]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/zsmalloc.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-hirsute-kernel.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC 0x58
62
63 /*
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69 #define ZS_ALIGN 8
70
71 /*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * a single (unsigned long) handle value.
83 *
84 * Note that object index <obj_idx> starts from 0.
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110 #define HANDLE_PIN_BIT 0
111
112 /*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS 2
125 #define CLASS_BITS 8
126 #define ISOLATED_BITS 3
127 #define MAGIC_VAL_BITS 8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135
136 /*
137 * On systems with 4K page size, this gives 255 size classes! There is a
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154 ZS_EMPTY,
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
166 OBJ_ALLOCATED,
167 OBJ_USED,
168 NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201 spinlock_t lock;
202 struct list_head fullness_list[NR_ZS_FULLNESS];
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
208 int objs_per_zspage;
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
211
212 unsigned int index;
213 struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219 SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224 ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229 return PageOwnerPriv1(page);
230 }
231
232 /*
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238 struct link_free {
239 union {
240 /*
241 * Free object index;
242 * It's valid for non-allocated object
243 */
244 unsigned long next;
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
250 };
251
252 struct zs_pool {
253 const char *name;
254
255 struct size_class *size_class[ZS_SIZE_CLASSES];
256 struct kmem_cache *handle_cachep;
257 struct kmem_cache *zspage_cachep;
258
259 atomic_long_t pages_allocated;
260
261 struct zs_pool_stats stats;
262
263 /* Compact classes */
264 struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
276 #endif
277 };
278
279 struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
285 };
286 unsigned int inuse;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 char *vm_buf; /* copy buffer for objects that span pages */
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343 kmem_cache_destroy(pool->handle_cachep);
344 kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360 return kmem_cache_alloc(pool->zspage_cachep,
361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366 kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384 const struct zpool_ops *zpool_ops,
385 struct zpool *zpool)
386 {
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
393 }
394
395 static void zs_zpool_destroy(void *pool)
396 {
397 zs_destroy_pool(pool);
398 }
399
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402 {
403 *handle = zs_malloc(pool, size, gfp);
404 return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408 zs_free(pool, handle);
409 }
410
411 static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413 {
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
423 case ZPOOL_MM_RW:
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430 }
431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433 zs_unmap_object(pool, handle);
434 }
435
436 static u64 zs_zpool_total_size(void *pool)
437 {
438 return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440
441 static struct zpool_driver zs_zpool_driver = {
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
452 };
453
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462 return zspage->isolated;
463 }
464
465 static __maybe_unused int is_first_page(struct page *page)
466 {
467 return PagePrivate(page);
468 }
469
470 /* Protected by class->lock */
471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473 return zspage->inuse;
474 }
475
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479 zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484 struct page *first_page = zspage->first_page;
485
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492 return page->units;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497 page->units = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502 return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507 zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511 unsigned int *class_idx,
512 enum fullness_group *fullness)
513 {
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
518 }
519
520 static void set_zspage_mapping(struct zspage *zspage,
521 unsigned int class_idx,
522 enum fullness_group fullness)
523 {
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
526 }
527
528 /*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
534 */
535 static int get_size_class_index(int size)
536 {
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548 int type, unsigned long cnt)
549 {
550 class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555 int type, unsigned long cnt)
556 {
557 class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562 int type)
563 {
564 return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
569 static void __init zs_stat_init(void)
570 {
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 }
578
579 static void __exit zs_stat_exit(void)
580 {
581 debugfs_remove_recursive(zs_stat_root);
582 }
583
584 static unsigned long zs_can_compact(struct size_class *class);
585
586 static int zs_stats_size_show(struct seq_file *s, void *v)
587 {
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
593 unsigned long obj_allocated, obj_used, pages_used, freeable;
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596 unsigned long total_freeable = 0;
597
598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
601 "pages_per_zspage", "freeable");
602
603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
614 freeable = zs_can_compact(class);
615 spin_unlock(&class->lock);
616
617 objs_per_zspage = class->objs_per_zspage;
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
625 class->pages_per_zspage, freeable);
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
632 total_freeable += freeable;
633 }
634
635 seq_puts(s, "\n");
636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
639 total_used_objs, total_pages, "", total_freeable);
640
641 return 0;
642 }
643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646 {
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649 return;
650 }
651
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
656 }
657
658 static void zs_pool_stat_destroy(struct zs_pool *pool)
659 {
660 debugfs_remove_recursive(pool->stat_dentry);
661 }
662
663 #else /* CONFIG_ZSMALLOC_STAT */
664 static void __init zs_stat_init(void)
665 {
666 }
667
668 static void __exit zs_stat_exit(void)
669 {
670 }
671
672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 }
675
676 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677 {
678 }
679 #endif
680
681
682 /*
683 * For each size class, zspages are divided into different groups
684 * depending on how "full" they are. This was done so that we could
685 * easily find empty or nearly empty zspages when we try to shrink
686 * the pool (not yet implemented). This function returns fullness
687 * status of the given page.
688 */
689 static enum fullness_group get_fullness_group(struct size_class *class,
690 struct zspage *zspage)
691 {
692 int inuse, objs_per_zspage;
693 enum fullness_group fg;
694
695 inuse = get_zspage_inuse(zspage);
696 objs_per_zspage = class->objs_per_zspage;
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
700 else if (inuse == objs_per_zspage)
701 fg = ZS_FULL;
702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708 }
709
710 /*
711 * Each size class maintains various freelists and zspages are assigned
712 * to one of these freelists based on the number of live objects they
713 * have. This functions inserts the given zspage into the freelist
714 * identified by <class, fullness_group>.
715 */
716 static void insert_zspage(struct size_class *class,
717 struct zspage *zspage,
718 enum fullness_group fullness)
719 {
720 struct zspage *head;
721
722 zs_stat_inc(class, fullness, 1);
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
725 /*
726 * We want to see more ZS_FULL pages and less almost empty/full.
727 * Put pages with higher ->inuse first.
728 */
729 if (head) {
730 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
731 list_add(&zspage->list, &head->list);
732 return;
733 }
734 }
735 list_add(&zspage->list, &class->fullness_list[fullness]);
736 }
737
738 /*
739 * This function removes the given zspage from the freelist identified
740 * by <class, fullness_group>.
741 */
742 static void remove_zspage(struct size_class *class,
743 struct zspage *zspage,
744 enum fullness_group fullness)
745 {
746 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
747 VM_BUG_ON(is_zspage_isolated(zspage));
748
749 list_del_init(&zspage->list);
750 zs_stat_dec(class, fullness, 1);
751 }
752
753 /*
754 * Each size class maintains zspages in different fullness groups depending
755 * on the number of live objects they contain. When allocating or freeing
756 * objects, the fullness status of the page can change, say, from ALMOST_FULL
757 * to ALMOST_EMPTY when freeing an object. This function checks if such
758 * a status change has occurred for the given page and accordingly moves the
759 * page from the freelist of the old fullness group to that of the new
760 * fullness group.
761 */
762 static enum fullness_group fix_fullness_group(struct size_class *class,
763 struct zspage *zspage)
764 {
765 int class_idx;
766 enum fullness_group currfg, newfg;
767
768 get_zspage_mapping(zspage, &class_idx, &currfg);
769 newfg = get_fullness_group(class, zspage);
770 if (newfg == currfg)
771 goto out;
772
773 if (!is_zspage_isolated(zspage)) {
774 remove_zspage(class, zspage, currfg);
775 insert_zspage(class, zspage, newfg);
776 }
777
778 set_zspage_mapping(zspage, class_idx, newfg);
779
780 out:
781 return newfg;
782 }
783
784 /*
785 * We have to decide on how many pages to link together
786 * to form a zspage for each size class. This is important
787 * to reduce wastage due to unusable space left at end of
788 * each zspage which is given as:
789 * wastage = Zp % class_size
790 * usage = Zp - wastage
791 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
792 *
793 * For example, for size class of 3/8 * PAGE_SIZE, we should
794 * link together 3 PAGE_SIZE sized pages to form a zspage
795 * since then we can perfectly fit in 8 such objects.
