MM_WO;
433 break;
434 case ZPOOL_MM_RW: /* fallthru */
435 default:
436 zs_mm = ZS_MM_RW;
437 break;
438 }
439
440 return zs_map_object(pool, handle, zs_mm);
441 }
442 static void zs_zpool_unmap(void *pool, unsigned long handle)
443 {
444 zs_unmap_object(pool, handle);
445 }
446
447 static u64 zs_zpool_total_size(void *pool)
448 {
449 return zs_get_total_pages(pool) << PAGE_SHIFT;
450 }
451
452 static struct zpool_driver zs_zpool_driver = {
453 .type = "zsmalloc",
454 .owner = THIS_MODULE,
455 .create = zs_zpool_create,
456 .destroy = zs_zpool_destroy,
457 .malloc = zs_zpool_malloc,
458 .free = zs_zpool_free,
459 .shrink = zs_zpool_shrink,
460 .map = zs_zpool_map,
461 .unmap = zs_zpool_unmap,
462 .total_size = zs_zpool_total_size,
463 };
464
465 MODULE_ALIAS("zpool-zsmalloc");
466 #endif /* CONFIG_ZPOOL */
467
468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
470
471 static bool is_zspage_isolated(struct zspage *zspage)
472 {
473 return zspage->isolated;
474 }
475
476 static int is_first_page(struct page *page)
477 {
478 return PagePrivate(page);
479 }
480
481 /* Protected by class->lock */
482 static inline int get_zspage_inuse(struct zspage *zspage)
483 {
484 return zspage->inuse;
485 }
486
487 static inline void set_zspage_inuse(struct zspage *zspage, int val)
488 {
489 zspage->inuse = val;
490 }
491
492 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
493 {
494 zspage->inuse += val;
495 }
496
497 static inline struct page *get_first_page(struct zspage *zspage)
498 {
499 struct page *first_page = zspage->first_page;
500
501 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
502 return first_page;
503 }
504
505 static inline int get_first_obj_offset(struct page *page)
506 {
507 return page->units;
508 }
509
510 static inline void set_first_obj_offset(struct page *page, int offset)
511 {
512 page->units = offset;
513 }
514
515 static inline unsigned int get_freeobj(struct zspage *zspage)
516 {
517 return zspage->freeobj;
518 }
519
520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
521 {
522 zspage->freeobj = obj;
523 }
524
525 static void get_zspage_mapping(struct zspage *zspage,
526 unsigned int *class_idx,
527 enum fullness_group *fullness)
528 {
529 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
530
531 *fullness = zspage->fullness;
532 *class_idx = zspage->class;
533 }
534
535 static void set_zspage_mapping(struct zspage *zspage,
536 unsigned int class_idx,
537 enum fullness_group fullness)
538 {
539 zspage->class = class_idx;
540 zspage->fullness = fullness;
541 }
542
543 /*
544 * zsmalloc divides the pool into various size classes where each
545 * class maintains a list of zspages where each zspage is divided
546 * into equal sized chunks. Each allocation falls into one of these
547 * classes depending on its size. This function returns index of the
548 * size class which has chunk size big enough to hold the give size.
549 */
550 static int get_size_class_index(int size)
551 {
552 int idx = 0;
553
554 if (likely(size > ZS_MIN_ALLOC_SIZE))
555 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
556 ZS_SIZE_CLASS_DELTA);
557
558 return min(zs_size_classes - 1, idx);
559 }
560
561 static inline void zs_stat_inc(struct size_class *class,
562 enum zs_stat_type type, unsigned long cnt)
563 {
564 class->stats.objs[type] += cnt;
565 }
566
567 static inline void zs_stat_dec(struct size_class *class,
568 enum zs_stat_type type, unsigned long cnt)
569 {
570 class->stats.objs[type] -= cnt;
571 }
572
573 static inline unsigned long zs_stat_get(struct size_class *class,
574 enum zs_stat_type type)
575 {
576 return class->stats.objs[type];
577 }
578
579 #ifdef CONFIG_ZSMALLOC_STAT
580
581 static void __init zs_stat_init(void)
582 {
583 if (!debugfs_initialized()) {
584 pr_warn("debugfs not available, stat dir not created\n");
585 return;
586 }
587
588 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
589 if (!zs_stat_root)
590 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
591 }
592
593 static void __exit zs_stat_exit(void)
594 {
595 debugfs_remove_recursive(zs_stat_root);
596 }
597
598 static unsigned long zs_can_compact(struct size_class *class);
599
600 static int zs_stats_size_show(struct seq_file *s, void *v)
601 {
602 int i;
603 struct zs_pool *pool = s->private;
604 struct size_class *class;
605 int objs_per_zspage;
606 unsigned long class_almost_full, class_almost_empty;
607 unsigned long obj_allocated, obj_used, pages_used, freeable;
608 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
609 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
610 unsigned long total_freeable = 0;
611
612 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
613 "class", "size", "almost_full", "almost_empty",
614 "obj_allocated", "obj_used", "pages_used",
615 "pages_per_zspage", "freeable");
616
617 for (i = 0; i < zs_size_classes; i++) {
618 class = pool->size_class[i];
619
620 if (class->index != i)
621 continue;
622
623 spin_lock(&class->lock);
624 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
625 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
626 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
627 obj_used = zs_stat_get(class, OBJ_USED);
628 freeable = zs_can_compact(class);
629 spin_unlock(&class->lock);
630
631 objs_per_zspage = class->objs_per_zspage;
632 pages_used = obj_allocated / objs_per_zspage *
633 class->pages_per_zspage;
634
635 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
636 " %10lu %10lu %16d %8lu\n",
637 i, class->size, class_almost_full, class_almost_empty,
638 obj_allocated, obj_used, pages_used,
639 class->pages_per_zspage, freeable);
640
641 total_class_almost_full += class_almost_full;
642 total_class_almost_empty += class_almost_empty;
643 total_objs += obj_allocated;
644 total_used_objs += obj_used;
645 total_pages += pages_used;
646 total_freeable += freeable;
647 }
648
649 seq_puts(s, "\n");
650 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
651 "Total", "", total_class_almost_full,
652 total_class_almost_empty, total_objs,
653 total_used_objs, total_pages, "", total_freeable);
654
655 return 0;
656 }
657
658 static int zs_stats_size_open(struct inode *inode, struct file *file)
659 {
660 return single_open(file, zs_stats_size_show, inode->i_private);
661 }
662
663 static const struct file_operations zs_stat_size_ops = {
664 .open = zs_stats_size_open,
665 .read = seq_read,
666 .llseek = seq_lseek,
667 .release = single_release,
668 };
669
670 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
671 {
672 struct dentry *entry;
673
674 if (!zs_stat_root) {
675 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
676 return;
677 }
678
679 entry = debugfs_create_dir(name, zs_stat_root);
680 if (!entry) {
681 pr_warn("debugfs dir <%s> creation failed\n", name);
682 return;
683 }
684 pool->stat_dentry = entry;
685
686 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
687 pool->stat_dentry, pool, &zs_stat_size_ops);
688 if (!entry) {
689 pr_warn("%s: debugfs file entry <%s> creation failed\n",
690 name, "classes");
691 debugfs_remove_recursive(pool->stat_dentry);
692 pool->stat_dentry = NULL;
693 }
694 }
695
696 static void zs_pool_stat_destroy(struct zs_pool *pool)
697 {
698 debugfs_remove_recursive(pool->stat_dentry);
699 }
700
701 #else /* CONFIG_ZSMALLOC_STAT */
702 static void __init zs_stat_init(void)
703 {
704 }
705
706 static void __exit zs_stat_exit(void)
707 {
708 }
709
710 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
711 {
712 }
713
714 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
715 {
716 }
717 #endif
718
719
720 /*
721 * For each size class, zspages are divided into different groups
722 * depending on how "full" they are. This was done so that we could
723 * easily find empty or nearly empty zspages when we try to shrink
724 * the pool (not yet implemented). This function returns fullness
725 * status of the given page.
