]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/zsmalloc.c
Merge tag 'linux-kselftest-4.11-rc1-urgent_fix' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/migrate.h>
54 #include <linux/pagemap.h>
55
56 #define ZSPAGE_MAGIC 0x58
57
58 /*
59 * This must be power of 2 and greater than of equal to sizeof(link_free).
60 * These two conditions ensure that any 'struct link_free' itself doesn't
61 * span more than 1 page which avoids complex case of mapping 2 pages simply
62 * to restore link_free pointer values.
63 */
64 #define ZS_ALIGN 8
65
66 /*
67 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69 */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
75 /*
76 * Object location (<PFN>, <obj_idx>) is encoded as
77 * as single (unsigned long) handle value.
78 *
79 * Note that object index <obj_idx> starts from 0.
80 *
81 * This is made more complicated by various memory models and PAE.
82 */
83
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90 * be PAGE_SHIFT
91 */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
96
97 /*
98 * Memory for allocating for handle keeps object position by
99 * encoding <page, obj_idx> and the encoded value has a room
100 * in least bit(ie, look at obj_to_location).
101 * We use the bit to synchronize between object access by
102 * user and migration.
103 */
104 #define HANDLE_PIN_BIT 0
105
106 /*
107 * Head in allocated object should have OBJ_ALLOCATED_TAG
108 * to identify the object was allocated or not.
109 * It's okay to add the status bit in the least bit because
110 * header keeps handle which is 4byte-aligned address so we
111 * have room for two bit at least.
112 */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
124
125 /*
126 * On systems with 4K page size, this gives 255 size classes! There is a
127 * trader-off here:
128 * - Large number of size classes is potentially wasteful as free page are
129 * spread across these classes
130 * - Small number of size classes causes large internal fragmentation
131 * - Probably its better to use specific size classes (empirically
132 * determined). NOTE: all those class sizes must be set as multiple of
133 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134 *
135 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136 * (reason above)
137 */
138 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
139
140 enum fullness_group {
141 ZS_EMPTY,
142 ZS_ALMOST_EMPTY,
143 ZS_ALMOST_FULL,
144 ZS_FULL,
145 NR_ZS_FULLNESS,
146 };
147
148 enum zs_stat_type {
149 CLASS_EMPTY,
150 CLASS_ALMOST_EMPTY,
151 CLASS_ALMOST_FULL,
152 CLASS_FULL,
153 OBJ_ALLOCATED,
154 OBJ_USED,
155 NR_ZS_STAT_TYPE,
156 };
157
158 struct zs_size_stat {
159 unsigned long objs[NR_ZS_STAT_TYPE];
160 };
161
162 #ifdef CONFIG_ZSMALLOC_STAT
163 static struct dentry *zs_stat_root;
164 #endif
165
166 #ifdef CONFIG_COMPACTION
167 static struct vfsmount *zsmalloc_mnt;
168 #endif
169
170 /*
171 * number of size_classes
172 */
173 static int zs_size_classes;
174
175 /*
176 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
177 * n <= N / f, where
178 * n = number of allocated objects
179 * N = total number of objects zspage can store
180 * f = fullness_threshold_frac
181 *
182 * Similarly, we assign zspage to:
183 * ZS_ALMOST_FULL when n > N / f
184 * ZS_EMPTY when n == 0
185 * ZS_FULL when n == N
186 *
187 * (see: fix_fullness_group())
188 */
189 static const int fullness_threshold_frac = 4;
190
191 struct size_class {
192 spinlock_t lock;
193 struct list_head fullness_list[NR_ZS_FULLNESS];
194 /*
195 * Size of objects stored in this class. Must be multiple
196 * of ZS_ALIGN.
197 */
198 int size;
199 int objs_per_zspage;
200 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
201 int pages_per_zspage;
202
203 unsigned int index;
204 struct zs_size_stat stats;
205 };
206
207 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
208 static void SetPageHugeObject(struct page *page)
209 {
210 SetPageOwnerPriv1(page);
211 }
212
213 static void ClearPageHugeObject(struct page *page)
214 {
215 ClearPageOwnerPriv1(page);
216 }
217
218 static int PageHugeObject(struct page *page)
219 {
220 return PageOwnerPriv1(page);
221 }
222
223 /*
224 * Placed within free objects to form a singly linked list.
225 * For every zspage, zspage->freeobj gives head of this list.
226 *
227 * This must be power of 2 and less than or equal to ZS_ALIGN
228 */
229 struct link_free {
230 union {
231 /*
232 * Free object index;
233 * It's valid for non-allocated object
234 */
235 unsigned long next;
236 /*
237 * Handle of allocated object.
238 */
239 unsigned long handle;
240 };
241 };
242
243 struct zs_pool {
244 const char *name;
245
246 struct size_class **size_class;
247 struct kmem_cache *handle_cachep;
248 struct kmem_cache *zspage_cachep;
249
250 atomic_long_t pages_allocated;
251
252 struct zs_pool_stats stats;
253
254 /* Compact classes */
255 struct shrinker shrinker;
256 /*
257 * To signify that register_shrinker() was successful
258 * and unregister_shrinker() will not Oops.
259 */
260 bool shrinker_enabled;
261 #ifdef CONFIG_ZSMALLOC_STAT
262 struct dentry *stat_dentry;
263 #endif
264 #ifdef CONFIG_COMPACTION
265 struct inode *inode;
266 struct work_struct free_work;
267 #endif
268 };
269
270 #define FULLNESS_BITS 2
271 #define CLASS_BITS 8
272 #define ISOLATED_BITS 3
273 #define MAGIC_VAL_BITS 8
274
275 struct zspage {
276 struct {
277 unsigned int fullness:FULLNESS_BITS;
278 unsigned int class:CLASS_BITS;
279 unsigned int isolated:ISOLATED_BITS;
280 unsigned int magic:MAGIC_VAL_BITS;
281 };
282 unsigned int inuse;
283 unsigned int freeobj;
284 struct page *first_page;
285 struct list_head list; /* fullness list */
286 #ifdef CONFIG_COMPACTION
287 rwlock_t lock;
288 #endif
289 };
290
291 struct mapping_area {
292 #ifdef CONFIG_PGTABLE_MAPPING
293 struct vm_struct *vm; /* vm area for mapping object that span pages */
294 #else
295 char *vm_buf; /* copy buffer for objects that span pages */
296 #endif
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343 kmem_cache_destroy(pool->handle_cachep);
344 kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360 return kmem_cache_alloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366 kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384 const struct zpool_ops *zpool_ops,
385 struct zpool *zpool)
386 {
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
393 }
394
395 static void zs_zpool_destroy(void *pool)
396 {
397 zs_destroy_pool(pool);
398 }
399
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402 {
403 *handle = zs_malloc(pool, size, gfp);
404 return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408 zs_free(pool, handle);
409 }
410
411 static int zs_zpool_shrink(void *pool, unsigned int pages,
412 unsigned int *reclaimed)
413 {
414 return -EINVAL;
415 }
416
417 static void *zs_zpool_map(void *pool, unsigned long handle,
418 enum zpool_mapmode mm)
419 {
420 enum zs_mapmode zs_mm;
421
422 switch (mm) {
423 case ZPOOL_MM_RO:
424 zs_mm = ZS_MM_RO;
425 break;
426 case ZPOOL_MM_WO:
427 zs_mm = ZS_MM_WO;
428 break;
429 case ZPOOL_MM_RW: /* fallthru */
430 default:
431 zs_mm = ZS_MM_RW;
432 break;
433 }
434
435 return zs_map_object(pool, handle, zs_mm);
436 }
437 static void zs_zpool_unmap(void *pool, unsigned long handle)
438 {
439 zs_unmap_object(pool, handle);
440 }
441
442 static u64 zs_zpool_total_size(void *pool)
443 {
444 return zs_get_total_pages(pool) << PAGE_SHIFT;
445 }
446
447 static struct zpool_driver zs_zpool_driver = {
448 .type = "zsmalloc",
449 .owner = THIS_MODULE,
450 .create = zs_zpool_create,
451 .destroy = zs_zpool_destroy,
452 .malloc = zs_zpool_malloc,
453 .free = zs_zpool_free,
454 .shrink = zs_zpool_shrink,
455 .map = zs_zpool_map,
456 .unmap = zs_zpool_unmap,
457 .total_size = zs_zpool_total_size,
458 };
459
460 MODULE_ALIAS("zpool-zsmalloc");
461 #endif /* CONFIG_ZPOOL */
462
463 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
464 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
465
466 static bool is_zspage_isolated(struct zspage *zspage)
467 {
468 return zspage->isolated;
469 }
470
471 static int is_first_page(struct page *page)
472 {
473 return PagePrivate(page);
474 }
475
476 /* Protected by class->lock */
477 static inline int get_zspage_inuse(struct zspage *zspage)
478 {
479 return zspage->inuse;
480 }
481
482 static inline void set_zspage_inuse(struct zspage *zspage, int val)
483 {
484 zspage->inuse = val;
485 }
486
487 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
488 {
489 zspage->inuse += val;
490 }
491
492 static inline struct page *get_first_page(struct zspage *zspage)
493 {
494 struct page *first_page = zspage->first_page;
495
496 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
497 return first_page;
498 }
499
500 static inline int get_first_obj_offset(struct page *page)
501 {
502 return page->units;
503 }
504
505 static inline void set_first_obj_offset(struct page *page, int offset)
506 {
507 page->units = offset;
508 }
509
510 static inline unsigned int get_freeobj(struct zspage *zspage)
511 {
512 return zspage->freeobj;
513 }
514
515 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
516 {
517 zspage->freeobj = obj;
518 }
519
520 static void get_zspage_mapping(struct zspage *zspage,
521 unsigned int *class_idx,
522 enum fullness_group *fullness)
523 {
524 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
525
526 *fullness = zspage->fullness;
527 *class_idx = zspage->class;
528 }
529
530 static void set_zspage_mapping(struct zspage *zspage,
531 unsigned int class_idx,
532 enum fullness_group fullness)
533 {
534 zspage->class = class_idx;
535 zspage->fullness = fullness;
536 }
537
538 /*
539 * zsmalloc divides the pool into various size classes where each
540 * class maintains a list of zspages where each zspage is divided
541 * into equal sized chunks. Each allocation falls into one of these
542 * classes depending on its size. This function returns index of the
543 * size class which has chunk size big enough to hold the give size.