796 */
797 static int get_pages_per_zspage(int class_size)
798 {
799 int i, max_usedpc = 0;
800 /* zspage order which gives maximum used size per KB */
801 int max_usedpc_order = 1;
802
803 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
804 int zspage_size;
805 int waste, usedpc;
806
807 zspage_size = i * PAGE_SIZE;
808 waste = zspage_size % class_size;
809 usedpc = (zspage_size - waste) * 100 / zspage_size;
810
811 if (usedpc > max_usedpc) {
812 max_usedpc = usedpc;
813 max_usedpc_order = i;
814 }
815 }
816
817 return max_usedpc_order;
818 }
819
820 static struct zspage *get_zspage(struct page *page)
821 {
822 struct zspage *zspage = (struct zspage *)page->private;
823
824 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
825 return zspage;
826 }
827
828 static struct page *get_next_page(struct page *page)
829 {
830 if (unlikely(PageHugeObject(page)))
831 return NULL;
832
833 return page->freelist;
834 }
835
836 /**
837 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
838 * @obj: the encoded object value
839 * @page: page object resides in zspage
840 * @obj_idx: object index
841 */
842 static void obj_to_location(unsigned long obj, struct page **page,
843 unsigned int *obj_idx)
844 {
845 obj >>= OBJ_TAG_BITS;
846 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847 *obj_idx = (obj & OBJ_INDEX_MASK);
848 }
849
850 /**
851 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
852 * @page: page object resides in zspage
853 * @obj_idx: object index
854 */
855 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
856 {
857 unsigned long obj;
858
859 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
860 obj |= obj_idx & OBJ_INDEX_MASK;
861 obj <<= OBJ_TAG_BITS;
862
863 return obj;
864 }
865
866 static unsigned long handle_to_obj(unsigned long handle)
867 {
868 return *(unsigned long *)handle;
869 }
870
871 static unsigned long obj_to_head(struct page *page, void *obj)
872 {
873 if (unlikely(PageHugeObject(page))) {
874 VM_BUG_ON_PAGE(!is_first_page(page), page);
875 return page->index;
876 } else
877 return *(unsigned long *)obj;
878 }
879
880 static inline int testpin_tag(unsigned long handle)
881 {
882 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
883 }
884
885 static inline int trypin_tag(unsigned long handle)
886 {
887 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
888 }
889
890 static void pin_tag(unsigned long handle) __acquires(bitlock)
891 {
892 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
893 }
894
895 static void unpin_tag(unsigned long handle) __releases(bitlock)
896 {
897 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
898 }
899
900 static void reset_page(struct page *page)
901 {
902 __ClearPageMovable(page);
903 ClearPagePrivate(page);
904 set_page_private(page, 0);
905 page_mapcount_reset(page);
906 ClearPageHugeObject(page);
907 page->freelist = NULL;
908 }
909
910 static int trylock_zspage(struct zspage *zspage)
911 {
912 struct page *cursor, *fail;
913
914 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
915 get_next_page(cursor)) {
916 if (!trylock_page(cursor)) {
917 fail = cursor;
918 goto unlock;
919 }
920 }
921
922 return 1;
923 unlock:
924 for (cursor = get_first_page(zspage); cursor != fail; cursor =
925 get_next_page(cursor))
926 unlock_page(cursor);
927
928 return 0;
929 }
930
931 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
932 struct zspage *zspage)
933 {
934 struct page *page, *next;
935 enum fullness_group fg;
936 unsigned int class_idx;
937
938 get_zspage_mapping(zspage, &class_idx, &fg);
939
940 assert_spin_locked(&class->lock);
941
942 VM_BUG_ON(get_zspage_inuse(zspage));
943 VM_BUG_ON(fg != ZS_EMPTY);
944
945 next = page = get_first_page(zspage);
946 do {
947 VM_BUG_ON_PAGE(!PageLocked(page), page);
948 next = get_next_page(page);
949 reset_page(page);
950 unlock_page(page);
951 dec_zone_page_state(page, NR_ZSPAGES);
952 put_page(page);
953 page = next;
954 } while (page != NULL);
955
956 cache_free_zspage(pool, zspage);
957
958 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
959 atomic_long_sub(class->pages_per_zspage,
960 &pool->pages_allocated);
961 }
962
963 static void free_zspage(struct zs_pool *pool, struct size_class *class,
964 struct zspage *zspage)
965 {
966 VM_BUG_ON(get_zspage_inuse(zspage));
967 VM_BUG_ON(list_empty(&zspage->list));
968
969 if (!trylock_zspage(zspage)) {
970 kick_deferred_free(pool);
971 return;
972 }
973
974 remove_zspage(class, zspage, ZS_EMPTY);
975 __free_zspage(pool, class, zspage);
976 }
977
978 /* Initialize a newly allocated zspage */
979 static void init_zspage(struct size_class *class, struct zspage *zspage)
980 {
981 unsigned int freeobj = 1;
982 unsigned long off = 0;
983 struct page *page = get_first_page(zspage);
984
985 while (page) {
986 struct page *next_page;
987 struct link_free *link;
988 void *vaddr;
989
990 set_first_obj_offset(page, off);
991
992 vaddr = kmap_atomic(page);
993 link = (struct link_free *)vaddr + off / sizeof(*link);
994
995 while ((off += class->size) < PAGE_SIZE) {
996 link->next = freeobj++ << OBJ_TAG_BITS;
997 link += class->size / sizeof(*link);
998 }
999
1000 /*
1001 * We now come to the last (full or partial) object on this
1002 * page, which must point to the first object on the next
1003 * page (if present)
1004 */
1005 next_page = get_next_page(page);
1006 if (next_page) {
1007 link->next = freeobj++ << OBJ_TAG_BITS;
1008 } else {
1009 /*
1010 * Reset OBJ_TAG_BITS bit to last link to tell
1011 * whether it's allocated object or not.
1012 */
1013 link->next = -1UL << OBJ_TAG_BITS;
1014 }
1015 kunmap_atomic(vaddr);
1016 page = next_page;
1017 off %= PAGE_SIZE;
1018 }
1019
1020 set_freeobj(zspage, 0);
1021 }
1022
1023 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1024 struct page *pages[])
1025 {
1026 int i;
1027 struct page *page;
1028 struct page *prev_page = NULL;
1029 int nr_pages = class->pages_per_zspage;
1030
1031 /*
1032 * Allocate individual pages and link them together as:
1033 * 1. all pages are linked together using page->freelist
1034 * 2. each sub-page point to zspage using page->private
1035 *
1036 * we set PG_private to identify the first page (i.e. no other sub-page
1037 * has this flag set).