726 */
727 static enum fullness_group get_fullness_group(struct size_class *class,
728 struct zspage *zspage)
729 {
730 int inuse, objs_per_zspage;
731 enum fullness_group fg;
732
733 inuse = get_zspage_inuse(zspage);
734 objs_per_zspage = class->objs_per_zspage;
735
736 if (inuse == 0)
737 fg = ZS_EMPTY;
738 else if (inuse == objs_per_zspage)
739 fg = ZS_FULL;
740 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
741 fg = ZS_ALMOST_EMPTY;
742 else
743 fg = ZS_ALMOST_FULL;
744
745 return fg;
746 }
747
748 /*
749 * Each size class maintains various freelists and zspages are assigned
750 * to one of these freelists based on the number of live objects they
751 * have. This functions inserts the given zspage into the freelist
752 * identified by <class, fullness_group>.
753 */
754 static void insert_zspage(struct size_class *class,
755 struct zspage *zspage,
756 enum fullness_group fullness)
757 {
758 struct zspage *head;
759
760 zs_stat_inc(class, fullness, 1);
761 head = list_first_entry_or_null(&class->fullness_list[fullness],
762 struct zspage, list);
763 /*
764 * We want to see more ZS_FULL pages and less almost empty/full.
765 * Put pages with higher ->inuse first.
766 */
767 if (head) {
768 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
769 list_add(&zspage->list, &head->list);
770 return;
771 }
772 }
773 list_add(&zspage->list, &class->fullness_list[fullness]);
774 }
775
776 /*
777 * This function removes the given zspage from the freelist identified
778 * by <class, fullness_group>.
779 */
780 static void remove_zspage(struct size_class *class,
781 struct zspage *zspage,
782 enum fullness_group fullness)
783 {
784 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
785 VM_BUG_ON(is_zspage_isolated(zspage));
786
787 list_del_init(&zspage->list);
788 zs_stat_dec(class, fullness, 1);
789 }
790
791 /*
792 * Each size class maintains zspages in different fullness groups depending
793 * on the number of live objects they contain. When allocating or freeing
794 * objects, the fullness status of the page can change, say, from ALMOST_FULL
795 * to ALMOST_EMPTY when freeing an object. This function checks if such
796 * a status change has occurred for the given page and accordingly moves the
797 * page from the freelist of the old fullness group to that of the new
798 * fullness group.
799 */
800 static enum fullness_group fix_fullness_group(struct size_class *class,
801 struct zspage *zspage)
802 {
803 int class_idx;
804 enum fullness_group currfg, newfg;
805
806 get_zspage_mapping(zspage, &class_idx, &currfg);
807 newfg = get_fullness_group(class, zspage);
808 if (newfg == currfg)
809 goto out;
810
811 if (!is_zspage_isolated(zspage)) {
812 remove_zspage(class, zspage, currfg);
813 insert_zspage(class, zspage, newfg);
814 }
815
816 set_zspage_mapping(zspage, class_idx, newfg);
817
818 out:
819 return newfg;
820 }
821
822 /*
823 * We have to decide on how many pages to link together
824 * to form a zspage for each size class. This is important
825 * to reduce wastage due to unusable space left at end of
826 * each zspage which is given as:
827 * wastage = Zp % class_size
828 * usage = Zp - wastage
829 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
830 *
831 * For example, for size class of 3/8 * PAGE_SIZE, we should
832 * link together 3 PAGE_SIZE sized pages to form a zspage
833 * since then we can perfectly fit in 8 such objects.
834 */
835 static int get_pages_per_zspage(int class_size)
836 {
837 int i, max_usedpc = 0;
838 /* zspage order which gives maximum used size per KB */
839 int max_usedpc_order = 1;
840
841 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
842 int zspage_size;
843 int waste, usedpc;
844
845 zspage_size = i * PAGE_SIZE;
846 waste = zspage_size % class_size;
847 usedpc = (zspage_size - waste) * 100 / zspage_size;
848
849 if (usedpc > max_usedpc) {
850 max_usedpc = usedpc;
851 max_usedpc_order = i;
852 }
853 }
854
855 return max_usedpc_order;
856 }
857
858 static struct zspage *get_zspage(struct page *page)
859 {
860 struct zspage *zspage = (struct zspage *)page->private;
861
862 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
863 return zspage;
864 }
865
866 static struct page *get_next_page(struct page *page)
867 {
868 if (unlikely(PageHugeObject(page)))
869 return NULL;
870
871 return page->freelist;
872 }
873
874 /**
875 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
876 * @page: page object resides in zspage
877 * @obj_idx: object index
878 */
879 static void obj_to_location(unsigned long obj, struct page **page,
880 unsigned int *obj_idx)
881 {
882 obj >>= OBJ_TAG_BITS;
883 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
884 *obj_idx = (obj & OBJ_INDEX_MASK);
885 }
886
887 /**
888 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
889 * @page: page object resides in zspage
890 * @obj_idx: object index
891 */
892 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
893 {
894 unsigned long obj;
895
896 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
897 obj |= obj_idx & OBJ_INDEX_MASK;
898 obj <<= OBJ_TAG_BITS;
899
900 return obj;
901 }
902
903 static unsigned long handle_to_obj(unsigned long handle)
904 {
905 return *(unsigned long *)handle;
906 }
907
908 static unsigned long obj_to_head(struct page *page, void *obj)
909 {
910 if (unlikely(PageHugeObject(page))) {
911 VM_BUG_ON_PAGE(!is_first_page(page), page);
912 return page->index;
913 } else
914 return *(unsigned long *)obj;
915 }
916
917 static inline int testpin_tag(unsigned long handle)
918 {
919 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921
922 static inline int trypin_tag(unsigned long handle)
923 {
924 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 }
926
927 static void pin_tag(unsigned long handle)
928 {
929 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 }
931
932 static void unpin_tag(unsigned long handle)
933 {
934 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
935 }
936
937 static void reset_page(struct page *page)
938 {
939 __ClearPageMovable(page);
940 ClearPagePrivate(page);
941 ClearPagePrivate2(page);
942 set_page_private(page, 0);
943 page_mapcount_reset(page);
944 ClearPageHugeObject(page);
945 page->freelist = NULL;
946 }
947
948 /*
949 * To prevent zspage destroy during migration, zspage freeing should
950 * hold locks of all pages in the zspage.
951 */
952 void lock_zspage(struct zspage *zspage)
953 {
954 struct page *page = get_first_page(zspage);
955
956 do {
957 lock_page(page);
958 } while ((page = get_next_page(page)) != NULL);
959 }
960
961 int trylock_zspage(struct zspage *zspage)
962 {
963 struct page *cursor, *fail;
964
965 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
966 get_next_page(cursor)) {
967 if (!trylock_page(cursor)) {
968 fail = cursor;
969 goto unlock;
970 }
971 }
972
973 return 1;
974 unlock:
975 for (cursor = get_first_page(zspage); cursor != fail; cursor =
976 get_next_page(cursor))
977 unlock_page(cursor);
978
979 return 0;
980 }
981
982 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
983 struct zspage *zspage)
984 {
985 struct page *page, *next;
986 enum fullness_group fg;
987 unsigned int class_idx;
988
989 get_zspage_mapping(zspage, &class_idx, &fg);
990
991 assert_spin_locked(&class->lock);
992
993 VM_BUG_ON(get_zspage_inuse(zspage));
994 VM_BUG_ON(fg != ZS_EMPTY);
995
996 next = page = get_first_page(zspage);
997 do {
998 VM_BUG_ON_PAGE(!PageLocked(page), page);
999 next = get_next_page(page);
1000 reset_page(page);
1001 unlock_page(page);
1002 dec_zone_page_state(page, NR_ZSPAGES);
1003 put_page(page);
1004 page = next;
1005 } while (page != NULL);
1006
1007 cache_free_zspage(pool, zspage);
1008
1009 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010 atomic_long_sub(class->pages_per_zspage,
1011 &pool->pages_allocated);
1012 }
1013
1014 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015 struct zspage *zspage)
1016 {
1017 VM_BUG_ON(get_zspage_inuse(zspage));
1018 VM_BUG_ON(list_empty(&zspage->list));
1019
1020 if (!trylock_zspage(zspage)) {
1021 kick_deferred_free(pool);
1022 return;
1023 }
1024
1025 remove_zspage(class, zspage, ZS_EMPTY);
1026 __free_zspage(pool, class, zspage);
1027 }
1028
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class *class, struct zspage *zspage)
1031 {
1032 unsigned int freeobj = 1;
1033 unsigned long off = 0;
1034 struct page *page = get_first_page(zspage);
1035
1036 while (page) {
1037 struct page *next_page;
1038 struct link_free *link;
1039 void *vaddr;
1040
1041 set_first_obj_offset(page, off);
1042
1043 vaddr = kmap_atomic(page);
1044 link = (struct link_free *)vaddr + off / sizeof(*link);
1045
1046 while ((off += class->size) < PAGE_SIZE) {
1047 link->next = freeobj++ << OBJ_TAG_BITS;
1048 link += class->size / sizeof(*link);
1049 }
1050
1051 /*
1052 * We now come to the last (full or partial) object on this
1053 * page, which must point to the first object on the next
1054 * page (if present)
1055 */
1056 next_page = get_next_page(page);
1057 if (next_page) {
1058 link->next = freeobj++ << OBJ_TAG_BITS;
1059 } else {
1060 /*
1061 * Reset OBJ_TAG_BITS bit to last link to tell
1062 * whether it's allocated object or not.
