2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
57 #define ZSPAGE_MAGIC 0x58
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
80 * Note that object index <obj_idx> starts from 0.
82 * This is made more complicated by various memory models and PAE.
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
105 #define HANDLE_PIN_BIT 0
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define FULLNESS_BITS 2
121 #define ISOLATED_BITS 3
122 #define MAGIC_VAL_BITS 8
124 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
132 * On systems with 4K page size, this gives 255 size classes! There is a
134 * - Large number of size classes is potentially wasteful as free page are
135 * spread across these classes
136 * - Small number of size classes causes large internal fragmentation
137 * - Probably its better to use specific size classes (empirically
138 * determined). NOTE: all those class sizes must be set as multiple of
139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146 ZS_SIZE_CLASS_DELTA) + 1)
148 enum fullness_group
{
166 struct zs_size_stat
{
167 unsigned long objs
[NR_ZS_STAT_TYPE
];
170 #ifdef CONFIG_ZSMALLOC_STAT
171 static struct dentry
*zs_stat_root
;
174 #ifdef CONFIG_COMPACTION
175 static struct vfsmount
*zsmalloc_mnt
;
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
183 * f = fullness_threshold_frac
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
190 * (see: fix_fullness_group())
192 static const int fullness_threshold_frac
= 4;
196 struct list_head fullness_list
[NR_ZS_FULLNESS
];
198 * Size of objects stored in this class. Must be multiple
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage
;
207 struct zs_size_stat stats
;
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page
*page
)
213 SetPageOwnerPriv1(page
);
216 static void ClearPageHugeObject(struct page
*page
)
218 ClearPageOwnerPriv1(page
);
221 static int PageHugeObject(struct page
*page
)
223 return PageOwnerPriv1(page
);
227 * Placed within free objects to form a singly linked list.
228 * For every zspage, zspage->freeobj gives head of this list.
230 * This must be power of 2 and less than or equal to ZS_ALIGN
236 * It's valid for non-allocated object
240 * Handle of allocated object.
242 unsigned long handle
;
249 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
250 struct kmem_cache
*handle_cachep
;
251 struct kmem_cache
*zspage_cachep
;
253 atomic_long_t pages_allocated
;
255 struct zs_pool_stats stats
;
257 /* Compact classes */
258 struct shrinker shrinker
;
260 * To signify that register_shrinker() was successful
261 * and unregister_shrinker() will not Oops.
263 bool shrinker_enabled
;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry
*stat_dentry
;
267 #ifdef CONFIG_COMPACTION
269 struct work_struct free_work
;
275 unsigned int fullness
:FULLNESS_BITS
;
276 unsigned int class:CLASS_BITS
+ 1;
277 unsigned int isolated
:ISOLATED_BITS
;
278 unsigned int magic
:MAGIC_VAL_BITS
;
281 unsigned int freeobj
;
282 struct page
*first_page
;
283 struct list_head list
; /* fullness list */
284 #ifdef CONFIG_COMPACTION
289 struct mapping_area
{
290 #ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
293 char *vm_buf
; /* copy buffer for objects that span pages */
295 char *vm_addr
; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm
; /* mapping mode */
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool
*pool
);
301 static void zs_unregister_migration(struct zs_pool
*pool
);
302 static void migrate_lock_init(struct zspage
*zspage
);
303 static void migrate_read_lock(struct zspage
*zspage
);
304 static void migrate_read_unlock(struct zspage
*zspage
);
305 static void kick_deferred_free(struct zs_pool
*pool
);
306 static void init_deferred_free(struct zs_pool
*pool
);
307 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
312 static void zs_unregister_migration(struct zs_pool
*pool
) {}
313 static void migrate_lock_init(struct zspage
*zspage
) {}
314 static void migrate_read_lock(struct zspage
*zspage
) {}
315 static void migrate_read_unlock(struct zspage
*zspage
) {}
316 static void kick_deferred_free(struct zs_pool
*pool
) {}
317 static void init_deferred_free(struct zs_pool
*pool
) {}
318 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
321 static int create_cache(struct zs_pool
*pool
)
323 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
325 if (!pool
->handle_cachep
)
328 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
330 if (!pool
->zspage_cachep
) {
331 kmem_cache_destroy(pool
->handle_cachep
);
332 pool
->handle_cachep
= NULL
;
339 static void destroy_cache(struct zs_pool
*pool
)
341 kmem_cache_destroy(pool
->handle_cachep
);
342 kmem_cache_destroy(pool
->zspage_cachep
);
345 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
347 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
348 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
351 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
353 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
356 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
358 return kmem_cache_alloc(pool
->zspage_cachep
,
359 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
362 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
364 kmem_cache_free(pool
->zspage_cachep
, zspage
);
367 static void record_obj(unsigned long handle
, unsigned long obj
)
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
374 WRITE_ONCE(*(unsigned long *)handle
, obj
);
381 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
382 const struct zpool_ops
*zpool_ops
,
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
390 return zs_create_pool(name
);
393 static void zs_zpool_destroy(void *pool
)
395 zs_destroy_pool(pool
);
398 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
399 unsigned long *handle
)
401 *handle
= zs_malloc(pool
, size
, gfp
);
402 return *handle
? 0 : -1;
404 static void zs_zpool_free(void *pool
, unsigned long handle
)
406 zs_free(pool
, handle
);
409 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
410 unsigned int *reclaimed
)
415 static void *zs_zpool_map(void *pool
, unsigned long handle
,
416 enum zpool_mapmode mm
)
418 enum zs_mapmode zs_mm
;
427 case ZPOOL_MM_RW
: /* fallthru */
433 return zs_map_object(pool
, handle
, zs_mm
);
435 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
437 zs_unmap_object(pool
, handle
);
440 static u64
zs_zpool_total_size(void *pool
)
442 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
445 static struct zpool_driver zs_zpool_driver
= {
447 .owner
= THIS_MODULE
,
448 .create
= zs_zpool_create
,
449 .destroy
= zs_zpool_destroy
,
450 .malloc
= zs_zpool_malloc
,
451 .free
= zs_zpool_free
,
452 .shrink
= zs_zpool_shrink
,
454 .unmap
= zs_zpool_unmap
,
455 .total_size
= zs_zpool_total_size
,
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
464 static bool is_zspage_isolated(struct zspage
*zspage
)
466 return zspage
->isolated
;
469 static __maybe_unused
int is_first_page(struct page
*page
)
471 return PagePrivate(page
);
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage
*zspage
)
477 return zspage
->inuse
;
480 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
485 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
487 zspage
->inuse
+= val
;
490 static inline struct page
*get_first_page(struct zspage
*zspage
)
492 struct page
*first_page
= zspage
->first_page
;
494 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
498 static inline int get_first_obj_offset(struct page
*page
)
503 static inline void set_first_obj_offset(struct page
*page
, int offset
)
505 page
->units
= offset
;
508 static inline unsigned int get_freeobj(struct zspage
*zspage
)
510 return zspage
->freeobj
;
513 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
515 zspage
->freeobj
= obj
;
518 static void get_zspage_mapping(struct zspage
*zspage
,
519 unsigned int *class_idx
,
520 enum fullness_group
*fullness
)
522 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
524 *fullness
= zspage
->fullness
;
525 *class_idx
= zspage
->class;
528 static void set_zspage_mapping(struct zspage
*zspage
,
529 unsigned int class_idx
,
530 enum fullness_group fullness
)
532 zspage
->class = class_idx
;
533 zspage
->fullness
= fullness
;
537 * zsmalloc divides the pool into various size classes where each
538 * class maintains a list of zspages where each zspage is divided
539 * into equal sized chunks. Each allocation falls into one of these
540 * classes depending on its size. This function returns index of the
541 * size class which has chunk size big enough to hold the give size.