1038 */
1039 for (i = 0; i < nr_pages; i++) {
1040 page = pages[i];
1041 set_page_private(page, (unsigned long)zspage);
1042 page->freelist = NULL;
1043 if (i == 0) {
1044 zspage->first_page = page;
1045 SetPagePrivate(page);
1046 if (unlikely(class->objs_per_zspage == 1 &&
1047 class->pages_per_zspage == 1))
1048 SetPageHugeObject(page);
1049 } else {
1050 prev_page->freelist = page;
1051 }
1052 prev_page = page;
1053 }
1054 }
1055
1056 /*
1057 * Allocate a zspage for the given size class
1058 */
1059 static struct zspage *alloc_zspage(struct zs_pool *pool,
1060 struct size_class *class,
1061 gfp_t gfp)
1062 {
1063 int i;
1064 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1065 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1066
1067 if (!zspage)
1068 return NULL;
1069
1070 memset(zspage, 0, sizeof(struct zspage));
1071 zspage->magic = ZSPAGE_MAGIC;
1072 migrate_lock_init(zspage);
1073
1074 for (i = 0; i < class->pages_per_zspage; i++) {
1075 struct page *page;
1076
1077 page = alloc_page(gfp);
1078 if (!page) {
1079 while (--i >= 0) {
1080 dec_zone_page_state(pages[i], NR_ZSPAGES);
1081 __free_page(pages[i]);
1082 }
1083 cache_free_zspage(pool, zspage);
1084 return NULL;
1085 }
1086
1087 inc_zone_page_state(page, NR_ZSPAGES);
1088 pages[i] = page;
1089 }
1090
1091 create_page_chain(class, zspage, pages);
1092 init_zspage(class, zspage);
1093
1094 return zspage;
1095 }
1096
1097 static struct zspage *find_get_zspage(struct size_class *class)
1098 {
1099 int i;
1100 struct zspage *zspage;
1101
1102 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1103 zspage = list_first_entry_or_null(&class->fullness_list[i],
1104 struct zspage, list);
1105 if (zspage)
1106 break;
1107 }
1108
1109 return zspage;
1110 }
1111
1112 static inline int __zs_cpu_up(struct mapping_area *area)
1113 {
1114 /*
1115 * Make sure we don't leak memory if a cpu UP notification
1116 * and zs_init() race and both call zs_cpu_up() on the same cpu
1117 */
1118 if (area->vm_buf)
1119 return 0;
1120 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1121 if (!area->vm_buf)
1122 return -ENOMEM;
1123 return 0;
1124 }
1125
1126 static inline void __zs_cpu_down(struct mapping_area *area)
1127 {
1128 kfree(area->vm_buf);
1129 area->vm_buf = NULL;
1130 }
1131
1132 static void *__zs_map_object(struct mapping_area *area,
1133 struct page *pages[2], int off, int size)
1134 {
1135 int sizes[2];
1136 void *addr;
1137 char *buf = area->vm_buf;
1138
1139 /* disable page faults to match kmap_atomic() return conditions */
1140 pagefault_disable();
1141
1142 /* no read fastpath */
1143 if (area->vm_mm == ZS_MM_WO)
1144 goto out;
1145
1146 sizes[0] = PAGE_SIZE - off;
1147 sizes[1] = size - sizes[0];
1148
1149 /* copy object to per-cpu buffer */
1150 addr = kmap_atomic(pages[0]);
1151 memcpy(buf, addr + off, sizes[0]);
1152 kunmap_atomic(addr);
1153 addr = kmap_atomic(pages[1]);
1154 memcpy(buf + sizes[0], addr, sizes[1]);
1155 kunmap_atomic(addr);
1156 out:
1157 return area->vm_buf;
1158 }
1159
1160 static void __zs_unmap_object(struct mapping_area *area,
1161 struct page *pages[2], int off, int size)
1162 {
1163 int sizes[2];
1164 void *addr;
1165 char *buf;
1166
1167 /* no write fastpath */
1168 if (area->vm_mm == ZS_MM_RO)
1169 goto out;
1170
1171 buf = area->vm_buf;
1172 buf = buf + ZS_HANDLE_SIZE;
1173 size -= ZS_HANDLE_SIZE;
1174 off += ZS_HANDLE_SIZE;
1175
1176 sizes[0] = PAGE_SIZE - off;
1177 sizes[1] = size - sizes[0];
1178
1179 /* copy per-cpu buffer to object */
1180 addr = kmap_atomic(pages[0]);
1181 memcpy(addr + off, buf, sizes[0]);
1182 kunmap_atomic(addr);
1183 addr = kmap_atomic(pages[1]);
1184 memcpy(addr, buf + sizes[0], sizes[1]);
1185 kunmap_atomic(addr);
1186
1187 out:
1188 /* enable page faults to match kunmap_atomic() return conditions */
1189 pagefault_enable();
1190 }
1191
1192 static int zs_cpu_prepare(unsigned int cpu)
1193 {
1194 struct mapping_area *area;
1195
1196 area = &per_cpu(zs_map_area, cpu);
1197 return __zs_cpu_up(area);
1198 }
1199
1200 static int zs_cpu_dead(unsigned int cpu)
1201 {
1202 struct mapping_area *area;
1203
1204 area = &per_cpu(zs_map_area, cpu);
1205 __zs_cpu_down(area);
1206 return 0;
1207 }
1208
1209 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1210 int objs_per_zspage)
1211 {
1212 if (prev->pages_per_zspage == pages_per_zspage &&
1213 prev->objs_per_zspage == objs_per_zspage)
1214 return true;
1215
1216 return false;
1217 }
1218
1219 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1220 {
1221 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1222 }
1223
1224 unsigned long zs_get_total_pages(struct zs_pool *pool)
1225 {
1226 return atomic_long_read(&pool->pages_allocated);
1227 }
1228 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1229
1230 /**
1231 * zs_map_object - get address of allocated object from handle.
1232 * @pool: pool from which the object was allocated
1233 * @handle: handle returned from zs_malloc
1234 * @mm: maping mode to use
1235 *
1236 * Before using an object allocated from zs_malloc, it must be mapped using
1237 * this function. When done with the object, it must be unmapped using
1238 * zs_unmap_object.
1239 *
1240 * Only one object can be mapped per cpu at a time. There is no protection
1241 * against nested mappings.
1242 *
1243 * This function returns with preemption and page faults disabled.
1244 */
1245 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1246 enum zs_mapmode mm)
1247 {
1248 struct zspage *zspage;
1249 struct page *page;
1250 unsigned long obj, off;
1251 unsigned int obj_idx;
1252
1253 unsigned int class_idx;
1254 enum fullness_group fg;
1255 struct size_class *class;
1256 struct mapping_area *area;
1257 struct page *pages[2];
1258 void *ret;
1259
1260 /*
1261 * Because we use per-cpu mapping areas shared among the
1262 * pools/users, we can't allow mapping in interrupt context
1263 * because it can corrupt another users mappings.
