]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/zsmalloc.c
e4e8081b160b56c7fe7ceb1c842bc6ef9bd7d0bf
[mirror_ubuntu-jammy-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 *
24 * Usage of struct page flags:
25 * PG_private: identifies the first component page
26 * PG_private2: identifies the last component page
27 * PG_owner_priv_1: indentifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/compaction.h>
54 #include <linux/pagemap.h>
55
56 #define ZSPAGE_MAGIC 0x58
57
58 /*
59 * This must be power of 2 and greater than of equal to sizeof(link_free).
60 * These two conditions ensure that any 'struct link_free' itself doesn't
61 * span more than 1 page which avoids complex case of mapping 2 pages simply
62 * to restore link_free pointer values.
63 */
64 #define ZS_ALIGN 8
65
66 /*
67 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69 */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
75 /*
76 * Object location (<PFN>, <obj_idx>) is encoded as
77 * as single (unsigned long) handle value.
78 *
79 * Note that object index <obj_idx> starts from 0.
80 *
81 * This is made more complicated by various memory models and PAE.
82 */
83
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90 * be PAGE_SHIFT
91 */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
96
97 /*
98 * Memory for allocating for handle keeps object position by
99 * encoding <page, obj_idx> and the encoded value has a room
100 * in least bit(ie, look at obj_to_location).
101 * We use the bit to synchronize between object access by
102 * user and migration.
103 */
104 #define HANDLE_PIN_BIT 0
105
106 /*
107 * Head in allocated object should have OBJ_ALLOCATED_TAG
108 * to identify the object was allocated or not.
109 * It's okay to add the status bit in the least bit because
110 * header keeps handle which is 4byte-aligned address so we
111 * have room for two bit at least.
112 */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
124
125 /*
126 * On systems with 4K page size, this gives 255 size classes! There is a
127 * trader-off here:
128 * - Large number of size classes is potentially wasteful as free page are
129 * spread across these classes
130 * - Small number of size classes causes large internal fragmentation
131 * - Probably its better to use specific size classes (empirically
132 * determined). NOTE: all those class sizes must be set as multiple of
133 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134 *
135 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136 * (reason above)
137 */
138 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
139
140 /*
141 * We do not maintain any list for completely empty or full pages
142 */
143 enum fullness_group {
144 ZS_EMPTY,
145 ZS_ALMOST_EMPTY,
146 ZS_ALMOST_FULL,
147 ZS_FULL,
148 NR_ZS_FULLNESS,
149 };
150
151 enum zs_stat_type {
152 CLASS_EMPTY,
153 CLASS_ALMOST_EMPTY,
154 CLASS_ALMOST_FULL,
155 CLASS_FULL,
156 OBJ_ALLOCATED,
157 OBJ_USED,
158 NR_ZS_STAT_TYPE,
159 };
160
161 struct zs_size_stat {
162 unsigned long objs[NR_ZS_STAT_TYPE];
163 };
164
165 #ifdef CONFIG_ZSMALLOC_STAT
166 static struct dentry *zs_stat_root;
167 #endif
168
169 #ifdef CONFIG_COMPACTION
170 static struct vfsmount *zsmalloc_mnt;
171 #endif
172
173 /*
174 * number of size_classes
175 */
176 static int zs_size_classes;
177
178 /*
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n <= N / f, where
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
183 * f = fullness_threshold_frac
184 *
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
189 *
190 * (see: fix_fullness_group())
191 */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195 spinlock_t lock;
196 struct list_head fullness_list[NR_ZS_FULLNESS];
197 /*
198 * Size of objects stored in this class. Must be multiple
199 * of ZS_ALIGN.
200 */
201 int size;
202 int objs_per_zspage;
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage;
205
206 unsigned int index;
207 struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213 SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218 ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223 return PageOwnerPriv1(page);
224 }
225
226 /*
227 * Placed within free objects to form a singly linked list.
228 * For every zspage, zspage->freeobj gives head of this list.
229 *
230 * This must be power of 2 and less than or equal to ZS_ALIGN
231 */
232 struct link_free {
233 union {
234 /*
235 * Free object index;
236 * It's valid for non-allocated object
237 */
238 unsigned long next;
239 /*
240 * Handle of allocated object.
241 */
242 unsigned long handle;
243 };
244 };
245
246 struct zs_pool {
247 const char *name;
248
249 struct size_class **size_class;
250 struct kmem_cache *handle_cachep;
251 struct kmem_cache *zspage_cachep;
252
253 atomic_long_t pages_allocated;
254
255 struct zs_pool_stats stats;
256
257 /* Compact classes */
258 struct shrinker shrinker;
259 /*
260 * To signify that register_shrinker() was successful
261 * and unregister_shrinker() will not Oops.
262 */
263 bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270 #endif
271 };
272
273 /*
274 * A zspage's class index and fullness group
275 * are encoded in its (first)page->mapping
276 */
277 #define FULLNESS_BITS 2
278 #define CLASS_BITS 8
279 #define ISOLATED_BITS 3
280 #define MAGIC_VAL_BITS 8
281
282 struct zspage {
283 struct {
284 unsigned int fullness:FULLNESS_BITS;
285 unsigned int class:CLASS_BITS;
286 unsigned int isolated:ISOLATED_BITS;
287 unsigned int magic:MAGIC_VAL_BITS;
288 };
289 unsigned int inuse;
290 unsigned int freeobj;
291 struct page *first_page;
292 struct list_head list; /* fullness list */
293 #ifdef CONFIG_COMPACTION
294 rwlock_t lock;
295 #endif
296 };
297
298 struct mapping_area {
299 #ifdef CONFIG_PGTABLE_MAPPING
300 struct vm_struct *vm; /* vm area for mapping object that span pages */
301 #else
302 char *vm_buf; /* copy buffer for objects that span pages */
303 #endif
304 char *vm_addr; /* address of kmap_atomic()'ed pages */
305 enum zs_mapmode vm_mm; /* mapping mode */
306 };
307
308 #ifdef CONFIG_COMPACTION
309 static int zs_register_migration(struct zs_pool *pool);
310 static void zs_unregister_migration(struct zs_pool *pool);
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314 static void kick_deferred_free(struct zs_pool *pool);
315 static void init_deferred_free(struct zs_pool *pool);
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317 #else
318 static int zsmalloc_mount(void) { return 0; }
319 static void zsmalloc_unmount(void) {}
320 static int zs_register_migration(struct zs_pool *pool) { return 0; }
321 static void zs_unregister_migration(struct zs_pool *pool) {}
322 static void migrate_lock_init(struct zspage *zspage) {}
323 static void migrate_read_lock(struct zspage *zspage) {}
324 static void migrate_read_unlock(struct zspage *zspage) {}
325 static void kick_deferred_free(struct zs_pool *pool) {}
326 static void init_deferred_free(struct zs_pool *pool) {}
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328 #endif
329
330 static int create_cache(struct zs_pool *pool)
331 {
332 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333 0, 0, NULL);
334 if (!pool->handle_cachep)
335 return 1;
336
337 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338 0, 0, NULL);
339 if (!pool->zspage_cachep) {
340 kmem_cache_destroy(pool->handle_cachep);
341 pool->handle_cachep = NULL;
342 return 1;
343 }
344
345 return 0;
346 }
347
348 static void destroy_cache(struct zs_pool *pool)
349 {
350 kmem_cache_destroy(pool->handle_cachep);
351 kmem_cache_destroy(pool->zspage_cachep);
352 }
353
354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
355 {
356 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
357 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359
360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
361 {
362 kmem_cache_free(pool->handle_cachep, (void *)handle);
363 }
364
365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366 {
367 return kmem_cache_alloc(pool->zspage_cachep,
368 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 };
370
371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372 {
373 kmem_cache_free(pool->zspage_cachep, zspage);
374 }
375
376 static void record_obj(unsigned long handle, unsigned long obj)
377 {
378 /*
379 * lsb of @obj represents handle lock while other bits
380 * represent object value the handle is pointing so
381 * updating shouldn't do store tearing.
382 */
383 WRITE_ONCE(*(unsigned long *)handle, obj);
384 }
385
386 /* zpool driver */
387
388 #ifdef CONFIG_ZPOOL
389
390 static void *zs_zpool_create(const char *name, gfp_t gfp,
391 const struct zpool_ops *zpool_ops,
392 struct zpool *zpool)
393 {
394 /*
395 * Ignore global gfp flags: zs_malloc() may be invoked from
396 * different contexts and its caller must provide a valid
397 * gfp mask.
