]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem-cache.c
2b4ac4afc6f3654b10288ee45e71e809361ffef9
[mirror_spl.git] / module / spl / spl-kmem-cache.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <linux/slab.h>
31 #include <linux/swap.h>
32 #include <linux/mm_compat.h>
33 #include <linux/wait_compat.h>
34
35 /*
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
38 */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43
44
45 /*
46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47 * with smp_mb__{before,after}_atomic() because they were redundant. This is
48 * only used inside our SLAB allocator, so we implement an internal wrapper
49 * here to give us smp_mb__{before,after}_atomic() on older kernels.
50 */
51 #ifndef smp_mb__before_atomic
52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54
55 #ifndef smp_mb__after_atomic
56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58
59 /*
60 * Cache expiration was implemented because it was part of the default Solaris
61 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
62 * accessed in several seconds should be returned to the cache. On the other
63 * hand Linux slabs never move objects back to the slabs unless there is
64 * memory pressure on the system. By default the Linux method is enabled
65 * because it has been shown to improve responsiveness on low memory systems.
66 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
67 */
68 unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
69 EXPORT_SYMBOL(spl_kmem_cache_expire);
70 module_param(spl_kmem_cache_expire, uint, 0644);
71 MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
72
73 /*
74 * Cache magazines are an optimization designed to minimize the cost of
75 * allocating memory. They do this by keeping a per-cpu cache of recently
76 * freed objects, which can then be reallocated without taking a lock. This
77 * can improve performance on highly contended caches. However, because
78 * objects in magazines will prevent otherwise empty slabs from being
79 * immediately released this may not be ideal for low memory machines.
80 *
81 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
82 * magazine size. When this value is set to 0 the magazine size will be
83 * automatically determined based on the object size. Otherwise magazines
84 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
85 * may never be entirely disabled in this implementation.
86 */
87 unsigned int spl_kmem_cache_magazine_size = 0;
88 module_param(spl_kmem_cache_magazine_size, uint, 0444);
89 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
90 "Default magazine size (2-256), set automatically (0)\n");
91
92 /*
93 * The default behavior is to report the number of objects remaining in the
94 * cache. This allows the Linux VM to repeatedly reclaim objects from the
95 * cache when memory is low satisfy other memory allocations. Alternately,
96 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
97 * is reclaimed. This may increase the likelihood of out of memory events.
98 */
99 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
100 module_param(spl_kmem_cache_reclaim, uint, 0644);
101 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
102
103 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
104 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
105 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
106
107 unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
108 module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
109 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
110 "Minimal number of objects per slab");
111
112 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
113 module_param(spl_kmem_cache_max_size, uint, 0644);
114 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
115
116 /*
117 * For small objects the Linux slab allocator should be used to make the most
118 * efficient use of the memory. However, large objects are not supported by
119 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
120 * of 16K was determined to be optimal for architectures using 4K pages.
121 */
122 #if PAGE_SIZE == 4096
123 unsigned int spl_kmem_cache_slab_limit = 16384;
124 #else
125 unsigned int spl_kmem_cache_slab_limit = 0;
126 #endif
127 module_param(spl_kmem_cache_slab_limit, uint, 0644);
128 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
129 "Objects less than N bytes use the Linux slab");
130
131 /*
132 * This value defaults to a threshold designed to avoid allocations which
133 * have been deemed costly by the kernel.
134 */
135 unsigned int spl_kmem_cache_kmem_limit =
136 ((1 << (PAGE_ALLOC_COSTLY_ORDER - 1)) * PAGE_SIZE) /
137 SPL_KMEM_CACHE_OBJ_PER_SLAB;
138 module_param(spl_kmem_cache_kmem_limit, uint, 0644);
139 MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
140 "Objects less than N bytes use the kmalloc");
141
142 /*
143 * The number of threads available to allocate new slabs for caches. This
144 * should not need to be tuned but it is available for performance analysis.
145 */
146 unsigned int spl_kmem_cache_kmem_threads = 4;
147 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
148 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
149 "Number of spl_kmem_cache threads");
150
151 /*
152 * Slab allocation interfaces
153 *
154 * While the Linux slab implementation was inspired by the Solaris
155 * implementation I cannot use it to emulate the Solaris APIs. I
156 * require two features which are not provided by the Linux slab.
157 *
158 * 1) Constructors AND destructors. Recent versions of the Linux
159 * kernel have removed support for destructors. This is a deal
160 * breaker for the SPL which contains particularly expensive
161 * initializers for mutex's, condition variables, etc. We also
162 * require a minimal level of cleanup for these data types unlike
163 * many Linux data types which do need to be explicitly destroyed.
164 *
165 * 2) Virtual address space backed slab. Callers of the Solaris slab
166 * expect it to work well for both small are very large allocations.
167 * Because of memory fragmentation the Linux slab which is backed
168 * by kmalloc'ed memory performs very badly when confronted with
169 * large numbers of large allocations. Basing the slab on the
170 * virtual address space removes the need for contiguous pages
171 * and greatly improve performance for large allocations.
172 *
173 * For these reasons, the SPL has its own slab implementation with
174 * the needed features. It is not as highly optimized as either the
175 * Solaris or Linux slabs, but it should get me most of what is
176 * needed until it can be optimized or obsoleted by another approach.
177 *
178 * One serious concern I do have about this method is the relatively
179 * small virtual address space on 32bit arches. This will seriously
180 * constrain the size of the slab caches and their performance.
181 */
182
183 struct list_head spl_kmem_cache_list; /* List of caches */
184 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
185 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
186
187 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
188
189 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
190 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
191 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
192
193 static void *
194 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
195 {
196 gfp_t lflags = kmem_flags_convert(flags);
197 void *ptr;
198
199 if (skc->skc_flags & KMC_KMEM) {
200 ASSERT(ISP2(size));
201 ptr = (void *)__get_free_pages(lflags, get_order(size));
202 } else {
203 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
204 }
205
206 /* Resulting allocated memory will be page aligned */
207 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
208
209 return (ptr);
210 }
211
212 static void
213 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
214 {
215 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
216
217 /*
218 * The Linux direct reclaim path uses this out of band value to
219 * determine if forward progress is being made. Normally this is
220 * incremented by kmem_freepages() which is part of the various
221 * Linux slab implementations. However, since we are using none
222 * of that infrastructure we are responsible for incrementing it.
223 */
224 if (current->reclaim_state)
225 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
226
227 if (skc->skc_flags & KMC_KMEM) {
228 ASSERT(ISP2(size));
229 free_pages((unsigned long)ptr, get_order(size));
230 } else {
231 vfree(ptr);
232 }
233 }
234
235 /*
236 * Required space for each aligned sks.