543 static int get_size_class_index(int size
)
547 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
548 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
549 ZS_SIZE_CLASS_DELTA
);
551 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
554 static inline void zs_stat_inc(struct size_class
*class,
555 enum zs_stat_type type
, unsigned long cnt
)
557 class->stats
.objs
[type
] += cnt
;
560 static inline void zs_stat_dec(struct size_class
*class,
561 enum zs_stat_type type
, unsigned long cnt
)
563 class->stats
.objs
[type
] -= cnt
;
566 static inline unsigned long zs_stat_get(struct size_class
*class,
567 enum zs_stat_type type
)
569 return class->stats
.objs
[type
];
572 #ifdef CONFIG_ZSMALLOC_STAT
574 static void __init
zs_stat_init(void)
576 if (!debugfs_initialized()) {
577 pr_warn("debugfs not available, stat dir not created\n");
581 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
583 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
586 static void __exit
zs_stat_exit(void)
588 debugfs_remove_recursive(zs_stat_root
);
591 static unsigned long zs_can_compact(struct size_class
*class);
593 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
596 struct zs_pool
*pool
= s
->private;
597 struct size_class
*class;
599 unsigned long class_almost_full
, class_almost_empty
;
600 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
601 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
602 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
603 unsigned long total_freeable
= 0;
605 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
606 "class", "size", "almost_full", "almost_empty",
607 "obj_allocated", "obj_used", "pages_used",
608 "pages_per_zspage", "freeable");
610 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
611 class = pool
->size_class
[i
];
613 if (class->index
!= i
)
616 spin_lock(&class->lock
);
617 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
618 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
619 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
620 obj_used
= zs_stat_get(class, OBJ_USED
);
621 freeable
= zs_can_compact(class);
622 spin_unlock(&class->lock
);
624 objs_per_zspage
= class->objs_per_zspage
;
625 pages_used
= obj_allocated
/ objs_per_zspage
*
626 class->pages_per_zspage
;
628 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
629 " %10lu %10lu %16d %8lu\n",
630 i
, class->size
, class_almost_full
, class_almost_empty
,
631 obj_allocated
, obj_used
, pages_used
,
632 class->pages_per_zspage
, freeable
);
634 total_class_almost_full
+= class_almost_full
;
635 total_class_almost_empty
+= class_almost_empty
;
636 total_objs
+= obj_allocated
;
637 total_used_objs
+= obj_used
;
638 total_pages
+= pages_used
;
639 total_freeable
+= freeable
;
643 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
644 "Total", "", total_class_almost_full
,
645 total_class_almost_empty
, total_objs
,
646 total_used_objs
, total_pages
, "", total_freeable
);
651 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
653 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
656 static const struct file_operations zs_stat_size_ops
= {
657 .open
= zs_stats_size_open
,
660 .release
= single_release
,
663 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
665 struct dentry
*entry
;
668 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
672 entry
= debugfs_create_dir(name
, zs_stat_root
);
674 pr_warn("debugfs dir <%s> creation failed\n", name
);
677 pool
->stat_dentry
= entry
;
679 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
680 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
682 pr_warn("%s: debugfs file entry <%s> creation failed\n",
684 debugfs_remove_recursive(pool
->stat_dentry
);
685 pool
->stat_dentry
= NULL
;
689 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
691 debugfs_remove_recursive(pool
->stat_dentry
);
694 #else /* CONFIG_ZSMALLOC_STAT */
695 static void __init
zs_stat_init(void)
699 static void __exit
zs_stat_exit(void)
703 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
707 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
714 * For each size class, zspages are divided into different groups
715 * depending on how "full" they are. This was done so that we could
716 * easily find empty or nearly empty zspages when we try to shrink
717 * the pool (not yet implemented). This function returns fullness
718 * status of the given page.
720 static enum fullness_group
get_fullness_group(struct size_class
*class,
721 struct zspage
*zspage
)
723 int inuse
, objs_per_zspage
;
724 enum fullness_group fg
;
726 inuse
= get_zspage_inuse(zspage
);
727 objs_per_zspage
= class->objs_per_zspage
;
731 else if (inuse
== objs_per_zspage
)
733 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
734 fg
= ZS_ALMOST_EMPTY
;
742 * Each size class maintains various freelists and zspages are assigned
743 * to one of these freelists based on the number of live objects they
744 * have. This functions inserts the given zspage into the freelist
745 * identified by <class, fullness_group>.
747 static void insert_zspage(struct size_class
*class,
748 struct zspage
*zspage
,
749 enum fullness_group fullness
)
753 zs_stat_inc(class, fullness
, 1);
754 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
755 struct zspage
, list
);
757 * We want to see more ZS_FULL pages and less almost empty/full.
758 * Put pages with higher ->inuse first.
761 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
762 list_add(&zspage
->list
, &head
->list
);
766 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
770 * This function removes the given zspage from the freelist identified
771 * by <class, fullness_group>.