398 */
399 return zs_create_pool(name);
400 }
401
402 static void zs_zpool_destroy(void *pool)
403 {
404 zs_destroy_pool(pool);
405 }
406
407 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408 unsigned long *handle)
409 {
410 *handle = zs_malloc(pool, size, gfp);
411 return *handle ? 0 : -1;
412 }
413 static void zs_zpool_free(void *pool, unsigned long handle)
414 {
415 zs_free(pool, handle);
416 }
417
418 static int zs_zpool_shrink(void *pool, unsigned int pages,
419 unsigned int *reclaimed)
420 {
421 return -EINVAL;
422 }
423
424 static void *zs_zpool_map(void *pool, unsigned long handle,
425 enum zpool_mapmode mm)
426 {
427 enum zs_mapmode zs_mm;
428
429 switch (mm) {
430 case ZPOOL_MM_RO:
431 zs_mm = ZS_MM_RO;
432 break;
433 case ZPOOL_MM_WO:
434 zs_mm = ZS_MM_WO;
435 break;
436 case ZPOOL_MM_RW: /* fallthru */
437 default:
438 zs_mm = ZS_MM_RW;
439 break;
440 }
441
442 return zs_map_object(pool, handle, zs_mm);
443 }
444 static void zs_zpool_unmap(void *pool, unsigned long handle)
445 {
446 zs_unmap_object(pool, handle);
447 }
448
449 static u64 zs_zpool_total_size(void *pool)
450 {
451 return zs_get_total_pages(pool) << PAGE_SHIFT;
452 }
453
454 static struct zpool_driver zs_zpool_driver = {
455 .type = "zsmalloc",
456 .owner = THIS_MODULE,
457 .create = zs_zpool_create,
458 .destroy = zs_zpool_destroy,
459 .malloc = zs_zpool_malloc,
460 .free = zs_zpool_free,
461 .shrink = zs_zpool_shrink,
462 .map = zs_zpool_map,
463 .unmap = zs_zpool_unmap,
464 .total_size = zs_zpool_total_size,
465 };
466
467 MODULE_ALIAS("zpool-zsmalloc");
468 #endif /* CONFIG_ZPOOL */
469
470 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
471 {
472 return pages_per_zspage * PAGE_SIZE / size;
473 }
474
475 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
476 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
477
478 static bool is_zspage_isolated(struct zspage *zspage)
479 {
480 return zspage->isolated;
481 }
482
483 static int is_first_page(struct page *page)
484 {
485 return PagePrivate(page);
486 }
487
488 /* Protected by class->lock */
489 static inline int get_zspage_inuse(struct zspage *zspage)
490 {
491 return zspage->inuse;
492 }
493
494 static inline void set_zspage_inuse(struct zspage *zspage, int val)
495 {
496 zspage->inuse = val;
497 }
498
499 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
500 {
501 zspage->inuse += val;
502 }
503
504 static inline struct page *get_first_page(struct zspage *zspage)
505 {
506 struct page *first_page = zspage->first_page;
507
508 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
509 return first_page;
510 }
511
512 static inline int get_first_obj_offset(struct page *page)
513 {
514 return page->units;
515 }
516
517 static inline void set_first_obj_offset(struct page *page, int offset)
518 {
519 page->units = offset;
520 }
521
522 static inline unsigned int get_freeobj(struct zspage *zspage)
523 {
524 return zspage->freeobj;
525 }
526
527 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
528 {
529 zspage->freeobj = obj;
530 }
531
532 static void get_zspage_mapping(struct zspage *zspage,
533 unsigned int *class_idx,
534 enum fullness_group *fullness)
535 {
536 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
537
538 *fullness = zspage->fullness;
539 *class_idx = zspage->class;
540 }
541
542 static void set_zspage_mapping(struct zspage *zspage,
543 unsigned int class_idx,
544 enum fullness_group fullness)
545 {
546 zspage->class = class_idx;
547 zspage->fullness = fullness;
548 }
549
550 /*
551 * zsmalloc divides the pool into various size classes where each
552 * class maintains a list of zspages where each zspage is divided
553 * into equal sized chunks. Each allocation falls into one of these
554 * classes depending on its size. This function returns index of the
555 * size class which has chunk size big enough to hold the give size.
556 */
557 static int get_size_class_index(int size)
558 {
559 int idx = 0;
560
561 if (likely(size > ZS_MIN_ALLOC_SIZE))
562 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
563 ZS_SIZE_CLASS_DELTA);
564
565 return min(zs_size_classes - 1, idx);
566 }
567
568 static inline void zs_stat_inc(struct size_class *class,
569 enum zs_stat_type type, unsigned long cnt)
570 {
571 class->stats.objs[type] += cnt;
572 }
573
574 static inline void zs_stat_dec(struct size_class *class,
575 enum zs_stat_type type, unsigned long cnt)
576 {
577 class->stats.objs[type] -= cnt;
578 }
579
580 static inline unsigned long zs_stat_get(struct size_class *class,
581 enum zs_stat_type type)
582 {
583 return class->stats.objs[type];
584 }
585
586 #ifdef CONFIG_ZSMALLOC_STAT
587
588 static void __init zs_stat_init(void)
589 {
590 if (!debugfs_initialized()) {
591 pr_warn("debugfs not available, stat dir not created\n");
592 return;
593 }
594
595 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
596 if (!zs_stat_root)
597 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
598 }
599
600 static void __exit zs_stat_exit(void)
601 {
602 debugfs_remove_recursive(zs_stat_root);
603 }
604
605 static unsigned long zs_can_compact(struct size_class *class);
606
607 static int zs_stats_size_show(struct seq_file *s, void *v)
608 {
609 int i;
610 struct zs_pool *pool = s->private;
611 struct size_class *class;
612 int objs_per_zspage;
613 unsigned long class_almost_full, class_almost_empty;
614 unsigned long obj_allocated, obj_used, pages_used, freeable;
615 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
616 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
617 unsigned long total_freeable = 0;
618
619 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
620 "class", "size", "almost_full", "almost_empty",
621 "obj_allocated", "obj_used", "pages_used",
622 "pages_per_zspage", "freeable");
623
624 for (i = 0; i < zs_size_classes; i++) {
625 class = pool->size_class[i];
626
627 if (class->index != i)
628 continue;
629
630 spin_lock(&class->lock);
631 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
632 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
633 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
634 obj_used = zs_stat_get(class, OBJ_USED);
635 freeable = zs_can_compact(class);
636 spin_unlock(&class->lock);
637
638 objs_per_zspage = get_maxobj_per_zspage(class->size,
639 class->pages_per_zspage);
640 pages_used = obj_allocated / objs_per_zspage *
641 class->pages_per_zspage;
642
643 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
644 " %10lu %10lu %16d %8lu\n",
645 i, class->size, class_almost_full, class_almost_empty,
646 obj_allocated, obj_used, pages_used,
647 class->pages_per_zspage, freeable);
648
649 total_class_almost_full += class_almost_full;
650 total_class_almost_empty += class_almost_empty;
651 total_objs += obj_allocated;
652 total_used_objs += obj_used;
653 total_pages += pages_used;
654 total_freeable += freeable;
655 }
656
657 seq_puts(s, "\n");
658 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
659 "Total", "", total_class_almost_full,
660 total_class_almost_empty, total_objs,
661 total_used_objs, total_pages, "", total_freeable);
662
663 return 0;
664 }
665
666 static int zs_stats_size_open(struct inode *inode, struct file *file)
667 {
668 return single_open(file, zs_stats_size_show, inode->i_private);
669 }
670
671 static const struct file_operations zs_stat_size_ops = {
672 .open = zs_stats_size_open,
673 .read = seq_read,
674 .llseek = seq_lseek,
675 .release = single_release,
676 };
677
678 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
679 {
680 struct dentry *entry;
681
682 if (!zs_stat_root) {
683 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
684 return;
685 }
686
687 entry = debugfs_create_dir(name, zs_stat_root);
688 if (!entry) {
689 pr_warn("debugfs dir <%s> creation failed\n", name);
690 return;
691 }
692 pool->stat_dentry = entry;
693
694 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
695 pool->stat_dentry, pool, &zs_stat_size_ops);
696 if (!entry) {
697 pr_warn("%s: debugfs file entry <%s> creation failed\n",
698 name, "classes");
699 debugfs_remove_recursive(pool->stat_dentry);
700 pool->stat_dentry = NULL;
701 }
702 }
703
704 static void zs_pool_stat_destroy(struct zs_pool *pool)
705 {
706 debugfs_remove_recursive(pool->stat_dentry);
707 }
708
709 #else /* CONFIG_ZSMALLOC_STAT */
710 static void __init zs_stat_init(void)
711 {
712 }
713
714 static void __exit zs_stat_exit(void)
715 {
716 }
717
718 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
719 {
720 }
721
722 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
723 {
724 }
725 #endif
726
727
728 /*
729 * For each size class, zspages are divided into different groups
730 * depending on how "full" they are. This was done so that we could
731 * easily find empty or nearly empty zspages when we try to shrink
732 * the pool (not yet implemented). This function returns fullness
733 * status of the given page.
734 */
735 static enum fullness_group get_fullness_group(struct size_class *class,
736 struct zspage *zspage)
737 {
738 int inuse, objs_per_zspage;
739 enum fullness_group fg;
740
741 inuse = get_zspage_inuse(zspage);
742 objs_per_zspage = class->objs_per_zspage;
743
744 if (inuse == 0)
745 fg = ZS_EMPTY;
746 else if (inuse == objs_per_zspage)
747 fg = ZS_FULL;
748 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
749 fg = ZS_ALMOST_EMPTY;
750 else
751 fg = ZS_ALMOST_FULL;
752
753 return fg;
754 }
755
756 /*
757 * Each size class maintains various freelists and zspages are assigned
758 * to one of these freelists based on the number of live objects they
759 * have. This functions inserts the given zspage into the freelist
760 * identified by <class, fullness_group>.