1063 */
1064 link->next = -1 << OBJ_TAG_BITS;
1065 }
1066 kunmap_atomic(vaddr);
1067 page = next_page;
1068 off %= PAGE_SIZE;
1069 }
1070
1071 set_freeobj(zspage, 0);
1072 }
1073
1074 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075 struct page *pages[])
1076 {
1077 int i;
1078 struct page *page;
1079 struct page *prev_page = NULL;
1080 int nr_pages = class->pages_per_zspage;
1081
1082 /*
1083 * Allocate individual pages and link them together as:
1084 * 1. all pages are linked together using page->freelist
1085 * 2. each sub-page point to zspage using page->private
1086 *
1087 * we set PG_private to identify the first page (i.e. no other sub-page
1088 * has this flag set) and PG_private_2 to identify the last page.
1089 */
1090 for (i = 0; i < nr_pages; i++) {
1091 page = pages[i];
1092 set_page_private(page, (unsigned long)zspage);
1093 page->freelist = NULL;
1094 if (i == 0) {
1095 zspage->first_page = page;
1096 SetPagePrivate(page);
1097 if (unlikely(class->objs_per_zspage == 1 &&
1098 class->pages_per_zspage == 1))
1099 SetPageHugeObject(page);
1100 } else {
1101 prev_page->freelist = page;
1102 }
1103 if (i == nr_pages - 1)
1104 SetPagePrivate2(page);
1105 prev_page = page;
1106 }
1107 }
1108
1109 /*
1110 * Allocate a zspage for the given size class
1111 */
1112 static struct zspage *alloc_zspage(struct zs_pool *pool,
1113 struct size_class *class,
1114 gfp_t gfp)
1115 {
1116 int i;
1117 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1118 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119
1120 if (!zspage)
1121 return NULL;
1122
1123 memset(zspage, 0, sizeof(struct zspage));
1124 zspage->magic = ZSPAGE_MAGIC;
1125 migrate_lock_init(zspage);
1126
1127 for (i = 0; i < class->pages_per_zspage; i++) {
1128 struct page *page;
1129
1130 page = alloc_page(gfp);
1131 if (!page) {
1132 while (--i >= 0) {
1133 dec_zone_page_state(pages[i], NR_ZSPAGES);
1134 __free_page(pages[i]);
1135 }
1136 cache_free_zspage(pool, zspage);
1137 return NULL;
1138 }
1139
1140 inc_zone_page_state(page, NR_ZSPAGES);
1141 pages[i] = page;
1142 }
1143
1144 create_page_chain(class, zspage, pages);
1145 init_zspage(class, zspage);
1146
1147 return zspage;
1148 }
1149
1150 static struct zspage *find_get_zspage(struct size_class *class)
1151 {
1152 int i;
1153 struct zspage *zspage;
1154
1155 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1156 zspage = list_first_entry_or_null(&class->fullness_list[i],
1157 struct zspage, list);
1158 if (zspage)
1159 break;
1160 }
1161
1162 return zspage;
1163 }
1164
1165 #ifdef CONFIG_PGTABLE_MAPPING
1166 static inline int __zs_cpu_up(struct mapping_area *area)
1167 {
1168 /*
1169 * Make sure we don't leak memory if a cpu UP notification
1170 * and zs_init() race and both call zs_cpu_up() on the same cpu
1171 */
1172 if (area->vm)
1173 return 0;
1174 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1175 if (!area->vm)
1176 return -ENOMEM;
1177 return 0;
1178 }
1179
1180 static inline void __zs_cpu_down(struct mapping_area *area)
1181 {
1182 if (area->vm)
1183 free_vm_area(area->vm);
1184 area->vm = NULL;
1185 }
1186
1187 static inline void *__zs_map_object(struct mapping_area *area,
1188 struct page *pages[2], int off, int size)
1189 {
1190 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1191 area->vm_addr = area->vm->addr;
1192 return area->vm_addr + off;
1193 }
1194
1195 static inline void __zs_unmap_object(struct mapping_area *area,
1196 struct page *pages[2], int off, int size)
1197 {
1198 unsigned long addr = (unsigned long)area->vm_addr;
1199
1200 unmap_kernel_range(addr, PAGE_SIZE * 2);
1201 }
1202
1203 #else /* CONFIG_PGTABLE_MAPPING */
1204
1205 static inline int __zs_cpu_up(struct mapping_area *area)
1206 {
1207 /*
1208 * Make sure we don't leak memory if a cpu UP notification
1209 * and zs_init() race and both call zs_cpu_up() on the same cpu
1210 */
1211 if (area->vm_buf)
1212 return 0;
1213 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1214 if (!area->vm_buf)
1215 return -ENOMEM;
1216 return 0;
1217 }
1218
1219 static inline void __zs_cpu_down(struct mapping_area *area)
1220 {
1221 kfree(area->vm_buf);
1222 area->vm_buf = NULL;
1223 }
1224
1225 static void *__zs_map_object(struct mapping_area *area,
1226 struct page *pages[2], int off, int size)
1227 {
1228 int sizes[2];
1229 void *addr;
1230 char *buf = area->vm_buf;
1231
1232 /* disable page faults to match kmap_atomic() return conditions */
1233 pagefault_disable();
1234
1235 /* no read fastpath */
1236 if (area->vm_mm == ZS_MM_WO)
1237 goto out;
1238
1239 sizes[0] = PAGE_SIZE - off;
1240 sizes[1] = size - sizes[0];
1241
1242 /* copy object to per-cpu buffer */
1243 addr = kmap_atomic(pages[0]);
1244 memcpy(buf, addr + off, sizes[0]);
1245 kunmap_atomic(addr);
1246 addr = kmap_atomic(pages[1]);
1247 memcpy(buf + sizes[0], addr, sizes[1]);
1248 kunmap_atomic(addr);
1249 out:
1250 return area->vm_buf;
1251 }
1252
1253 static void __zs_unmap_object(struct mapping_area *area,
1254 struct page *pages[2], int off, int size)
1255 {
1256 int sizes[2];
1257 void *addr;
1258 char *buf;
1259
1260 /* no write fastpath */
1261 if (area->vm_mm == ZS_MM_RO)
1262 goto out;
1263
1264 buf = area->vm_buf;
1265 buf = buf + ZS_HANDLE_SIZE;
1266 size -= ZS_HANDLE_SIZE;
1267 off += ZS_HANDLE_SIZE;
1268
1269 sizes[0] = PAGE_SIZE - off;
1270 sizes[1] = size - sizes[0];
1271
1272 /* copy per-cpu buffer to object */
1273 addr = kmap_atomic(pages[0]);
1274 memcpy(addr + off, buf, sizes[0]);
1275 kunmap_atomic(addr);
1276 addr = kmap_atomic(pages[1]);
1277 memcpy(addr, buf + sizes[0], sizes[1]);
1278 kunmap_atomic(addr);
1279
1280 out:
1281 /* enable page faults to match kunmap_atomic() return conditions */
1282 pagefault_enable();
1283 }
1284
1285 #endif /* CONFIG_PGTABLE_MAPPING */
1286
1287 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1288 void *pcpu)
1289 {
1290 int ret, cpu = (long)pcpu;
1291 struct mapping_area *area;
1292
1293 switch (action) {
1294 case CPU_UP_PREPARE:
1295 area = &per_cpu(zs_map_area, cpu);
1296 ret = __zs_cpu_up(area);
1297 if (ret)
1298 return notifier_from_errno(ret);
1299 break;
1300 case CPU_DEAD:
1301 case CPU_UP_CANCELED:
1302 area = &per_cpu(zs_map_area, cpu);