544 */
545 static int get_size_class_index(int size)
546 {
547 int idx = 0;
548
549 if (likely(size > ZS_MIN_ALLOC_SIZE))
550 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
551 ZS_SIZE_CLASS_DELTA);
552
553 return min(zs_size_classes - 1, idx);
554 }
555
556 static inline void zs_stat_inc(struct size_class *class,
557 enum zs_stat_type type, unsigned long cnt)
558 {
559 class->stats.objs[type] += cnt;
560 }
561
562 static inline void zs_stat_dec(struct size_class *class,
563 enum zs_stat_type type, unsigned long cnt)
564 {
565 class->stats.objs[type] -= cnt;
566 }
567
568 static inline unsigned long zs_stat_get(struct size_class *class,
569 enum zs_stat_type type)
570 {
571 return class->stats.objs[type];
572 }
573
574 #ifdef CONFIG_ZSMALLOC_STAT
575
576 static void __init zs_stat_init(void)
577 {
578 if (!debugfs_initialized()) {
579 pr_warn("debugfs not available, stat dir not created\n");
580 return;
581 }
582
583 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
584 if (!zs_stat_root)
585 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
586 }
587
588 static void __exit zs_stat_exit(void)
589 {
590 debugfs_remove_recursive(zs_stat_root);
591 }
592
593 static unsigned long zs_can_compact(struct size_class *class);
594
595 static int zs_stats_size_show(struct seq_file *s, void *v)
596 {
597 int i;
598 struct zs_pool *pool = s->private;
599 struct size_class *class;
600 int objs_per_zspage;
601 unsigned long class_almost_full, class_almost_empty;
602 unsigned long obj_allocated, obj_used, pages_used, freeable;
603 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
604 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
605 unsigned long total_freeable = 0;
606
607 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
608 "class", "size", "almost_full", "almost_empty",
609 "obj_allocated", "obj_used", "pages_used",
610 "pages_per_zspage", "freeable");
611
612 for (i = 0; i < zs_size_classes; i++) {
613 class = pool->size_class[i];
614
615 if (class->index != i)
616 continue;
617
618 spin_lock(&class->lock);
619 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
620 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
621 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
622 obj_used = zs_stat_get(class, OBJ_USED);
623 freeable = zs_can_compact(class);
624 spin_unlock(&class->lock);
625
626 objs_per_zspage = class->objs_per_zspage;
627 pages_used = obj_allocated / objs_per_zspage *
628 class->pages_per_zspage;
629
630 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
631 " %10lu %10lu %16d %8lu\n",
632 i, class->size, class_almost_full, class_almost_empty,
633 obj_allocated, obj_used, pages_used,
634 class->pages_per_zspage, freeable);
635
636 total_class_almost_full += class_almost_full;
637 total_class_almost_empty += class_almost_empty;
638 total_objs += obj_allocated;
639 total_used_objs += obj_used;
640 total_pages += pages_used;
641 total_freeable += freeable;
642 }
643
644 seq_puts(s, "\n");
645 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
646 "Total", "", total_class_almost_full,
647 total_class_almost_empty, total_objs,
648 total_used_objs, total_pages, "", total_freeable);
649
650 return 0;
651 }
652
653 static int zs_stats_size_open(struct inode *inode, struct file *file)
654 {
655 return single_open(file, zs_stats_size_show, inode->i_private);
656 }
657
658 static const struct file_operations zs_stat_size_ops = {
659 .open = zs_stats_size_open,
660 .read = seq_read,
661 .llseek = seq_lseek,
662 .release = single_release,
663 };
664
665 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
666 {
667 struct dentry *entry;
668
669 if (!zs_stat_root) {
670 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
671 return;
672 }
673
674 entry = debugfs_create_dir(name, zs_stat_root);
675 if (!entry) {
676 pr_warn("debugfs dir <%s> creation failed\n", name);
677 return;
678 }
679 pool->stat_dentry = entry;
680
681 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
682 pool->stat_dentry, pool, &zs_stat_size_ops);
683 if (!entry) {
684 pr_warn("%s: debugfs file entry <%s> creation failed\n",
685 name, "classes");
686 debugfs_remove_recursive(pool->stat_dentry);
687 pool->stat_dentry = NULL;
688 }
689 }
690
691 static void zs_pool_stat_destroy(struct zs_pool *pool)
692 {
693 debugfs_remove_recursive(pool->stat_dentry);
694 }
695
696 #else /* CONFIG_ZSMALLOC_STAT */
697 static void __init zs_stat_init(void)
698 {
699 }
700
701 static void __exit zs_stat_exit(void)
702 {
703 }
704
705 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
706 {
707 }
708
709 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
710 {
711 }
712 #endif
713
714
715 /*
716 * For each size class, zspages are divided into different groups
717 * depending on how "full" they are. This was done so that we could
718 * easily find empty or nearly empty zspages when we try to shrink
719 * the pool (not yet implemented). This function returns fullness
720 * status of the given page.
721 */
722 static enum fullness_group get_fullness_group(struct size_class *class,
723 struct zspage *zspage)
724 {
725 int inuse, objs_per_zspage;
726 enum fullness_group fg;
727
728 inuse = get_zspage_inuse(zspage);
729 objs_per_zspage = class->objs_per_zspage;
730
731 if (inuse == 0)
732 fg = ZS_EMPTY;
733 else if (inuse == objs_per_zspage)
734 fg = ZS_FULL;
735 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
736 fg = ZS_ALMOST_EMPTY;
737 else
738 fg = ZS_ALMOST_FULL;
739
740 return fg;
741 }
742
743 /*
744 * Each size class maintains various freelists and zspages are assigned
745 * to one of these freelists based on the number of live objects they
746 * have. This functions inserts the given zspage into the freelist
747 * identified by <class, fullness_group>.
748 */
749 static void insert_zspage(struct size_class *class,
750 struct zspage *zspage,
751 enum fullness_group fullness)
752 {
753 struct zspage *head;
754
755 zs_stat_inc(class, fullness, 1);
756 head = list_first_entry_or_null(&class->fullness_list[fullness],
757 struct zspage, list);
758 /*
759 * We want to see more ZS_FULL pages and less almost empty/full.
760 * Put pages with higher ->inuse first.
761 */
762 if (head) {
763 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
764 list_add(&zspage->list, &head->list);
765 return;
766 }
767 }
768 list_add(&zspage->list, &class->fullness_list[fullness]);
769 }
770
771 /*
772 * This function removes the given zspage from the freelist identified
773 * by <class, fullness_group>.
774 */
775 static void remove_zspage(struct size_class *class,
776 struct zspage *zspage,
777 enum fullness_group fullness)
778 {
779 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
780 VM_BUG_ON(is_zspage_isolated(zspage));
781
782 list_del_init(&zspage->list);
783 zs_stat_dec(class, fullness, 1);
784 }
785
786 /*
787 * Each size class maintains zspages in different fullness groups depending
788 * on the number of live objects they contain. When allocating or freeing
789 * objects, the fullness status of the page can change, say, from ALMOST_FULL
790 * to ALMOST_EMPTY when freeing an object. This function checks if such
791 * a status change has occurred for the given page and accordingly moves the
792 * page from the freelist of the old fullness group to that of the new
793 * fullness group.