761 */
762 static void insert_zspage(struct size_class *class,
763 struct zspage *zspage,
764 enum fullness_group fullness)
765 {
766 struct zspage *head;
767
768 zs_stat_inc(class, fullness, 1);
769 head = list_first_entry_or_null(&class->fullness_list[fullness],
770 struct zspage, list);
771 /*
772 * We want to see more ZS_FULL pages and less almost empty/full.
773 * Put pages with higher ->inuse first.
774 */
775 if (head) {
776 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
777 list_add(&zspage->list, &head->list);
778 return;
779 }
780 }
781 list_add(&zspage->list, &class->fullness_list[fullness]);
782 }
783
784 /*
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
787 */
788 static void remove_zspage(struct size_class *class,
789 struct zspage *zspage,
790 enum fullness_group fullness)
791 {
792 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793 VM_BUG_ON(is_zspage_isolated(zspage));
794
795 list_del_init(&zspage->list);
796 zs_stat_dec(class, fullness, 1);
797 }
798
799 /*
800 * Each size class maintains zspages in different fullness groups depending
801 * on the number of live objects they contain. When allocating or freeing
802 * objects, the fullness status of the page can change, say, from ALMOST_FULL
803 * to ALMOST_EMPTY when freeing an object. This function checks if such
804 * a status change has occurred for the given page and accordingly moves the
805 * page from the freelist of the old fullness group to that of the new
806 * fullness group.
807 */
808 static enum fullness_group fix_fullness_group(struct size_class *class,
809 struct zspage *zspage)
810 {
811 int class_idx;
812 enum fullness_group currfg, newfg;
813
814 get_zspage_mapping(zspage, &class_idx, &currfg);
815 newfg = get_fullness_group(class, zspage);
816 if (newfg == currfg)
817 goto out;
818
819 if (!is_zspage_isolated(zspage)) {
820 remove_zspage(class, zspage, currfg);
821 insert_zspage(class, zspage, newfg);
822 }
823
824 set_zspage_mapping(zspage, class_idx, newfg);
825
826 out:
827 return newfg;
828 }
829
830 /*
831 * We have to decide on how many pages to link together
832 * to form a zspage for each size class. This is important
833 * to reduce wastage due to unusable space left at end of
834 * each zspage which is given as:
835 * wastage = Zp % class_size
836 * usage = Zp - wastage
837 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
838 *
839 * For example, for size class of 3/8 * PAGE_SIZE, we should
840 * link together 3 PAGE_SIZE sized pages to form a zspage
841 * since then we can perfectly fit in 8 such objects.
842 */
843 static int get_pages_per_zspage(int class_size)
844 {
845 int i, max_usedpc = 0;
846 /* zspage order which gives maximum used size per KB */
847 int max_usedpc_order = 1;
848
849 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
850 int zspage_size;
851 int waste, usedpc;
852
853 zspage_size = i * PAGE_SIZE;
854 waste = zspage_size % class_size;
855 usedpc = (zspage_size - waste) * 100 / zspage_size;
856
857 if (usedpc > max_usedpc) {
858 max_usedpc = usedpc;
859 max_usedpc_order = i;
860 }
861 }
862
863 return max_usedpc_order;
864 }
865
866 static struct zspage *get_zspage(struct page *page)
867 {
868 struct zspage *zspage = (struct zspage *)page->private;
869
870 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
871 return zspage;
872 }
873
874 static struct page *get_next_page(struct page *page)
875 {
876 if (unlikely(PageHugeObject(page)))
877 return NULL;
878
879 return page->freelist;
880 }
881
882 /**
883 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
884 * @page: page object resides in zspage
885 * @obj_idx: object index
886 */
887 static void obj_to_location(unsigned long obj, struct page **page,
888 unsigned int *obj_idx)
889 {
890 obj >>= OBJ_TAG_BITS;
891 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
892 *obj_idx = (obj & OBJ_INDEX_MASK);
893 }
894
895 /**
896 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
897 * @page: page object resides in zspage
898 * @obj_idx: object index
899 */
900 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
901 {
902 unsigned long obj;
903
904 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
905 obj |= obj_idx & OBJ_INDEX_MASK;
906 obj <<= OBJ_TAG_BITS;
907
908 return obj;
909 }
910
911 static unsigned long handle_to_obj(unsigned long handle)
912 {
913 return *(unsigned long *)handle;
914 }
915
916 static unsigned long obj_to_head(struct page *page, void *obj)
917 {
918 if (unlikely(PageHugeObject(page))) {
919 VM_BUG_ON_PAGE(!is_first_page(page), page);
920 return page->index;
921 } else
922 return *(unsigned long *)obj;
923 }
924
925 static inline int testpin_tag(unsigned long handle)
926 {
927 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
928 }
929
930 static inline int trypin_tag(unsigned long handle)
931 {
932 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 }
934
935 static void pin_tag(unsigned long handle)
936 {
937 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
938 }
939
940 static void unpin_tag(unsigned long handle)
941 {
942 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
943 }
944
945 static void reset_page(struct page *page)
946 {
947 __ClearPageMovable(page);
948 clear_bit(PG_private, &page->flags);
949 clear_bit(PG_private_2, &page->flags);
950 set_page_private(page, 0);
951 page_mapcount_reset(page);
952 ClearPageHugeObject(page);
953 page->freelist = NULL;
954 }
955
956 /*
957 * To prevent zspage destroy during migration, zspage freeing should
958 * hold locks of all pages in the zspage.
959 */
960 void lock_zspage(struct zspage *zspage)
961 {
962 struct page *page = get_first_page(zspage);
963
964 do {
965 lock_page(page);
966 } while ((page = get_next_page(page)) != NULL);
967 }
968
969 int trylock_zspage(struct zspage *zspage)
970 {
971 struct page *cursor, *fail;
972
973 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
974 get_next_page(cursor)) {
975 if (!trylock_page(cursor)) {
976 fail = cursor;
977 goto unlock;
978 }
979 }
980
981 return 1;
982 unlock:
983 for (cursor = get_first_page(zspage); cursor != fail; cursor =
984 get_next_page(cursor))
985 unlock_page(cursor);
986
987 return 0;
988 }
989
990 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
992 {
993 struct page *page, *next;
994 enum fullness_group fg;
995 unsigned int class_idx;
996
997 get_zspage_mapping(zspage, &class_idx, &fg);
998
999 assert_spin_locked(&class->lock);
1000
1001 VM_BUG_ON(get_zspage_inuse(zspage));
1002 VM_BUG_ON(fg != ZS_EMPTY);
1003
1004 next = page = get_first_page(zspage);
1005 do {
1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
1007 next = get_next_page(page);
1008 reset_page(page);
1009 unlock_page(page);
1010 dec_zone_page_state(page, NR_ZSPAGES);
1011 put_page(page);
1012 page = next;
1013 } while (page != NULL);
1014
1015 cache_free_zspage(pool, zspage);
1016
1017 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1018 class->size, class->pages_per_zspage));
1019 atomic_long_sub(class->pages_per_zspage,
1020 &pool->pages_allocated);
1021 }
1022
1023 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1024 struct zspage *zspage)
1025 {
1026 VM_BUG_ON(get_zspage_inuse(zspage));
1027 VM_BUG_ON(list_empty(&zspage->list));
1028
1029 if (!trylock_zspage(zspage)) {
1030 kick_deferred_free(pool);
1031 return;
1032 }
1033
1034 remove_zspage(class, zspage, ZS_EMPTY);
1035 __free_zspage(pool, class, zspage);
1036 }
1037
1038 /* Initialize a newly allocated zspage */
1039 static void init_zspage(struct size_class *class, struct zspage *zspage)
1040 {
1041 unsigned int freeobj = 1;
1042 unsigned long off = 0;
1043 struct page *page = get_first_page(zspage);
1044
1045 while (page) {
1046 struct page *next_page;
1047 struct link_free *link;
1048 void *vaddr;
1049
1050 set_first_obj_offset(page, off);
1051
1052 vaddr = kmap_atomic(page);
1053 link = (struct link_free *)vaddr + off / sizeof(*link);
1054
1055 while ((off += class->size) < PAGE_SIZE) {
1056 link->next = freeobj++ << OBJ_TAG_BITS;
1057 link += class->size / sizeof(*link);
1058 }
1059
1060 /*
1061 * We now come to the last (full or partial) object on this
1062 * page, which must point to the first object on the next
1063 * page (if present)
1064 */
1065 next_page = get_next_page(page);
1066 if (next_page) {
1067 link->next = freeobj++ << OBJ_TAG_BITS;
1068 } else {
1069 /*
1070 * Reset OBJ_TAG_BITS bit to last link to tell
1071 * whether it's allocated object or not.