237 */
238 static inline uint32_t
239 spl_sks_size(spl_kmem_cache_t *skc)
240 {
241 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
242 skc->skc_obj_align, uint32_t));
243 }
244
245 /*
246 * Required space for each aligned object.
247 */
248 static inline uint32_t
249 spl_obj_size(spl_kmem_cache_t *skc)
250 {
251 uint32_t align = skc->skc_obj_align;
252
253 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
254 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
255 }
256
257 /*
258 * Lookup the spl_kmem_object_t for an object given that object.
259 */
260 static inline spl_kmem_obj_t *
261 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
262 {
263 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
264 skc->skc_obj_align, uint32_t));
265 }
266
267 /*
268 * Required space for each offslab object taking in to account alignment
269 * restrictions and the power-of-two requirement of kv_alloc().
270 */
271 static inline uint32_t
272 spl_offslab_size(spl_kmem_cache_t *skc)
273 {
274 return (1UL << (fls64(spl_obj_size(skc)) + 1));
275 }
276
277 /*
278 * It's important that we pack the spl_kmem_obj_t structure and the
279 * actual objects in to one large address space to minimize the number
280 * of calls to the allocator. It is far better to do a few large
281 * allocations and then subdivide it ourselves. Now which allocator
282 * we use requires balancing a few trade offs.
283 *
284 * For small objects we use kmem_alloc() because as long as you are
285 * only requesting a small number of pages (ideally just one) its cheap.
286 * However, when you start requesting multiple pages with kmem_alloc()
287 * it gets increasingly expensive since it requires contiguous pages.
288 * For this reason we shift to vmem_alloc() for slabs of large objects
289 * which removes the need for contiguous pages. We do not use
290 * vmem_alloc() in all cases because there is significant locking
291 * overhead in __get_vm_area_node(). This function takes a single
292 * global lock when acquiring an available virtual address range which
293 * serializes all vmem_alloc()'s for all slab caches. Using slightly
294 * different allocation functions for small and large objects should
295 * give us the best of both worlds.
296 *
297 * KMC_ONSLAB KMC_OFFSLAB
298 *
299 * +------------------------+ +-----------------+
300 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
301 * | skc_obj_size <-+ | | +-----------------+ | |
302 * | spl_kmem_obj_t | | | |
303 * | skc_obj_size <---+ | +-----------------+ | |
304 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
305 * | ... v | | spl_kmem_obj_t | |
306 * +------------------------+ +-----------------+ v
307 */
308 static spl_kmem_slab_t *
309 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
310 {
311 spl_kmem_slab_t *sks;
312 spl_kmem_obj_t *sko, *n;
313 void *base, *obj;
314 uint32_t obj_size, offslab_size = 0;
315 int i, rc = 0;
316
317 base = kv_alloc(skc, skc->skc_slab_size, flags);
318 if (base == NULL)
319 return (NULL);
320
321 sks = (spl_kmem_slab_t *)base;
322 sks->sks_magic = SKS_MAGIC;
323 sks->sks_objs = skc->skc_slab_objs;
324 sks->sks_age = jiffies;
325 sks->sks_cache = skc;
326 INIT_LIST_HEAD(&sks->sks_list);
327 INIT_LIST_HEAD(&sks->sks_free_list);
328 sks->sks_ref = 0;
329 obj_size = spl_obj_size(skc);
330
331 if (skc->skc_flags & KMC_OFFSLAB)
332 offslab_size = spl_offslab_size(skc);
333
334 for (i = 0; i < sks->sks_objs; i++) {
335 if (skc->skc_flags & KMC_OFFSLAB) {
336 obj = kv_alloc(skc, offslab_size, flags);
337 if (!obj) {
338 rc = -ENOMEM;
339 goto out;
340 }
341 } else {
342 obj = base + spl_sks_size(skc) + (i * obj_size);
343 }
344
345 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
346 sko = spl_sko_from_obj(skc, obj);
347 sko->sko_addr = obj;
348 sko->sko_magic = SKO_MAGIC;
349 sko->sko_slab = sks;
350 INIT_LIST_HEAD(&sko->sko_list);
351 list_add_tail(&sko->sko_list, &sks->sks_free_list);
352 }
353
354 out:
355 if (rc) {
356 if (skc->skc_flags & KMC_OFFSLAB)
357 list_for_each_entry_safe(sko,
358 n, &sks->sks_free_list, sko_list)
359 kv_free(skc, sko->sko_addr, offslab_size);
360
361 kv_free(skc, base, skc->skc_slab_size);
362 sks = NULL;
363 }
364
365 return (sks);
366 }
367
368 /*
369 * Remove a slab from complete or partial list, it must be called with
370 * the 'skc->skc_lock' held but the actual free must be performed
371 * outside the lock to prevent deadlocking on vmem addresses.
372 */
373 static void
374 spl_slab_free(spl_kmem_slab_t *sks,
375 struct list_head *sks_list, struct list_head *sko_list)
376 {
377 spl_kmem_cache_t *skc;
378
379 ASSERT(sks->sks_magic == SKS_MAGIC);
380 ASSERT(sks->sks_ref == 0);
381
382 skc = sks->sks_cache;
383 ASSERT(skc->skc_magic == SKC_MAGIC);
384 ASSERT(spin_is_locked(&skc->skc_lock));
385
386 /*
387 * Update slab/objects counters in the cache, then remove the
388 * slab from the skc->skc_partial_list. Finally add the slab
389 * and all its objects in to the private work lists where the
390 * destructors will be called and the memory freed to the system.
391 */
392 skc->skc_obj_total -= sks->sks_objs;
393 skc->skc_slab_total--;
394 list_del(&sks->sks_list);
395 list_add(&sks->sks_list, sks_list);
396 list_splice_init(&sks->sks_free_list, sko_list);
397 }
398
399 /*
400 * Reclaim empty slabs at the end of the partial list.
401 */
402 static void
403 spl_slab_reclaim(spl_kmem_cache_t *skc)
404 {
405 spl_kmem_slab_t *sks, *m;
406 spl_kmem_obj_t *sko, *n;
407 LIST_HEAD(sks_list);
408 LIST_HEAD(sko_list);
409 uint32_t size = 0;
410
411 /*
412 * Empty slabs and objects must be moved to a private list so they
413 * can be safely freed outside the spin lock. All empty slabs are
414 * at the end of skc->skc_partial_list, therefore once a non-empty
415 * slab is found we can stop scanning.