773 static void remove_zspage(struct size_class
*class,
774 struct zspage
*zspage
,
775 enum fullness_group fullness
)
777 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
778 VM_BUG_ON(is_zspage_isolated(zspage
));
780 list_del_init(&zspage
->list
);
781 zs_stat_dec(class, fullness
, 1);
785 * Each size class maintains zspages in different fullness groups depending
786 * on the number of live objects they contain. When allocating or freeing
787 * objects, the fullness status of the page can change, say, from ALMOST_FULL
788 * to ALMOST_EMPTY when freeing an object. This function checks if such
789 * a status change has occurred for the given page and accordingly moves the
790 * page from the freelist of the old fullness group to that of the new
793 static enum fullness_group
fix_fullness_group(struct size_class
*class,
794 struct zspage
*zspage
)
797 enum fullness_group currfg
, newfg
;
799 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
800 newfg
= get_fullness_group(class, zspage
);
804 if (!is_zspage_isolated(zspage
)) {
805 remove_zspage(class, zspage
, currfg
);
806 insert_zspage(class, zspage
, newfg
);
809 set_zspage_mapping(zspage
, class_idx
, newfg
);
816 * We have to decide on how many pages to link together
817 * to form a zspage for each size class. This is important
818 * to reduce wastage due to unusable space left at end of
819 * each zspage which is given as:
820 * wastage = Zp % class_size
821 * usage = Zp - wastage
822 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
824 * For example, for size class of 3/8 * PAGE_SIZE, we should
825 * link together 3 PAGE_SIZE sized pages to form a zspage
826 * since then we can perfectly fit in 8 such objects.
828 static int get_pages_per_zspage(int class_size
)
830 int i
, max_usedpc
= 0;
831 /* zspage order which gives maximum used size per KB */
832 int max_usedpc_order
= 1;
834 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
838 zspage_size
= i
* PAGE_SIZE
;
839 waste
= zspage_size
% class_size
;
840 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
842 if (usedpc
> max_usedpc
) {
844 max_usedpc_order
= i
;
848 return max_usedpc_order
;
851 static struct zspage
*get_zspage(struct page
*page
)
853 struct zspage
*zspage
= (struct zspage
*)page
->private;
855 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
859 static struct page
*get_next_page(struct page
*page
)
861 if (unlikely(PageHugeObject(page
)))
864 return page
->freelist
;
868 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
869 * @page: page object resides in zspage
870 * @obj_idx: object index
872 static void obj_to_location(unsigned long obj
, struct page
**page
,
873 unsigned int *obj_idx
)
875 obj
>>= OBJ_TAG_BITS
;
876 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
877 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
881 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
882 * @page: page object resides in zspage
883 * @obj_idx: object index
885 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
889 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
890 obj
|= obj_idx
& OBJ_INDEX_MASK
;
891 obj
<<= OBJ_TAG_BITS
;
896 static unsigned long handle_to_obj(unsigned long handle
)
898 return *(unsigned long *)handle
;
901 static unsigned long obj_to_head(struct page
*page
, void *obj
)
903 if (unlikely(PageHugeObject(page
))) {
904 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
907 return *(unsigned long *)obj
;
910 static inline int testpin_tag(unsigned long handle
)
912 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
915 static inline int trypin_tag(unsigned long handle
)
917 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
920 static void pin_tag(unsigned long handle
)
922 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
925 static void unpin_tag(unsigned long handle
)
927 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
930 static void reset_page(struct page
*page
)
932 __ClearPageMovable(page
);
933 ClearPagePrivate(page
);
934 set_page_private(page
, 0);
935 page_mapcount_reset(page
);
936 ClearPageHugeObject(page
);
937 page
->freelist
= NULL
;
941 * To prevent zspage destroy during migration, zspage freeing should
942 * hold locks of all pages in the zspage.
944 void lock_zspage(struct zspage
*zspage
)
946 struct page
*page
= get_first_page(zspage
);
950 } while ((page
= get_next_page(page
)) != NULL
);
953 int trylock_zspage(struct zspage
*zspage
)
955 struct page
*cursor
, *fail
;
957 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
958 get_next_page(cursor
)) {
959 if (!trylock_page(cursor
)) {
967 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
968 get_next_page(cursor
))
974 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
975 struct zspage
*zspage
)
977 struct page
*page
, *next
;
978 enum fullness_group fg
;
979 unsigned int class_idx
;
981 get_zspage_mapping(zspage
, &class_idx
, &fg
);
983 assert_spin_locked(&class->lock
);
985 VM_BUG_ON(get_zspage_inuse(zspage
));
986 VM_BUG_ON(fg
!= ZS_EMPTY
);
988 next
= page
= get_first_page(zspage
);
990 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
991 next
= get_next_page(page
);
994 dec_zone_page_state(page
, NR_ZSPAGES
);
997 } while (page
!= NULL
);
999 cache_free_zspage(pool
, zspage
);
1001 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1002 atomic_long_sub(class->pages_per_zspage
,
1003 &pool
->pages_allocated
);
1006 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1007 struct zspage
*zspage
)
1009 VM_BUG_ON(get_zspage_inuse(zspage
));
1010 VM_BUG_ON(list_empty(&zspage
->list
));
1012 if (!trylock_zspage(zspage
)) {
1013 kick_deferred_free(pool
);
1017 remove_zspage(class, zspage
, ZS_EMPTY
);
1018 __free_zspage(pool
, class, zspage
);
1021 /* Initialize a newly allocated zspage */
1022 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1024 unsigned int freeobj
= 1;
1025 unsigned long off
= 0;
1026 struct page
*page
= get_first_page(zspage
);
1029 struct page
*next_page
;
1030 struct link_free
*link
;
1033 set_first_obj_offset(page
, off
);
1035 vaddr
= kmap_atomic(page
);
1036 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1038 while ((off
+= class->size
) < PAGE_SIZE
) {
1039 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1040 link
+= class->size
/ sizeof(*link
);
1044 * We now come to the last (full or partial) object on this
1045 * page, which must point to the first object on the next
1048 next_page
= get_next_page(page
);
1050 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1053 * Reset OBJ_TAG_BITS bit to last link to tell
1054 * whether it's allocated object or not.
1056 link
->next
= -1 << OBJ_TAG_BITS
;
1058 kunmap_atomic(vaddr
);
1063 set_freeobj(zspage
, 0);
1066 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1067 struct page
*pages
[])
1071 struct page
*prev_page
= NULL
;
1072 int nr_pages
= class->pages_per_zspage
;
1075 * Allocate individual pages and link them together as:
1076 * 1. all pages are linked together using page->freelist
1077 * 2. each sub-page point to zspage using page->private
1079 * we set PG_private to identify the first page (i.e. no other sub-page
1080 * has this flag set).