1072 */
1073 link->next = -1 << OBJ_TAG_BITS;
1074 }
1075 kunmap_atomic(vaddr);
1076 page = next_page;
1077 off %= PAGE_SIZE;
1078 }
1079
1080 set_freeobj(zspage, 0);
1081 }
1082
1083 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1084 struct page *pages[])
1085 {
1086 int i;
1087 struct page *page;
1088 struct page *prev_page = NULL;
1089 int nr_pages = class->pages_per_zspage;
1090
1091 /*
1092 * Allocate individual pages and link them together as:
1093 * 1. all pages are linked together using page->freelist
1094 * 2. each sub-page point to zspage using page->private
1095 *
1096 * we set PG_private to identify the first page (i.e. no other sub-page
1097 * has this flag set) and PG_private_2 to identify the last page.
1098 */
1099 for (i = 0; i < nr_pages; i++) {
1100 page = pages[i];
1101 set_page_private(page, (unsigned long)zspage);
1102 page->freelist = NULL;
1103 if (i == 0) {
1104 zspage->first_page = page;
1105 SetPagePrivate(page);
1106 if (unlikely(class->objs_per_zspage == 1 &&
1107 class->pages_per_zspage == 1))
1108 SetPageHugeObject(page);
1109 } else {
1110 prev_page->freelist = page;
1111 }
1112 if (i == nr_pages - 1)
1113 SetPagePrivate2(page);
1114 prev_page = page;
1115 }
1116 }
1117
1118 /*
1119 * Allocate a zspage for the given size class
1120 */
1121 static struct zspage *alloc_zspage(struct zs_pool *pool,
1122 struct size_class *class,
1123 gfp_t gfp)
1124 {
1125 int i;
1126 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1127 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1128
1129 if (!zspage)
1130 return NULL;
1131
1132 memset(zspage, 0, sizeof(struct zspage));
1133 zspage->magic = ZSPAGE_MAGIC;
1134 migrate_lock_init(zspage);
1135
1136 for (i = 0; i < class->pages_per_zspage; i++) {
1137 struct page *page;
1138
1139 page = alloc_page(gfp);
1140 if (!page) {
1141 while (--i >= 0) {
1142 dec_zone_page_state(pages[i], NR_ZSPAGES);
1143 __free_page(pages[i]);
1144 }
1145 cache_free_zspage(pool, zspage);
1146 return NULL;
1147 }
1148
1149 inc_zone_page_state(page, NR_ZSPAGES);
1150 pages[i] = page;
1151 }
1152
1153 create_page_chain(class, zspage, pages);
1154 init_zspage(class, zspage);
1155
1156 return zspage;
1157 }
1158
1159 static struct zspage *find_get_zspage(struct size_class *class)
1160 {
1161 int i;
1162 struct zspage *zspage;
1163
1164 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1165 zspage = list_first_entry_or_null(&class->fullness_list[i],
1166 struct zspage, list);
1167 if (zspage)
1168 break;
1169 }
1170
1171 return zspage;
1172 }
1173
1174 #ifdef CONFIG_PGTABLE_MAPPING
1175 static inline int __zs_cpu_up(struct mapping_area *area)
1176 {
1177 /*
1178 * Make sure we don't leak memory if a cpu UP notification
1179 * and zs_init() race and both call zs_cpu_up() on the same cpu
1180 */
1181 if (area->vm)
1182 return 0;
1183 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1184 if (!area->vm)
1185 return -ENOMEM;
1186 return 0;
1187 }
1188
1189 static inline void __zs_cpu_down(struct mapping_area *area)
1190 {
1191 if (area->vm)
1192 free_vm_area(area->vm);
1193 area->vm = NULL;
1194 }
1195
1196 static inline void *__zs_map_object(struct mapping_area *area,
1197 struct page *pages[2], int off, int size)
1198 {
1199 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1200 area->vm_addr = area->vm->addr;
1201 return area->vm_addr + off;
1202 }
1203
1204 static inline void __zs_unmap_object(struct mapping_area *area,
1205 struct page *pages[2], int off, int size)
1206 {
1207 unsigned long addr = (unsigned long)area->vm_addr;
1208
1209 unmap_kernel_range(addr, PAGE_SIZE * 2);
1210 }
1211
1212 #else /* CONFIG_PGTABLE_MAPPING */
1213
1214 static inline int __zs_cpu_up(struct mapping_area *area)
1215 {
1216 /*
1217 * Make sure we don't leak memory if a cpu UP notification
1218 * and zs_init() race and both call zs_cpu_up() on the same cpu
1219 */
1220 if (area->vm_buf)
1221 return 0;
1222 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1223 if (!area->vm_buf)
1224 return -ENOMEM;
1225 return 0;
1226 }
1227
1228 static inline void __zs_cpu_down(struct mapping_area *area)
1229 {
1230 kfree(area->vm_buf);
1231 area->vm_buf = NULL;
1232 }
1233
1234 static void *__zs_map_object(struct mapping_area *area,
1235 struct page *pages[2], int off, int size)
1236 {
1237 int sizes[2];
1238 void *addr;
1239 char *buf = area->vm_buf;
1240
1241 /* disable page faults to match kmap_atomic() return conditions */
1242 pagefault_disable();
1243
1244 /* no read fastpath */
1245 if (area->vm_mm == ZS_MM_WO)
1246 goto out;
1247
1248 sizes[0] = PAGE_SIZE - off;
1249 sizes[1] = size - sizes[0];
1250
1251 /* copy object to per-cpu buffer */
1252 addr = kmap_atomic(pages[0]);
1253 memcpy(buf, addr + off, sizes[0]);
1254 kunmap_atomic(addr);
1255 addr = kmap_atomic(pages[1]);
1256 memcpy(buf + sizes[0], addr, sizes[1]);
1257 kunmap_atomic(addr);
1258 out:
1259 return area->vm_buf;
1260 }
1261
1262 static void __zs_unmap_object(struct mapping_area *area,
1263 struct page *pages[2], int off, int size)
1264 {
1265 int sizes[2];
1266 void *addr;
1267 char *buf;
1268
1269 /* no write fastpath */
1270 if (area->vm_mm == ZS_MM_RO)
1271 goto out;
1272
1273 buf = area->vm_buf;
1274 buf = buf + ZS_HANDLE_SIZE;
1275 size -= ZS_HANDLE_SIZE;
1276 off += ZS_HANDLE_SIZE;
1277
1278 sizes[0] = PAGE_SIZE - off;
1279 sizes[1] = size - sizes[0];
1280
1281 /* copy per-cpu buffer to object */
1282 addr = kmap_atomic(pages[0]);
1283 memcpy(addr + off, buf, sizes[0]);
1284 kunmap_atomic(addr);
1285 addr = kmap_atomic(pages[1]);
1286 memcpy(addr, buf + sizes[0], sizes[1]);
1287 kunmap_atomic(addr);
1288
1289 out:
1290 /* enable page faults to match kunmap_atomic() return conditions */
1291 pagefault_enable();
1292 }
1293
1294 #endif /* CONFIG_PGTABLE_MAPPING */
1295
1296 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1297 void *pcpu)
1298 {
1299 int ret, cpu = (long)pcpu;
1300 struct mapping_area *area;
1301
1302 switch (action) {
1303 case CPU_UP_PREPARE:
1304 area = &per_cpu(zs_map_area, cpu);
1305 ret = __zs_cpu_up(area);
1306 if (ret)
1307 return notifier_from_errno(ret);
1308 break;
1309 case CPU_DEAD:
1310 case CPU_UP_CANCELED:
1311 area = &per_cpu(zs_map_area, cpu);
1312 __zs_cpu_down(area);
1313 break;
1314 }
1315
1316 return NOTIFY_OK;
1317 }
1318
1319 static struct notifier_block zs_cpu_nb = {
1320 .notifier_call = zs_cpu_notifier
1321 };
1322
1323 static int zs_register_cpu_notifier(void)
1324 {
1325 int cpu, uninitialized_var(ret);
1326
1327 cpu_notifier_register_begin();
1328
1329 __register_cpu_notifier(&zs_cpu_nb);
1330 for_each_online_cpu(cpu) {
1331 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1332 if (notifier_to_errno(ret))
1333 break;
1334 }
1335
1336 cpu_notifier_register_done();
1337 return notifier_to_errno(ret);
1338 }
1339
1340 static void zs_unregister_cpu_notifier(void)
1341 {
1342 int cpu;
1343
1344 cpu_notifier_register_begin();
1345
1346 for_each_online_cpu(cpu)
1347 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1348 __unregister_cpu_notifier(&zs_cpu_nb);
1349
1350 cpu_notifier_register_done();
1351 }
1352
1353 static void init_zs_size_classes(void)
1354 {
1355 int nr;
1356
1357 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1358 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1359 nr += 1;
1360
1361 zs_size_classes = nr;
1362 }
1363
1364 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1365 {
1366 if (prev->pages_per_zspage != pages_per_zspage)
1367 return false;
1368
1369 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1370 != get_maxobj_per_zspage(size, pages_per_zspage))
1371 return false;
1372
1373 return true;
1374 }
1375
1376 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1377 {
1378 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1379 }
1380
1381 unsigned long zs_get_total_pages(struct zs_pool *pool)
1382 {
1383 return atomic_long_read(&pool->pages_allocated);
1384 }
1385 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1386
1387 /**
1388 * zs_map_object - get address of allocated object from handle.