1264 */
1265 BUG_ON(in_interrupt());
1266
1267 /* From now on, migration cannot move the object */
1268 pin_tag(handle);
1269
1270 obj = handle_to_obj(handle);
1271 obj_to_location(obj, &page, &obj_idx);
1272 zspage = get_zspage(page);
1273
1274 /* migration cannot move any subpage in this zspage */
1275 migrate_read_lock(zspage);
1276
1277 get_zspage_mapping(zspage, &class_idx, &fg);
1278 class = pool->size_class[class_idx];
1279 off = (class->size * obj_idx) & ~PAGE_MASK;
1280
1281 area = &get_cpu_var(zs_map_area);
1282 area->vm_mm = mm;
1283 if (off + class->size <= PAGE_SIZE) {
1284 /* this object is contained entirely within a page */
1285 area->vm_addr = kmap_atomic(page);
1286 ret = area->vm_addr + off;
1287 goto out;
1288 }
1289
1290 /* this object spans two pages */
1291 pages[0] = page;
1292 pages[1] = get_next_page(page);
1293 BUG_ON(!pages[1]);
1294
1295 ret = __zs_map_object(area, pages, off, class->size);
1296 out:
1297 if (likely(!PageHugeObject(page)))
1298 ret += ZS_HANDLE_SIZE;
1299
1300 return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(zs_map_object);
1303
1304 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1305 {
1306 struct zspage *zspage;
1307 struct page *page;
1308 unsigned long obj, off;
1309 unsigned int obj_idx;
1310
1311 unsigned int class_idx;
1312 enum fullness_group fg;
1313 struct size_class *class;
1314 struct mapping_area *area;
1315
1316 obj = handle_to_obj(handle);
1317 obj_to_location(obj, &page, &obj_idx);
1318 zspage = get_zspage(page);
1319 get_zspage_mapping(zspage, &class_idx, &fg);
1320 class = pool->size_class[class_idx];
1321 off = (class->size * obj_idx) & ~PAGE_MASK;
1322
1323 area = this_cpu_ptr(&zs_map_area);
1324 if (off + class->size <= PAGE_SIZE)
1325 kunmap_atomic(area->vm_addr);
1326 else {
1327 struct page *pages[2];
1328
1329 pages[0] = page;
1330 pages[1] = get_next_page(page);
1331 BUG_ON(!pages[1]);
1332
1333 __zs_unmap_object(area, pages, off, class->size);
1334 }
1335 put_cpu_var(zs_map_area);
1336
1337 migrate_read_unlock(zspage);
1338 unpin_tag(handle);
1339 }
1340 EXPORT_SYMBOL_GPL(zs_unmap_object);
1341
1342 /**
1343 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1344 * zsmalloc &size_class.
1345 * @pool: zsmalloc pool to use
1346 *
1347 * The function returns the size of the first huge class - any object of equal
1348 * or bigger size will be stored in zspage consisting of a single physical
1349 * page.
1350 *
1351 * Context: Any context.
1352 *
1353 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1354 */
1355 size_t zs_huge_class_size(struct zs_pool *pool)
1356 {
1357 return huge_class_size;
1358 }
1359 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1360
1361 static unsigned long obj_malloc(struct size_class *class,
1362 struct zspage *zspage, unsigned long handle)
1363 {
1364 int i, nr_page, offset;
1365 unsigned long obj;
1366 struct link_free *link;
1367
1368 struct page *m_page;
1369 unsigned long m_offset;
1370 void *vaddr;
1371
1372 handle |= OBJ_ALLOCATED_TAG;
1373 obj = get_freeobj(zspage);
1374
1375 offset = obj * class->size;
1376 nr_page = offset >> PAGE_SHIFT;
1377 m_offset = offset & ~PAGE_MASK;
1378 m_page = get_first_page(zspage);
1379
1380 for (i = 0; i < nr_page; i++)
1381 m_page = get_next_page(m_page);
1382
1383 vaddr = kmap_atomic(m_page);
1384 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1385 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1386 if (likely(!PageHugeObject(m_page)))
1387 /* record handle in the header of allocated chunk */
1388 link->handle = handle;
1389 else
1390 /* record handle to page->index */
1391 zspage->first_page->index = handle;
1392
1393 kunmap_atomic(vaddr);
1394 mod_zspage_inuse(zspage, 1);
1395 zs_stat_inc(class, OBJ_USED, 1);
1396
1397 obj = location_to_obj(m_page, obj);
1398
1399 return obj;
1400 }
1401
1402
1403 /**
1404 * zs_malloc - Allocate block of given size from pool.
1405 * @pool: pool to allocate from
1406 * @size: size of block to allocate
1407 * @gfp: gfp flags when allocating object
1408 *
1409 * On success, handle to the allocated object is returned,
1410 * otherwise 0.
1411 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1412 */
1413 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1414 {
1415 unsigned long handle, obj;
1416 struct size_class *class;
1417 enum fullness_group newfg;
1418 struct zspage *zspage;
1419
1420 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1421 return 0;
1422
1423 handle = cache_alloc_handle(pool, gfp);
1424 if (!handle)
1425 return 0;
1426
1427 /* extra space in chunk to keep the handle */
1428 size += ZS_HANDLE_SIZE;
1429 class = pool->size_class[get_size_class_index(size)];
1430
1431 spin_lock(&class->lock);
1432 zspage = find_get_zspage(class);
1433 if (likely(zspage)) {
1434 obj = obj_malloc(class, zspage, handle);
1435 /* Now move the zspage to another fullness group, if required */
1436 fix_fullness_group(class, zspage);
1437 record_obj(handle, obj);
1438 spin_unlock(&class->lock);
1439
1440 return handle;
1441 }
1442
1443 spin_unlock(&class->lock);
1444
1445 zspage = alloc_zspage(pool, class, gfp);
1446 if (!zspage) {
1447 cache_free_handle(pool, handle);
1448 return 0;
1449 }
1450
1451 spin_lock(&class->lock);
1452 obj = obj_malloc(class, zspage, handle);
1453 newfg = get_fullness_group(class, zspage);
1454 insert_zspage(class, zspage, newfg);
1455 set_zspage_mapping(zspage, class->index, newfg);
1456 record_obj(handle, obj);
1457 atomic_long_add(class->pages_per_zspage,
1458 &pool->pages_allocated);
1459 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1460
1461 /* We completely set up zspage so mark them as movable */
1462 SetZsPageMovable(pool, zspage);
1463 spin_unlock(&class->lock);
1464
1465 return handle;
1466 }
1467 EXPORT_SYMBOL_GPL(zs_malloc);
1468
1469 static void obj_free(struct size_class *class, unsigned long obj)
1470 {
1471 struct link_free *link;
1472 struct zspage *zspage;
1473 struct page *f_page;
1474 unsigned long f_offset;
1475 unsigned int f_objidx;
1476 void *vaddr;
1477
1478 obj &= ~OBJ_ALLOCATED_TAG;
1479 obj_to_location(obj, &f_page, &f_objidx);
1480 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1481 zspage = get_zspage(f_page);
1482
1483 vaddr = kmap_atomic(f_page);
1484
1485 /* Insert this object in containing zspage's freelist */
1486 link = (struct link_free *)(vaddr + f_offset);
1487 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1488 kunmap_atomic(vaddr);
1489 set_freeobj(zspage, f_objidx);
1490 mod_zspage_inuse(zspage, -1);
1491 zs_stat_dec(class, OBJ_USED, 1);
1492 }
1493
1494 void zs_free(struct zs_pool *pool, unsigned long handle)
1495 {
1496 struct zspage *zspage;
1497 struct page *f_page;
1498 unsigned long obj;
1499 unsigned int f_objidx;
1500 int class_idx;
1501 struct size_class *class;
1502 enum fullness_group fullness;
1503 bool isolated;
1504
1505 if (unlikely(!handle))
1506 return;
1507
1508 pin_tag(handle);
1509 obj = handle_to_obj(handle);
1510 obj_to_location(obj, &f_page, &f_objidx);
1511 zspage = get_zspage(f_page);
1512
1513 migrate_read_lock(zspage);
1514
1515 get_zspage_mapping(zspage, &class_idx, &fullness);
1516 class = pool->size_class[class_idx];
1517
1518 spin_lock(&class->lock);
1519 obj_free(class, obj);
1520 fullness = fix_fullness_group(class, zspage);
1521 if (fullness != ZS_EMPTY) {
1522 migrate_read_unlock(zspage);
1523 goto out;
1524 }
1525
1526 isolated = is_zspage_isolated(zspage);
1527 migrate_read_unlock(zspage);
1528 /* If zspage is isolated, zs_page_putback will free the zspage */
1529 if (likely(!isolated))
1530 free_zspage(pool, class, zspage);
1531 out:
1532
1533 spin_unlock(&class->lock);
1534 unpin_tag(handle);
1535 cache_free_handle(pool, handle);
1536 }
1537 EXPORT_SYMBOL_GPL(zs_free);
1538
1539 static void zs_object_copy(struct size_class *class, unsigned long dst,
1540 unsigned long src)
1541 {
1542 struct page *s_page, *d_page;
1543 unsigned int s_objidx, d_objidx;
1544 unsigned long s_off, d_off;
1545 void *s_addr, *d_addr;
1546 int s_size, d_size, size;
1547 int written = 0;
1548
1549 s_size = d_size = class->size;
1550
1551 obj_to_location(src, &s_page, &s_objidx);
1552 obj_to_location(dst, &d_page, &d_objidx);
1553
1554 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1555 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1556
1557 if (s_off + class->size > PAGE_SIZE)
1558 s_size = PAGE_SIZE - s_off;
1559
1560 if (d_off + class->size > PAGE_SIZE)
1561 d_size = PAGE_SIZE - d_off;
1562
1563 s_addr = kmap_atomic(s_page);
1564 d_addr = kmap_atomic(d_page);
1565
1566 while (1) {
1567 size = min(s_size, d_size);
1568 memcpy(d_addr + d_off, s_addr + s_off, size);
1569 written += size;
1570
1571 if (written == class->size)
1572 break;
1573
1574 s_off += size;
1575 s_size -= size;
1576 d_off += size;
1577 d_size -= size;
1578
1579 if (s_off >= PAGE_SIZE) {
1580 kunmap_atomic(d_addr);
1581 kunmap_atomic(s_addr);
1582 s_page = get_next_page(s_page);
1583 s_addr = kmap_atomic(s_page);
1584 d_addr = kmap_atomic(d_page);
1585 s_size = class->size - written;
1586 s_off = 0;
1587 }
1588
1589 if (d_off >= PAGE_SIZE) {
1590 kunmap_atomic(d_addr);
1591 d_page = get_next_page(d_page);
1592 d_addr = kmap_atomic(d_page);
1593 d_size = class->size - written;
1594 d_off = 0;
1595 }
1596 }
1597
1598 kunmap_atomic(d_addr);
1599 kunmap_atomic(s_addr);
1600 }
1601
1602 /*
1603 * Find alloced object in zspage from index object and
1604 * return handle.