416 */
417 spin_lock(&skc->skc_lock);
418 list_for_each_entry_safe_reverse(sks, m,
419 &skc->skc_partial_list, sks_list) {
420
421 if (sks->sks_ref > 0)
422 break;
423
424 spl_slab_free(sks, &sks_list, &sko_list);
425 }
426 spin_unlock(&skc->skc_lock);
427
428 /*
429 * The following two loops ensure all the object destructors are
430 * run, any offslab objects are freed, and the slabs themselves
431 * are freed. This is all done outside the skc->skc_lock since
432 * this allows the destructor to sleep, and allows us to perform
433 * a conditional reschedule when a freeing a large number of
434 * objects and slabs back to the system.
435 */
436 if (skc->skc_flags & KMC_OFFSLAB)
437 size = spl_offslab_size(skc);
438
439 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
440 ASSERT(sko->sko_magic == SKO_MAGIC);
441
442 if (skc->skc_flags & KMC_OFFSLAB)
443 kv_free(skc, sko->sko_addr, size);
444 }
445
446 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
447 ASSERT(sks->sks_magic == SKS_MAGIC);
448 kv_free(skc, sks, skc->skc_slab_size);
449 }
450 }
451
452 static spl_kmem_emergency_t *
453 spl_emergency_search(struct rb_root *root, void *obj)
454 {
455 struct rb_node *node = root->rb_node;
456 spl_kmem_emergency_t *ske;
457 unsigned long address = (unsigned long)obj;
458
459 while (node) {
460 ske = container_of(node, spl_kmem_emergency_t, ske_node);
461
462 if (address < ske->ske_obj)
463 node = node->rb_left;
464 else if (address > ske->ske_obj)
465 node = node->rb_right;
466 else
467 return (ske);
468 }
469
470 return (NULL);
471 }
472
473 static int
474 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
475 {
476 struct rb_node **new = &(root->rb_node), *parent = NULL;
477 spl_kmem_emergency_t *ske_tmp;
478 unsigned long address = ske->ske_obj;
479
480 while (*new) {
481 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
482
483 parent = *new;
484 if (address < ske_tmp->ske_obj)
485 new = &((*new)->rb_left);
486 else if (address > ske_tmp->ske_obj)
487 new = &((*new)->rb_right);
488 else
489 return (0);
490 }
491
492 rb_link_node(&ske->ske_node, parent, new);
493 rb_insert_color(&ske->ske_node, root);
494
495 return (1);
496 }
497
498 /*
499 * Allocate a single emergency object and track it in a red black tree.
500 */
501 static int
502 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
503 {
504 gfp_t lflags = kmem_flags_convert(flags);
505 spl_kmem_emergency_t *ske;
506 int order = get_order(skc->skc_obj_size);
507 int empty;
508
509 /* Last chance use a partial slab if one now exists */
510 spin_lock(&skc->skc_lock);
511 empty = list_empty(&skc->skc_partial_list);
512 spin_unlock(&skc->skc_lock);
513 if (!empty)
514 return (-EEXIST);
515
516 ske = kmalloc(sizeof (*ske), lflags);
517 if (ske == NULL)
518 return (-ENOMEM);
519
520 ske->ske_obj = __get_free_pages(lflags, order);
521 if (ske->ske_obj == 0) {
522 kfree(ske);
523 return (-ENOMEM);
524 }
525
526 spin_lock(&skc->skc_lock);
527 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
528 if (likely(empty)) {
529 skc->skc_obj_total++;
530 skc->skc_obj_emergency++;
531 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
532 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
533 }
534 spin_unlock(&skc->skc_lock);
535
536 if (unlikely(!empty)) {
537 free_pages(ske->ske_obj, order);
538 kfree(ske);
539 return (-EINVAL);
540 }
541
542 *obj = (void *)ske->ske_obj;
543
544 return (0);
545 }
546
547 /*
548 * Locate the passed object in the red black tree and free it.
549 */
550 static int
551 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
552 {
553 spl_kmem_emergency_t *ske;
554 int order = get_order(skc->skc_obj_size);
555
556 spin_lock(&skc->skc_lock);
557 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
558 if (ske) {
559 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
560 skc->skc_obj_emergency--;
561 skc->skc_obj_total--;
562 }
563 spin_unlock(&skc->skc_lock);
564
565 if (ske == NULL)
566 return (-ENOENT);
567
568 free_pages(ske->ske_obj, order);
569 kfree(ske);
570
571 return (0);
572 }
573
574 /*
575 * Release objects from the per-cpu magazine back to their slab. The flush
576 * argument contains the max number of entries to remove from the magazine.
577 */
578 static void
579 __spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
580 {
581 int i, count = MIN(flush, skm->skm_avail);
582
583 ASSERT(skc->skc_magic == SKC_MAGIC);
584 ASSERT(skm->skm_magic == SKM_MAGIC);
585 ASSERT(spin_is_locked(&skc->skc_lock));
586
587 for (i = 0; i < count; i++)
588 spl_cache_shrink(skc, skm->skm_objs[i]);
589
590 skm->skm_avail -= count;
591 memmove(skm->skm_objs, &(skm->skm_objs[count]),
592 sizeof (void *) * skm->skm_avail);
593 }
594
595 static void
596 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
597 {
598 spin_lock(&skc->skc_lock);
599 __spl_cache_flush(skc, skm, flush);
600 spin_unlock(&skc->skc_lock);
601 }
602
603 static void
604 spl_magazine_age(void *data)
605 {
606 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
607 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
608
609 ASSERT(skm->skm_magic == SKM_MAGIC);
610 ASSERT(skm->skm_cpu == smp_processor_id());
611 ASSERT(irqs_disabled());
612
613 /* There are no available objects or they are too young to age out */
614 if ((skm->skm_avail == 0) ||
615 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
616 return;
617
618 /*
619 * Because we're executing in interrupt context we may have
620 * interrupted the holder of this lock. To avoid a potential
621 * deadlock return if the lock is contended.
622 */
623 if (!spin_trylock(&skc->skc_lock))
624 return;
625
626 __spl_cache_flush(skc, skm, skm->skm_refill);
627 spin_unlock(&skc->skc_lock);
628 }
629
630 /*
631 * Called regularly to keep a downward pressure on the cache.
632 *
633 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
634 * be returned to the caches. This is done to prevent idle magazines from
635 * holding memory which could be better used elsewhere. The delay is
636 * present to prevent thrashing the magazine.
637 *
638 * The newly released objects may result in empty partial slabs. Those
639 * slabs should be released to the system. Otherwise moving the objects
640 * out of the magazines is just wasted work.