1389 * @pool: pool from which the object was allocated
1390 * @handle: handle returned from zs_malloc
1391 *
1392 * Before using an object allocated from zs_malloc, it must be mapped using
1393 * this function. When done with the object, it must be unmapped using
1394 * zs_unmap_object.
1395 *
1396 * Only one object can be mapped per cpu at a time. There is no protection
1397 * against nested mappings.
1398 *
1399 * This function returns with preemption and page faults disabled.
1400 */
1401 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1402 enum zs_mapmode mm)
1403 {
1404 struct zspage *zspage;
1405 struct page *page;
1406 unsigned long obj, off;
1407 unsigned int obj_idx;
1408
1409 unsigned int class_idx;
1410 enum fullness_group fg;
1411 struct size_class *class;
1412 struct mapping_area *area;
1413 struct page *pages[2];
1414 void *ret;
1415
1416 /*
1417 * Because we use per-cpu mapping areas shared among the
1418 * pools/users, we can't allow mapping in interrupt context
1419 * because it can corrupt another users mappings.
1420 */
1421 WARN_ON_ONCE(in_interrupt());
1422
1423 /* From now on, migration cannot move the object */
1424 pin_tag(handle);
1425
1426 obj = handle_to_obj(handle);
1427 obj_to_location(obj, &page, &obj_idx);
1428 zspage = get_zspage(page);
1429
1430 /* migration cannot move any subpage in this zspage */
1431 migrate_read_lock(zspage);
1432
1433 get_zspage_mapping(zspage, &class_idx, &fg);
1434 class = pool->size_class[class_idx];
1435 off = (class->size * obj_idx) & ~PAGE_MASK;
1436
1437 area = &get_cpu_var(zs_map_area);
1438 area->vm_mm = mm;
1439 if (off + class->size <= PAGE_SIZE) {
1440 /* this object is contained entirely within a page */
1441 area->vm_addr = kmap_atomic(page);
1442 ret = area->vm_addr + off;
1443 goto out;
1444 }
1445
1446 /* this object spans two pages */
1447 pages[0] = page;
1448 pages[1] = get_next_page(page);
1449 BUG_ON(!pages[1]);
1450
1451 ret = __zs_map_object(area, pages, off, class->size);
1452 out:
1453 if (likely(!PageHugeObject(page)))
1454 ret += ZS_HANDLE_SIZE;
1455
1456 return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(zs_map_object);
1459
1460 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1461 {
1462 struct zspage *zspage;
1463 struct page *page;
1464 unsigned long obj, off;
1465 unsigned int obj_idx;
1466
1467 unsigned int class_idx;
1468 enum fullness_group fg;
1469 struct size_class *class;
1470 struct mapping_area *area;
1471
1472 obj = handle_to_obj(handle);
1473 obj_to_location(obj, &page, &obj_idx);
1474 zspage = get_zspage(page);
1475 get_zspage_mapping(zspage, &class_idx, &fg);
1476 class = pool->size_class[class_idx];
1477 off = (class->size * obj_idx) & ~PAGE_MASK;
1478
1479 area = this_cpu_ptr(&zs_map_area);
1480 if (off + class->size <= PAGE_SIZE)
1481 kunmap_atomic(area->vm_addr);
1482 else {
1483 struct page *pages[2];
1484
1485 pages[0] = page;
1486 pages[1] = get_next_page(page);
1487 BUG_ON(!pages[1]);
1488
1489 __zs_unmap_object(area, pages, off, class->size);
1490 }
1491 put_cpu_var(zs_map_area);
1492
1493 migrate_read_unlock(zspage);
1494 unpin_tag(handle);
1495 }
1496 EXPORT_SYMBOL_GPL(zs_unmap_object);
1497
1498 static unsigned long obj_malloc(struct size_class *class,
1499 struct zspage *zspage, unsigned long handle)
1500 {
1501 int i, nr_page, offset;
1502 unsigned long obj;
1503 struct link_free *link;
1504
1505 struct page *m_page;
1506 unsigned long m_offset;
1507 void *vaddr;
1508
1509 handle |= OBJ_ALLOCATED_TAG;
1510 obj = get_freeobj(zspage);
1511
1512 offset = obj * class->size;
1513 nr_page = offset >> PAGE_SHIFT;
1514 m_offset = offset & ~PAGE_MASK;
1515 m_page = get_first_page(zspage);
1516
1517 for (i = 0; i < nr_page; i++)
1518 m_page = get_next_page(m_page);
1519
1520 vaddr = kmap_atomic(m_page);
1521 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1522 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1523 if (likely(!PageHugeObject(m_page)))
1524 /* record handle in the header of allocated chunk */
1525 link->handle = handle;
1526 else
1527 /* record handle to page->index */
1528 zspage->first_page->index = handle;
1529
1530 kunmap_atomic(vaddr);
1531 mod_zspage_inuse(zspage, 1);
1532 zs_stat_inc(class, OBJ_USED, 1);
1533
1534 obj = location_to_obj(m_page, obj);
1535
1536 return obj;
1537 }
1538
1539
1540 /**
1541 * zs_malloc - Allocate block of given size from pool.
1542 * @pool: pool to allocate from
1543 * @size: size of block to allocate
1544 *
1545 * On success, handle to the allocated object is returned,
1546 * otherwise 0.
1547 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1548 */
1549 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1550 {
1551 unsigned long handle, obj;
1552 struct size_class *class;
1553 enum fullness_group newfg;
1554 struct zspage *zspage;
1555
1556 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1557 return 0;
1558
1559 handle = cache_alloc_handle(pool, gfp);
1560 if (!handle)
1561 return 0;
1562
1563 /* extra space in chunk to keep the handle */
1564 size += ZS_HANDLE_SIZE;
1565 class = pool->size_class[get_size_class_index(size)];
1566
1567 spin_lock(&class->lock);
1568 zspage = find_get_zspage(class);
1569 if (likely(zspage)) {
1570 obj = obj_malloc(class, zspage, handle);
1571 /* Now move the zspage to another fullness group, if required */
1572 fix_fullness_group(class, zspage);
1573 record_obj(handle, obj);
1574 spin_unlock(&class->lock);
1575
1576 return handle;
1577 }
1578
1579 spin_unlock(&class->lock);
1580
1581 zspage = alloc_zspage(pool, class, gfp);
1582 if (!zspage) {
1583 cache_free_handle(pool, handle);
1584 return 0;
1585 }
1586
1587 spin_lock(&class->lock);
1588 obj = obj_malloc(class, zspage, handle);
1589 newfg = get_fullness_group(class, zspage);
1590 insert_zspage(class, zspage, newfg);
1591 set_zspage_mapping(zspage, class->index, newfg);
1592 record_obj(handle, obj);
1593 atomic_long_add(class->pages_per_zspage,
1594 &pool->pages_allocated);
1595 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1596 class->size, class->pages_per_zspage));
1597
1598 /* We completely set up zspage so mark them as movable */
1599 SetZsPageMovable(pool, zspage);
1600 spin_unlock(&class->lock);
1601
1602 return handle;
1603 }
1604 EXPORT_SYMBOL_GPL(zs_malloc);
1605
1606 static void obj_free(struct size_class *class, unsigned long obj)
1607 {
1608 struct link_free *link;
1609 struct zspage *zspage;
1610 struct page *f_page;
1611 unsigned long f_offset;
1612 unsigned int f_objidx;
1613 void *vaddr;
1614
1615 obj &= ~OBJ_ALLOCATED_TAG;
1616 obj_to_location(obj, &f_page, &f_objidx);
1617 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1618 zspage = get_zspage(f_page);
1619
1620 vaddr = kmap_atomic(f_page);
1621
1622 /* Insert this object in containing zspage's freelist */
1623 link = (struct link_free *)(vaddr + f_offset);
1624 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1625 kunmap_atomic(vaddr);
1626 set_freeobj(zspage, f_objidx);
1627 mod_zspage_inuse(zspage, -1);
1628 zs_stat_dec(class, OBJ_USED, 1);
1629 }
1630
1631 void zs_free(struct zs_pool *pool, unsigned long handle)
1632 {
1633 struct zspage *zspage;
1634 struct page *f_page;
1635 unsigned long obj;
1636 unsigned int f_objidx;
1637 int class_idx;
1638 struct size_class *class;
1639 enum fullness_group fullness;
1640 bool isolated;
1641
1642 if (unlikely(!handle))
1643 return;
1644
1645 pin_tag(handle);
1646 obj = handle_to_obj(handle);
1647 obj_to_location(obj, &f_page, &f_objidx);
1648 zspage = get_zspage(f_page);
1649
1650 migrate_read_lock(zspage);
1651
1652 get_zspage_mapping(zspage, &class_idx, &fullness);
1653 class = pool->size_class[class_idx];
1654
1655 spin_lock(&class->lock);
1656 obj_free(class, obj);
1657 fullness = fix_fullness_group(class, zspage);
1658 if (fullness != ZS_EMPTY) {
1659 migrate_read_unlock(zspage);
1660 goto out;
1661 }
1662
1663 isolated = is_zspage_isolated(zspage);
1664 migrate_read_unlock(zspage);
1665 /* If zspage is isolated, zs_page_putback will free the zspage */
1666 if (likely(!isolated))
1667 free_zspage(pool, class, zspage);
1668 out:
1669
1670 spin_unlock(&class->lock);
1671 unpin_tag(handle);
1672 cache_free_handle(pool, handle);
1673 }
1674 EXPORT_SYMBOL_GPL(zs_free);
1675
1676 static void zs_object_copy(struct size_class *class, unsigned long dst,
1677 unsigned long src)
1678 {
1679 struct page *s_page, *d_page;
1680 unsigned int s_objidx, d_objidx;
1681 unsigned long s_off, d_off;
1682 void *s_addr, *d_addr;
1683 int s_size, d_size, size;
1684 int written = 0;
1685
1686 s_size = d_size = class->size;
1687
1688 obj_to_location(src, &s_page, &s_objidx);
1689 obj_to_location(dst, &d_page, &d_objidx);
1690
1691 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1692 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1693
1694 if (s_off + class->size > PAGE_SIZE)
1695 s_size = PAGE_SIZE - s_off;
1696
1697 if (d_off + class->size > PAGE_SIZE)
1698 d_size = PAGE_SIZE - d_off;
1699
1700 s_addr = kmap_atomic(s_page);
1701 d_addr = kmap_atomic(d_page);
1702
1703 while (1) {
1704 size = min(s_size, d_size);
1705 memcpy(d_addr + d_off, s_addr + s_off, size);
1706 written += size;
1707
1708 if (written == class->size)
1709 break;
1710
1711 s_off += size;
1712 s_size -= size;
1713 d_off += size;
1714 d_size -= size;
1715
1716 if (s_off >= PAGE_SIZE) {
1717 kunmap_atomic(d_addr);
1718 kunmap_atomic(s_addr);
1719 s_page = get_next_page(s_page);
1720 s_addr = kmap_atomic(s_page);
1721 d_addr = kmap_atomic(d_page);
1722 s_size = class->size - written;
1723 s_off = 0;
1724 }
1725
1726 if (d_off >= PAGE_SIZE) {
1727 kunmap_atomic(d_addr);
1728 d_page = get_next_page(d_page);
1729 d_addr = kmap_atomic(d_page);
1730 d_size = class->size - written;
1731 d_off = 0;
1732 }
1733 }
1734
1735 kunmap_atomic(d_addr);
1736 kunmap_atomic(s_addr);
1737 }
1738
1739 /*
1740 * Find alloced object in zspage from index object and
1741 * return handle.