1303 __zs_cpu_down(area);
1304 break;
1305 }
1306
1307 return NOTIFY_OK;
1308 }
1309
1310 static struct notifier_block zs_cpu_nb = {
1311 .notifier_call = zs_cpu_notifier
1312 };
1313
1314 static int zs_register_cpu_notifier(void)
1315 {
1316 int cpu, uninitialized_var(ret);
1317
1318 cpu_notifier_register_begin();
1319
1320 __register_cpu_notifier(&zs_cpu_nb);
1321 for_each_online_cpu(cpu) {
1322 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1323 if (notifier_to_errno(ret))
1324 break;
1325 }
1326
1327 cpu_notifier_register_done();
1328 return notifier_to_errno(ret);
1329 }
1330
1331 static void zs_unregister_cpu_notifier(void)
1332 {
1333 int cpu;
1334
1335 cpu_notifier_register_begin();
1336
1337 for_each_online_cpu(cpu)
1338 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1339 __unregister_cpu_notifier(&zs_cpu_nb);
1340
1341 cpu_notifier_register_done();
1342 }
1343
1344 static void __init init_zs_size_classes(void)
1345 {
1346 int nr;
1347
1348 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1349 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1350 nr += 1;
1351
1352 zs_size_classes = nr;
1353 }
1354
1355 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1356 int objs_per_zspage)
1357 {
1358 if (prev->pages_per_zspage == pages_per_zspage &&
1359 prev->objs_per_zspage == objs_per_zspage)
1360 return true;
1361
1362 return false;
1363 }
1364
1365 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1366 {
1367 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1368 }
1369
1370 unsigned long zs_get_total_pages(struct zs_pool *pool)
1371 {
1372 return atomic_long_read(&pool->pages_allocated);
1373 }
1374 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1375
1376 /**
1377 * zs_map_object - get address of allocated object from handle.
1378 * @pool: pool from which the object was allocated
1379 * @handle: handle returned from zs_malloc
1380 *
1381 * Before using an object allocated from zs_malloc, it must be mapped using
1382 * this function. When done with the object, it must be unmapped using
1383 * zs_unmap_object.
1384 *
1385 * Only one object can be mapped per cpu at a time. There is no protection
1386 * against nested mappings.
1387 *
1388 * This function returns with preemption and page faults disabled.
1389 */
1390 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1391 enum zs_mapmode mm)
1392 {
1393 struct zspage *zspage;
1394 struct page *page;
1395 unsigned long obj, off;
1396 unsigned int obj_idx;
1397
1398 unsigned int class_idx;
1399 enum fullness_group fg;
1400 struct size_class *class;
1401 struct mapping_area *area;
1402 struct page *pages[2];
1403 void *ret;
1404
1405 /*
1406 * Because we use per-cpu mapping areas shared among the
1407 * pools/users, we can't allow mapping in interrupt context
1408 * because it can corrupt another users mappings.
1409 */
1410 WARN_ON_ONCE(in_interrupt());
1411
1412 /* From now on, migration cannot move the object */
1413 pin_tag(handle);
1414
1415 obj = handle_to_obj(handle);
1416 obj_to_location(obj, &page, &obj_idx);
1417 zspage = get_zspage(page);
1418
1419 /* migration cannot move any subpage in this zspage */
1420 migrate_read_lock(zspage);
1421
1422 get_zspage_mapping(zspage, &class_idx, &fg);
1423 class = pool->size_class[class_idx];
1424 off = (class->size * obj_idx) & ~PAGE_MASK;
1425
1426 area = &get_cpu_var(zs_map_area);
1427 area->vm_mm = mm;
1428 if (off + class->size <= PAGE_SIZE) {
1429 /* this object is contained entirely within a page */
1430 area->vm_addr = kmap_atomic(page);
1431 ret = area->vm_addr + off;
1432 goto out;
1433 }
1434
1435 /* this object spans two pages */
1436 pages[0] = page;
1437 pages[1] = get_next_page(page);
1438 BUG_ON(!pages[1]);
1439
1440 ret = __zs_map_object(area, pages, off, class->size);
1441 out:
1442 if (likely(!PageHugeObject(page)))
1443 ret += ZS_HANDLE_SIZE;
1444
1445 return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(zs_map_object);
1448
1449 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1450 {
1451 struct zspage *zspage;
1452 struct page *page;
1453 unsigned long obj, off;
1454 unsigned int obj_idx;
1455
1456 unsigned int class_idx;
1457 enum fullness_group fg;
1458 struct size_class *class;
1459 struct mapping_area *area;
1460
1461 obj = handle_to_obj(handle);
1462 obj_to_location(obj, &page, &obj_idx);
1463 zspage = get_zspage(page);
1464 get_zspage_mapping(zspage, &class_idx, &fg);
1465 class = pool->size_class[class_idx];
1466 off = (class->size * obj_idx) & ~PAGE_MASK;
1467
1468 area = this_cpu_ptr(&zs_map_area);
1469 if (off + class->size <= PAGE_SIZE)
1470 kunmap_atomic(area->vm_addr);
1471 else {
1472 struct page *pages[2];
1473
1474 pages[0] = page;
1475 pages[1] = get_next_page(page);
1476 BUG_ON(!pages[1]);
1477
1478 __zs_unmap_object(area, pages, off, class->size);
1479 }
1480 put_cpu_var(zs_map_area);
1481
1482 migrate_read_unlock(zspage);
1483 unpin_tag(handle);
1484 }
1485 EXPORT_SYMBOL_GPL(zs_unmap_object);
1486
1487 static unsigned long obj_malloc(struct size_class *class,
1488 struct zspage *zspage, unsigned long handle)
1489 {
1490 int i, nr_page, offset;
1491 unsigned long obj;
1492 struct link_free *link;
1493
1494 struct page *m_page;
1495 unsigned long m_offset;
1496 void *vaddr;
1497
1498 handle |= OBJ_ALLOCATED_TAG;
1499 obj = get_freeobj(zspage);
1500
1501 offset = obj * class->size;
1502 nr_page = offset >> PAGE_SHIFT;
1503 m_offset = offset & ~PAGE_MASK;
1504 m_page = get_first_page(zspage);
1505
1506 for (i = 0; i < nr_page; i++)
1507 m_page = get_next_page(m_page);
1508
1509 vaddr = kmap_atomic(m_page);
1510 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1511 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1512 if (likely(!PageHugeObject(m_page)))
1513 /* record handle in the header of allocated chunk */
1514 link->handle = handle;
1515 else
1516 /* record handle to page->index */
1517 zspage->first_page->index = handle;
1518
1519 kunmap_atomic(vaddr);
1520 mod_zspage_inuse(zspage, 1);
1521 zs_stat_inc(class, OBJ_USED, 1);
1522
1523 obj = location_to_obj(m_page, obj);
1524
1525 return obj;
1526 }
1527
1528
1529 /**
1530 * zs_malloc - Allocate block of given size from pool.