794 */
795 static enum fullness_group fix_fullness_group(struct size_class *class,
796 struct zspage *zspage)
797 {
798 int class_idx;
799 enum fullness_group currfg, newfg;
800
801 get_zspage_mapping(zspage, &class_idx, &currfg);
802 newfg = get_fullness_group(class, zspage);
803 if (newfg == currfg)
804 goto out;
805
806 if (!is_zspage_isolated(zspage)) {
807 remove_zspage(class, zspage, currfg);
808 insert_zspage(class, zspage, newfg);
809 }
810
811 set_zspage_mapping(zspage, class_idx, newfg);
812
813 out:
814 return newfg;
815 }
816
817 /*
818 * We have to decide on how many pages to link together
819 * to form a zspage for each size class. This is important
820 * to reduce wastage due to unusable space left at end of
821 * each zspage which is given as:
822 * wastage = Zp % class_size
823 * usage = Zp - wastage
824 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
825 *
826 * For example, for size class of 3/8 * PAGE_SIZE, we should
827 * link together 3 PAGE_SIZE sized pages to form a zspage
828 * since then we can perfectly fit in 8 such objects.
829 */
830 static int get_pages_per_zspage(int class_size)
831 {
832 int i, max_usedpc = 0;
833 /* zspage order which gives maximum used size per KB */
834 int max_usedpc_order = 1;
835
836 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
837 int zspage_size;
838 int waste, usedpc;
839
840 zspage_size = i * PAGE_SIZE;
841 waste = zspage_size % class_size;
842 usedpc = (zspage_size - waste) * 100 / zspage_size;
843
844 if (usedpc > max_usedpc) {
845 max_usedpc = usedpc;
846 max_usedpc_order = i;
847 }
848 }
849
850 return max_usedpc_order;
851 }
852
853 static struct zspage *get_zspage(struct page *page)
854 {
855 struct zspage *zspage = (struct zspage *)page->private;
856
857 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
858 return zspage;
859 }
860
861 static struct page *get_next_page(struct page *page)
862 {
863 if (unlikely(PageHugeObject(page)))
864 return NULL;
865
866 return page->freelist;
867 }
868
869 /**
870 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
871 * @page: page object resides in zspage
872 * @obj_idx: object index
873 */
874 static void obj_to_location(unsigned long obj, struct page **page,
875 unsigned int *obj_idx)
876 {
877 obj >>= OBJ_TAG_BITS;
878 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
879 *obj_idx = (obj & OBJ_INDEX_MASK);
880 }
881
882 /**
883 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
884 * @page: page object resides in zspage
885 * @obj_idx: object index
886 */
887 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
888 {
889 unsigned long obj;
890
891 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
892 obj |= obj_idx & OBJ_INDEX_MASK;
893 obj <<= OBJ_TAG_BITS;
894
895 return obj;
896 }
897
898 static unsigned long handle_to_obj(unsigned long handle)
899 {
900 return *(unsigned long *)handle;
901 }
902
903 static unsigned long obj_to_head(struct page *page, void *obj)
904 {
905 if (unlikely(PageHugeObject(page))) {
906 VM_BUG_ON_PAGE(!is_first_page(page), page);
907 return page->index;
908 } else
909 return *(unsigned long *)obj;
910 }
911
912 static inline int testpin_tag(unsigned long handle)
913 {
914 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
915 }
916
917 static inline int trypin_tag(unsigned long handle)
918 {
919 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921
922 static void pin_tag(unsigned long handle)
923 {
924 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 }
926
927 static void unpin_tag(unsigned long handle)
928 {
929 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 }
931
932 static void reset_page(struct page *page)
933 {
934 __ClearPageMovable(page);
935 ClearPagePrivate(page);
936 set_page_private(page, 0);
937 page_mapcount_reset(page);
938 ClearPageHugeObject(page);
939 page->freelist = NULL;
940 }
941
942 /*
943 * To prevent zspage destroy during migration, zspage freeing should
944 * hold locks of all pages in the zspage.
945 */
946 void lock_zspage(struct zspage *zspage)
947 {
948 struct page *page = get_first_page(zspage);
949
950 do {
951 lock_page(page);
952 } while ((page = get_next_page(page)) != NULL);
953 }
954
955 int trylock_zspage(struct zspage *zspage)
956 {
957 struct page *cursor, *fail;
958
959 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
960 get_next_page(cursor)) {
961 if (!trylock_page(cursor)) {
962 fail = cursor;
963 goto unlock;
964 }
965 }
966
967 return 1;
968 unlock:
969 for (cursor = get_first_page(zspage); cursor != fail; cursor =
970 get_next_page(cursor))
971 unlock_page(cursor);
972
973 return 0;
974 }
975
976 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
977 struct zspage *zspage)
978 {
979 struct page *page, *next;
980 enum fullness_group fg;
981 unsigned int class_idx;
982
983 get_zspage_mapping(zspage, &class_idx, &fg);
984
985 assert_spin_locked(&class->lock);
986
987 VM_BUG_ON(get_zspage_inuse(zspage));
988 VM_BUG_ON(fg != ZS_EMPTY);
989
990 next = page = get_first_page(zspage);
991 do {
992 VM_BUG_ON_PAGE(!PageLocked(page), page);
993 next = get_next_page(page);
994 reset_page(page);
995 unlock_page(page);
996 dec_zone_page_state(page, NR_ZSPAGES);
997 put_page(page);
998 page = next;
999 } while (page != NULL);
1000
1001 cache_free_zspage(pool, zspage);
1002
1003 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1004 atomic_long_sub(class->pages_per_zspage,
1005 &pool->pages_allocated);
1006 }
1007
1008 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1009 struct zspage *zspage)
1010 {
1011 VM_BUG_ON(get_zspage_inuse(zspage));
1012 VM_BUG_ON(list_empty(&zspage->list));
1013
1014 if (!trylock_zspage(zspage)) {
1015 kick_deferred_free(pool);
1016 return;
1017 }
1018
1019 remove_zspage(class, zspage, ZS_EMPTY);
1020 __free_zspage(pool, class, zspage);
1021 }
1022
1023 /* Initialize a newly allocated zspage */
1024 static void init_zspage(struct size_class *class, struct zspage *zspage)
1025 {
1026 unsigned int freeobj = 1;
1027 unsigned long off = 0;
1028 struct page *page = get_first_page(zspage);
1029
1030 while (page) {
1031 struct page *next_page;
1032 struct link_free *link;
1033 void *vaddr;
1034
1035 set_first_obj_offset(page, off);
1036
1037 vaddr = kmap_atomic(page);
1038 link = (struct link_free *)vaddr + off / sizeof(*link);
1039
1040 while ((off += class->size) < PAGE_SIZE) {
1041 link->next = freeobj++ << OBJ_TAG_BITS;
1042 link += class->size / sizeof(*link);
1043 }
1044
1045 /*
1046 * We now come to the last (full or partial) object on this
1047 * page, which must point to the first object on the next
1048 * page (if present)
1049 */
1050 next_page = get_next_page(page);
1051 if (next_page) {
1052 link->next = freeobj++ << OBJ_TAG_BITS;
1053 } else {
1054 /*
1055 * Reset OBJ_TAG_BITS bit to last link to tell
1056 * whether it's allocated object or not.
1057 */
1058 link->next = -1 << OBJ_TAG_BITS;
1059 }
1060 kunmap_atomic(vaddr);
1061 page = next_page;
1062 off %= PAGE_SIZE;
1063 }
1064
1065 set_freeobj(zspage, 0);
1066 }
1067
1068 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1069 struct page *pages[])
1070 {
1071 int i;
1072 struct page *page;
1073 struct page *prev_page = NULL;
1074 int nr_pages = class->pages_per_zspage;
1075
1076 /*
1077 * Allocate individual pages and link them together as:
1078 * 1. all pages are linked together using page->freelist
1079 * 2. each sub-page point to zspage using page->private
1080 *
1081 * we set PG_private to identify the first page (i.e. no other sub-page
1082 * has this flag set).