1742 */
1743 static unsigned long find_alloced_obj(struct size_class *class,
1744 struct page *page, int index)
1745 {
1746 unsigned long head;
1747 int offset = 0;
1748 unsigned long handle = 0;
1749 void *addr = kmap_atomic(page);
1750
1751 offset = get_first_obj_offset(page);
1752 offset += class->size * index;
1753
1754 while (offset < PAGE_SIZE) {
1755 head = obj_to_head(page, addr + offset);
1756 if (head & OBJ_ALLOCATED_TAG) {
1757 handle = head & ~OBJ_ALLOCATED_TAG;
1758 if (trypin_tag(handle))
1759 break;
1760 handle = 0;
1761 }
1762
1763 offset += class->size;
1764 index++;
1765 }
1766
1767 kunmap_atomic(addr);
1768 return handle;
1769 }
1770
1771 struct zs_compact_control {
1772 /* Source spage for migration which could be a subpage of zspage */
1773 struct page *s_page;
1774 /* Destination page for migration which should be a first page
1775 * of zspage. */
1776 struct page *d_page;
1777 /* Starting object index within @s_page which used for live object
1778 * in the subpage. */
1779 int index;
1780 };
1781
1782 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1783 struct zs_compact_control *cc)
1784 {
1785 unsigned long used_obj, free_obj;
1786 unsigned long handle;
1787 struct page *s_page = cc->s_page;
1788 struct page *d_page = cc->d_page;
1789 unsigned long index = cc->index;
1790 int ret = 0;
1791
1792 while (1) {
1793 handle = find_alloced_obj(class, s_page, index);
1794 if (!handle) {
1795 s_page = get_next_page(s_page);
1796 if (!s_page)
1797 break;
1798 index = 0;
1799 continue;
1800 }
1801
1802 /* Stop if there is no more space */
1803 if (zspage_full(class, get_zspage(d_page))) {
1804 unpin_tag(handle);
1805 ret = -ENOMEM;
1806 break;
1807 }
1808
1809 used_obj = handle_to_obj(handle);
1810 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1811 zs_object_copy(class, free_obj, used_obj);
1812 index++;
1813 /*
1814 * record_obj updates handle's value to free_obj and it will
1815 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1816 * breaks synchronization using pin_tag(e,g, zs_free) so
1817 * let's keep the lock bit.
1818 */
1819 free_obj |= BIT(HANDLE_PIN_BIT);
1820 record_obj(handle, free_obj);
1821 unpin_tag(handle);
1822 obj_free(class, used_obj);
1823 }
1824
1825 /* Remember last position in this iteration */
1826 cc->s_page = s_page;
1827 cc->index = index;
1828
1829 return ret;
1830 }
1831
1832 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1833 {
1834 int i;
1835 struct zspage *zspage;
1836 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1837
1838 if (!source) {
1839 fg[0] = ZS_ALMOST_FULL;
1840 fg[1] = ZS_ALMOST_EMPTY;
1841 }
1842
1843 for (i = 0; i < 2; i++) {
1844 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1845 struct zspage, list);
1846 if (zspage) {
1847 VM_BUG_ON(is_zspage_isolated(zspage));
1848 remove_zspage(class, zspage, fg[i]);
1849 return zspage;
1850 }
1851 }
1852
1853 return zspage;
1854 }
1855
1856 /*
1857 * putback_zspage - add @zspage into right class's fullness list
1858 * @class: destination class
1859 * @zspage: target page
1860 *
1861 * Return @zspage's fullness_group
1862 */
1863 static enum fullness_group putback_zspage(struct size_class *class,
1864 struct zspage *zspage)
1865 {
1866 enum fullness_group fullness;
1867
1868 VM_BUG_ON(is_zspage_isolated(zspage));
1869
1870 fullness = get_fullness_group(class, zspage);
1871 insert_zspage(class, zspage, fullness);
1872 set_zspage_mapping(zspage, class->index, fullness);
1873
1874 return fullness;
1875 }
1876
1877 #ifdef CONFIG_COMPACTION
1878 static struct dentry *zs_mount(struct file_system_type *fs_type,
1879 int flags, const char *dev_name, void *data)
1880 {
1881 static const struct dentry_operations ops = {
1882 .d_dname = simple_dname,
1883 };
1884
1885 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1886 }
1887
1888 static struct file_system_type zsmalloc_fs = {
1889 .name = "zsmalloc",
1890 .mount = zs_mount,
1891 .kill_sb = kill_anon_super,
1892 };
1893
1894 static int zsmalloc_mount(void)
1895 {
1896 int ret = 0;
1897
1898 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1899 if (IS_ERR(zsmalloc_mnt))
1900 ret = PTR_ERR(zsmalloc_mnt);
1901
1902 return ret;
1903 }
1904
1905 static void zsmalloc_unmount(void)
1906 {
1907 kern_unmount(zsmalloc_mnt);
1908 }
1909
1910 static void migrate_lock_init(struct zspage *zspage)
1911 {
1912 rwlock_init(&zspage->lock);
1913 }
1914
1915 static void migrate_read_lock(struct zspage *zspage)
1916 {
1917 read_lock(&zspage->lock);
1918 }
1919
1920 static void migrate_read_unlock(struct zspage *zspage)
1921 {
1922 read_unlock(&zspage->lock);
1923 }
1924
1925 static void migrate_write_lock(struct zspage *zspage)
1926 {
1927 write_lock(&zspage->lock);
1928 }
1929
1930 static void migrate_write_unlock(struct zspage *zspage)
1931 {
1932 write_unlock(&zspage->lock);
1933 }
1934
1935 /* Number of isolated subpage for *page migration* in this zspage */
1936 static void inc_zspage_isolation(struct zspage *zspage)
1937 {
1938 zspage->isolated++;
1939 }
1940
1941 static void dec_zspage_isolation(struct zspage *zspage)
1942 {
1943 zspage->isolated--;
1944 }
1945
1946 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1947 struct page *newpage, struct page *oldpage)
1948 {
1949 struct page *page;
1950 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1951 int idx = 0;
1952
1953 page = get_first_page(zspage);
1954 do {
1955 if (page == oldpage)
1956 pages[idx] = newpage;
1957 else
1958 pages[idx] = page;
1959 idx++;
1960 } while ((page = get_next_page(page)) != NULL);
1961
1962 create_page_chain(class, zspage, pages);
1963 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1964 if (unlikely(PageHugeObject(oldpage)))
1965 newpage->index = oldpage->index;
1966 __SetPageMovable(newpage, page_mapping(oldpage));
1967 }
1968
1969 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1970 {
1971 struct zs_pool *pool;
1972 struct size_class *class;
1973 int class_idx;
1974 enum fullness_group fullness;
1975 struct zspage *zspage;
1976 struct address_space *mapping;
1977
1978 /*
1979 * Page is locked so zspage couldn't be destroyed. For detail, look at
1980 * lock_zspage in free_zspage.