1605 */
1606 static unsigned long find_alloced_obj(struct size_class *class,
1607 struct page *page, int *obj_idx)
1608 {
1609 unsigned long head;
1610 int offset = 0;
1611 int index = *obj_idx;
1612 unsigned long handle = 0;
1613 void *addr = kmap_atomic(page);
1614
1615 offset = get_first_obj_offset(page);
1616 offset += class->size * index;
1617
1618 while (offset < PAGE_SIZE) {
1619 head = obj_to_head(page, addr + offset);
1620 if (head & OBJ_ALLOCATED_TAG) {
1621 handle = head & ~OBJ_ALLOCATED_TAG;
1622 if (trypin_tag(handle))
1623 break;
1624 handle = 0;
1625 }
1626
1627 offset += class->size;
1628 index++;
1629 }
1630
1631 kunmap_atomic(addr);
1632
1633 *obj_idx = index;
1634
1635 return handle;
1636 }
1637
1638 struct zs_compact_control {
1639 /* Source spage for migration which could be a subpage of zspage */
1640 struct page *s_page;
1641 /* Destination page for migration which should be a first page
1642 * of zspage. */
1643 struct page *d_page;
1644 /* Starting object index within @s_page which used for live object
1645 * in the subpage. */
1646 int obj_idx;
1647 };
1648
1649 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1650 struct zs_compact_control *cc)
1651 {
1652 unsigned long used_obj, free_obj;
1653 unsigned long handle;
1654 struct page *s_page = cc->s_page;
1655 struct page *d_page = cc->d_page;
1656 int obj_idx = cc->obj_idx;
1657 int ret = 0;
1658
1659 while (1) {
1660 handle = find_alloced_obj(class, s_page, &obj_idx);
1661 if (!handle) {
1662 s_page = get_next_page(s_page);
1663 if (!s_page)
1664 break;
1665 obj_idx = 0;
1666 continue;
1667 }
1668
1669 /* Stop if there is no more space */
1670 if (zspage_full(class, get_zspage(d_page))) {
1671 unpin_tag(handle);
1672 ret = -ENOMEM;
1673 break;
1674 }
1675
1676 used_obj = handle_to_obj(handle);
1677 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1678 zs_object_copy(class, free_obj, used_obj);
1679 obj_idx++;
1680 /*
1681 * record_obj updates handle's value to free_obj and it will
1682 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1683 * breaks synchronization using pin_tag(e,g, zs_free) so
1684 * let's keep the lock bit.
1685 */
1686 free_obj |= BIT(HANDLE_PIN_BIT);
1687 record_obj(handle, free_obj);
1688 unpin_tag(handle);
1689 obj_free(class, used_obj);
1690 }
1691
1692 /* Remember last position in this iteration */
1693 cc->s_page = s_page;
1694 cc->obj_idx = obj_idx;
1695
1696 return ret;
1697 }
1698
1699 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1700 {
1701 int i;
1702 struct zspage *zspage;
1703 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1704
1705 if (!source) {
1706 fg[0] = ZS_ALMOST_FULL;
1707 fg[1] = ZS_ALMOST_EMPTY;
1708 }
1709
1710 for (i = 0; i < 2; i++) {
1711 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1712 struct zspage, list);
1713 if (zspage) {
1714 VM_BUG_ON(is_zspage_isolated(zspage));
1715 remove_zspage(class, zspage, fg[i]);
1716 return zspage;
1717 }
1718 }
1719
1720 return zspage;
1721 }
1722
1723 /*
1724 * putback_zspage - add @zspage into right class's fullness list
1725 * @class: destination class
1726 * @zspage: target page
1727 *
1728 * Return @zspage's fullness_group
1729 */
1730 static enum fullness_group putback_zspage(struct size_class *class,
1731 struct zspage *zspage)
1732 {
1733 enum fullness_group fullness;
1734
1735 VM_BUG_ON(is_zspage_isolated(zspage));
1736
1737 fullness = get_fullness_group(class, zspage);
1738 insert_zspage(class, zspage, fullness);
1739 set_zspage_mapping(zspage, class->index, fullness);
1740
1741 return fullness;
1742 }
1743
1744 #ifdef CONFIG_COMPACTION
1745 /*
1746 * To prevent zspage destroy during migration, zspage freeing should
1747 * hold locks of all pages in the zspage.