1083 */
1084 for (i = 0; i < nr_pages; i++) {
1085 page = pages[i];
1086 set_page_private(page, (unsigned long)zspage);
1087 page->freelist = NULL;
1088 if (i == 0) {
1089 zspage->first_page = page;
1090 SetPagePrivate(page);
1091 if (unlikely(class->objs_per_zspage == 1 &&
1092 class->pages_per_zspage == 1))
1093 SetPageHugeObject(page);
1094 } else {
1095 prev_page->freelist = page;
1096 }
1097 prev_page = page;
1098 }
1099 }
1100
1101 /*
1102 * Allocate a zspage for the given size class
1103 */
1104 static struct zspage *alloc_zspage(struct zs_pool *pool,
1105 struct size_class *class,
1106 gfp_t gfp)
1107 {
1108 int i;
1109 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1110 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1111
1112 if (!zspage)
1113 return NULL;
1114
1115 memset(zspage, 0, sizeof(struct zspage));
1116 zspage->magic = ZSPAGE_MAGIC;
1117 migrate_lock_init(zspage);
1118
1119 for (i = 0; i < class->pages_per_zspage; i++) {
1120 struct page *page;
1121
1122 page = alloc_page(gfp);
1123 if (!page) {
1124 while (--i >= 0) {
1125 dec_zone_page_state(pages[i], NR_ZSPAGES);
1126 __free_page(pages[i]);
1127 }
1128 cache_free_zspage(pool, zspage);
1129 return NULL;
1130 }
1131
1132 inc_zone_page_state(page, NR_ZSPAGES);
1133 pages[i] = page;
1134 }
1135
1136 create_page_chain(class, zspage, pages);
1137 init_zspage(class, zspage);
1138
1139 return zspage;
1140 }
1141
1142 static struct zspage *find_get_zspage(struct size_class *class)
1143 {
1144 int i;
1145 struct zspage *zspage;
1146
1147 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1148 zspage = list_first_entry_or_null(&class->fullness_list[i],
1149 struct zspage, list);
1150 if (zspage)
1151 break;
1152 }
1153
1154 return zspage;
1155 }
1156
1157 #ifdef CONFIG_PGTABLE_MAPPING
1158 static inline int __zs_cpu_up(struct mapping_area *area)
1159 {
1160 /*
1161 * Make sure we don't leak memory if a cpu UP notification
1162 * and zs_init() race and both call zs_cpu_up() on the same cpu
1163 */
1164 if (area->vm)
1165 return 0;
1166 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1167 if (!area->vm)
1168 return -ENOMEM;
1169 return 0;
1170 }
1171
1172 static inline void __zs_cpu_down(struct mapping_area *area)
1173 {
1174 if (area->vm)
1175 free_vm_area(area->vm);
1176 area->vm = NULL;
1177 }
1178
1179 static inline void *__zs_map_object(struct mapping_area *area,
1180 struct page *pages[2], int off, int size)
1181 {
1182 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1183 area->vm_addr = area->vm->addr;
1184 return area->vm_addr + off;
1185 }
1186
1187 static inline void __zs_unmap_object(struct mapping_area *area,
1188 struct page *pages[2], int off, int size)
1189 {
1190 unsigned long addr = (unsigned long)area->vm_addr;
1191
1192 unmap_kernel_range(addr, PAGE_SIZE * 2);
1193 }
1194
1195 #else /* CONFIG_PGTABLE_MAPPING */
1196
1197 static inline int __zs_cpu_up(struct mapping_area *area)
1198 {
1199 /*
1200 * Make sure we don't leak memory if a cpu UP notification
1201 * and zs_init() race and both call zs_cpu_up() on the same cpu
1202 */
1203 if (area->vm_buf)
1204 return 0;
1205 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1206 if (!area->vm_buf)
1207 return -ENOMEM;
1208 return 0;
1209 }
1210
1211 static inline void __zs_cpu_down(struct mapping_area *area)
1212 {
1213 kfree(area->vm_buf);
1214 area->vm_buf = NULL;
1215 }
1216
1217 static void *__zs_map_object(struct mapping_area *area,
1218 struct page *pages[2], int off, int size)
1219 {
1220 int sizes[2];
1221 void *addr;
1222 char *buf = area->vm_buf;
1223
1224 /* disable page faults to match kmap_atomic() return conditions */
1225 pagefault_disable();
1226
1227 /* no read fastpath */
1228 if (area->vm_mm == ZS_MM_WO)
1229 goto out;
1230
1231 sizes[0] = PAGE_SIZE - off;
1232 sizes[1] = size - sizes[0];
1233
1234 /* copy object to per-cpu buffer */
1235 addr = kmap_atomic(pages[0]);
1236 memcpy(buf, addr + off, sizes[0]);
1237 kunmap_atomic(addr);
1238 addr = kmap_atomic(pages[1]);
1239 memcpy(buf + sizes[0], addr, sizes[1]);
1240 kunmap_atomic(addr);
1241 out:
1242 return area->vm_buf;
1243 }
1244
1245 static void __zs_unmap_object(struct mapping_area *area,
1246 struct page *pages[2], int off, int size)
1247 {
1248 int sizes[2];
1249 void *addr;
1250 char *buf;
1251
1252 /* no write fastpath */
1253 if (area->vm_mm == ZS_MM_RO)
1254 goto out;
1255
1256 buf = area->vm_buf;
1257 buf = buf + ZS_HANDLE_SIZE;
1258 size -= ZS_HANDLE_SIZE;
1259 off += ZS_HANDLE_SIZE;
1260
1261 sizes[0] = PAGE_SIZE - off;
1262 sizes[1] = size - sizes[0];
1263
1264 /* copy per-cpu buffer to object */
1265 addr = kmap_atomic(pages[0]);
1266 memcpy(addr + off, buf, sizes[0]);
1267 kunmap_atomic(addr);
1268 addr = kmap_atomic(pages[1]);
1269 memcpy(addr, buf + sizes[0], sizes[1]);
1270 kunmap_atomic(addr);
1271
1272 out:
1273 /* enable page faults to match kunmap_atomic() return conditions */
1274 pagefault_enable();
1275 }
1276
1277 #endif /* CONFIG_PGTABLE_MAPPING */
1278
1279 static int zs_cpu_prepare(unsigned int cpu)
1280 {
1281 struct mapping_area *area;
1282
1283 area = &per_cpu(zs_map_area, cpu);
1284 return __zs_cpu_up(area);
1285 }
1286
1287 static int zs_cpu_dead(unsigned int cpu)
1288 {
1289 struct mapping_area *area;
1290
1291 area = &per_cpu(zs_map_area, cpu);
1292 __zs_cpu_down(area);
1293 return 0;
1294 }
1295
1296 static void __init init_zs_size_classes(void)
1297 {
1298 int nr;
1299
1300 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1301 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1302 nr += 1;
1303
1304 zs_size_classes = nr;
1305 }
1306
1307 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1308 int objs_per_zspage)
1309 {
1310 if (prev->pages_per_zspage == pages_per_zspage &&
1311 prev->objs_per_zspage == objs_per_zspage)
1312 return true;
1313
1314 return false;
1315 }
1316
1317 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1318 {
1319 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1320 }
1321
1322 unsigned long zs_get_total_pages(struct zs_pool *pool)
1323 {
1324 return atomic_long_read(&pool->pages_allocated);
1325 }
1326 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1327
1328 /**
1329 * zs_map_object - get address of allocated object from handle.
1330 * @pool: pool from which the object was allocated
1331 * @handle: handle returned from zs_malloc
1332 *
1333 * Before using an object allocated from zs_malloc, it must be mapped using
1334 * this function. When done with the object, it must be unmapped using
1335 * zs_unmap_object.
1336 *
1337 * Only one object can be mapped per cpu at a time. There is no protection
1338 * against nested mappings.
1339 *
1340 * This function returns with preemption and page faults disabled.
1341 */
1342 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1343 enum zs_mapmode mm)
1344 {
1345 struct zspage *zspage;
1346 struct page *page;
1347 unsigned long obj, off;
1348 unsigned int obj_idx;
1349
1350 unsigned int class_idx;
1351 enum fullness_group fg;
1352 struct size_class *class;
1353 struct mapping_area *area;
1354 struct page *pages[2];
1355 void *ret;
1356
1357 /*
1358 * Because we use per-cpu mapping areas shared among the
1359 * pools/users, we can't allow mapping in interrupt context
1360 * because it can corrupt another users mappings.