641 */
642 static void
643 spl_cache_age(void *data)
644 {
645 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
646 taskqid_t id = 0;
647
648 ASSERT(skc->skc_magic == SKC_MAGIC);
649
650 /* Dynamically disabled at run time */
651 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
652 return;
653
654 atomic_inc(&skc->skc_ref);
655
656 if (!(skc->skc_flags & KMC_NOMAGAZINE))
657 on_each_cpu(spl_magazine_age, skc, 1);
658
659 spl_slab_reclaim(skc);
660
661 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
662 id = taskq_dispatch_delay(
663 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
664 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
665
666 /* Destroy issued after dispatch immediately cancel it */
667 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
668 taskq_cancel_id(spl_kmem_cache_taskq, id);
669 }
670
671 spin_lock(&skc->skc_lock);
672 skc->skc_taskqid = id;
673 spin_unlock(&skc->skc_lock);
674
675 atomic_dec(&skc->skc_ref);
676 }
677
678 /*
679 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
680 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
681 * for very small objects we may end up with more than this so as not
682 * to waste space in the minimal allocation of a single page. Also for
683 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
684 * lower than this and we will fail.
685 */
686 static int
687 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
688 {
689 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
690
691 if (skc->skc_flags & KMC_OFFSLAB) {
692 tgt_objs = spl_kmem_cache_obj_per_slab;
693 tgt_size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
694
695 if ((skc->skc_flags & KMC_KMEM) &&
696 (spl_obj_size(skc) > (SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE)))
697 return (-ENOSPC);
698 } else {
699 sks_size = spl_sks_size(skc);
700 obj_size = spl_obj_size(skc);
701 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
702 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
703
704 /*
705 * KMC_KMEM slabs are allocated by __get_free_pages() which
706 * rounds up to the nearest order. Knowing this the size
707 * should be rounded up to the next power of two with a hard
708 * maximum defined by the maximum allowed allocation order.
709 */
710 if (skc->skc_flags & KMC_KMEM) {
711 max_size = SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE;
712 tgt_size = MIN(max_size,
713 PAGE_SIZE * (1 << MAX(get_order(tgt_size) - 1, 1)));
714 }
715
716 if (tgt_size <= max_size) {
717 tgt_objs = (tgt_size - sks_size) / obj_size;
718 } else {
719 tgt_objs = (max_size - sks_size) / obj_size;
720 tgt_size = (tgt_objs * obj_size) + sks_size;
721 }
722 }
723
724 if (tgt_objs == 0)
725 return (-ENOSPC);
726
727 *objs = tgt_objs;
728 *size = tgt_size;
729
730 return (0);
731 }
732
733 /*
734 * Make a guess at reasonable per-cpu magazine size based on the size of
735 * each object and the cost of caching N of them in each magazine. Long
736 * term this should really adapt based on an observed usage heuristic.
737 */
738 static int
739 spl_magazine_size(spl_kmem_cache_t *skc)
740 {
741 uint32_t obj_size = spl_obj_size(skc);
742 int size;
743
744 if (spl_kmem_cache_magazine_size > 0)
745 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
746
747 /* Per-magazine sizes below assume a 4Kib page size */
748 if (obj_size > (PAGE_SIZE * 256))
749 size = 4; /* Minimum 4Mib per-magazine */
750 else if (obj_size > (PAGE_SIZE * 32))
751 size = 16; /* Minimum 2Mib per-magazine */
752 else if (obj_size > (PAGE_SIZE))
753 size = 64; /* Minimum 256Kib per-magazine */
754 else if (obj_size > (PAGE_SIZE / 4))
755 size = 128; /* Minimum 128Kib per-magazine */
756 else
757 size = 256;
758
759 return (size);
760 }
761
762 /*
763 * Allocate a per-cpu magazine to associate with a specific core.
764 */
765 static spl_kmem_magazine_t *
766 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
767 {
768 spl_kmem_magazine_t *skm;
769 int size = sizeof (spl_kmem_magazine_t) +
770 sizeof (void *) * skc->skc_mag_size;
771
772 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
773 if (skm) {
774 skm->skm_magic = SKM_MAGIC;
775 skm->skm_avail = 0;
776 skm->skm_size = skc->skc_mag_size;
777 skm->skm_refill = skc->skc_mag_refill;
778 skm->skm_cache = skc;
779 skm->skm_age = jiffies;
780 skm->skm_cpu = cpu;
781 }
782
783 return (skm);
784 }
785
786 /*
787 * Free a per-cpu magazine associated with a specific core.
788 */
789 static void
790 spl_magazine_free(spl_kmem_magazine_t *skm)
791 {
792 ASSERT(skm->skm_magic == SKM_MAGIC);
793 ASSERT(skm->skm_avail == 0);
794 kfree(skm);
795 }
796
797 /*
798 * Create all pre-cpu magazines of reasonable sizes.
799 */
800 static int
801 spl_magazine_create(spl_kmem_cache_t *skc)
802 {
803 int i;
804
805 if (skc->skc_flags & KMC_NOMAGAZINE)
806 return (0);
807
808 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
809 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
810 skc->skc_mag_size = spl_magazine_size(skc);
811 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
812
813 for_each_possible_cpu(i) {
814 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
815 if (!skc->skc_mag[i]) {
816 for (i--; i >= 0; i--)
817 spl_magazine_free(skc->skc_mag[i]);
818
819 kfree(skc->skc_mag);
820 return (-ENOMEM);
821 }
822 }
823
824 return (0);
825 }
826
827 /*
828 * Destroy all pre-cpu magazines.