1082 for (i
= 0; i
< nr_pages
; i
++) {
1084 set_page_private(page
, (unsigned long)zspage
);
1085 page
->freelist
= NULL
;
1087 zspage
->first_page
= page
;
1088 SetPagePrivate(page
);
1089 if (unlikely(class->objs_per_zspage
== 1 &&
1090 class->pages_per_zspage
== 1))
1091 SetPageHugeObject(page
);
1093 prev_page
->freelist
= page
;
1100 * Allocate a zspage for the given size class
1102 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1103 struct size_class
*class,
1107 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1108 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1113 memset(zspage
, 0, sizeof(struct zspage
));
1114 zspage
->magic
= ZSPAGE_MAGIC
;
1115 migrate_lock_init(zspage
);
1117 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1120 page
= alloc_page(gfp
);
1123 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1124 __free_page(pages
[i
]);
1126 cache_free_zspage(pool
, zspage
);
1130 inc_zone_page_state(page
, NR_ZSPAGES
);
1134 create_page_chain(class, zspage
, pages
);
1135 init_zspage(class, zspage
);
1140 static struct zspage
*find_get_zspage(struct size_class
*class)
1143 struct zspage
*zspage
;
1145 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1146 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1147 struct zspage
, list
);
1155 #ifdef CONFIG_PGTABLE_MAPPING
1156 static inline int __zs_cpu_up(struct mapping_area
*area
)
1159 * Make sure we don't leak memory if a cpu UP notification
1160 * and zs_init() race and both call zs_cpu_up() on the same cpu
1164 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1170 static inline void __zs_cpu_down(struct mapping_area
*area
)
1173 free_vm_area(area
->vm
);
1177 static inline void *__zs_map_object(struct mapping_area
*area
,
1178 struct page
*pages
[2], int off
, int size
)
1180 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1181 area
->vm_addr
= area
->vm
->addr
;
1182 return area
->vm_addr
+ off
;
1185 static inline void __zs_unmap_object(struct mapping_area
*area
,
1186 struct page
*pages
[2], int off
, int size
)
1188 unsigned long addr
= (unsigned long)area
->vm_addr
;
1190 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1193 #else /* CONFIG_PGTABLE_MAPPING */
1195 static inline int __zs_cpu_up(struct mapping_area
*area
)
1198 * Make sure we don't leak memory if a cpu UP notification
1199 * and zs_init() race and both call zs_cpu_up() on the same cpu
1203 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1209 static inline void __zs_cpu_down(struct mapping_area
*area
)
1211 kfree(area
->vm_buf
);
1212 area
->vm_buf
= NULL
;
1215 static void *__zs_map_object(struct mapping_area
*area
,
1216 struct page
*pages
[2], int off
, int size
)
1220 char *buf
= area
->vm_buf
;
1222 /* disable page faults to match kmap_atomic() return conditions */
1223 pagefault_disable();
1225 /* no read fastpath */
1226 if (area
->vm_mm
== ZS_MM_WO
)
1229 sizes
[0] = PAGE_SIZE
- off
;
1230 sizes
[1] = size
- sizes
[0];
1232 /* copy object to per-cpu buffer */
1233 addr
= kmap_atomic(pages
[0]);
1234 memcpy(buf
, addr
+ off
, sizes
[0]);
1235 kunmap_atomic(addr
);
1236 addr
= kmap_atomic(pages
[1]);
1237 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1238 kunmap_atomic(addr
);
1240 return area
->vm_buf
;
1243 static void __zs_unmap_object(struct mapping_area
*area
,
1244 struct page
*pages
[2], int off
, int size
)
1250 /* no write fastpath */
1251 if (area
->vm_mm
== ZS_MM_RO
)
1255 buf
= buf
+ ZS_HANDLE_SIZE
;
1256 size
-= ZS_HANDLE_SIZE
;
1257 off
+= ZS_HANDLE_SIZE
;
1259 sizes
[0] = PAGE_SIZE
- off
;
1260 sizes
[1] = size
- sizes
[0];
1262 /* copy per-cpu buffer to object */
1263 addr
= kmap_atomic(pages
[0]);
1264 memcpy(addr
+ off
, buf
, sizes
[0]);
1265 kunmap_atomic(addr
);
1266 addr
= kmap_atomic(pages
[1]);
1267 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1268 kunmap_atomic(addr
);
1271 /* enable page faults to match kunmap_atomic() return conditions */
1275 #endif /* CONFIG_PGTABLE_MAPPING */
1277 static int zs_cpu_prepare(unsigned int cpu
)
1279 struct mapping_area
*area
;
1281 area
= &per_cpu(zs_map_area
, cpu
);
1282 return __zs_cpu_up(area
);
1285 static int zs_cpu_dead(unsigned int cpu
)
1287 struct mapping_area
*area
;
1289 area
= &per_cpu(zs_map_area
, cpu
);
1290 __zs_cpu_down(area
);
1294 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1295 int objs_per_zspage
)
1297 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1298 prev
->objs_per_zspage
== objs_per_zspage
)
1304 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1306 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1309 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1311 return atomic_long_read(&pool
->pages_allocated
);
1313 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1316 * zs_map_object - get address of allocated object from handle.
1317 * @pool: pool from which the object was allocated
1318 * @handle: handle returned from zs_malloc
1320 * Before using an object allocated from zs_malloc, it must be mapped using
1321 * this function. When done with the object, it must be unmapped using
1324 * Only one object can be mapped per cpu at a time. There is no protection
1325 * against nested mappings.
1327 * This function returns with preemption and page faults disabled.
1329 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1332 struct zspage
*zspage
;
1334 unsigned long obj
, off
;
1335 unsigned int obj_idx
;
1337 unsigned int class_idx
;
1338 enum fullness_group fg
;
1339 struct size_class
*class;
1340 struct mapping_area
*area
;
1341 struct page
*pages
[2];
1345 * Because we use per-cpu mapping areas shared among the
1346 * pools/users, we can't allow mapping in interrupt context
1347 * because it can corrupt another users mappings.