1981 */
1982 VM_BUG_ON_PAGE(!PageMovable(page), page);
1983 VM_BUG_ON_PAGE(PageIsolated(page), page);
1984
1985 zspage = get_zspage(page);
1986
1987 /*
1988 * Without class lock, fullness could be stale while class_idx is okay
1989 * because class_idx is constant unless page is freed so we should get
1990 * fullness again under class lock.
1991 */
1992 get_zspage_mapping(zspage, &class_idx, &fullness);
1993 mapping = page_mapping(page);
1994 pool = mapping->private_data;
1995 class = pool->size_class[class_idx];
1996
1997 spin_lock(&class->lock);
1998 if (get_zspage_inuse(zspage) == 0) {
1999 spin_unlock(&class->lock);
2000 return false;
2001 }
2002
2003 /* zspage is isolated for object migration */
2004 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2005 spin_unlock(&class->lock);
2006 return false;
2007 }
2008
2009 /*
2010 * If this is first time isolation for the zspage, isolate zspage from
2011 * size_class to prevent further object allocation from the zspage.
2012 */
2013 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2014 get_zspage_mapping(zspage, &class_idx, &fullness);
2015 remove_zspage(class, zspage, fullness);
2016 }
2017
2018 inc_zspage_isolation(zspage);
2019 spin_unlock(&class->lock);
2020
2021 return true;
2022 }
2023
2024 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2025 struct page *page, enum migrate_mode mode)
2026 {
2027 struct zs_pool *pool;
2028 struct size_class *class;
2029 int class_idx;
2030 enum fullness_group fullness;
2031 struct zspage *zspage;
2032 struct page *dummy;
2033 void *s_addr, *d_addr, *addr;
2034 int offset, pos;
2035 unsigned long handle, head;
2036 unsigned long old_obj, new_obj;
2037 unsigned int obj_idx;
2038 int ret = -EAGAIN;
2039
2040 VM_BUG_ON_PAGE(!PageMovable(page), page);
2041 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2042
2043 zspage = get_zspage(page);
2044
2045 /* Concurrent compactor cannot migrate any subpage in zspage */
2046 migrate_write_lock(zspage);
2047 get_zspage_mapping(zspage, &class_idx, &fullness);
2048 pool = mapping->private_data;
2049 class = pool->size_class[class_idx];
2050 offset = get_first_obj_offset(page);
2051
2052 spin_lock(&class->lock);
2053 if (!get_zspage_inuse(zspage)) {
2054 ret = -EBUSY;
2055 goto unlock_class;
2056 }
2057
2058 pos = offset;
2059 s_addr = kmap_atomic(page);
2060 while (pos < PAGE_SIZE) {
2061 head = obj_to_head(page, s_addr + pos);
2062 if (head & OBJ_ALLOCATED_TAG) {
2063 handle = head & ~OBJ_ALLOCATED_TAG;
2064 if (!trypin_tag(handle))
2065 goto unpin_objects;
2066 }
2067 pos += class->size;
2068 }
2069
2070 /*
2071 * Here, any user cannot access all objects in the zspage so let's move.
2072 */
2073 d_addr = kmap_atomic(newpage);
2074 memcpy(d_addr, s_addr, PAGE_SIZE);
2075 kunmap_atomic(d_addr);
2076
2077 for (addr = s_addr + offset; addr < s_addr + pos;
2078 addr += class->size) {
2079 head = obj_to_head(page, addr);
2080 if (head & OBJ_ALLOCATED_TAG) {
2081 handle = head & ~OBJ_ALLOCATED_TAG;
2082 if (!testpin_tag(handle))
2083 BUG();
2084
2085 old_obj = handle_to_obj(handle);
2086 obj_to_location(old_obj, &dummy, &obj_idx);
2087 new_obj = (unsigned long)location_to_obj(newpage,
2088 obj_idx);
2089 new_obj |= BIT(HANDLE_PIN_BIT);
2090 record_obj(handle, new_obj);
2091 }
2092 }
2093
2094 replace_sub_page(class, zspage, newpage, page);
2095 get_page(newpage);
2096
2097 dec_zspage_isolation(zspage);
2098
2099 /*
2100 * Page migration is done so let's putback isolated zspage to
2101 * the list if @page is final isolated subpage in the zspage.
2102 */
2103 if (!is_zspage_isolated(zspage))
2104 putback_zspage(class, zspage);
2105
2106 reset_page(page);
2107 put_page(page);
2108 page = newpage;
2109
2110 ret = 0;
2111 unpin_objects:
2112 for (addr = s_addr + offset; addr < s_addr + pos;
2113 addr += class->size) {
2114 head = obj_to_head(page, addr);
2115 if (head & OBJ_ALLOCATED_TAG) {
2116 handle = head & ~OBJ_ALLOCATED_TAG;
2117 if (!testpin_tag(handle))
2118 BUG();
2119 unpin_tag(handle);
2120 }
2121 }
2122 kunmap_atomic(s_addr);
2123 unlock_class:
2124 spin_unlock(&class->lock);
2125 migrate_write_unlock(zspage);
2126
2127 return ret;
2128 }
2129
2130 void zs_page_putback(struct page *page)
2131 {
2132 struct zs_pool *pool;
2133 struct size_class *class;
2134 int class_idx;
2135 enum fullness_group fg;
2136 struct address_space *mapping;
2137 struct zspage *zspage;
2138
2139 VM_BUG_ON_PAGE(!PageMovable(page), page);
2140 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2141
2142 zspage = get_zspage(page);
2143 get_zspage_mapping(zspage, &class_idx, &fg);
2144 mapping = page_mapping(page);
2145 pool = mapping->private_data;
2146 class = pool->size_class[class_idx];
2147
2148 spin_lock(&class->lock);
2149 dec_zspage_isolation(zspage);
2150 if (!is_zspage_isolated(zspage)) {
2151 fg = putback_zspage(class, zspage);
2152 /*
2153 * Due to page_lock, we cannot free zspage immediately
2154 * so let's defer.
2155 */
2156 if (fg == ZS_EMPTY)
2157 schedule_work(&pool->free_work);
2158 }
2159 spin_unlock(&class->lock);
2160 }
2161
2162 const struct address_space_operations zsmalloc_aops = {
2163 .isolate_page = zs_page_isolate,
2164 .migratepage = zs_page_migrate,
2165 .putback_page = zs_page_putback,
2166 };
2167
2168 static int zs_register_migration(struct zs_pool *pool)
2169 {
2170 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2171 if (IS_ERR(pool->inode)) {
2172 pool->inode = NULL;
2173 return 1;
2174 }
2175
2176 pool->inode->i_mapping->private_data = pool;
2177 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2178 return 0;
2179 }
2180
2181 static void zs_unregister_migration(struct zs_pool *pool)
2182 {
2183 flush_work(&pool->free_work);
2184 if (pool->inode)
2185 iput(pool->inode);
2186 }
2187
2188 /*
2189 * Caller should hold page_lock of all pages in the zspage
2190 * In here, we cannot use zspage meta data.
2191 */
2192 static void async_free_zspage(struct work_struct *work)
2193 {
2194 int i;
2195 struct size_class *class;
2196 unsigned int class_idx;
2197 enum fullness_group fullness;
2198 struct zspage *zspage, *tmp;
2199 LIST_HEAD(free_pages);
2200 struct zs_pool *pool = container_of(work, struct zs_pool,
2201 free_work);
2202
2203 for (i = 0; i < zs_size_classes; i++) {
2204 class = pool->size_class[i];
2205 if (class->index != i)
2206 continue;
2207
2208 spin_lock(&class->lock);
2209 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2210 spin_unlock(&class->lock);
2211 }
2212
2213
2214 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2215 list_del(&zspage->list);
2216 lock_zspage(zspage);
2217
2218 get_zspage_mapping(zspage, &class_idx, &fullness);
2219 VM_BUG_ON(fullness != ZS_EMPTY);
2220 class = pool->size_class[class_idx];
2221 spin_lock(&class->lock);
2222 __free_zspage(pool, pool->size_class[class_idx], zspage);
2223 spin_unlock(&class->lock);
2224 }
2225 };
2226
2227 static void kick_deferred_free(struct zs_pool *pool)
2228 {
2229 schedule_work(&pool->free_work);
2230 }
2231
2232 static void init_deferred_free(struct zs_pool *pool)
2233 {
2234 INIT_WORK(&pool->free_work, async_free_zspage);
2235 }
2236
2237 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2238 {
2239 struct page *page = get_first_page(zspage);
2240
2241 do {
2242 WARN_ON(!trylock_page(page));
2243 __SetPageMovable(page, pool->inode->i_mapping);
2244 unlock_page(page);
2245 } while ((page = get_next_page(page)) != NULL);
2246 }
2247 #endif
2248
2249 /*
2250 *
2251 * Based on the number of unused allocated objects calculate
2252 * and return the number of pages that we can free.