1748 */
1749 static void lock_zspage(struct zspage *zspage)
1750 {
1751 struct page *page = get_first_page(zspage);
1752
1753 do {
1754 lock_page(page);
1755 } while ((page = get_next_page(page)) != NULL);
1756 }
1757
1758 static int zs_init_fs_context(struct fs_context *fc)
1759 {
1760 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1761 }
1762
1763 static struct file_system_type zsmalloc_fs = {
1764 .name = "zsmalloc",
1765 .init_fs_context = zs_init_fs_context,
1766 .kill_sb = kill_anon_super,
1767 };
1768
1769 static int zsmalloc_mount(void)
1770 {
1771 int ret = 0;
1772
1773 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1774 if (IS_ERR(zsmalloc_mnt))
1775 ret = PTR_ERR(zsmalloc_mnt);
1776
1777 return ret;
1778 }
1779
1780 static void zsmalloc_unmount(void)
1781 {
1782 kern_unmount(zsmalloc_mnt);
1783 }
1784
1785 static void migrate_lock_init(struct zspage *zspage)
1786 {
1787 rwlock_init(&zspage->lock);
1788 }
1789
1790 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1791 {
1792 read_lock(&zspage->lock);
1793 }
1794
1795 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1796 {
1797 read_unlock(&zspage->lock);
1798 }
1799
1800 static void migrate_write_lock(struct zspage *zspage)
1801 {
1802 write_lock(&zspage->lock);
1803 }
1804
1805 static void migrate_write_unlock(struct zspage *zspage)
1806 {
1807 write_unlock(&zspage->lock);
1808 }
1809
1810 /* Number of isolated subpage for *page migration* in this zspage */
1811 static void inc_zspage_isolation(struct zspage *zspage)
1812 {
1813 zspage->isolated++;
1814 }
1815
1816 static void dec_zspage_isolation(struct zspage *zspage)
1817 {
1818 zspage->isolated--;
1819 }
1820
1821 static void putback_zspage_deferred(struct zs_pool *pool,
1822 struct size_class *class,
1823 struct zspage *zspage)
1824 {
1825 enum fullness_group fg;
1826
1827 fg = putback_zspage(class, zspage);
1828 if (fg == ZS_EMPTY)
1829 schedule_work(&pool->free_work);
1830
1831 }
1832
1833 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1834 {
1835 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1836 atomic_long_dec(&pool->isolated_pages);
1837 /*
1838 * There's no possibility of racing, since wait_for_isolated_drain()
1839 * checks the isolated count under &class->lock after enqueuing
1840 * on migration_wait.
1841 */
1842 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1843 wake_up_all(&pool->migration_wait);
1844 }
1845
1846 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1847 struct page *newpage, struct page *oldpage)
1848 {
1849 struct page *page;
1850 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1851 int idx = 0;
1852
1853 page = get_first_page(zspage);
1854 do {
1855 if (page == oldpage)
1856 pages[idx] = newpage;
1857 else
1858 pages[idx] = page;
1859 idx++;
1860 } while ((page = get_next_page(page)) != NULL);
1861
1862 create_page_chain(class, zspage, pages);
1863 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1864 if (unlikely(PageHugeObject(oldpage)))
1865 newpage->index = oldpage->index;
1866 __SetPageMovable(newpage, page_mapping(oldpage));
1867 }
1868
1869 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1870 {
1871 struct zs_pool *pool;
1872 struct size_class *class;
1873 int class_idx;
1874 enum fullness_group fullness;
1875 struct zspage *zspage;
1876 struct address_space *mapping;
1877
1878 /*
1879 * Page is locked so zspage couldn't be destroyed. For detail, look at
1880 * lock_zspage in free_zspage.
1881 */
1882 VM_BUG_ON_PAGE(!PageMovable(page), page);
1883 VM_BUG_ON_PAGE(PageIsolated(page), page);
1884
1885 zspage = get_zspage(page);
1886
1887 /*
1888 * Without class lock, fullness could be stale while class_idx is okay
1889 * because class_idx is constant unless page is freed so we should get
1890 * fullness again under class lock.
1891 */
1892 get_zspage_mapping(zspage, &class_idx, &fullness);
1893 mapping = page_mapping(page);
1894 pool = mapping->private_data;
1895 class = pool->size_class[class_idx];
1896
1897 spin_lock(&class->lock);
1898 if (get_zspage_inuse(zspage) == 0) {
1899 spin_unlock(&class->lock);
1900 return false;
1901 }
1902
1903 /* zspage is isolated for object migration */
1904 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1905 spin_unlock(&class->lock);
1906 return false;
1907 }
1908
1909 /*
1910 * If this is first time isolation for the zspage, isolate zspage from
1911 * size_class to prevent further object allocation from the zspage.
1912 */
1913 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1914 get_zspage_mapping(zspage, &class_idx, &fullness);
1915 atomic_long_inc(&pool->isolated_pages);
1916 remove_zspage(class, zspage, fullness);
1917 }
1918
1919 inc_zspage_isolation(zspage);
1920 spin_unlock(&class->lock);
1921
1922 return true;
1923 }
1924
1925 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1926 struct page *page, enum migrate_mode mode)
1927 {
1928 struct zs_pool *pool;
1929 struct size_class *class;
1930 int class_idx;
1931 enum fullness_group fullness;
1932 struct zspage *zspage;
1933 struct page *dummy;
1934 void *s_addr, *d_addr, *addr;
1935 int offset, pos;
1936 unsigned long handle, head;
1937 unsigned long old_obj, new_obj;
1938 unsigned int obj_idx;
1939 int ret = -EAGAIN;
1940
1941 /*
1942 * We cannot support the _NO_COPY case here, because copy needs to
1943 * happen under the zs lock, which does not work with
1944 * MIGRATE_SYNC_NO_COPY workflow.
1945 */
1946 if (mode == MIGRATE_SYNC_NO_COPY)
1947 return -EINVAL;
1948
1949 VM_BUG_ON_PAGE(!PageMovable(page), page);
1950 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1951
1952 zspage = get_zspage(page);
1953
1954 /* Concurrent compactor cannot migrate any subpage in zspage */
1955 migrate_write_lock(zspage);
1956 get_zspage_mapping(zspage, &class_idx, &fullness);
1957 pool = mapping->private_data;
1958 class = pool->size_class[class_idx];
1959 offset = get_first_obj_offset(page);
1960
1961 spin_lock(&class->lock);
1962 if (!get_zspage_inuse(zspage)) {
1963 /*
1964 * Set "offset" to end of the page so that every loops
1965 * skips unnecessary object scanning.
1966 */
1967 offset = PAGE_SIZE;
1968 }
1969
1970 pos = offset;
1971 s_addr = kmap_atomic(page);
1972 while (pos < PAGE_SIZE) {
1973 head = obj_to_head(page, s_addr + pos);
1974 if (head & OBJ_ALLOCATED_TAG) {
1975 handle = head & ~OBJ_ALLOCATED_TAG;
1976 if (!trypin_tag(handle))
1977 goto unpin_objects;
1978 }
1979 pos += class->size;
1980 }
1981
1982 /*
1983 * Here, any user cannot access all objects in the zspage so let's move.
1984 */
1985 d_addr = kmap_atomic(newpage);
1986 memcpy(d_addr, s_addr, PAGE_SIZE);
1987 kunmap_atomic(d_addr);
1988
1989 for (addr = s_addr + offset; addr < s_addr + pos;
1990 addr += class->size) {
1991 head = obj_to_head(page, addr);
1992 if (head & OBJ_ALLOCATED_TAG) {
1993 handle = head & ~OBJ_ALLOCATED_TAG;
1994 if (!testpin_tag(handle))
1995 BUG();
1996
1997 old_obj = handle_to_obj(handle);
1998 obj_to_location(old_obj, &dummy, &obj_idx);
1999 new_obj = (unsigned long)location_to_obj(newpage,
2000 obj_idx);
2001 new_obj |= BIT(HANDLE_PIN_BIT);
2002 record_obj(handle, new_obj);
2003 }
2004 }
2005
2006 replace_sub_page(class, zspage, newpage, page);
2007 get_page(newpage);
2008
2009 dec_zspage_isolation(zspage);
2010
2011 /*
2012 * Page migration is done so let's putback isolated zspage to
2013 * the list if @page is final isolated subpage in the zspage.
2014 */
2015 if (!is_zspage_isolated(zspage)) {
2016 /*
2017 * We cannot race with zs_destroy_pool() here because we wait
2018 * for isolation to hit zero before we start destroying.
2019 * Also, we ensure that everyone can see pool->destroying before
2020 * we start waiting.