1361 */
1362 WARN_ON_ONCE(in_interrupt());
1363
1364 /* From now on, migration cannot move the object */
1365 pin_tag(handle);
1366
1367 obj = handle_to_obj(handle);
1368 obj_to_location(obj, &page, &obj_idx);
1369 zspage = get_zspage(page);
1370
1371 /* migration cannot move any subpage in this zspage */
1372 migrate_read_lock(zspage);
1373
1374 get_zspage_mapping(zspage, &class_idx, &fg);
1375 class = pool->size_class[class_idx];
1376 off = (class->size * obj_idx) & ~PAGE_MASK;
1377
1378 area = &get_cpu_var(zs_map_area);
1379 area->vm_mm = mm;
1380 if (off + class->size <= PAGE_SIZE) {
1381 /* this object is contained entirely within a page */
1382 area->vm_addr = kmap_atomic(page);
1383 ret = area->vm_addr + off;
1384 goto out;
1385 }
1386
1387 /* this object spans two pages */
1388 pages[0] = page;
1389 pages[1] = get_next_page(page);
1390 BUG_ON(!pages[1]);
1391
1392 ret = __zs_map_object(area, pages, off, class->size);
1393 out:
1394 if (likely(!PageHugeObject(page)))
1395 ret += ZS_HANDLE_SIZE;
1396
1397 return ret;
1398 }
1399 EXPORT_SYMBOL_GPL(zs_map_object);
1400
1401 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1402 {
1403 struct zspage *zspage;
1404 struct page *page;
1405 unsigned long obj, off;
1406 unsigned int obj_idx;
1407
1408 unsigned int class_idx;
1409 enum fullness_group fg;
1410 struct size_class *class;
1411 struct mapping_area *area;
1412
1413 obj = handle_to_obj(handle);
1414 obj_to_location(obj, &page, &obj_idx);
1415 zspage = get_zspage(page);
1416 get_zspage_mapping(zspage, &class_idx, &fg);
1417 class = pool->size_class[class_idx];
1418 off = (class->size * obj_idx) & ~PAGE_MASK;
1419
1420 area = this_cpu_ptr(&zs_map_area);
1421 if (off + class->size <= PAGE_SIZE)
1422 kunmap_atomic(area->vm_addr);
1423 else {
1424 struct page *pages[2];
1425
1426 pages[0] = page;
1427 pages[1] = get_next_page(page);
1428 BUG_ON(!pages[1]);
1429
1430 __zs_unmap_object(area, pages, off, class->size);
1431 }
1432 put_cpu_var(zs_map_area);
1433
1434 migrate_read_unlock(zspage);
1435 unpin_tag(handle);
1436 }
1437 EXPORT_SYMBOL_GPL(zs_unmap_object);
1438
1439 static unsigned long obj_malloc(struct size_class *class,
1440 struct zspage *zspage, unsigned long handle)
1441 {
1442 int i, nr_page, offset;
1443 unsigned long obj;
1444 struct link_free *link;
1445
1446 struct page *m_page;
1447 unsigned long m_offset;
1448 void *vaddr;
1449
1450 handle |= OBJ_ALLOCATED_TAG;
1451 obj = get_freeobj(zspage);
1452
1453 offset = obj * class->size;
1454 nr_page = offset >> PAGE_SHIFT;
1455 m_offset = offset & ~PAGE_MASK;
1456 m_page = get_first_page(zspage);
1457
1458 for (i = 0; i < nr_page; i++)
1459 m_page = get_next_page(m_page);
1460
1461 vaddr = kmap_atomic(m_page);
1462 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1463 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1464 if (likely(!PageHugeObject(m_page)))
1465 /* record handle in the header of allocated chunk */
1466 link->handle = handle;
1467 else
1468 /* record handle to page->index */
1469 zspage->first_page->index = handle;
1470
1471 kunmap_atomic(vaddr);
1472 mod_zspage_inuse(zspage, 1);
1473 zs_stat_inc(class, OBJ_USED, 1);
1474
1475 obj = location_to_obj(m_page, obj);
1476
1477 return obj;
1478 }
1479
1480
1481 /**
1482 * zs_malloc - Allocate block of given size from pool.
1483 * @pool: pool to allocate from
1484 * @size: size of block to allocate
1485 * @gfp: gfp flags when allocating object
1486 *
1487 * On success, handle to the allocated object is returned,
1488 * otherwise 0.
1489 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1490 */
1491 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1492 {
1493 unsigned long handle, obj;
1494 struct size_class *class;
1495 enum fullness_group newfg;
1496 struct zspage *zspage;
1497
1498 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1499 return 0;
1500
1501 handle = cache_alloc_handle(pool, gfp);
1502 if (!handle)
1503 return 0;
1504
1505 /* extra space in chunk to keep the handle */
1506 size += ZS_HANDLE_SIZE;
1507 class = pool->size_class[get_size_class_index(size)];
1508
1509 spin_lock(&class->lock);
1510 zspage = find_get_zspage(class);
1511 if (likely(zspage)) {
1512 obj = obj_malloc(class, zspage, handle);
1513 /* Now move the zspage to another fullness group, if required */
1514 fix_fullness_group(class, zspage);
1515 record_obj(handle, obj);
1516 spin_unlock(&class->lock);
1517
1518 return handle;
1519 }
1520
1521 spin_unlock(&class->lock);
1522
1523 zspage = alloc_zspage(pool, class, gfp);
1524 if (!zspage) {
1525 cache_free_handle(pool, handle);
1526 return 0;
1527 }
1528
1529 spin_lock(&class->lock);
1530 obj = obj_malloc(class, zspage, handle);
1531 newfg = get_fullness_group(class, zspage);
1532 insert_zspage(class, zspage, newfg);
1533 set_zspage_mapping(zspage, class->index, newfg);
1534 record_obj(handle, obj);
1535 atomic_long_add(class->pages_per_zspage,
1536 &pool->pages_allocated);
1537 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1538
1539 /* We completely set up zspage so mark them as movable */
1540 SetZsPageMovable(pool, zspage);
1541 spin_unlock(&class->lock);
1542
1543 return handle;
1544 }
1545 EXPORT_SYMBOL_GPL(zs_malloc);
1546
1547 static void obj_free(struct size_class *class, unsigned long obj)
1548 {
1549 struct link_free *link;
1550 struct zspage *zspage;
1551 struct page *f_page;
1552 unsigned long f_offset;
1553 unsigned int f_objidx;
1554 void *vaddr;
1555
1556 obj &= ~OBJ_ALLOCATED_TAG;
1557 obj_to_location(obj, &f_page, &f_objidx);
1558 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1559 zspage = get_zspage(f_page);
1560
1561 vaddr = kmap_atomic(f_page);
1562
1563 /* Insert this object in containing zspage's freelist */
1564 link = (struct link_free *)(vaddr + f_offset);
1565 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1566 kunmap_atomic(vaddr);
1567 set_freeobj(zspage, f_objidx);
1568 mod_zspage_inuse(zspage, -1);
1569 zs_stat_dec(class, OBJ_USED, 1);
1570 }
1571
1572 void zs_free(struct zs_pool *pool, unsigned long handle)
1573 {
1574 struct zspage *zspage;
1575 struct page *f_page;
1576 unsigned long obj;
1577 unsigned int f_objidx;
1578 int class_idx;
1579 struct size_class *class;
1580 enum fullness_group fullness;
1581 bool isolated;
1582
1583 if (unlikely(!handle))
1584 return;
1585
1586 pin_tag(handle);
1587 obj = handle_to_obj(handle);
1588 obj_to_location(obj, &f_page, &f_objidx);
1589 zspage = get_zspage(f_page);
1590
1591 migrate_read_lock(zspage);
1592
1593 get_zspage_mapping(zspage, &class_idx, &fullness);
1594 class = pool->size_class[class_idx];
1595
1596 spin_lock(&class->lock);
1597 obj_free(class, obj);
1598 fullness = fix_fullness_group(class, zspage);
1599 if (fullness != ZS_EMPTY) {
1600 migrate_read_unlock(zspage);
1601 goto out;
1602 }
1603
1604 isolated = is_zspage_isolated(zspage);
1605 migrate_read_unlock(zspage);
1606 /* If zspage is isolated, zs_page_putback will free the zspage */
1607 if (likely(!isolated))
1608 free_zspage(pool, class, zspage);
1609 out:
1610
1611 spin_unlock(&class->lock);
1612 unpin_tag(handle);
1613 cache_free_handle(pool, handle);
1614 }
1615 EXPORT_SYMBOL_GPL(zs_free);
1616
1617 static void zs_object_copy(struct size_class *class, unsigned long dst,
1618 unsigned long src)
1619 {
1620 struct page *s_page, *d_page;
1621 unsigned int s_objidx, d_objidx;
1622 unsigned long s_off, d_off;
1623 void *s_addr, *d_addr;
1624 int s_size, d_size, size;
1625 int written = 0;
1626
1627 s_size = d_size = class->size;
1628
1629 obj_to_location(src, &s_page, &s_objidx);
1630 obj_to_location(dst, &d_page, &d_objidx);
1631
1632 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1633 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1634
1635 if (s_off + class->size > PAGE_SIZE)
1636 s_size = PAGE_SIZE - s_off;
1637
1638 if (d_off + class->size > PAGE_SIZE)
1639 d_size = PAGE_SIZE - d_off;
1640
1641 s_addr = kmap_atomic(s_page);
1642 d_addr = kmap_atomic(d_page);
1643
1644 while (1) {
1645 size = min(s_size, d_size);
1646 memcpy(d_addr + d_off, s_addr + s_off, size);
1647 written += size;
1648
1649 if (written == class->size)
1650 break;
1651
1652 s_off += size;
1653 s_size -= size;
1654 d_off += size;
1655 d_size -= size;
1656
1657 if (s_off >= PAGE_SIZE) {
1658 kunmap_atomic(d_addr);
1659 kunmap_atomic(s_addr);
1660 s_page = get_next_page(s_page);
1661 s_addr = kmap_atomic(s_page);
1662 d_addr = kmap_atomic(d_page);
1663 s_size = class->size - written;
1664 s_off = 0;
1665 }
1666
1667 if (d_off >= PAGE_SIZE) {
1668 kunmap_atomic(d_addr);
1669 d_page = get_next_page(d_page);
1670 d_addr = kmap_atomic(d_page);
1671 d_size = class->size - written;
1672 d_off = 0;
1673 }
1674 }
1675
1676 kunmap_atomic(d_addr);
1677 kunmap_atomic(s_addr);
1678 }
1679
1680 /*
1681 * Find alloced object in zspage from index object and
1682 * return handle.