1531 * @pool: pool to allocate from
1532 * @size: size of block to allocate
1533 * @gfp: gfp flags when allocating object
1534 *
1535 * On success, handle to the allocated object is returned,
1536 * otherwise 0.
1537 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1538 */
1539 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1540 {
1541 unsigned long handle, obj;
1542 struct size_class *class;
1543 enum fullness_group newfg;
1544 struct zspage *zspage;
1545
1546 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1547 return 0;
1548
1549 handle = cache_alloc_handle(pool, gfp);
1550 if (!handle)
1551 return 0;
1552
1553 /* extra space in chunk to keep the handle */
1554 size += ZS_HANDLE_SIZE;
1555 class = pool->size_class[get_size_class_index(size)];
1556
1557 spin_lock(&class->lock);
1558 zspage = find_get_zspage(class);
1559 if (likely(zspage)) {
1560 obj = obj_malloc(class, zspage, handle);
1561 /* Now move the zspage to another fullness group, if required */
1562 fix_fullness_group(class, zspage);
1563 record_obj(handle, obj);
1564 spin_unlock(&class->lock);
1565
1566 return handle;
1567 }
1568
1569 spin_unlock(&class->lock);
1570
1571 zspage = alloc_zspage(pool, class, gfp);
1572 if (!zspage) {
1573 cache_free_handle(pool, handle);
1574 return 0;
1575 }
1576
1577 spin_lock(&class->lock);
1578 obj = obj_malloc(class, zspage, handle);
1579 newfg = get_fullness_group(class, zspage);
1580 insert_zspage(class, zspage, newfg);
1581 set_zspage_mapping(zspage, class->index, newfg);
1582 record_obj(handle, obj);
1583 atomic_long_add(class->pages_per_zspage,
1584 &pool->pages_allocated);
1585 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1586
1587 /* We completely set up zspage so mark them as movable */
1588 SetZsPageMovable(pool, zspage);
1589 spin_unlock(&class->lock);
1590
1591 return handle;
1592 }
1593 EXPORT_SYMBOL_GPL(zs_malloc);
1594
1595 static void obj_free(struct size_class *class, unsigned long obj)
1596 {
1597 struct link_free *link;
1598 struct zspage *zspage;
1599 struct page *f_page;
1600 unsigned long f_offset;
1601 unsigned int f_objidx;
1602 void *vaddr;
1603
1604 obj &= ~OBJ_ALLOCATED_TAG;
1605 obj_to_location(obj, &f_page, &f_objidx);
1606 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1607 zspage = get_zspage(f_page);
1608
1609 vaddr = kmap_atomic(f_page);
1610
1611 /* Insert this object in containing zspage's freelist */
1612 link = (struct link_free *)(vaddr + f_offset);
1613 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1614 kunmap_atomic(vaddr);
1615 set_freeobj(zspage, f_objidx);
1616 mod_zspage_inuse(zspage, -1);
1617 zs_stat_dec(class, OBJ_USED, 1);
1618 }
1619
1620 void zs_free(struct zs_pool *pool, unsigned long handle)
1621 {
1622 struct zspage *zspage;
1623 struct page *f_page;
1624 unsigned long obj;
1625 unsigned int f_objidx;
1626 int class_idx;
1627 struct size_class *class;
1628 enum fullness_group fullness;
1629 bool isolated;
1630
1631 if (unlikely(!handle))
1632 return;
1633
1634 pin_tag(handle);
1635 obj = handle_to_obj(handle);
1636 obj_to_location(obj, &f_page, &f_objidx);
1637 zspage = get_zspage(f_page);
1638
1639 migrate_read_lock(zspage);
1640
1641 get_zspage_mapping(zspage, &class_idx, &fullness);
1642 class = pool->size_class[class_idx];
1643
1644 spin_lock(&class->lock);
1645 obj_free(class, obj);
1646 fullness = fix_fullness_group(class, zspage);
1647 if (fullness != ZS_EMPTY) {
1648 migrate_read_unlock(zspage);
1649 goto out;
1650 }
1651
1652 isolated = is_zspage_isolated(zspage);
1653 migrate_read_unlock(zspage);
1654 /* If zspage is isolated, zs_page_putback will free the zspage */
1655 if (likely(!isolated))
1656 free_zspage(pool, class, zspage);
1657 out:
1658
1659 spin_unlock(&class->lock);
1660 unpin_tag(handle);
1661 cache_free_handle(pool, handle);
1662 }
1663 EXPORT_SYMBOL_GPL(zs_free);
1664
1665 static void zs_object_copy(struct size_class *class, unsigned long dst,
1666 unsigned long src)
1667 {
1668 struct page *s_page, *d_page;
1669 unsigned int s_objidx, d_objidx;
1670 unsigned long s_off, d_off;
1671 void *s_addr, *d_addr;
1672 int s_size, d_size, size;
1673 int written = 0;
1674
1675 s_size = d_size = class->size;
1676
1677 obj_to_location(src, &s_page, &s_objidx);
1678 obj_to_location(dst, &d_page, &d_objidx);
1679
1680 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1681 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1682
1683 if (s_off + class->size > PAGE_SIZE)
1684 s_size = PAGE_SIZE - s_off;
1685
1686 if (d_off + class->size > PAGE_SIZE)
1687 d_size = PAGE_SIZE - d_off;
1688
1689 s_addr = kmap_atomic(s_page);
1690 d_addr = kmap_atomic(d_page);
1691
1692 while (1) {
1693 size = min(s_size, d_size);
1694 memcpy(d_addr + d_off, s_addr + s_off, size);
1695 written += size;
1696
1697 if (written == class->size)
1698 break;
1699
1700 s_off += size;
1701 s_size -= size;
1702 d_off += size;
1703 d_size -= size;
1704
1705 if (s_off >= PAGE_SIZE) {
1706 kunmap_atomic(d_addr);
1707 kunmap_atomic(s_addr);
1708 s_page = get_next_page(s_page);
1709 s_addr = kmap_atomic(s_page);
1710 d_addr = kmap_atomic(d_page);
1711 s_size = class->size - written;
1712 s_off = 0;
1713 }
1714
1715 if (d_off >= PAGE_SIZE) {
1716 kunmap_atomic(d_addr);
1717 d_page = get_next_page(d_page);
1718 d_addr = kmap_atomic(d_page);
1719 d_size = class->size - written;
1720 d_off = 0;
1721 }
1722 }
1723
1724 kunmap_atomic(d_addr);
1725 kunmap_atomic(s_addr);
1726 }
1727
1728 /*
1729 * Find alloced object in zspage from index object and
1730 * return handle.
1731 */
1732 static unsigned long find_alloced_obj(struct size_class *class,
1733 struct page *page, int *obj_idx)
1734 {
1735 unsigned long head;
1736 int offset = 0;
1737 int index = *obj_idx;
1738 unsigned long handle = 0;
1739 void *addr = kmap_atomic(page);
1740
1741 offset = get_first_obj_offset(page);
1742 offset += class->size * index;
1743
1744 while (offset < PAGE_SIZE) {
1745 head = obj_to_head(page, addr + offset);
1746 if (head & OBJ_ALLOCATED_TAG) {
1747 handle = head & ~OBJ_ALLOCATED_TAG;
1748 if (trypin_tag(handle))
1749 break;
1750 handle = 0;
1751 }
1752
1753 offset += class->size;
1754 index++;
1755 }
1756
1757 kunmap_atomic(addr);
1758
1759 *obj_idx = index;
1760
1761 return handle;
1762 }
1763
1764 struct zs_compact_control {
1765 /* Source spage for migration which could be a subpage of zspage */
1766 struct page *s_page;
1767 /* Destination page for migration which should be a first page
1768 * of zspage. */
1769 struct page *d_page;
1770 /* Starting object index within @s_page which used for live object
1771 * in the subpage. */
1772 int obj_idx;
1773 };
1774
1775 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1776 struct zs_compact_control *cc)
1777 {
1778 unsigned long used_obj, free_obj;
1779 unsigned long handle;
1780 struct page *s_page = cc->s_page;
1781 struct page *d_page = cc->d_page;
1782 int obj_idx = cc->obj_idx;
1783 int ret = 0;
1784
1785 while (1) {
1786 handle = find_alloced_obj(class, s_page, &obj_idx);
1787 if (!handle) {
1788 s_page = get_next_page(s_page);
1789 if (!s_page)
1790 break;
1791 obj_idx = 0;
1792 continue;
1793 }
1794
1795 /* Stop if there is no more space */
1796 if (zspage_full(class, get_zspage(d_page))) {
1797 unpin_tag(handle);
1798 ret = -ENOMEM;
1799 break;
1800 }
1801
1802 used_obj = handle_to_obj(handle);
1803 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1804 zs_object_copy(class, free_obj, used_obj);
1805 obj_idx++;
1806 /*
1807 * record_obj updates handle's value to free_obj and it will
1808 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1809 * breaks synchronization using pin_tag(e,g, zs_free) so
1810 * let's keep the lock bit.