2021 */
2022 putback_zspage_deferred(pool, class, zspage);
2023 zs_pool_dec_isolated(pool);
2024 }
2025
2026 if (page_zone(newpage) != page_zone(page)) {
2027 dec_zone_page_state(page, NR_ZSPAGES);
2028 inc_zone_page_state(newpage, NR_ZSPAGES);
2029 }
2030
2031 reset_page(page);
2032 put_page(page);
2033 page = newpage;
2034
2035 ret = MIGRATEPAGE_SUCCESS;
2036 unpin_objects:
2037 for (addr = s_addr + offset; addr < s_addr + pos;
2038 addr += class->size) {
2039 head = obj_to_head(page, addr);
2040 if (head & OBJ_ALLOCATED_TAG) {
2041 handle = head & ~OBJ_ALLOCATED_TAG;
2042 if (!testpin_tag(handle))
2043 BUG();
2044 unpin_tag(handle);
2045 }
2046 }
2047 kunmap_atomic(s_addr);
2048 spin_unlock(&class->lock);
2049 migrate_write_unlock(zspage);
2050
2051 return ret;
2052 }
2053
2054 static void zs_page_putback(struct page *page)
2055 {
2056 struct zs_pool *pool;
2057 struct size_class *class;
2058 int class_idx;
2059 enum fullness_group fg;
2060 struct address_space *mapping;
2061 struct zspage *zspage;
2062
2063 VM_BUG_ON_PAGE(!PageMovable(page), page);
2064 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2065
2066 zspage = get_zspage(page);
2067 get_zspage_mapping(zspage, &class_idx, &fg);
2068 mapping = page_mapping(page);
2069 pool = mapping->private_data;
2070 class = pool->size_class[class_idx];
2071
2072 spin_lock(&class->lock);
2073 dec_zspage_isolation(zspage);
2074 if (!is_zspage_isolated(zspage)) {
2075 /*
2076 * Due to page_lock, we cannot free zspage immediately
2077 * so let's defer.
2078 */
2079 putback_zspage_deferred(pool, class, zspage);
2080 zs_pool_dec_isolated(pool);
2081 }
2082 spin_unlock(&class->lock);
2083 }
2084
2085 static const struct address_space_operations zsmalloc_aops = {
2086 .isolate_page = zs_page_isolate,
2087 .migratepage = zs_page_migrate,
2088 .putback_page = zs_page_putback,
2089 };
2090
2091 static int zs_register_migration(struct zs_pool *pool)
2092 {
2093 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2094 if (IS_ERR(pool->inode)) {
2095 pool->inode = NULL;
2096 return 1;
2097 }
2098
2099 pool->inode->i_mapping->private_data = pool;
2100 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2101 return 0;
2102 }
2103
2104 static bool pool_isolated_are_drained(struct zs_pool *pool)
2105 {
2106 return atomic_long_read(&pool->isolated_pages) == 0;
2107 }
2108
2109 /* Function for resolving migration */
2110 static void wait_for_isolated_drain(struct zs_pool *pool)
2111 {
2112
2113 /*
2114 * We're in the process of destroying the pool, so there are no
2115 * active allocations. zs_page_isolate() fails for completely free
2116 * zspages, so we need only wait for the zs_pool's isolated
2117 * count to hit zero.
2118 */
2119 wait_event(pool->migration_wait,
2120 pool_isolated_are_drained(pool));
2121 }
2122
2123 static void zs_unregister_migration(struct zs_pool *pool)
2124 {
2125 pool->destroying = true;
2126 /*
2127 * We need a memory barrier here to ensure global visibility of
2128 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2129 * case we don't care, or it will be > 0 and pool->destroying will
2130 * ensure that we wake up once isolation hits 0.
2131 */
2132 smp_mb();
2133 wait_for_isolated_drain(pool); /* This can block */
2134 flush_work(&pool->free_work);
2135 iput(pool->inode);
2136 }
2137
2138 /*
2139 * Caller should hold page_lock of all pages in the zspage
2140 * In here, we cannot use zspage meta data.
2141 */
2142 static void async_free_zspage(struct work_struct *work)
2143 {
2144 int i;
2145 struct size_class *class;
2146 unsigned int class_idx;
2147 enum fullness_group fullness;
2148 struct zspage *zspage, *tmp;
2149 LIST_HEAD(free_pages);
2150 struct zs_pool *pool = container_of(work, struct zs_pool,
2151 free_work);
2152
2153 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2154 class = pool->size_class[i];
2155 if (class->index != i)
2156 continue;
2157
2158 spin_lock(&class->lock);
2159 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2160 spin_unlock(&class->lock);
2161 }
2162
2163
2164 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2165 list_del(&zspage->list);
2166 lock_zspage(zspage);
2167
2168 get_zspage_mapping(zspage, &class_idx, &fullness);
2169 VM_BUG_ON(fullness != ZS_EMPTY);
2170 class = pool->size_class[class_idx];
2171 spin_lock(&class->lock);
2172 __free_zspage(pool, pool->size_class[class_idx], zspage);
2173 spin_unlock(&class->lock);
2174 }
2175 };
2176
2177 static void kick_deferred_free(struct zs_pool *pool)
2178 {
2179 schedule_work(&pool->free_work);
2180 }
2181
2182 static void init_deferred_free(struct zs_pool *pool)
2183 {
2184 INIT_WORK(&pool->free_work, async_free_zspage);
2185 }
2186
2187 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2188 {
2189 struct page *page = get_first_page(zspage);
2190
2191 do {
2192 WARN_ON(!trylock_page(page));
2193 __SetPageMovable(page, pool->inode->i_mapping);
2194 unlock_page(page);
2195 } while ((page = get_next_page(page)) != NULL);
2196 }
2197 #endif
2198
2199 /*
2200 *
2201 * Based on the number of unused allocated objects calculate
2202 * and return the number of pages that we can free.
2203 */
2204 static unsigned long zs_can_compact(struct size_class *class)
2205 {
2206 unsigned long obj_wasted;
2207 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2208 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2209
2210 if (obj_allocated <= obj_used)
2211 return 0;
2212
2213 obj_wasted = obj_allocated - obj_used;
2214 obj_wasted /= class->objs_per_zspage;
2215
2216 return obj_wasted * class->pages_per_zspage;
2217 }
2218
2219 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2220 {
2221 struct zs_compact_control cc;
2222 struct zspage *src_zspage;
2223 struct zspage *dst_zspage = NULL;
2224
2225 spin_lock(&class->lock);
2226 while ((src_zspage = isolate_zspage(class, true))) {
2227
2228 if (!zs_can_compact(class))
2229 break;
2230
2231 cc.obj_idx = 0;
2232 cc.s_page = get_first_page(src_zspage);
2233
2234 while ((dst_zspage = isolate_zspage(class, false))) {
2235 cc.d_page = get_first_page(dst_zspage);
2236 /*
2237 * If there is no more space in dst_page, resched
2238 * and see if anyone had allocated another zspage.
2239 */
2240 if (!migrate_zspage(pool, class, &cc))
2241 break;
2242
2243 putback_zspage(class, dst_zspage);
2244 }
2245
2246 /* Stop if we couldn't find slot */
2247 if (dst_zspage == NULL)
2248 break;
2249
2250 putback_zspage(class, dst_zspage);
2251 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2252 free_zspage(pool, class, src_zspage);
2253 pool->stats.pages_compacted += class->pages_per_zspage;
2254 }
2255 spin_unlock(&class->lock);
2256 cond_resched();
2257 spin_lock(&class->lock);
2258 }
2259
2260 if (src_zspage)
2261 putback_zspage(class, src_zspage);
2262
2263 spin_unlock(&class->lock);
2264 }
2265
2266 unsigned long zs_compact(struct zs_pool *pool)
2267 {
2268 int i;
2269 struct size_class *class;
2270
2271 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2272 class = pool->size_class[i];
2273 if (!class)
2274 continue;
2275 if (class->index != i)
2276 continue;
2277 __zs_compact(pool, class);
2278 }
2279
2280 return pool->stats.pages_compacted;
2281 }
2282 EXPORT_SYMBOL_GPL(zs_compact);
2283
2284 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2285 {
2286 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2287 }
2288 EXPORT_SYMBOL_GPL(zs_pool_stats);
2289
2290 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2291 struct shrink_control *sc)
2292 {
2293 unsigned long pages_freed;
2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295 shrinker);
2296
2297 pages_freed = pool->stats.pages_compacted;
2298 /*
2299 * Compact classes and calculate compaction delta.