829 */
830 static void
831 spl_magazine_destroy(spl_kmem_cache_t *skc)
832 {
833 spl_kmem_magazine_t *skm;
834 int i;
835
836 if (skc->skc_flags & KMC_NOMAGAZINE)
837 return;
838
839 for_each_possible_cpu(i) {
840 skm = skc->skc_mag[i];
841 spl_cache_flush(skc, skm, skm->skm_avail);
842 spl_magazine_free(skm);
843 }
844
845 kfree(skc->skc_mag);
846 }
847
848 /*
849 * Create a object cache based on the following arguments:
850 * name cache name
851 * size cache object size
852 * align cache object alignment
853 * ctor cache object constructor
854 * dtor cache object destructor
855 * reclaim cache object reclaim
856 * priv cache private data for ctor/dtor/reclaim
857 * vmp unused must be NULL
858 * flags
859 * KMC_NOTOUCH Disable cache object aging (unsupported)
860 * KMC_NODEBUG Disable debugging (unsupported)
861 * KMC_NOHASH Disable hashing (unsupported)
862 * KMC_QCACHE Disable qcache (unsupported)
863 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
864 * KMC_KMEM Force kmem backed cache
865 * KMC_VMEM Force vmem backed cache
866 * KMC_SLAB Force Linux slab backed cache
867 * KMC_OFFSLAB Locate objects off the slab
868 */
869 spl_kmem_cache_t *
870 spl_kmem_cache_create(char *name, size_t size, size_t align,
871 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
872 void *priv, void *vmp, int flags)
873 {
874 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
875 spl_kmem_cache_t *skc;
876 int rc;
877
878 /*
879 * Unsupported flags
880 */
881 ASSERT0(flags & KMC_NOMAGAZINE);
882 ASSERT0(flags & KMC_NOHASH);
883 ASSERT0(flags & KMC_QCACHE);
884 ASSERT(vmp == NULL);
885
886 might_sleep();
887
888 skc = kzalloc(sizeof (*skc), lflags);
889 if (skc == NULL)
890 return (NULL);
891
892 skc->skc_magic = SKC_MAGIC;
893 skc->skc_name_size = strlen(name) + 1;
894 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
895 if (skc->skc_name == NULL) {
896 kfree(skc);
897 return (NULL);
898 }
899 strncpy(skc->skc_name, name, skc->skc_name_size);
900
901 skc->skc_ctor = ctor;
902 skc->skc_dtor = dtor;
903 skc->skc_reclaim = reclaim;
904 skc->skc_private = priv;
905 skc->skc_vmp = vmp;
906 skc->skc_linux_cache = NULL;
907 skc->skc_flags = flags;
908 skc->skc_obj_size = size;
909 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
910 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
911 skc->skc_reap = SPL_KMEM_CACHE_REAP;
912 atomic_set(&skc->skc_ref, 0);
913
914 INIT_LIST_HEAD(&skc->skc_list);
915 INIT_LIST_HEAD(&skc->skc_complete_list);
916 INIT_LIST_HEAD(&skc->skc_partial_list);
917 skc->skc_emergency_tree = RB_ROOT;
918 spin_lock_init(&skc->skc_lock);
919 init_waitqueue_head(&skc->skc_waitq);
920 skc->skc_slab_fail = 0;
921 skc->skc_slab_create = 0;
922 skc->skc_slab_destroy = 0;
923 skc->skc_slab_total = 0;
924 skc->skc_slab_alloc = 0;
925 skc->skc_slab_max = 0;
926 skc->skc_obj_total = 0;
927 skc->skc_obj_alloc = 0;
928 skc->skc_obj_max = 0;
929 skc->skc_obj_deadlock = 0;
930 skc->skc_obj_emergency = 0;
931 skc->skc_obj_emergency_max = 0;
932
933 /*
934 * Verify the requested alignment restriction is sane.
935 */
936 if (align) {
937 VERIFY(ISP2(align));
938 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
939 VERIFY3U(align, <=, PAGE_SIZE);
940 skc->skc_obj_align = align;
941 }
942
943 /*
944 * When no specific type of slab is requested (kmem, vmem, or
945 * linuxslab) then select a cache type based on the object size
946 * and default tunables.
947 */
948 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
949
950 /*
951 * Objects smaller than spl_kmem_cache_slab_limit can
952 * use the Linux slab for better space-efficiency. By
953 * default this functionality is disabled until its
954 * performance characteristics are fully understood.
955 */
956 if (spl_kmem_cache_slab_limit &&
957 size <= (size_t)spl_kmem_cache_slab_limit)
958 skc->skc_flags |= KMC_SLAB;
959
960 /*
961 * Small objects, less than spl_kmem_cache_kmem_limit per
962 * object should use kmem because their slabs are small.
963 */
964 else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
965 skc->skc_flags |= KMC_KMEM;
966
967 /*
968 * All other objects are considered large and are placed
969 * on vmem backed slabs.
970 */
971 else
972 skc->skc_flags |= KMC_VMEM;
973 }
974
975 /*
976 * Given the type of slab allocate the required resources.
977 */
978 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
979 rc = spl_slab_size(skc,
980 &skc->skc_slab_objs, &skc->skc_slab_size);
981 if (rc)
982 goto out;
983
984 rc = spl_magazine_create(skc);
985 if (rc)
986 goto out;
987 } else {
988 unsigned long slabflags = 0;
989
990 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
991 rc = EINVAL;
992 goto out;
993 }
994
995 #if defined(SLAB_USERCOPY)
996 /*
997 * Required for PAX-enabled kernels if the slab is to be
998 * used for coping between user and kernel space.
999 */
1000 slabflags |= SLAB_USERCOPY;
1001 #endif
1002
1003 skc->skc_linux_cache = kmem_cache_create(
1004 skc->skc_name, size, align, slabflags, NULL);
1005 if (skc->skc_linux_cache == NULL) {
1006 rc = ENOMEM;
1007 goto out;
1008 }
1009
1010 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
1011 skc->skc_linux_cache->allocflags |= __GFP_COMP;
1012 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
1013 skc->skc_linux_cache->gfpflags |= __GFP_COMP;
1014 #endif
1015 skc->skc_flags |= KMC_NOMAGAZINE;
1016 }
1017
1018 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
1019 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1020 spl_cache_age, skc, TQ_SLEEP,
1021 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1022
1023 down_write(&spl_kmem_cache_sem);
1024 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1025 up_write(&spl_kmem_cache_sem);
1026
1027 return (skc);
1028 out:
1029 kfree(skc->skc_name);
1030 kfree(skc);
1031 return (NULL);
1032 }
1033 EXPORT_SYMBOL(spl_kmem_cache_create);
1034
1035 /*
1036 * Register a move callback for cache defragmentation.
1037 * XXX: Unimplemented but harmless to stub out for now.
1038 */
1039 void
1040 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1041 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1042 {
1043 ASSERT(move != NULL);
1044 }
1045 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1046
1047 /*
1048 * Destroy a cache and all objects associated with the cache.
1049 */
1050 void
1051 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1052 {
1053 DECLARE_WAIT_QUEUE_HEAD(wq);
1054 taskqid_t id;
1055
1056 ASSERT(skc->skc_magic == SKC_MAGIC);
1057 ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
1058
1059 down_write(&spl_kmem_cache_sem);
1060 list_del_init(&skc->skc_list);
1061 up_write(&spl_kmem_cache_sem);
1062
1063 /* Cancel any and wait for any pending delayed tasks */
1064 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1065
1066 spin_lock(&skc->skc_lock);
1067 id = skc->skc_taskqid;
1068 spin_unlock(&skc->skc_lock);
1069
1070 taskq_cancel_id(spl_kmem_cache_taskq, id);
1071
1072 /*
1073 * Wait until all current callers complete, this is mainly
1074 * to catch the case where a low memory situation triggers a
1075 * cache reaping action which races with this destroy.