1683 */
1684 static unsigned long find_alloced_obj(struct size_class *class,
1685 struct page *page, int *obj_idx)
1686 {
1687 unsigned long head;
1688 int offset = 0;
1689 int index = *obj_idx;
1690 unsigned long handle = 0;
1691 void *addr = kmap_atomic(page);
1692
1693 offset = get_first_obj_offset(page);
1694 offset += class->size * index;
1695
1696 while (offset < PAGE_SIZE) {
1697 head = obj_to_head(page, addr + offset);
1698 if (head & OBJ_ALLOCATED_TAG) {
1699 handle = head & ~OBJ_ALLOCATED_TAG;
1700 if (trypin_tag(handle))
1701 break;
1702 handle = 0;
1703 }
1704
1705 offset += class->size;
1706 index++;
1707 }
1708
1709 kunmap_atomic(addr);
1710
1711 *obj_idx = index;
1712
1713 return handle;
1714 }
1715
1716 struct zs_compact_control {
1717 /* Source spage for migration which could be a subpage of zspage */
1718 struct page *s_page;
1719 /* Destination page for migration which should be a first page
1720 * of zspage. */
1721 struct page *d_page;
1722 /* Starting object index within @s_page which used for live object
1723 * in the subpage. */
1724 int obj_idx;
1725 };
1726
1727 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1728 struct zs_compact_control *cc)
1729 {
1730 unsigned long used_obj, free_obj;
1731 unsigned long handle;
1732 struct page *s_page = cc->s_page;
1733 struct page *d_page = cc->d_page;
1734 int obj_idx = cc->obj_idx;
1735 int ret = 0;
1736
1737 while (1) {
1738 handle = find_alloced_obj(class, s_page, &obj_idx);
1739 if (!handle) {
1740 s_page = get_next_page(s_page);
1741 if (!s_page)
1742 break;
1743 obj_idx = 0;
1744 continue;
1745 }
1746
1747 /* Stop if there is no more space */
1748 if (zspage_full(class, get_zspage(d_page))) {
1749 unpin_tag(handle);
1750 ret = -ENOMEM;
1751 break;
1752 }
1753
1754 used_obj = handle_to_obj(handle);
1755 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1756 zs_object_copy(class, free_obj, used_obj);
1757 obj_idx++;
1758 /*
1759 * record_obj updates handle's value to free_obj and it will
1760 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1761 * breaks synchronization using pin_tag(e,g, zs_free) so
1762 * let's keep the lock bit.
1763 */
1764 free_obj |= BIT(HANDLE_PIN_BIT);
1765 record_obj(handle, free_obj);
1766 unpin_tag(handle);
1767 obj_free(class, used_obj);
1768 }
1769
1770 /* Remember last position in this iteration */
1771 cc->s_page = s_page;
1772 cc->obj_idx = obj_idx;
1773
1774 return ret;
1775 }
1776
1777 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1778 {
1779 int i;
1780 struct zspage *zspage;
1781 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1782
1783 if (!source) {
1784 fg[0] = ZS_ALMOST_FULL;
1785 fg[1] = ZS_ALMOST_EMPTY;
1786 }
1787
1788 for (i = 0; i < 2; i++) {
1789 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1790 struct zspage, list);
1791 if (zspage) {
1792 VM_BUG_ON(is_zspage_isolated(zspage));
1793 remove_zspage(class, zspage, fg[i]);
1794 return zspage;
1795 }
1796 }
1797
1798 return zspage;
1799 }
1800
1801 /*
1802 * putback_zspage - add @zspage into right class's fullness list
1803 * @class: destination class
1804 * @zspage: target page
1805 *
1806 * Return @zspage's fullness_group
1807 */
1808 static enum fullness_group putback_zspage(struct size_class *class,
1809 struct zspage *zspage)
1810 {
1811 enum fullness_group fullness;
1812
1813 VM_BUG_ON(is_zspage_isolated(zspage));
1814
1815 fullness = get_fullness_group(class, zspage);
1816 insert_zspage(class, zspage, fullness);
1817 set_zspage_mapping(zspage, class->index, fullness);
1818
1819 return fullness;
1820 }
1821
1822 #ifdef CONFIG_COMPACTION
1823 static struct dentry *zs_mount(struct file_system_type *fs_type,
1824 int flags, const char *dev_name, void *data)
1825 {
1826 static const struct dentry_operations ops = {
1827 .d_dname = simple_dname,
1828 };
1829
1830 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1831 }
1832
1833 static struct file_system_type zsmalloc_fs = {
1834 .name = "zsmalloc",
1835 .mount = zs_mount,
1836 .kill_sb = kill_anon_super,
1837 };
1838
1839 static int zsmalloc_mount(void)
1840 {
1841 int ret = 0;
1842
1843 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1844 if (IS_ERR(zsmalloc_mnt))
1845 ret = PTR_ERR(zsmalloc_mnt);
1846
1847 return ret;
1848 }
1849
1850 static void zsmalloc_unmount(void)
1851 {
1852 kern_unmount(zsmalloc_mnt);
1853 }
1854
1855 static void migrate_lock_init(struct zspage *zspage)
1856 {
1857 rwlock_init(&zspage->lock);
1858 }
1859
1860 static void migrate_read_lock(struct zspage *zspage)
1861 {
1862 read_lock(&zspage->lock);
1863 }
1864
1865 static void migrate_read_unlock(struct zspage *zspage)
1866 {
1867 read_unlock(&zspage->lock);
1868 }
1869
1870 static void migrate_write_lock(struct zspage *zspage)
1871 {
1872 write_lock(&zspage->lock);
1873 }
1874
1875 static void migrate_write_unlock(struct zspage *zspage)
1876 {
1877 write_unlock(&zspage->lock);
1878 }
1879
1880 /* Number of isolated subpage for *page migration* in this zspage */
1881 static void inc_zspage_isolation(struct zspage *zspage)
1882 {
1883 zspage->isolated++;
1884 }
1885
1886 static void dec_zspage_isolation(struct zspage *zspage)
1887 {
1888 zspage->isolated--;
1889 }
1890
1891 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1892 struct page *newpage, struct page *oldpage)
1893 {
1894 struct page *page;
1895 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1896 int idx = 0;
1897
1898 page = get_first_page(zspage);
1899 do {
1900 if (page == oldpage)
1901 pages[idx] = newpage;
1902 else
1903 pages[idx] = page;
1904 idx++;
1905 } while ((page = get_next_page(page)) != NULL);
1906
1907 create_page_chain(class, zspage, pages);
1908 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1909 if (unlikely(PageHugeObject(oldpage)))
1910 newpage->index = oldpage->index;
1911 __SetPageMovable(newpage, page_mapping(oldpage));
1912 }
1913
1914 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1915 {
1916 struct zs_pool *pool;
1917 struct size_class *class;
1918 int class_idx;
1919 enum fullness_group fullness;
1920 struct zspage *zspage;
1921 struct address_space *mapping;
1922
1923 /*
1924 * Page is locked so zspage couldn't be destroyed. For detail, look at
1925 * lock_zspage in free_zspage.
1926 */
1927 VM_BUG_ON_PAGE(!PageMovable(page), page);
1928 VM_BUG_ON_PAGE(PageIsolated(page), page);
1929
1930 zspage = get_zspage(page);
1931
1932 /*
1933 * Without class lock, fullness could be stale while class_idx is okay
1934 * because class_idx is constant unless page is freed so we should get
1935 * fullness again under class lock.