2300 * Can run concurrently with a manually triggered
2301 * (by user) compaction.
2302 */
2303 pages_freed = zs_compact(pool) - pages_freed;
2304
2305 return pages_freed ? pages_freed : SHRINK_STOP;
2306 }
2307
2308 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2309 struct shrink_control *sc)
2310 {
2311 int i;
2312 struct size_class *class;
2313 unsigned long pages_to_free = 0;
2314 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2315 shrinker);
2316
2317 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2318 class = pool->size_class[i];
2319 if (!class)
2320 continue;
2321 if (class->index != i)
2322 continue;
2323
2324 pages_to_free += zs_can_compact(class);
2325 }
2326
2327 return pages_to_free;
2328 }
2329
2330 static void zs_unregister_shrinker(struct zs_pool *pool)
2331 {
2332 unregister_shrinker(&pool->shrinker);
2333 }
2334
2335 static int zs_register_shrinker(struct zs_pool *pool)
2336 {
2337 pool->shrinker.scan_objects = zs_shrinker_scan;
2338 pool->shrinker.count_objects = zs_shrinker_count;
2339 pool->shrinker.batch = 0;
2340 pool->shrinker.seeks = DEFAULT_SEEKS;
2341
2342 return register_shrinker(&pool->shrinker);
2343 }
2344
2345 /**
2346 * zs_create_pool - Creates an allocation pool to work from.
2347 * @name: pool name to be created
2348 *
2349 * This function must be called before anything when using
2350 * the zsmalloc allocator.
2351 *
2352 * On success, a pointer to the newly created pool is returned,
2353 * otherwise NULL.
2354 */
2355 struct zs_pool *zs_create_pool(const char *name)
2356 {
2357 int i;
2358 struct zs_pool *pool;
2359 struct size_class *prev_class = NULL;
2360
2361 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2362 if (!pool)
2363 return NULL;
2364
2365 init_deferred_free(pool);
2366
2367 pool->name = kstrdup(name, GFP_KERNEL);
2368 if (!pool->name)
2369 goto err;
2370
2371 #ifdef CONFIG_COMPACTION
2372 init_waitqueue_head(&pool->migration_wait);
2373 #endif
2374
2375 if (create_cache(pool))
2376 goto err;
2377
2378 /*
2379 * Iterate reversely, because, size of size_class that we want to use
2380 * for merging should be larger or equal to current size.
2381 */
2382 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2383 int size;
2384 int pages_per_zspage;
2385 int objs_per_zspage;
2386 struct size_class *class;
2387 int fullness = 0;
2388
2389 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2390 if (size > ZS_MAX_ALLOC_SIZE)
2391 size = ZS_MAX_ALLOC_SIZE;
2392 pages_per_zspage = get_pages_per_zspage(size);
2393 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2394
2395 /*
2396 * We iterate from biggest down to smallest classes,
2397 * so huge_class_size holds the size of the first huge
2398 * class. Any object bigger than or equal to that will
2399 * endup in the huge class.
2400 */
2401 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2402 !huge_class_size) {
2403 huge_class_size = size;
2404 /*
2405 * The object uses ZS_HANDLE_SIZE bytes to store the
2406 * handle. We need to subtract it, because zs_malloc()
2407 * unconditionally adds handle size before it performs
2408 * size class search - so object may be smaller than
2409 * huge class size, yet it still can end up in the huge
2410 * class because it grows by ZS_HANDLE_SIZE extra bytes
2411 * right before class lookup.
2412 */
2413 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2414 }
2415
2416 /*
2417 * size_class is used for normal zsmalloc operation such
2418 * as alloc/free for that size. Although it is natural that we
2419 * have one size_class for each size, there is a chance that we
2420 * can get more memory utilization if we use one size_class for
2421 * many different sizes whose size_class have same
2422 * characteristics. So, we makes size_class point to
2423 * previous size_class if possible.
2424 */
2425 if (prev_class) {
2426 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2427 pool->size_class[i] = prev_class;
2428 continue;
2429 }
2430 }
2431
2432 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2433 if (!class)
2434 goto err;
2435
2436 class->size = size;
2437 class->index = i;
2438 class->pages_per_zspage = pages_per_zspage;
2439 class->objs_per_zspage = objs_per_zspage;
2440 spin_lock_init(&class->lock);
2441 pool->size_class[i] = class;
2442 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2443 fullness++)
2444 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2445
2446 prev_class = class;
2447 }
2448
2449 /* debug only, don't abort if it fails */
2450 zs_pool_stat_create(pool, name);
2451
2452 if (zs_register_migration(pool))
2453 goto err;
2454
2455 /*
2456 * Not critical since shrinker is only used to trigger internal
2457 * defragmentation of the pool which is pretty optional thing. If
2458 * registration fails we still can use the pool normally and user can
2459 * trigger compaction manually. Thus, ignore return code.
2460 */
2461 zs_register_shrinker(pool);
2462
2463 return pool;
2464
2465 err:
2466 zs_destroy_pool(pool);
2467 return NULL;
2468 }
2469 EXPORT_SYMBOL_GPL(zs_create_pool);
2470
2471 void zs_destroy_pool(struct zs_pool *pool)
2472 {
2473 int i;
2474
2475 zs_unregister_shrinker(pool);
2476 zs_unregister_migration(pool);
2477 zs_pool_stat_destroy(pool);
2478
2479 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2480 int fg;
2481 struct size_class *class = pool->size_class[i];
2482
2483 if (!class)
2484 continue;
2485
2486 if (class->index != i)
2487 continue;
2488
2489 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2490 if (!list_empty(&class->fullness_list[fg])) {
2491 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2492 class->size, fg);
2493 }
2494 }
2495 kfree(class);
2496 }
2497
2498 destroy_cache(pool);
2499 kfree(pool->name);
2500 kfree(pool);
2501 }
2502 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2503
2504 static int __init zs_init(void)
2505 {
2506 int ret;
2507
2508 ret = zsmalloc_mount();
2509 if (ret)
2510 goto out;
2511
2512 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2513 zs_cpu_prepare, zs_cpu_dead);
2514 if (ret)
2515 goto hp_setup_fail;
2516
2517 #ifdef CONFIG_ZPOOL
2518 zpool_register_driver(&zs_zpool_driver);
2519 #endif
2520
2521 zs_stat_init();
2522
2523 return 0;
2524
2525 hp_setup_fail:
2526 zsmalloc_unmount();
2527 out:
2528 return ret;
2529 }
2530
2531 static void __exit zs_exit(void)
2532 {
2533 #ifdef CONFIG_ZPOOL
2534 zpool_unregister_driver(&zs_zpool_driver);
2535 #endif
2536 zsmalloc_unmount();
2537 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2538
2539 zs_stat_exit();
2540 }
2541
2542 module_init(zs_init);
2543 module_exit(zs_exit);
2544
2545 MODULE_LICENSE("Dual BSD/GPL");
2546 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");