1349 WARN_ON_ONCE(in_interrupt());
1351 /* From now on, migration cannot move the object */
1354 obj
= handle_to_obj(handle
);
1355 obj_to_location(obj
, &page
, &obj_idx
);
1356 zspage
= get_zspage(page
);
1358 /* migration cannot move any subpage in this zspage */
1359 migrate_read_lock(zspage
);
1361 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1362 class = pool
->size_class
[class_idx
];
1363 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1365 area
= &get_cpu_var(zs_map_area
);
1367 if (off
+ class->size
<= PAGE_SIZE
) {
1368 /* this object is contained entirely within a page */
1369 area
->vm_addr
= kmap_atomic(page
);
1370 ret
= area
->vm_addr
+ off
;
1374 /* this object spans two pages */
1376 pages
[1] = get_next_page(page
);
1379 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1381 if (likely(!PageHugeObject(page
)))
1382 ret
+= ZS_HANDLE_SIZE
;
1386 EXPORT_SYMBOL_GPL(zs_map_object
);
1388 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1390 struct zspage
*zspage
;
1392 unsigned long obj
, off
;
1393 unsigned int obj_idx
;
1395 unsigned int class_idx
;
1396 enum fullness_group fg
;
1397 struct size_class
*class;
1398 struct mapping_area
*area
;
1400 obj
= handle_to_obj(handle
);
1401 obj_to_location(obj
, &page
, &obj_idx
);
1402 zspage
= get_zspage(page
);
1403 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1404 class = pool
->size_class
[class_idx
];
1405 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1407 area
= this_cpu_ptr(&zs_map_area
);
1408 if (off
+ class->size
<= PAGE_SIZE
)
1409 kunmap_atomic(area
->vm_addr
);
1411 struct page
*pages
[2];
1414 pages
[1] = get_next_page(page
);
1417 __zs_unmap_object(area
, pages
, off
, class->size
);
1419 put_cpu_var(zs_map_area
);
1421 migrate_read_unlock(zspage
);
1424 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1426 static unsigned long obj_malloc(struct size_class
*class,
1427 struct zspage
*zspage
, unsigned long handle
)
1429 int i
, nr_page
, offset
;
1431 struct link_free
*link
;
1433 struct page
*m_page
;
1434 unsigned long m_offset
;
1437 handle
|= OBJ_ALLOCATED_TAG
;
1438 obj
= get_freeobj(zspage
);
1440 offset
= obj
* class->size
;
1441 nr_page
= offset
>> PAGE_SHIFT
;
1442 m_offset
= offset
& ~PAGE_MASK
;
1443 m_page
= get_first_page(zspage
);
1445 for (i
= 0; i
< nr_page
; i
++)
1446 m_page
= get_next_page(m_page
);
1448 vaddr
= kmap_atomic(m_page
);
1449 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1450 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1451 if (likely(!PageHugeObject(m_page
)))
1452 /* record handle in the header of allocated chunk */
1453 link
->handle
= handle
;
1455 /* record handle to page->index */
1456 zspage
->first_page
->index
= handle
;
1458 kunmap_atomic(vaddr
);
1459 mod_zspage_inuse(zspage
, 1);
1460 zs_stat_inc(class, OBJ_USED
, 1);
1462 obj
= location_to_obj(m_page
, obj
);
1469 * zs_malloc - Allocate block of given size from pool.
1470 * @pool: pool to allocate from
1471 * @size: size of block to allocate
1472 * @gfp: gfp flags when allocating object
1474 * On success, handle to the allocated object is returned,
1476 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1478 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1480 unsigned long handle
, obj
;
1481 struct size_class
*class;
1482 enum fullness_group newfg
;
1483 struct zspage
*zspage
;
1485 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1488 handle
= cache_alloc_handle(pool
, gfp
);
1492 /* extra space in chunk to keep the handle */
1493 size
+= ZS_HANDLE_SIZE
;
1494 class = pool
->size_class
[get_size_class_index(size
)];
1496 spin_lock(&class->lock
);
1497 zspage
= find_get_zspage(class);
1498 if (likely(zspage
)) {
1499 obj
= obj_malloc(class, zspage
, handle
);
1500 /* Now move the zspage to another fullness group, if required */
1501 fix_fullness_group(class, zspage
);
1502 record_obj(handle
, obj
);
1503 spin_unlock(&class->lock
);
1508 spin_unlock(&class->lock
);
1510 zspage
= alloc_zspage(pool
, class, gfp
);
1512 cache_free_handle(pool
, handle
);
1516 spin_lock(&class->lock
);
1517 obj
= obj_malloc(class, zspage
, handle
);
1518 newfg
= get_fullness_group(class, zspage
);
1519 insert_zspage(class, zspage
, newfg
);
1520 set_zspage_mapping(zspage
, class->index
, newfg
);
1521 record_obj(handle
, obj
);
1522 atomic_long_add(class->pages_per_zspage
,
1523 &pool
->pages_allocated
);
1524 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1526 /* We completely set up zspage so mark them as movable */
1527 SetZsPageMovable(pool
, zspage
);
1528 spin_unlock(&class->lock
);
1532 EXPORT_SYMBOL_GPL(zs_malloc
);
1534 static void obj_free(struct size_class
*class, unsigned long obj
)
1536 struct link_free
*link
;
1537 struct zspage
*zspage
;
1538 struct page
*f_page
;
1539 unsigned long f_offset
;
1540 unsigned int f_objidx
;
1543 obj
&= ~OBJ_ALLOCATED_TAG
;
1544 obj_to_location(obj
, &f_page
, &f_objidx
);
1545 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1546 zspage
= get_zspage(f_page
);
1548 vaddr
= kmap_atomic(f_page
);
1550 /* Insert this object in containing zspage's freelist */
1551 link
= (struct link_free
*)(vaddr
+ f_offset
);
1552 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1553 kunmap_atomic(vaddr
);
1554 set_freeobj(zspage
, f_objidx
);
1555 mod_zspage_inuse(zspage
, -1);
1556 zs_stat_dec(class, OBJ_USED
, 1);
1559 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1561 struct zspage
*zspage
;
1562 struct page
*f_page
;
1564 unsigned int f_objidx
;
1566 struct size_class
*class;
1567 enum fullness_group fullness
;
1570 if (unlikely(!handle
))
1574 obj
= handle_to_obj(handle
);
1575 obj_to_location(obj
, &f_page
, &f_objidx
);
1576 zspage
= get_zspage(f_page
);
1578 migrate_read_lock(zspage
);
1580 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1581 class = pool
->size_class
[class_idx
];
1583 spin_lock(&class->lock
);
1584 obj_free(class, obj
);
1585 fullness
= fix_fullness_group(class, zspage
);
1586 if (fullness
!= ZS_EMPTY
) {
1587 migrate_read_unlock(zspage
);
1591 isolated
= is_zspage_isolated(zspage
);
1592 migrate_read_unlock(zspage
);
1593 /* If zspage is isolated, zs_page_putback will free the zspage */
1594 if (likely(!isolated
))
1595 free_zspage(pool
, class, zspage
);
1598 spin_unlock(&class->lock
);
1600 cache_free_handle(pool
, handle
);
1602 EXPORT_SYMBOL_GPL(zs_free
);