1811 */
1812 free_obj |= BIT(HANDLE_PIN_BIT);
1813 record_obj(handle, free_obj);
1814 unpin_tag(handle);
1815 obj_free(class, used_obj);
1816 }
1817
1818 /* Remember last position in this iteration */
1819 cc->s_page = s_page;
1820 cc->obj_idx = obj_idx;
1821
1822 return ret;
1823 }
1824
1825 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1826 {
1827 int i;
1828 struct zspage *zspage;
1829 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1830
1831 if (!source) {
1832 fg[0] = ZS_ALMOST_FULL;
1833 fg[1] = ZS_ALMOST_EMPTY;
1834 }
1835
1836 for (i = 0; i < 2; i++) {
1837 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1838 struct zspage, list);
1839 if (zspage) {
1840 VM_BUG_ON(is_zspage_isolated(zspage));
1841 remove_zspage(class, zspage, fg[i]);
1842 return zspage;
1843 }
1844 }
1845
1846 return zspage;
1847 }
1848
1849 /*
1850 * putback_zspage - add @zspage into right class's fullness list
1851 * @class: destination class
1852 * @zspage: target page
1853 *
1854 * Return @zspage's fullness_group
1855 */
1856 static enum fullness_group putback_zspage(struct size_class *class,
1857 struct zspage *zspage)
1858 {
1859 enum fullness_group fullness;
1860
1861 VM_BUG_ON(is_zspage_isolated(zspage));
1862
1863 fullness = get_fullness_group(class, zspage);
1864 insert_zspage(class, zspage, fullness);
1865 set_zspage_mapping(zspage, class->index, fullness);
1866
1867 return fullness;
1868 }
1869
1870 #ifdef CONFIG_COMPACTION
1871 static struct dentry *zs_mount(struct file_system_type *fs_type,
1872 int flags, const char *dev_name, void *data)
1873 {
1874 static const struct dentry_operations ops = {
1875 .d_dname = simple_dname,
1876 };
1877
1878 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1879 }
1880
1881 static struct file_system_type zsmalloc_fs = {
1882 .name = "zsmalloc",
1883 .mount = zs_mount,
1884 .kill_sb = kill_anon_super,
1885 };
1886
1887 static int zsmalloc_mount(void)
1888 {
1889 int ret = 0;
1890
1891 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1892 if (IS_ERR(zsmalloc_mnt))
1893 ret = PTR_ERR(zsmalloc_mnt);
1894
1895 return ret;
1896 }
1897
1898 static void zsmalloc_unmount(void)
1899 {
1900 kern_unmount(zsmalloc_mnt);
1901 }
1902
1903 static void migrate_lock_init(struct zspage *zspage)
1904 {
1905 rwlock_init(&zspage->lock);
1906 }
1907
1908 static void migrate_read_lock(struct zspage *zspage)
1909 {
1910 read_lock(&zspage->lock);
1911 }
1912
1913 static void migrate_read_unlock(struct zspage *zspage)
1914 {
1915 read_unlock(&zspage->lock);
1916 }
1917
1918 static void migrate_write_lock(struct zspage *zspage)
1919 {
1920 write_lock(&zspage->lock);
1921 }
1922
1923 static void migrate_write_unlock(struct zspage *zspage)
1924 {
1925 write_unlock(&zspage->lock);
1926 }
1927
1928 /* Number of isolated subpage for *page migration* in this zspage */
1929 static void inc_zspage_isolation(struct zspage *zspage)
1930 {
1931 zspage->isolated++;
1932 }
1933
1934 static void dec_zspage_isolation(struct zspage *zspage)
1935 {
1936 zspage->isolated--;
1937 }
1938
1939 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1940 struct page *newpage, struct page *oldpage)
1941 {
1942 struct page *page;
1943 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1944 int idx = 0;
1945
1946 page = get_first_page(zspage);
1947 do {
1948 if (page == oldpage)
1949 pages[idx] = newpage;
1950 else
1951 pages[idx] = page;
1952 idx++;
1953 } while ((page = get_next_page(page)) != NULL);
1954
1955 create_page_chain(class, zspage, pages);
1956 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1957 if (unlikely(PageHugeObject(oldpage)))
1958 newpage->index = oldpage->index;
1959 __SetPageMovable(newpage, page_mapping(oldpage));
1960 }
1961
1962 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1963 {
1964 struct zs_pool *pool;
1965 struct size_class *class;
1966 int class_idx;
1967 enum fullness_group fullness;
1968 struct zspage *zspage;
1969 struct address_space *mapping;
1970
1971 /*
1972 * Page is locked so zspage couldn't be destroyed. For detail, look at
1973 * lock_zspage in free_zspage.
1974 */
1975 VM_BUG_ON_PAGE(!PageMovable(page), page);
1976 VM_BUG_ON_PAGE(PageIsolated(page), page);
1977
1978 zspage = get_zspage(page);
1979
1980 /*
1981 * Without class lock, fullness could be stale while class_idx is okay
1982 * because class_idx is constant unless page is freed so we should get
1983 * fullness again under class lock.
1984 */
1985 get_zspage_mapping(zspage, &class_idx, &fullness);
1986 mapping = page_mapping(page);
1987 pool = mapping->private_data;
1988 class = pool->size_class[class_idx];
1989
1990 spin_lock(&class->lock);
1991 if (get_zspage_inuse(zspage) == 0) {
1992 spin_unlock(&class->lock);
1993 return false;
1994 }
1995
1996 /* zspage is isolated for object migration */
1997 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1998 spin_unlock(&class->lock);
1999 return false;
2000 }
2001
2002 /*
2003 * If this is first time isolation for the zspage, isolate zspage from
2004 * size_class to prevent further object allocation from the zspage.
2005 */
2006 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2007 get_zspage_mapping(zspage, &class_idx, &fullness);
2008 remove_zspage(class, zspage, fullness);
2009 }
2010
2011 inc_zspage_isolation(zspage);
2012 spin_unlock(&class->lock);
2013
2014 return true;
2015 }
2016
2017 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2018 struct page *page, enum migrate_mode mode)
2019 {
2020 struct zs_pool *pool;
2021 struct size_class *class;
2022 int class_idx;
2023 enum fullness_group fullness;
2024 struct zspage *zspage;
2025 struct page *dummy;
2026 void *s_addr, *d_addr, *addr;
2027 int offset, pos;
2028 unsigned long handle, head;
2029 unsigned long old_obj, new_obj;
2030 unsigned int obj_idx;
2031 int ret = -EAGAIN;
2032
2033 VM_BUG_ON_PAGE(!PageMovable(page), page);
2034 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2035
2036 zspage = get_zspage(page);
2037
2038 /* Concurrent compactor cannot migrate any subpage in zspage */
2039 migrate_write_lock(zspage);
2040 get_zspage_mapping(zspage, &class_idx, &fullness);
2041 pool = mapping->private_data;
2042 class = pool->size_class[class_idx];
2043 offset = get_first_obj_offset(page);
2044
2045 spin_lock(&class->lock);
2046 if (!get_zspage_inuse(zspage)) {
2047 ret = -EBUSY;
2048 goto unlock_class;
2049 }
2050
2051 pos = offset;
2052 s_addr = kmap_atomic(page);
2053 while (pos < PAGE_SIZE) {
2054 head = obj_to_head(page, s_addr + pos);
2055 if (head & OBJ_ALLOCATED_TAG) {
2056 handle = head & ~OBJ_ALLOCATED_TAG;
2057 if (!trypin_tag(handle))
2058 goto unpin_objects;
2059 }
2060 pos += class->size;
2061 }
2062
2063 /*
2064 * Here, any user cannot access all objects in the zspage so let's move.