1076 */
1077 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1078
1079 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
1080 spl_magazine_destroy(skc);
1081 spl_slab_reclaim(skc);
1082 } else {
1083 ASSERT(skc->skc_flags & KMC_SLAB);
1084 kmem_cache_destroy(skc->skc_linux_cache);
1085 }
1086
1087 spin_lock(&skc->skc_lock);
1088
1089 /*
1090 * Validate there are no objects in use and free all the
1091 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1092 */
1093 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1094 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1095 ASSERT3U(skc->skc_slab_total, ==, 0);
1096 ASSERT3U(skc->skc_obj_total, ==, 0);
1097 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1098 ASSERT(list_empty(&skc->skc_complete_list));
1099
1100 spin_unlock(&skc->skc_lock);
1101
1102 kfree(skc->skc_name);
1103 kfree(skc);
1104 }
1105 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1106
1107 /*
1108 * Allocate an object from a slab attached to the cache. This is used to
1109 * repopulate the per-cpu magazine caches in batches when they run low.
1110 */
1111 static void *
1112 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1113 {
1114 spl_kmem_obj_t *sko;
1115
1116 ASSERT(skc->skc_magic == SKC_MAGIC);
1117 ASSERT(sks->sks_magic == SKS_MAGIC);
1118 ASSERT(spin_is_locked(&skc->skc_lock));
1119
1120 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1121 ASSERT(sko->sko_magic == SKO_MAGIC);
1122 ASSERT(sko->sko_addr != NULL);
1123
1124 /* Remove from sks_free_list */
1125 list_del_init(&sko->sko_list);
1126
1127 sks->sks_age = jiffies;
1128 sks->sks_ref++;
1129 skc->skc_obj_alloc++;
1130
1131 /* Track max obj usage statistics */
1132 if (skc->skc_obj_alloc > skc->skc_obj_max)
1133 skc->skc_obj_max = skc->skc_obj_alloc;
1134
1135 /* Track max slab usage statistics */
1136 if (sks->sks_ref == 1) {
1137 skc->skc_slab_alloc++;
1138
1139 if (skc->skc_slab_alloc > skc->skc_slab_max)
1140 skc->skc_slab_max = skc->skc_slab_alloc;
1141 }
1142
1143 return (sko->sko_addr);
1144 }
1145
1146 /*
1147 * Generic slab allocation function to run by the global work queues.
1148 * It is responsible for allocating a new slab, linking it in to the list
1149 * of partial slabs, and then waking any waiters.
1150 */
1151 static void
1152 spl_cache_grow_work(void *data)
1153 {
1154 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1155 spl_kmem_cache_t *skc = ska->ska_cache;
1156 spl_kmem_slab_t *sks;
1157
1158 #if defined(PF_MEMALLOC_NOIO)
1159 unsigned noio_flag = memalloc_noio_save();
1160 sks = spl_slab_alloc(skc, ska->ska_flags);
1161 memalloc_noio_restore(noio_flag);
1162 #else
1163 fstrans_cookie_t cookie = spl_fstrans_mark();
1164 sks = spl_slab_alloc(skc, ska->ska_flags);
1165 spl_fstrans_unmark(cookie);
1166 #endif
1167 spin_lock(&skc->skc_lock);
1168 if (sks) {
1169 skc->skc_slab_total++;
1170 skc->skc_obj_total += sks->sks_objs;
1171 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1172 }
1173
1174 atomic_dec(&skc->skc_ref);
1175 smp_mb__before_atomic();
1176 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1177 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1178 smp_mb__after_atomic();
1179 wake_up_all(&skc->skc_waitq);
1180 spin_unlock(&skc->skc_lock);
1181
1182 kfree(ska);
1183 }
1184
1185 /*
1186 * Returns non-zero when a new slab should be available.
1187 */
1188 static int
1189 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1190 {
1191 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1192 }
1193
1194 /*
1195 * No available objects on any slabs, create a new slab. Note that this
1196 * functionality is disabled for KMC_SLAB caches which are backed by the
1197 * Linux slab.
1198 */
1199 static int
1200 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1201 {
1202 int remaining, rc = 0;
1203
1204 ASSERT0(flags & ~KM_PUBLIC_MASK);
1205 ASSERT(skc->skc_magic == SKC_MAGIC);
1206 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1207 might_sleep();
1208 *obj = NULL;
1209
1210 /*
1211 * Before allocating a new slab wait for any reaping to complete and
1212 * then return so the local magazine can be rechecked for new objects.
1213 */
1214 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1215 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1216 TASK_UNINTERRUPTIBLE);
1217 return (rc ? rc : -EAGAIN);
1218 }
1219
1220 /*
1221 * This is handled by dispatching a work request to the global work
1222 * queue. This allows us to asynchronously allocate a new slab while
1223 * retaining the ability to safely fall back to a smaller synchronous
1224 * allocations to ensure forward progress is always maintained.
1225 */
1226 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1227 spl_kmem_alloc_t *ska;
1228
1229 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1230 if (ska == NULL) {
1231 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1232 smp_mb__after_atomic();
1233 wake_up_all(&skc->skc_waitq);
1234 return (-ENOMEM);
1235 }
1236
1237 atomic_inc(&skc->skc_ref);
1238 ska->ska_cache = skc;
1239 ska->ska_flags = flags;
1240 taskq_init_ent(&ska->ska_tqe);
1241 taskq_dispatch_ent(spl_kmem_cache_taskq,
1242 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1243 }
1244
1245 /*
1246 * The goal here is to only detect the rare case where a virtual slab
1247 * allocation has deadlocked. We must be careful to minimize the use
1248 * of emergency objects which are more expensive to track. Therefore,
1249 * we set a very long timeout for the asynchronous allocation and if
1250 * the timeout is reached the cache is flagged as deadlocked. From
1251 * this point only new emergency objects will be allocated until the
1252 * asynchronous allocation completes and clears the deadlocked flag.