1604 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1607 struct page
*s_page
, *d_page
;
1608 unsigned int s_objidx
, d_objidx
;
1609 unsigned long s_off
, d_off
;
1610 void *s_addr
, *d_addr
;
1611 int s_size
, d_size
, size
;
1614 s_size
= d_size
= class->size
;
1616 obj_to_location(src
, &s_page
, &s_objidx
);
1617 obj_to_location(dst
, &d_page
, &d_objidx
);
1619 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1620 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1622 if (s_off
+ class->size
> PAGE_SIZE
)
1623 s_size
= PAGE_SIZE
- s_off
;
1625 if (d_off
+ class->size
> PAGE_SIZE
)
1626 d_size
= PAGE_SIZE
- d_off
;
1628 s_addr
= kmap_atomic(s_page
);
1629 d_addr
= kmap_atomic(d_page
);
1632 size
= min(s_size
, d_size
);
1633 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1636 if (written
== class->size
)
1644 if (s_off
>= PAGE_SIZE
) {
1645 kunmap_atomic(d_addr
);
1646 kunmap_atomic(s_addr
);
1647 s_page
= get_next_page(s_page
);
1648 s_addr
= kmap_atomic(s_page
);
1649 d_addr
= kmap_atomic(d_page
);
1650 s_size
= class->size
- written
;
1654 if (d_off
>= PAGE_SIZE
) {
1655 kunmap_atomic(d_addr
);
1656 d_page
= get_next_page(d_page
);
1657 d_addr
= kmap_atomic(d_page
);
1658 d_size
= class->size
- written
;
1663 kunmap_atomic(d_addr
);
1664 kunmap_atomic(s_addr
);
1668 * Find alloced object in zspage from index object and
1671 static unsigned long find_alloced_obj(struct size_class
*class,
1672 struct page
*page
, int *obj_idx
)
1676 int index
= *obj_idx
;
1677 unsigned long handle
= 0;
1678 void *addr
= kmap_atomic(page
);
1680 offset
= get_first_obj_offset(page
);
1681 offset
+= class->size
* index
;
1683 while (offset
< PAGE_SIZE
) {
1684 head
= obj_to_head(page
, addr
+ offset
);
1685 if (head
& OBJ_ALLOCATED_TAG
) {
1686 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1687 if (trypin_tag(handle
))
1692 offset
+= class->size
;
1696 kunmap_atomic(addr
);
1703 struct zs_compact_control
{
1704 /* Source spage for migration which could be a subpage of zspage */
1705 struct page
*s_page
;
1706 /* Destination page for migration which should be a first page
1708 struct page
*d_page
;
1709 /* Starting object index within @s_page which used for live object
1710 * in the subpage. */
1714 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1715 struct zs_compact_control
*cc
)
1717 unsigned long used_obj
, free_obj
;
1718 unsigned long handle
;
1719 struct page
*s_page
= cc
->s_page
;
1720 struct page
*d_page
= cc
->d_page
;
1721 int obj_idx
= cc
->obj_idx
;
1725 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1727 s_page
= get_next_page(s_page
);
1734 /* Stop if there is no more space */
1735 if (zspage_full(class, get_zspage(d_page
))) {
1741 used_obj
= handle_to_obj(handle
);
1742 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1743 zs_object_copy(class, free_obj
, used_obj
);
1746 * record_obj updates handle's value to free_obj and it will
1747 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1748 * breaks synchronization using pin_tag(e,g, zs_free) so
1749 * let's keep the lock bit.
1751 free_obj
|= BIT(HANDLE_PIN_BIT
);
1752 record_obj(handle
, free_obj
);
1754 obj_free(class, used_obj
);
1757 /* Remember last position in this iteration */
1758 cc
->s_page
= s_page
;
1759 cc
->obj_idx
= obj_idx
;
1764 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1767 struct zspage
*zspage
;
1768 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1771 fg
[0] = ZS_ALMOST_FULL
;
1772 fg
[1] = ZS_ALMOST_EMPTY
;
1775 for (i
= 0; i
< 2; i
++) {
1776 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1777 struct zspage
, list
);
1779 VM_BUG_ON(is_zspage_isolated(zspage
));
1780 remove_zspage(class, zspage
, fg
[i
]);
1789 * putback_zspage - add @zspage into right class's fullness list
1790 * @class: destination class
1791 * @zspage: target page
1793 * Return @zspage's fullness_group
1795 static enum fullness_group
putback_zspage(struct size_class
*class,
1796 struct zspage
*zspage
)
1798 enum fullness_group fullness
;
1800 VM_BUG_ON(is_zspage_isolated(zspage
));
1802 fullness
= get_fullness_group(class, zspage
);
1803 insert_zspage(class, zspage
, fullness
);
1804 set_zspage_mapping(zspage
, class->index
, fullness
);
1809 #ifdef CONFIG_COMPACTION
1810 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1811 int flags
, const char *dev_name
, void *data
)
1813 static const struct dentry_operations ops
= {
1814 .d_dname
= simple_dname
,
1817 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1820 static struct file_system_type zsmalloc_fs
= {
1823 .kill_sb
= kill_anon_super
,
1826 static int zsmalloc_mount(void)
1830 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1831 if (IS_ERR(zsmalloc_mnt
))
1832 ret
= PTR_ERR(zsmalloc_mnt
);
1837 static void zsmalloc_unmount(void)
1839 kern_unmount(zsmalloc_mnt
);
1842 static void migrate_lock_init(struct zspage
*zspage
)
1844 rwlock_init(&zspage
->lock
);
1847 static void migrate_read_lock(struct zspage
*zspage
)
1849 read_lock(&zspage
->lock
);
1852 static void migrate_read_unlock(struct zspage
*zspage
)
1854 read_unlock(&zspage
->lock
);
1857 static void migrate_write_lock(struct zspage
*zspage
)
1859 write_lock(&zspage
->lock
);
1862 static void migrate_write_unlock(struct zspage
*zspage
)
1864 write_unlock(&zspage
->lock
);
1867 /* Number of isolated subpage for *page migration* in this zspage */
1868 static void inc_zspage_isolation(struct zspage
*zspage
)
1873 static void dec_zspage_isolation(struct zspage
*zspage
)
1878 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1879 struct page
*newpage
, struct page
*oldpage
)
1882 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1885 page
= get_first_page(zspage
);
1887 if (page
== oldpage
)
1888 pages
[idx
] = newpage
;
1892 } while ((page
= get_next_page(page
)) != NULL
);
1894 create_page_chain(class, zspage
, pages
);
1895 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1896 if (unlikely(PageHugeObject(oldpage
)))
1897 newpage
->index
= oldpage
->index
;
1898 __SetPageMovable(newpage
, page_mapping(oldpage
));
1901 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1903 struct zs_pool
*pool
;
1904 struct size_class
*class;
1906 enum fullness_group fullness
;
1907 struct zspage
*zspage
;
1908 struct address_space
*mapping
;
1911 * Page is locked so zspage couldn't be destroyed. For detail, look at
1912 * lock_zspage in free_zspage.