2253 */
2254 static unsigned long zs_can_compact(struct size_class *class)
2255 {
2256 unsigned long obj_wasted;
2257 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2258 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2259
2260 if (obj_allocated <= obj_used)
2261 return 0;
2262
2263 obj_wasted = obj_allocated - obj_used;
2264 obj_wasted /= get_maxobj_per_zspage(class->size,
2265 class->pages_per_zspage);
2266
2267 return obj_wasted * class->pages_per_zspage;
2268 }
2269
2270 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2271 {
2272 struct zs_compact_control cc;
2273 struct zspage *src_zspage;
2274 struct zspage *dst_zspage = NULL;
2275
2276 spin_lock(&class->lock);
2277 while ((src_zspage = isolate_zspage(class, true))) {
2278
2279 if (!zs_can_compact(class))
2280 break;
2281
2282 cc.index = 0;
2283 cc.s_page = get_first_page(src_zspage);
2284
2285 while ((dst_zspage = isolate_zspage(class, false))) {
2286 cc.d_page = get_first_page(dst_zspage);
2287 /*
2288 * If there is no more space in dst_page, resched
2289 * and see if anyone had allocated another zspage.
2290 */
2291 if (!migrate_zspage(pool, class, &cc))
2292 break;
2293
2294 putback_zspage(class, dst_zspage);
2295 }
2296
2297 /* Stop if we couldn't find slot */
2298 if (dst_zspage == NULL)
2299 break;
2300
2301 putback_zspage(class, dst_zspage);
2302 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2303 free_zspage(pool, class, src_zspage);
2304 pool->stats.pages_compacted += class->pages_per_zspage;
2305 }
2306 spin_unlock(&class->lock);
2307 cond_resched();
2308 spin_lock(&class->lock);
2309 }
2310
2311 if (src_zspage)
2312 putback_zspage(class, src_zspage);
2313
2314 spin_unlock(&class->lock);
2315 }
2316
2317 unsigned long zs_compact(struct zs_pool *pool)
2318 {
2319 int i;
2320 struct size_class *class;
2321
2322 for (i = zs_size_classes - 1; i >= 0; i--) {
2323 class = pool->size_class[i];
2324 if (!class)
2325 continue;
2326 if (class->index != i)
2327 continue;
2328 __zs_compact(pool, class);
2329 }
2330
2331 return pool->stats.pages_compacted;
2332 }
2333 EXPORT_SYMBOL_GPL(zs_compact);
2334
2335 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2336 {
2337 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2338 }
2339 EXPORT_SYMBOL_GPL(zs_pool_stats);
2340
2341 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2342 struct shrink_control *sc)
2343 {
2344 unsigned long pages_freed;
2345 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2346 shrinker);
2347
2348 pages_freed = pool->stats.pages_compacted;
2349 /*
2350 * Compact classes and calculate compaction delta.
2351 * Can run concurrently with a manually triggered
2352 * (by user) compaction.
2353 */
2354 pages_freed = zs_compact(pool) - pages_freed;
2355
2356 return pages_freed ? pages_freed : SHRINK_STOP;
2357 }
2358
2359 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2360 struct shrink_control *sc)
2361 {
2362 int i;
2363 struct size_class *class;
2364 unsigned long pages_to_free = 0;
2365 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2366 shrinker);
2367
2368 for (i = zs_size_classes - 1; i >= 0; i--) {
2369 class = pool->size_class[i];
2370 if (!class)
2371 continue;
2372 if (class->index != i)
2373 continue;
2374
2375 pages_to_free += zs_can_compact(class);
2376 }
2377
2378 return pages_to_free;
2379 }
2380
2381 static void zs_unregister_shrinker(struct zs_pool *pool)
2382 {
2383 if (pool->shrinker_enabled) {
2384 unregister_shrinker(&pool->shrinker);
2385 pool->shrinker_enabled = false;
2386 }
2387 }
2388
2389 static int zs_register_shrinker(struct zs_pool *pool)
2390 {
2391 pool->shrinker.scan_objects = zs_shrinker_scan;
2392 pool->shrinker.count_objects = zs_shrinker_count;
2393 pool->shrinker.batch = 0;
2394 pool->shrinker.seeks = DEFAULT_SEEKS;
2395
2396 return register_shrinker(&pool->shrinker);
2397 }
2398
2399 /**
2400 * zs_create_pool - Creates an allocation pool to work from.
2401 * @flags: allocation flags used to allocate pool metadata
2402 *
2403 * This function must be called before anything when using
2404 * the zsmalloc allocator.
2405 *
2406 * On success, a pointer to the newly created pool is returned,
2407 * otherwise NULL.
2408 */
2409 struct zs_pool *zs_create_pool(const char *name)
2410 {
2411 int i;
2412 struct zs_pool *pool;
2413 struct size_class *prev_class = NULL;
2414
2415 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2416 if (!pool)
2417 return NULL;
2418
2419 init_deferred_free(pool);
2420 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2421 GFP_KERNEL);
2422 if (!pool->size_class) {
2423 kfree(pool);
2424 return NULL;
2425 }
2426
2427 pool->name = kstrdup(name, GFP_KERNEL);
2428 if (!pool->name)
2429 goto err;
2430
2431 if (create_cache(pool))
2432 goto err;
2433
2434 /*
2435 * Iterate reversly, because, size of size_class that we want to use
2436 * for merging should be larger or equal to current size.
2437 */
2438 for (i = zs_size_classes - 1; i >= 0; i--) {
2439 int size;
2440 int pages_per_zspage;
2441 struct size_class *class;
2442 int fullness = 0;
2443
2444 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2445 if (size > ZS_MAX_ALLOC_SIZE)
2446 size = ZS_MAX_ALLOC_SIZE;
2447 pages_per_zspage = get_pages_per_zspage(size);
2448
2449 /*
2450 * size_class is used for normal zsmalloc operation such
2451 * as alloc/free for that size. Although it is natural that we
2452 * have one size_class for each size, there is a chance that we
2453 * can get more memory utilization if we use one size_class for
2454 * many different sizes whose size_class have same
2455 * characteristics. So, we makes size_class point to
2456 * previous size_class if possible.
2457 */
2458 if (prev_class) {
2459 if (can_merge(prev_class, size, pages_per_zspage)) {
2460 pool->size_class[i] = prev_class;
2461 continue;
2462 }
2463 }
2464
2465 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2466 if (!class)
2467 goto err;
2468
2469 class->size = size;
2470 class->index = i;
2471 class->pages_per_zspage = pages_per_zspage;
2472 class->objs_per_zspage = class->pages_per_zspage *
2473 PAGE_SIZE / class->size;
2474 spin_lock_init(&class->lock);
2475 pool->size_class[i] = class;
2476 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2477 fullness++)
2478 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2479
2480 prev_class = class;
2481 }
2482
2483 /* debug only, don't abort if it fails */
2484 zs_pool_stat_create(pool, name);
2485
2486 if (zs_register_migration(pool))
2487 goto err;
2488
2489 /*
2490 * Not critical, we still can use the pool
2491 * and user can trigger compaction manually.
2492 */
2493 if (zs_register_shrinker(pool) == 0)
2494 pool->shrinker_enabled = true;
2495 return pool;
2496
2497 err:
2498 zs_destroy_pool(pool);
2499 return NULL;
2500 }
2501 EXPORT_SYMBOL_GPL(zs_create_pool);
2502
2503 void zs_destroy_pool(struct zs_pool *pool)
2504 {
2505 int i;
2506
2507 zs_unregister_shrinker(pool);
2508 zs_unregister_migration(pool);
2509 zs_pool_stat_destroy(pool);
2510
2511 for (i = 0; i < zs_size_classes; i++) {
2512 int fg;
2513 struct size_class *class = pool->size_class[i];
2514
2515 if (!class)
2516 continue;
2517
2518 if (class->index != i)
2519 continue;
2520
2521 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2522 if (!list_empty(&class->fullness_list[fg])) {
2523 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2524 class->size, fg);
2525 }
2526 }
2527 kfree(class);
2528 }
2529
2530 destroy_cache(pool);
2531 kfree(pool->size_class);
2532 kfree(pool->name);
2533 kfree(pool);
2534 }
2535 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2536
2537 static int __init zs_init(void)
2538 {
2539 int ret;
2540
2541 ret = zsmalloc_mount();
2542 if (ret)
2543 goto out;
2544
2545 ret = zs_register_cpu_notifier();
2546
2547 if (ret)
2548 goto notifier_fail;
2549
2550 init_zs_size_classes();
2551
2552 #ifdef CONFIG_ZPOOL
2553 zpool_register_driver(&zs_zpool_driver);
2554 #endif
2555
2556 zs_stat_init();
2557
2558 return 0;
2559
2560 notifier_fail:
2561 zs_unregister_cpu_notifier();
2562 zsmalloc_unmount();
2563 out:
2564 return ret;
2565 }
2566
2567 static void __exit zs_exit(void)
2568 {
2569 #ifdef CONFIG_ZPOOL
2570 zpool_unregister_driver(&zs_zpool_driver);
2571 #endif
2572 zsmalloc_unmount();
2573 zs_unregister_cpu_notifier();
2574
2575 zs_stat_exit();
2576 }
2577
2578 module_init(zs_init);
2579 module_exit(zs_exit);
2580
2581 MODULE_LICENSE("Dual BSD/GPL");
2582 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");