2065 */
2066 d_addr = kmap_atomic(newpage);
2067 memcpy(d_addr, s_addr, PAGE_SIZE);
2068 kunmap_atomic(d_addr);
2069
2070 for (addr = s_addr + offset; addr < s_addr + pos;
2071 addr += class->size) {
2072 head = obj_to_head(page, addr);
2073 if (head & OBJ_ALLOCATED_TAG) {
2074 handle = head & ~OBJ_ALLOCATED_TAG;
2075 if (!testpin_tag(handle))
2076 BUG();
2077
2078 old_obj = handle_to_obj(handle);
2079 obj_to_location(old_obj, &dummy, &obj_idx);
2080 new_obj = (unsigned long)location_to_obj(newpage,
2081 obj_idx);
2082 new_obj |= BIT(HANDLE_PIN_BIT);
2083 record_obj(handle, new_obj);
2084 }
2085 }
2086
2087 replace_sub_page(class, zspage, newpage, page);
2088 get_page(newpage);
2089
2090 dec_zspage_isolation(zspage);
2091
2092 /*
2093 * Page migration is done so let's putback isolated zspage to
2094 * the list if @page is final isolated subpage in the zspage.
2095 */
2096 if (!is_zspage_isolated(zspage))
2097 putback_zspage(class, zspage);
2098
2099 reset_page(page);
2100 put_page(page);
2101 page = newpage;
2102
2103 ret = MIGRATEPAGE_SUCCESS;
2104 unpin_objects:
2105 for (addr = s_addr + offset; addr < s_addr + pos;
2106 addr += class->size) {
2107 head = obj_to_head(page, addr);
2108 if (head & OBJ_ALLOCATED_TAG) {
2109 handle = head & ~OBJ_ALLOCATED_TAG;
2110 if (!testpin_tag(handle))
2111 BUG();
2112 unpin_tag(handle);
2113 }
2114 }
2115 kunmap_atomic(s_addr);
2116 unlock_class:
2117 spin_unlock(&class->lock);
2118 migrate_write_unlock(zspage);
2119
2120 return ret;
2121 }
2122
2123 void zs_page_putback(struct page *page)
2124 {
2125 struct zs_pool *pool;
2126 struct size_class *class;
2127 int class_idx;
2128 enum fullness_group fg;
2129 struct address_space *mapping;
2130 struct zspage *zspage;
2131
2132 VM_BUG_ON_PAGE(!PageMovable(page), page);
2133 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2134
2135 zspage = get_zspage(page);
2136 get_zspage_mapping(zspage, &class_idx, &fg);
2137 mapping = page_mapping(page);
2138 pool = mapping->private_data;
2139 class = pool->size_class[class_idx];
2140
2141 spin_lock(&class->lock);
2142 dec_zspage_isolation(zspage);
2143 if (!is_zspage_isolated(zspage)) {
2144 fg = putback_zspage(class, zspage);
2145 /*
2146 * Due to page_lock, we cannot free zspage immediately
2147 * so let's defer.
2148 */
2149 if (fg == ZS_EMPTY)
2150 schedule_work(&pool->free_work);
2151 }
2152 spin_unlock(&class->lock);
2153 }
2154
2155 const struct address_space_operations zsmalloc_aops = {
2156 .isolate_page = zs_page_isolate,
2157 .migratepage = zs_page_migrate,
2158 .putback_page = zs_page_putback,
2159 };
2160
2161 static int zs_register_migration(struct zs_pool *pool)
2162 {
2163 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2164 if (IS_ERR(pool->inode)) {
2165 pool->inode = NULL;
2166 return 1;
2167 }
2168
2169 pool->inode->i_mapping->private_data = pool;
2170 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2171 return 0;
2172 }
2173
2174 static void zs_unregister_migration(struct zs_pool *pool)
2175 {
2176 flush_work(&pool->free_work);
2177 iput(pool->inode);
2178 }
2179
2180 /*
2181 * Caller should hold page_lock of all pages in the zspage
2182 * In here, we cannot use zspage meta data.
2183 */
2184 static void async_free_zspage(struct work_struct *work)
2185 {
2186 int i;
2187 struct size_class *class;
2188 unsigned int class_idx;
2189 enum fullness_group fullness;
2190 struct zspage *zspage, *tmp;
2191 LIST_HEAD(free_pages);
2192 struct zs_pool *pool = container_of(work, struct zs_pool,
2193 free_work);
2194
2195 for (i = 0; i < zs_size_classes; i++) {
2196 class = pool->size_class[i];
2197 if (class->index != i)
2198 continue;
2199
2200 spin_lock(&class->lock);
2201 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2202 spin_unlock(&class->lock);
2203 }
2204
2205
2206 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2207 list_del(&zspage->list);
2208 lock_zspage(zspage);
2209
2210 get_zspage_mapping(zspage, &class_idx, &fullness);
2211 VM_BUG_ON(fullness != ZS_EMPTY);
2212 class = pool->size_class[class_idx];
2213 spin_lock(&class->lock);
2214 __free_zspage(pool, pool->size_class[class_idx], zspage);
2215 spin_unlock(&class->lock);
2216 }
2217 };
2218
2219 static void kick_deferred_free(struct zs_pool *pool)
2220 {
2221 schedule_work(&pool->free_work);
2222 }
2223
2224 static void init_deferred_free(struct zs_pool *pool)
2225 {
2226 INIT_WORK(&pool->free_work, async_free_zspage);
2227 }
2228
2229 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2230 {
2231 struct page *page = get_first_page(zspage);
2232
2233 do {
2234 WARN_ON(!trylock_page(page));
2235 __SetPageMovable(page, pool->inode->i_mapping);
2236 unlock_page(page);
2237 } while ((page = get_next_page(page)) != NULL);
2238 }
2239 #endif
2240
2241 /*
2242 *
2243 * Based on the number of unused allocated objects calculate
2244 * and return the number of pages that we can free.
2245 */
2246 static unsigned long zs_can_compact(struct size_class *class)
2247 {
2248 unsigned long obj_wasted;
2249 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252 if (obj_allocated <= obj_used)
2253 return 0;
2254
2255 obj_wasted = obj_allocated - obj_used;
2256 obj_wasted /= class->objs_per_zspage;
2257
2258 return obj_wasted * class->pages_per_zspage;
2259 }
2260
2261 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2262 {
2263 struct zs_compact_control cc;
2264 struct zspage *src_zspage;
2265 struct zspage *dst_zspage = NULL;
2266
2267 spin_lock(&class->lock);
2268 while ((src_zspage = isolate_zspage(class, true))) {
2269
2270 if (!zs_can_compact(class))
2271 break;
2272
2273 cc.obj_idx = 0;
2274 cc.s_page = get_first_page(src_zspage);
2275
2276 while ((dst_zspage = isolate_zspage(class, false))) {
2277 cc.d_page = get_first_page(dst_zspage);
2278 /*
2279 * If there is no more space in dst_page, resched
2280 * and see if anyone had allocated another zspage.