1914 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1915 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1917 zspage
= get_zspage(page
);
1920 * Without class lock, fullness could be stale while class_idx is okay
1921 * because class_idx is constant unless page is freed so we should get
1922 * fullness again under class lock.
1924 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1925 mapping
= page_mapping(page
);
1926 pool
= mapping
->private_data
;
1927 class = pool
->size_class
[class_idx
];
1929 spin_lock(&class->lock
);
1930 if (get_zspage_inuse(zspage
) == 0) {
1931 spin_unlock(&class->lock
);
1935 /* zspage is isolated for object migration */
1936 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1937 spin_unlock(&class->lock
);
1942 * If this is first time isolation for the zspage, isolate zspage from
1943 * size_class to prevent further object allocation from the zspage.
1945 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1946 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1947 remove_zspage(class, zspage
, fullness
);
1950 inc_zspage_isolation(zspage
);
1951 spin_unlock(&class->lock
);
1956 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1957 struct page
*page
, enum migrate_mode mode
)
1959 struct zs_pool
*pool
;
1960 struct size_class
*class;
1962 enum fullness_group fullness
;
1963 struct zspage
*zspage
;
1965 void *s_addr
, *d_addr
, *addr
;
1967 unsigned long handle
, head
;
1968 unsigned long old_obj
, new_obj
;
1969 unsigned int obj_idx
;
1972 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1973 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1975 zspage
= get_zspage(page
);
1977 /* Concurrent compactor cannot migrate any subpage in zspage */
1978 migrate_write_lock(zspage
);
1979 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1980 pool
= mapping
->private_data
;
1981 class = pool
->size_class
[class_idx
];
1982 offset
= get_first_obj_offset(page
);
1984 spin_lock(&class->lock
);
1985 if (!get_zspage_inuse(zspage
)) {
1991 s_addr
= kmap_atomic(page
);
1992 while (pos
< PAGE_SIZE
) {
1993 head
= obj_to_head(page
, s_addr
+ pos
);
1994 if (head
& OBJ_ALLOCATED_TAG
) {
1995 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1996 if (!trypin_tag(handle
))
2003 * Here, any user cannot access all objects in the zspage so let's move.
2005 d_addr
= kmap_atomic(newpage
);
2006 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2007 kunmap_atomic(d_addr
);
2009 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2010 addr
+= class->size
) {
2011 head
= obj_to_head(page
, addr
);
2012 if (head
& OBJ_ALLOCATED_TAG
) {
2013 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2014 if (!testpin_tag(handle
))
2017 old_obj
= handle_to_obj(handle
);
2018 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2019 new_obj
= (unsigned long)location_to_obj(newpage
,
2021 new_obj
|= BIT(HANDLE_PIN_BIT
);
2022 record_obj(handle
, new_obj
);
2026 replace_sub_page(class, zspage
, newpage
, page
);
2029 dec_zspage_isolation(zspage
);
2032 * Page migration is done so let's putback isolated zspage to
2033 * the list if @page is final isolated subpage in the zspage.
2035 if (!is_zspage_isolated(zspage
))
2036 putback_zspage(class, zspage
);
2042 ret
= MIGRATEPAGE_SUCCESS
;
2044 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2045 addr
+= class->size
) {
2046 head
= obj_to_head(page
, addr
);
2047 if (head
& OBJ_ALLOCATED_TAG
) {
2048 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2049 if (!testpin_tag(handle
))
2054 kunmap_atomic(s_addr
);
2056 spin_unlock(&class->lock
);
2057 migrate_write_unlock(zspage
);
2062 void zs_page_putback(struct page
*page
)
2064 struct zs_pool
*pool
;
2065 struct size_class
*class;
2067 enum fullness_group fg
;
2068 struct address_space
*mapping
;
2069 struct zspage
*zspage
;
2071 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2072 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2074 zspage
= get_zspage(page
);
2075 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2076 mapping
= page_mapping(page
);
2077 pool
= mapping
->private_data
;
2078 class = pool
->size_class
[class_idx
];
2080 spin_lock(&class->lock
);
2081 dec_zspage_isolation(zspage
);
2082 if (!is_zspage_isolated(zspage
)) {
2083 fg
= putback_zspage(class, zspage
);
2085 * Due to page_lock, we cannot free zspage immediately
2089 schedule_work(&pool
->free_work
);
2091 spin_unlock(&class->lock
);
2094 const struct address_space_operations zsmalloc_aops
= {
2095 .isolate_page
= zs_page_isolate
,
2096 .migratepage
= zs_page_migrate
,
2097 .putback_page
= zs_page_putback
,
2100 static int zs_register_migration(struct zs_pool
*pool
)
2102 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2103 if (IS_ERR(pool
->inode
)) {
2108 pool
->inode
->i_mapping
->private_data
= pool
;
2109 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2113 static void zs_unregister_migration(struct zs_pool
*pool
)
2115 flush_work(&pool
->free_work
);
2120 * Caller should hold page_lock of all pages in the zspage
2121 * In here, we cannot use zspage meta data.
2123 static void async_free_zspage(struct work_struct
*work
)
2126 struct size_class
*class;
2127 unsigned int class_idx
;
2128 enum fullness_group fullness
;
2129 struct zspage
*zspage
, *tmp
;
2130 LIST_HEAD(free_pages
);
2131 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2134 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2135 class = pool
->size_class
[i
];
2136 if (class->index
!= i
)
2139 spin_lock(&class->lock
);
2140 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2141 spin_unlock(&class->lock
);
2145 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2146 list_del(&zspage
->list
);
2147 lock_zspage(zspage
);
2149 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2150 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2151 class = pool
->size_class
[class_idx
];
2152 spin_lock(&class->lock
);
2153 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2154 spin_unlock(&class->lock
);
2158 static void kick_deferred_free(struct zs_pool
*pool
)
2160 schedule_work(&pool
->free_work
);
2163 static void init_deferred_free(struct zs_pool
*pool
)
2165 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2168 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2170 struct page
*page
= get_first_page(zspage
);
2173 WARN_ON(!trylock_page(page
));
2174 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2176 } while ((page
= get_next_page(page
)) != NULL
);
2182 * Based on the number of unused allocated objects calculate
2183 * and return the number of pages that we can free.