1936 */
1937 get_zspage_mapping(zspage, &class_idx, &fullness);
1938 mapping = page_mapping(page);
1939 pool = mapping->private_data;
1940 class = pool->size_class[class_idx];
1941
1942 spin_lock(&class->lock);
1943 if (get_zspage_inuse(zspage) == 0) {
1944 spin_unlock(&class->lock);
1945 return false;
1946 }
1947
1948 /* zspage is isolated for object migration */
1949 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 spin_unlock(&class->lock);
1951 return false;
1952 }
1953
1954 /*
1955 * If this is first time isolation for the zspage, isolate zspage from
1956 * size_class to prevent further object allocation from the zspage.
1957 */
1958 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1959 get_zspage_mapping(zspage, &class_idx, &fullness);
1960 remove_zspage(class, zspage, fullness);
1961 }
1962
1963 inc_zspage_isolation(zspage);
1964 spin_unlock(&class->lock);
1965
1966 return true;
1967 }
1968
1969 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1970 struct page *page, enum migrate_mode mode)
1971 {
1972 struct zs_pool *pool;
1973 struct size_class *class;
1974 int class_idx;
1975 enum fullness_group fullness;
1976 struct zspage *zspage;
1977 struct page *dummy;
1978 void *s_addr, *d_addr, *addr;
1979 int offset, pos;
1980 unsigned long handle, head;
1981 unsigned long old_obj, new_obj;
1982 unsigned int obj_idx;
1983 int ret = -EAGAIN;
1984
1985 VM_BUG_ON_PAGE(!PageMovable(page), page);
1986 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1987
1988 zspage = get_zspage(page);
1989
1990 /* Concurrent compactor cannot migrate any subpage in zspage */
1991 migrate_write_lock(zspage);
1992 get_zspage_mapping(zspage, &class_idx, &fullness);
1993 pool = mapping->private_data;
1994 class = pool->size_class[class_idx];
1995 offset = get_first_obj_offset(page);
1996
1997 spin_lock(&class->lock);
1998 if (!get_zspage_inuse(zspage)) {
1999 ret = -EBUSY;
2000 goto unlock_class;
2001 }
2002
2003 pos = offset;
2004 s_addr = kmap_atomic(page);
2005 while (pos < PAGE_SIZE) {
2006 head = obj_to_head(page, s_addr + pos);
2007 if (head & OBJ_ALLOCATED_TAG) {
2008 handle = head & ~OBJ_ALLOCATED_TAG;
2009 if (!trypin_tag(handle))
2010 goto unpin_objects;
2011 }
2012 pos += class->size;
2013 }
2014
2015 /*
2016 * Here, any user cannot access all objects in the zspage so let's move.
2017 */
2018 d_addr = kmap_atomic(newpage);
2019 memcpy(d_addr, s_addr, PAGE_SIZE);
2020 kunmap_atomic(d_addr);
2021
2022 for (addr = s_addr + offset; addr < s_addr + pos;
2023 addr += class->size) {
2024 head = obj_to_head(page, addr);
2025 if (head & OBJ_ALLOCATED_TAG) {
2026 handle = head & ~OBJ_ALLOCATED_TAG;
2027 if (!testpin_tag(handle))
2028 BUG();
2029
2030 old_obj = handle_to_obj(handle);
2031 obj_to_location(old_obj, &dummy, &obj_idx);
2032 new_obj = (unsigned long)location_to_obj(newpage,
2033 obj_idx);
2034 new_obj |= BIT(HANDLE_PIN_BIT);
2035 record_obj(handle, new_obj);
2036 }
2037 }
2038
2039 replace_sub_page(class, zspage, newpage, page);
2040 get_page(newpage);
2041
2042 dec_zspage_isolation(zspage);
2043
2044 /*
2045 * Page migration is done so let's putback isolated zspage to
2046 * the list if @page is final isolated subpage in the zspage.
2047 */
2048 if (!is_zspage_isolated(zspage))
2049 putback_zspage(class, zspage);
2050
2051 reset_page(page);
2052 put_page(page);
2053 page = newpage;
2054
2055 ret = MIGRATEPAGE_SUCCESS;
2056 unpin_objects:
2057 for (addr = s_addr + offset; addr < s_addr + pos;
2058 addr += class->size) {
2059 head = obj_to_head(page, addr);
2060 if (head & OBJ_ALLOCATED_TAG) {
2061 handle = head & ~OBJ_ALLOCATED_TAG;
2062 if (!testpin_tag(handle))
2063 BUG();
2064 unpin_tag(handle);
2065 }
2066 }
2067 kunmap_atomic(s_addr);
2068 unlock_class:
2069 spin_unlock(&class->lock);
2070 migrate_write_unlock(zspage);
2071
2072 return ret;
2073 }
2074
2075 void zs_page_putback(struct page *page)
2076 {
2077 struct zs_pool *pool;
2078 struct size_class *class;
2079 int class_idx;
2080 enum fullness_group fg;
2081 struct address_space *mapping;
2082 struct zspage *zspage;
2083
2084 VM_BUG_ON_PAGE(!PageMovable(page), page);
2085 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2086
2087 zspage = get_zspage(page);
2088 get_zspage_mapping(zspage, &class_idx, &fg);
2089 mapping = page_mapping(page);
2090 pool = mapping->private_data;
2091 class = pool->size_class[class_idx];
2092
2093 spin_lock(&class->lock);
2094 dec_zspage_isolation(zspage);
2095 if (!is_zspage_isolated(zspage)) {
2096 fg = putback_zspage(class, zspage);
2097 /*
2098 * Due to page_lock, we cannot free zspage immediately
2099 * so let's defer.
2100 */
2101 if (fg == ZS_EMPTY)
2102 schedule_work(&pool->free_work);
2103 }
2104 spin_unlock(&class->lock);
2105 }
2106
2107 const struct address_space_operations zsmalloc_aops = {
2108 .isolate_page = zs_page_isolate,
2109 .migratepage = zs_page_migrate,
2110 .putback_page = zs_page_putback,
2111 };
2112
2113 static int zs_register_migration(struct zs_pool *pool)
2114 {
2115 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2116 if (IS_ERR(pool->inode)) {
2117 pool->inode = NULL;
2118 return 1;
2119 }
2120
2121 pool->inode->i_mapping->private_data = pool;
2122 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2123 return 0;
2124 }
2125
2126 static void zs_unregister_migration(struct zs_pool *pool)
2127 {
2128 flush_work(&pool->free_work);
2129 iput(pool->inode);
2130 }
2131
2132 /*
2133 * Caller should hold page_lock of all pages in the zspage
2134 * In here, we cannot use zspage meta data.
2135 */
2136 static void async_free_zspage(struct work_struct *work)
2137 {
2138 int i;
2139 struct size_class *class;
2140 unsigned int class_idx;
2141 enum fullness_group fullness;
2142 struct zspage *zspage, *tmp;
2143 LIST_HEAD(free_pages);
2144 struct zs_pool *pool = container_of(work, struct zs_pool,
2145 free_work);
2146
2147 for (i = 0; i < zs_size_classes; i++) {
2148 class = pool->size_class[i];
2149 if (class->index != i)
2150 continue;
2151
2152 spin_lock(&class->lock);
2153 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2154 spin_unlock(&class->lock);
2155 }
2156
2157
2158 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2159 list_del(&zspage->list);
2160 lock_zspage(zspage);
2161
2162 get_zspage_mapping(zspage, &class_idx, &fullness);
2163 VM_BUG_ON(fullness != ZS_EMPTY);
2164 class = pool->size_class[class_idx];
2165 spin_lock(&class->lock);
2166 __free_zspage(pool, pool->size_class[class_idx], zspage);
2167 spin_unlock(&class->lock);
2168 }
2169 };
2170
2171 static void kick_deferred_free(struct zs_pool *pool)
2172 {
2173 schedule_work(&pool->free_work);
2174 }
2175
2176 static void init_deferred_free(struct zs_pool *pool)
2177 {
2178 INIT_WORK(&pool->free_work, async_free_zspage);
2179 }
2180
2181 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2182 {
2183 struct page *page = get_first_page(zspage);
2184
2185 do {
2186 WARN_ON(!trylock_page(page));
2187 __SetPageMovable(page, pool->inode->i_mapping);
2188 unlock_page(page);
2189 } while ((page = get_next_page(page)) != NULL);
2190 }
2191 #endif
2192
2193 /*
2194 *
2195 * Based on the number of unused allocated objects calculate
2196 * and return the number of pages that we can free.