1253 */
1254 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1255 rc = spl_emergency_alloc(skc, flags, obj);
1256 } else {
1257 remaining = wait_event_timeout(skc->skc_waitq,
1258 spl_cache_grow_wait(skc), HZ / 10);
1259
1260 if (!remaining) {
1261 spin_lock(&skc->skc_lock);
1262 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1263 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1264 skc->skc_obj_deadlock++;
1265 }
1266 spin_unlock(&skc->skc_lock);
1267 }
1268
1269 rc = -ENOMEM;
1270 }
1271
1272 return (rc);
1273 }
1274
1275 /*
1276 * Refill a per-cpu magazine with objects from the slabs for this cache.
1277 * Ideally the magazine can be repopulated using existing objects which have
1278 * been released, however if we are unable to locate enough free objects new
1279 * slabs of objects will be created. On success NULL is returned, otherwise
1280 * the address of a single emergency object is returned for use by the caller.
1281 */
1282 static void *
1283 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1284 {
1285 spl_kmem_slab_t *sks;
1286 int count = 0, rc, refill;
1287 void *obj = NULL;
1288
1289 ASSERT(skc->skc_magic == SKC_MAGIC);
1290 ASSERT(skm->skm_magic == SKM_MAGIC);
1291
1292 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1293 spin_lock(&skc->skc_lock);
1294
1295 while (refill > 0) {
1296 /* No slabs available we may need to grow the cache */
1297 if (list_empty(&skc->skc_partial_list)) {
1298 spin_unlock(&skc->skc_lock);
1299
1300 local_irq_enable();
1301 rc = spl_cache_grow(skc, flags, &obj);
1302 local_irq_disable();
1303
1304 /* Emergency object for immediate use by caller */
1305 if (rc == 0 && obj != NULL)
1306 return (obj);
1307
1308 if (rc)
1309 goto out;
1310
1311 /* Rescheduled to different CPU skm is not local */
1312 if (skm != skc->skc_mag[smp_processor_id()])
1313 goto out;
1314
1315 /*
1316 * Potentially rescheduled to the same CPU but
1317 * allocations may have occurred from this CPU while
1318 * we were sleeping so recalculate max refill.
1319 */
1320 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1321
1322 spin_lock(&skc->skc_lock);
1323 continue;
1324 }
1325
1326 /* Grab the next available slab */
1327 sks = list_entry((&skc->skc_partial_list)->next,
1328 spl_kmem_slab_t, sks_list);
1329 ASSERT(sks->sks_magic == SKS_MAGIC);
1330 ASSERT(sks->sks_ref < sks->sks_objs);
1331 ASSERT(!list_empty(&sks->sks_free_list));
1332
1333 /*
1334 * Consume as many objects as needed to refill the requested
1335 * cache. We must also be careful not to overfill it.
1336 */
1337 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1338 ++count) {
1339 ASSERT(skm->skm_avail < skm->skm_size);
1340 ASSERT(count < skm->skm_size);
1341 skm->skm_objs[skm->skm_avail++] =
1342 spl_cache_obj(skc, sks);
1343 }
1344
1345 /* Move slab to skc_complete_list when full */
1346 if (sks->sks_ref == sks->sks_objs) {
1347 list_del(&sks->sks_list);
1348 list_add(&sks->sks_list, &skc->skc_complete_list);
1349 }
1350 }
1351
1352 spin_unlock(&skc->skc_lock);
1353 out:
1354 return (NULL);
1355 }
1356
1357 /*
1358 * Release an object back to the slab from which it came.
1359 */
1360 static void
1361 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1362 {
1363 spl_kmem_slab_t *sks = NULL;
1364 spl_kmem_obj_t *sko = NULL;
1365
1366 ASSERT(skc->skc_magic == SKC_MAGIC);
1367 ASSERT(spin_is_locked(&skc->skc_lock));
1368
1369 sko = spl_sko_from_obj(skc, obj);
1370 ASSERT(sko->sko_magic == SKO_MAGIC);
1371 sks = sko->sko_slab;
1372 ASSERT(sks->sks_magic == SKS_MAGIC);
1373 ASSERT(sks->sks_cache == skc);
1374 list_add(&sko->sko_list, &sks->sks_free_list);
1375
1376 sks->sks_age = jiffies;
1377 sks->sks_ref--;
1378 skc->skc_obj_alloc--;
1379
1380 /*
1381 * Move slab to skc_partial_list when no longer full. Slabs
1382 * are added to the head to keep the partial list is quasi-full
1383 * sorted order. Fuller at the head, emptier at the tail.
1384 */
1385 if (sks->sks_ref == (sks->sks_objs - 1)) {
1386 list_del(&sks->sks_list);
1387 list_add(&sks->sks_list, &skc->skc_partial_list);
1388 }
1389
1390 /*
1391 * Move empty slabs to the end of the partial list so
1392 * they can be easily found and freed during reclamation.
1393 */
1394 if (sks->sks_ref == 0) {
1395 list_del(&sks->sks_list);
1396 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1397 skc->skc_slab_alloc--;
1398 }
1399 }
1400
1401 /*
1402 * Allocate an object from the per-cpu magazine, or if the magazine
1403 * is empty directly allocate from a slab and repopulate the magazine.
1404 */
1405 void *
1406 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1407 {
1408 spl_kmem_magazine_t *skm;
1409 void *obj = NULL;
1410
1411 ASSERT0(flags & ~KM_PUBLIC_MASK);
1412 ASSERT(skc->skc_magic == SKC_MAGIC);
1413 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1414
1415 /*
1416 * Allocate directly from a Linux slab. All optimizations are left
1417 * to the underlying cache we only need to guarantee that KM_SLEEP
1418 * callers will never fail.
1419 */
1420 if (skc->skc_flags & KMC_SLAB) {
1421 struct kmem_cache *slc = skc->skc_linux_cache;
1422 do {
1423 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1424 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1425
1426 goto ret;
1427 }
1428
1429 local_irq_disable();
1430
1431 restart:
1432 /*
1433 * Safe to update per-cpu structure without lock, but
1434 * in the restart case we must be careful to reacquire
1435 * the local magazine since this may have changed
1436 * when we need to grow the cache.
1437 */
1438 skm = skc->skc_mag[smp_processor_id()];
1439 ASSERT(skm->skm_magic == SKM_MAGIC);
1440
1441 if (likely(skm->skm_avail)) {
1442 /* Object available in CPU cache, use it */
1443 obj = skm->skm_objs[--skm->skm_avail];
1444 skm->skm_age = jiffies;
1445 } else {
1446 obj = spl_cache_refill(skc, skm, flags);
1447 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1448 goto restart;
1449
1450 local_irq_enable();
1451 goto ret;
1452 }
1453
1454 local_irq_enable();
1455 ASSERT(obj);
1456 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1457
1458 ret:
1459 /* Pre-emptively migrate object to CPU L1 cache */
1460 if (obj) {
1461 if (obj && skc->skc_ctor)
1462 skc->skc_ctor(obj, skc->skc_private, flags);
1463 else
1464 prefetchw(obj);
1465 }
1466
1467 return (obj);
1468 }
1469 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1470
1471 /*
1472 * Free an object back to the local per-cpu magazine, there is no
1473 * guarantee that this is the same magazine the object was originally
1474 * allocated from. We may need to flush entire from the magazine
1475 * back to the slabs to make space.