2185 static unsigned long zs_can_compact(struct size_class
*class)
2187 unsigned long obj_wasted
;
2188 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2189 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2191 if (obj_allocated
<= obj_used
)
2194 obj_wasted
= obj_allocated
- obj_used
;
2195 obj_wasted
/= class->objs_per_zspage
;
2197 return obj_wasted
* class->pages_per_zspage
;
2200 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2202 struct zs_compact_control cc
;
2203 struct zspage
*src_zspage
;
2204 struct zspage
*dst_zspage
= NULL
;
2206 spin_lock(&class->lock
);
2207 while ((src_zspage
= isolate_zspage(class, true))) {
2209 if (!zs_can_compact(class))
2213 cc
.s_page
= get_first_page(src_zspage
);
2215 while ((dst_zspage
= isolate_zspage(class, false))) {
2216 cc
.d_page
= get_first_page(dst_zspage
);
2218 * If there is no more space in dst_page, resched
2219 * and see if anyone had allocated another zspage.
2221 if (!migrate_zspage(pool
, class, &cc
))
2224 putback_zspage(class, dst_zspage
);
2227 /* Stop if we couldn't find slot */
2228 if (dst_zspage
== NULL
)
2231 putback_zspage(class, dst_zspage
);
2232 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2233 free_zspage(pool
, class, src_zspage
);
2234 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2236 spin_unlock(&class->lock
);
2238 spin_lock(&class->lock
);
2242 putback_zspage(class, src_zspage
);
2244 spin_unlock(&class->lock
);
2247 unsigned long zs_compact(struct zs_pool
*pool
)
2250 struct size_class
*class;
2252 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2253 class = pool
->size_class
[i
];
2256 if (class->index
!= i
)
2258 __zs_compact(pool
, class);
2261 return pool
->stats
.pages_compacted
;
2263 EXPORT_SYMBOL_GPL(zs_compact
);
2265 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2267 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2269 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2271 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2272 struct shrink_control
*sc
)
2274 unsigned long pages_freed
;
2275 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2278 pages_freed
= pool
->stats
.pages_compacted
;
2280 * Compact classes and calculate compaction delta.
2281 * Can run concurrently with a manually triggered
2282 * (by user) compaction.
2284 pages_freed
= zs_compact(pool
) - pages_freed
;
2286 return pages_freed
? pages_freed
: SHRINK_STOP
;
2289 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2290 struct shrink_control
*sc
)
2293 struct size_class
*class;
2294 unsigned long pages_to_free
= 0;
2295 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2298 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2299 class = pool
->size_class
[i
];
2302 if (class->index
!= i
)
2305 pages_to_free
+= zs_can_compact(class);
2308 return pages_to_free
;
2311 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2313 if (pool
->shrinker_enabled
) {
2314 unregister_shrinker(&pool
->shrinker
);
2315 pool
->shrinker_enabled
= false;
2319 static int zs_register_shrinker(struct zs_pool
*pool
)
2321 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2322 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2323 pool
->shrinker
.batch
= 0;
2324 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2326 return register_shrinker(&pool
->shrinker
);
2330 * zs_create_pool - Creates an allocation pool to work from.
2331 * @name: pool name to be created
2333 * This function must be called before anything when using
2334 * the zsmalloc allocator.
2336 * On success, a pointer to the newly created pool is returned,
2339 struct zs_pool
*zs_create_pool(const char *name
)
2342 struct zs_pool
*pool
;
2343 struct size_class
*prev_class
= NULL
;
2345 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2349 init_deferred_free(pool
);
2351 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2355 if (create_cache(pool
))
2359 * Iterate reversely, because, size of size_class that we want to use
2360 * for merging should be larger or equal to current size.
2362 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2364 int pages_per_zspage
;
2365 int objs_per_zspage
;
2366 struct size_class
*class;
2369 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2370 if (size
> ZS_MAX_ALLOC_SIZE
)
2371 size
= ZS_MAX_ALLOC_SIZE
;
2372 pages_per_zspage
= get_pages_per_zspage(size
);
2373 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2376 * size_class is used for normal zsmalloc operation such
2377 * as alloc/free for that size. Although it is natural that we
2378 * have one size_class for each size, there is a chance that we
2379 * can get more memory utilization if we use one size_class for
2380 * many different sizes whose size_class have same
2381 * characteristics. So, we makes size_class point to
2382 * previous size_class if possible.
2385 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2386 pool
->size_class
[i
] = prev_class
;
2391 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2397 class->pages_per_zspage
= pages_per_zspage
;
2398 class->objs_per_zspage
= objs_per_zspage
;
2399 spin_lock_init(&class->lock
);
2400 pool
->size_class
[i
] = class;
2401 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2403 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2408 /* debug only, don't abort if it fails */
2409 zs_pool_stat_create(pool
, name
);
2411 if (zs_register_migration(pool
))
2415 * Not critical, we still can use the pool
2416 * and user can trigger compaction manually.
2418 if (zs_register_shrinker(pool
) == 0)
2419 pool
->shrinker_enabled
= true;
2423 zs_destroy_pool(pool
);
2426 EXPORT_SYMBOL_GPL(zs_create_pool
);
2428 void zs_destroy_pool(struct zs_pool
*pool
)
2432 zs_unregister_shrinker(pool
);
2433 zs_unregister_migration(pool
);
2434 zs_pool_stat_destroy(pool
);
2436 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2438 struct size_class
*class = pool
->size_class
[i
];
2443 if (class->index
!= i
)
2446 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2447 if (!list_empty(&class->fullness_list
[fg
])) {
2448 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2455 destroy_cache(pool
);
2456 kfree(pool
->size_class
);
2460 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2462 static int __init
zs_init(void)
2466 ret
= zsmalloc_mount();
2470 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2471 zs_cpu_prepare
, zs_cpu_dead
);
2476 zpool_register_driver(&zs_zpool_driver
);
2489 static void __exit
zs_exit(void)
2492 zpool_unregister_driver(&zs_zpool_driver
);
2495 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2500 module_init(zs_init
);
2501 module_exit(zs_exit
);
2503 MODULE_LICENSE("Dual BSD/GPL");
2504 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");