2197 */
2198 static unsigned long zs_can_compact(struct size_class *class)
2199 {
2200 unsigned long obj_wasted;
2201 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2202 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2203
2204 if (obj_allocated <= obj_used)
2205 return 0;
2206
2207 obj_wasted = obj_allocated - obj_used;
2208 obj_wasted /= class->objs_per_zspage;
2209
2210 return obj_wasted * class->pages_per_zspage;
2211 }
2212
2213 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2214 {
2215 struct zs_compact_control cc;
2216 struct zspage *src_zspage;
2217 struct zspage *dst_zspage = NULL;
2218
2219 spin_lock(&class->lock);
2220 while ((src_zspage = isolate_zspage(class, true))) {
2221
2222 if (!zs_can_compact(class))
2223 break;
2224
2225 cc.obj_idx = 0;
2226 cc.s_page = get_first_page(src_zspage);
2227
2228 while ((dst_zspage = isolate_zspage(class, false))) {
2229 cc.d_page = get_first_page(dst_zspage);
2230 /*
2231 * If there is no more space in dst_page, resched
2232 * and see if anyone had allocated another zspage.
2233 */
2234 if (!migrate_zspage(pool, class, &cc))
2235 break;
2236
2237 putback_zspage(class, dst_zspage);
2238 }
2239
2240 /* Stop if we couldn't find slot */
2241 if (dst_zspage == NULL)
2242 break;
2243
2244 putback_zspage(class, dst_zspage);
2245 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2246 free_zspage(pool, class, src_zspage);
2247 pool->stats.pages_compacted += class->pages_per_zspage;
2248 }
2249 spin_unlock(&class->lock);
2250 cond_resched();
2251 spin_lock(&class->lock);
2252 }
2253
2254 if (src_zspage)
2255 putback_zspage(class, src_zspage);
2256
2257 spin_unlock(&class->lock);
2258 }
2259
2260 unsigned long zs_compact(struct zs_pool *pool)
2261 {
2262 int i;
2263 struct size_class *class;
2264
2265 for (i = zs_size_classes - 1; i >= 0; i--) {
2266 class = pool->size_class[i];
2267 if (!class)
2268 continue;
2269 if (class->index != i)
2270 continue;
2271 __zs_compact(pool, class);
2272 }
2273
2274 return pool->stats.pages_compacted;
2275 }
2276 EXPORT_SYMBOL_GPL(zs_compact);
2277
2278 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2279 {
2280 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2281 }
2282 EXPORT_SYMBOL_GPL(zs_pool_stats);
2283
2284 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2285 struct shrink_control *sc)
2286 {
2287 unsigned long pages_freed;
2288 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2289 shrinker);
2290
2291 pages_freed = pool->stats.pages_compacted;
2292 /*
2293 * Compact classes and calculate compaction delta.
2294 * Can run concurrently with a manually triggered
2295 * (by user) compaction.
2296 */
2297 pages_freed = zs_compact(pool) - pages_freed;
2298
2299 return pages_freed ? pages_freed : SHRINK_STOP;
2300 }
2301
2302 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2303 struct shrink_control *sc)
2304 {
2305 int i;
2306 struct size_class *class;
2307 unsigned long pages_to_free = 0;
2308 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2309 shrinker);
2310
2311 for (i = zs_size_classes - 1; i >= 0; i--) {
2312 class = pool->size_class[i];
2313 if (!class)
2314 continue;
2315 if (class->index != i)
2316 continue;
2317
2318 pages_to_free += zs_can_compact(class);
2319 }
2320
2321 return pages_to_free;
2322 }
2323
2324 static void zs_unregister_shrinker(struct zs_pool *pool)
2325 {
2326 if (pool->shrinker_enabled) {
2327 unregister_shrinker(&pool->shrinker);
2328 pool->shrinker_enabled = false;
2329 }
2330 }
2331
2332 static int zs_register_shrinker(struct zs_pool *pool)
2333 {
2334 pool->shrinker.scan_objects = zs_shrinker_scan;
2335 pool->shrinker.count_objects = zs_shrinker_count;
2336 pool->shrinker.batch = 0;
2337 pool->shrinker.seeks = DEFAULT_SEEKS;
2338
2339 return register_shrinker(&pool->shrinker);
2340 }
2341
2342 /**
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2345 *
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2348 *
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
2351 */
2352 struct zs_pool *zs_create_pool(const char *name)
2353 {
2354 int i;
2355 struct zs_pool *pool;
2356 struct size_class *prev_class = NULL;
2357
2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359 if (!pool)
2360 return NULL;
2361
2362 init_deferred_free(pool);
2363 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2364 GFP_KERNEL);
2365 if (!pool->size_class) {
2366 kfree(pool);
2367 return NULL;
2368 }
2369
2370 pool->name = kstrdup(name, GFP_KERNEL);
2371 if (!pool->name)
2372 goto err;
2373
2374 if (create_cache(pool))
2375 goto err;
2376
2377 /*
2378 * Iterate reversely, because, size of size_class that we want to use
2379 * for merging should be larger or equal to current size.
2380 */
2381 for (i = zs_size_classes - 1; i >= 0; i--) {
2382 int size;
2383 int pages_per_zspage;
2384 int objs_per_zspage;
2385 struct size_class *class;
2386 int fullness = 0;
2387
2388 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2389 if (size > ZS_MAX_ALLOC_SIZE)
2390 size = ZS_MAX_ALLOC_SIZE;
2391 pages_per_zspage = get_pages_per_zspage(size);
2392 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2393
2394 /*
2395 * size_class is used for normal zsmalloc operation such
2396 * as alloc/free for that size. Although it is natural that we
2397 * have one size_class for each size, there is a chance that we
2398 * can get more memory utilization if we use one size_class for
2399 * many different sizes whose size_class have same
2400 * characteristics. So, we makes size_class point to
2401 * previous size_class if possible.
2402 */
2403 if (prev_class) {
2404 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2405 pool->size_class[i] = prev_class;
2406 continue;
2407 }
2408 }
2409
2410 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2411 if (!class)
2412 goto err;
2413
2414 class->size = size;
2415 class->index = i;
2416 class->pages_per_zspage = pages_per_zspage;
2417 class->objs_per_zspage = objs_per_zspage;
2418 spin_lock_init(&class->lock);
2419 pool->size_class[i] = class;
2420 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2421 fullness++)
2422 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2423
2424 prev_class = class;
2425 }
2426
2427 /* debug only, don't abort if it fails */
2428 zs_pool_stat_create(pool, name);
2429
2430 if (zs_register_migration(pool))
2431 goto err;
2432
2433 /*
2434 * Not critical, we still can use the pool
2435 * and user can trigger compaction manually.
2436 */
2437 if (zs_register_shrinker(pool) == 0)
2438 pool->shrinker_enabled = true;
2439 return pool;
2440
2441 err:
2442 zs_destroy_pool(pool);
2443 return NULL;
2444 }
2445 EXPORT_SYMBOL_GPL(zs_create_pool);
2446
2447 void zs_destroy_pool(struct zs_pool *pool)
2448 {
2449 int i;
2450
2451 zs_unregister_shrinker(pool);
2452 zs_unregister_migration(pool);
2453 zs_pool_stat_destroy(pool);
2454
2455 for (i = 0; i < zs_size_classes; i++) {
2456 int fg;
2457 struct size_class *class = pool->size_class[i];
2458
2459 if (!class)
2460 continue;
2461
2462 if (class->index != i)
2463 continue;
2464
2465 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2466 if (!list_empty(&class->fullness_list[fg])) {
2467 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2468 class->size, fg);
2469 }
2470 }
2471 kfree(class);
2472 }
2473
2474 destroy_cache(pool);
2475 kfree(pool->size_class);
2476 kfree(pool->name);
2477 kfree(pool);
2478 }
2479 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2480
2481 static int __init zs_init(void)
2482 {
2483 int ret;
2484
2485 ret = zsmalloc_mount();
2486 if (ret)
2487 goto out;
2488
2489 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2490 zs_cpu_prepare, zs_cpu_dead);
2491 if (ret)
2492 goto hp_setup_fail;
2493
2494 init_zs_size_classes();
2495
2496 #ifdef CONFIG_ZPOOL
2497 zpool_register_driver(&zs_zpool_driver);
2498 #endif
2499
2500 zs_stat_init();
2501
2502 return 0;
2503
2504 hp_setup_fail:
2505 zsmalloc_unmount();
2506 out:
2507 return ret;
2508 }
2509
2510 static void __exit zs_exit(void)
2511 {
2512 #ifdef CONFIG_ZPOOL
2513 zpool_unregister_driver(&zs_zpool_driver);
2514 #endif
2515 zsmalloc_unmount();
2516 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2517
2518 zs_stat_exit();
2519 }
2520
2521 module_init(zs_init);
2522 module_exit(zs_exit);
2523
2524 MODULE_LICENSE("Dual BSD/GPL");
2525 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");