2281 */
2282 if (!migrate_zspage(pool, class, &cc))
2283 break;
2284
2285 putback_zspage(class, dst_zspage);
2286 }
2287
2288 /* Stop if we couldn't find slot */
2289 if (dst_zspage == NULL)
2290 break;
2291
2292 putback_zspage(class, dst_zspage);
2293 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2294 free_zspage(pool, class, src_zspage);
2295 pool->stats.pages_compacted += class->pages_per_zspage;
2296 }
2297 spin_unlock(&class->lock);
2298 cond_resched();
2299 spin_lock(&class->lock);
2300 }
2301
2302 if (src_zspage)
2303 putback_zspage(class, src_zspage);
2304
2305 spin_unlock(&class->lock);
2306 }
2307
2308 unsigned long zs_compact(struct zs_pool *pool)
2309 {
2310 int i;
2311 struct size_class *class;
2312
2313 for (i = zs_size_classes - 1; i >= 0; i--) {
2314 class = pool->size_class[i];
2315 if (!class)
2316 continue;
2317 if (class->index != i)
2318 continue;
2319 __zs_compact(pool, class);
2320 }
2321
2322 return pool->stats.pages_compacted;
2323 }
2324 EXPORT_SYMBOL_GPL(zs_compact);
2325
2326 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2327 {
2328 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2329 }
2330 EXPORT_SYMBOL_GPL(zs_pool_stats);
2331
2332 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2333 struct shrink_control *sc)
2334 {
2335 unsigned long pages_freed;
2336 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2337 shrinker);
2338
2339 pages_freed = pool->stats.pages_compacted;
2340 /*
2341 * Compact classes and calculate compaction delta.
2342 * Can run concurrently with a manually triggered
2343 * (by user) compaction.
2344 */
2345 pages_freed = zs_compact(pool) - pages_freed;
2346
2347 return pages_freed ? pages_freed : SHRINK_STOP;
2348 }
2349
2350 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2351 struct shrink_control *sc)
2352 {
2353 int i;
2354 struct size_class *class;
2355 unsigned long pages_to_free = 0;
2356 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2357 shrinker);
2358
2359 for (i = zs_size_classes - 1; i >= 0; i--) {
2360 class = pool->size_class[i];
2361 if (!class)
2362 continue;
2363 if (class->index != i)
2364 continue;
2365
2366 pages_to_free += zs_can_compact(class);
2367 }
2368
2369 return pages_to_free;
2370 }
2371
2372 static void zs_unregister_shrinker(struct zs_pool *pool)
2373 {
2374 if (pool->shrinker_enabled) {
2375 unregister_shrinker(&pool->shrinker);
2376 pool->shrinker_enabled = false;
2377 }
2378 }
2379
2380 static int zs_register_shrinker(struct zs_pool *pool)
2381 {
2382 pool->shrinker.scan_objects = zs_shrinker_scan;
2383 pool->shrinker.count_objects = zs_shrinker_count;
2384 pool->shrinker.batch = 0;
2385 pool->shrinker.seeks = DEFAULT_SEEKS;
2386
2387 return register_shrinker(&pool->shrinker);
2388 }
2389
2390 /**
2391 * zs_create_pool - Creates an allocation pool to work from.
2392 * @name: pool name to be created
2393 *
2394 * This function must be called before anything when using
2395 * the zsmalloc allocator.
2396 *
2397 * On success, a pointer to the newly created pool is returned,
2398 * otherwise NULL.
2399 */
2400 struct zs_pool *zs_create_pool(const char *name)
2401 {
2402 int i;
2403 struct zs_pool *pool;
2404 struct size_class *prev_class = NULL;
2405
2406 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2407 if (!pool)
2408 return NULL;
2409
2410 init_deferred_free(pool);
2411 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2412 GFP_KERNEL);
2413 if (!pool->size_class) {
2414 kfree(pool);
2415 return NULL;
2416 }
2417
2418 pool->name = kstrdup(name, GFP_KERNEL);
2419 if (!pool->name)
2420 goto err;
2421
2422 if (create_cache(pool))
2423 goto err;
2424
2425 /*
2426 * Iterate reversly, because, size of size_class that we want to use
2427 * for merging should be larger or equal to current size.
2428 */
2429 for (i = zs_size_classes - 1; i >= 0; i--) {
2430 int size;
2431 int pages_per_zspage;
2432 int objs_per_zspage;
2433 struct size_class *class;
2434 int fullness = 0;
2435
2436 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2437 if (size > ZS_MAX_ALLOC_SIZE)
2438 size = ZS_MAX_ALLOC_SIZE;
2439 pages_per_zspage = get_pages_per_zspage(size);
2440 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2441
2442 /*
2443 * size_class is used for normal zsmalloc operation such
2444 * as alloc/free for that size. Although it is natural that we
2445 * have one size_class for each size, there is a chance that we
2446 * can get more memory utilization if we use one size_class for
2447 * many different sizes whose size_class have same
2448 * characteristics. So, we makes size_class point to
2449 * previous size_class if possible.
2450 */
2451 if (prev_class) {
2452 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2453 pool->size_class[i] = prev_class;
2454 continue;
2455 }
2456 }
2457
2458 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2459 if (!class)
2460 goto err;
2461
2462 class->size = size;
2463 class->index = i;
2464 class->pages_per_zspage = pages_per_zspage;
2465 class->objs_per_zspage = objs_per_zspage;
2466 spin_lock_init(&class->lock);
2467 pool->size_class[i] = class;
2468 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2469 fullness++)
2470 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2471
2472 prev_class = class;
2473 }
2474
2475 /* debug only, don't abort if it fails */
2476 zs_pool_stat_create(pool, name);
2477
2478 if (zs_register_migration(pool))
2479 goto err;
2480
2481 /*
2482 * Not critical, we still can use the pool
2483 * and user can trigger compaction manually.
2484 */
2485 if (zs_register_shrinker(pool) == 0)
2486 pool->shrinker_enabled = true;
2487 return pool;
2488
2489 err:
2490 zs_destroy_pool(pool);
2491 return NULL;
2492 }
2493 EXPORT_SYMBOL_GPL(zs_create_pool);
2494
2495 void zs_destroy_pool(struct zs_pool *pool)
2496 {
2497 int i;
2498
2499 zs_unregister_shrinker(pool);
2500 zs_unregister_migration(pool);
2501 zs_pool_stat_destroy(pool);
2502
2503 for (i = 0; i < zs_size_classes; i++) {
2504 int fg;
2505 struct size_class *class = pool->size_class[i];
2506
2507 if (!class)
2508 continue;
2509
2510 if (class->index != i)
2511 continue;
2512
2513 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2514 if (!list_empty(&class->fullness_list[fg])) {
2515 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2516 class->size, fg);
2517 }
2518 }
2519 kfree(class);
2520 }
2521
2522 destroy_cache(pool);
2523 kfree(pool->size_class);
2524 kfree(pool->name);
2525 kfree(pool);
2526 }
2527 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2528
2529 static int __init zs_init(void)
2530 {
2531 int ret;
2532
2533 ret = zsmalloc_mount();
2534 if (ret)
2535 goto out;
2536
2537 ret = zs_register_cpu_notifier();
2538
2539 if (ret)
2540 goto notifier_fail;
2541
2542 init_zs_size_classes();
2543
2544 #ifdef CONFIG_ZPOOL
2545 zpool_register_driver(&zs_zpool_driver);
2546 #endif
2547
2548 zs_stat_init();
2549
2550 return 0;
2551
2552 notifier_fail:
2553 zs_unregister_cpu_notifier();
2554 zsmalloc_unmount();
2555 out:
2556 return ret;
2557 }
2558
2559 static void __exit zs_exit(void)
2560 {
2561 #ifdef CONFIG_ZPOOL
2562 zpool_unregister_driver(&zs_zpool_driver);
2563 #endif
2564 zsmalloc_unmount();
2565 zs_unregister_cpu_notifier();
2566
2567 zs_stat_exit();
2568 }
2569
2570 module_init(zs_init);
2571 module_exit(zs_exit);
2572
2573 MODULE_LICENSE("Dual BSD/GPL");
2574 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");