1476 */
1477 void
1478 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1479 {
1480 spl_kmem_magazine_t *skm;
1481 unsigned long flags;
1482 int do_reclaim = 0;
1483 int do_emergency = 0;
1484
1485 ASSERT(skc->skc_magic == SKC_MAGIC);
1486 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1487
1488 /*
1489 * Run the destructor
1490 */
1491 if (skc->skc_dtor)
1492 skc->skc_dtor(obj, skc->skc_private);
1493
1494 /*
1495 * Free the object from the Linux underlying Linux slab.
1496 */
1497 if (skc->skc_flags & KMC_SLAB) {
1498 kmem_cache_free(skc->skc_linux_cache, obj);
1499 return;
1500 }
1501
1502 /*
1503 * While a cache has outstanding emergency objects all freed objects
1504 * must be checked. However, since emergency objects will never use
1505 * a virtual address these objects can be safely excluded as an
1506 * optimization.
1507 */
1508 if (!is_vmalloc_addr(obj)) {
1509 spin_lock(&skc->skc_lock);
1510 do_emergency = (skc->skc_obj_emergency > 0);
1511 spin_unlock(&skc->skc_lock);
1512
1513 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1514 return;
1515 }
1516
1517 local_irq_save(flags);
1518
1519 /*
1520 * Safe to update per-cpu structure without lock, but
1521 * no remote memory allocation tracking is being performed
1522 * it is entirely possible to allocate an object from one
1523 * CPU cache and return it to another.
1524 */
1525 skm = skc->skc_mag[smp_processor_id()];
1526 ASSERT(skm->skm_magic == SKM_MAGIC);
1527
1528 /*
1529 * Per-CPU cache full, flush it to make space for this object,
1530 * this may result in an empty slab which can be reclaimed once
1531 * interrupts are re-enabled.
1532 */
1533 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1534 spl_cache_flush(skc, skm, skm->skm_refill);
1535 do_reclaim = 1;
1536 }
1537
1538 /* Available space in cache, use it */
1539 skm->skm_objs[skm->skm_avail++] = obj;
1540
1541 local_irq_restore(flags);
1542
1543 if (do_reclaim)
1544 spl_slab_reclaim(skc);
1545 }
1546 EXPORT_SYMBOL(spl_kmem_cache_free);
1547
1548 /*
1549 * The generic shrinker function for all caches. Under Linux a shrinker
1550 * may not be tightly coupled with a slab cache. In fact Linux always
1551 * systematically tries calling all registered shrinker callbacks which
1552 * report that they contain unused objects. Because of this we only
1553 * register one shrinker function in the shim layer for all slab caches.
1554 * We always attempt to shrink all caches when this generic shrinker
1555 * is called.
1556 *
1557 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1558 * number of objects which can potentially be freed. If it is nonzero,
1559 * the request is to free that many objects.
1560 *
1561 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1562 * in struct shrinker and also require the shrinker to return the number
1563 * of objects freed.
1564 *
1565 * Older kernels require the shrinker to return the number of freeable
1566 * objects following the freeing of nr_to_free.
1567 *
1568 * Linux semantics differ from those under Solaris, which are to
1569 * free all available objects which may (and probably will) be more
1570 * objects than the requested nr_to_scan.
1571 */
1572 static spl_shrinker_t
1573 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1574 struct shrink_control *sc)
1575 {
1576 spl_kmem_cache_t *skc;
1577 int alloc = 0;
1578
1579 /*
1580 * No shrinking in a transaction context. Can cause deadlocks.
1581 */
1582 if (sc->nr_to_scan && spl_fstrans_check())
1583 return (SHRINK_STOP);
1584
1585 down_read(&spl_kmem_cache_sem);
1586 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1587 if (sc->nr_to_scan) {
1588 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1589 uint64_t oldalloc = skc->skc_obj_alloc;
1590 spl_kmem_cache_reap_now(skc,
1591 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1592 if (oldalloc > skc->skc_obj_alloc)
1593 alloc += oldalloc - skc->skc_obj_alloc;
1594 #else
1595 spl_kmem_cache_reap_now(skc,
1596 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1597 alloc += skc->skc_obj_alloc;
1598 #endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1599 } else {
1600 /* Request to query number of freeable objects */
1601 alloc += skc->skc_obj_alloc;
1602 }
1603 }
1604 up_read(&spl_kmem_cache_sem);
1605
1606 /*
1607 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1608 * This functionality only exists to work around a rare issue where
1609 * shrink_slabs() is repeatedly invoked by many cores causing the
1610 * system to thrash.
1611 */
1612 if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
1613 return (SHRINK_STOP);
1614
1615 return (MAX(alloc, 0));
1616 }
1617
1618 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1619
1620 /*
1621 * Call the registered reclaim function for a cache. Depending on how
1622 * many and which objects are released it may simply repopulate the
1623 * local magazine which will then need to age-out. Objects which cannot
1624 * fit in the magazine we will be released back to their slabs which will
1625 * also need to age out before being release. This is all just best
1626 * effort and we do not want to thrash creating and destroying slabs.
1627 */
1628 void
1629 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1630 {
1631 ASSERT(skc->skc_magic == SKC_MAGIC);
1632 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1633
1634 atomic_inc(&skc->skc_ref);
1635
1636 /*
1637 * Execute the registered reclaim callback if it exists.
1638 */
1639 if (skc->skc_flags & KMC_SLAB) {
1640 if (skc->skc_reclaim)
1641 skc->skc_reclaim(skc->skc_private);
1642 goto out;
1643 }
1644
1645 /*
1646 * Prevent concurrent cache reaping when contended.
1647 */
1648 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1649 goto out;
1650
1651 /*
1652 * When a reclaim function is available it may be invoked repeatedly
1653 * until at least a single slab can be freed. This ensures that we
1654 * do free memory back to the system. This helps minimize the chance
1655 * of an OOM event when the bulk of memory is used by the slab.
1656 *
1657 * When free slabs are already available the reclaim callback will be
1658 * skipped. Additionally, if no forward progress is detected despite
1659 * a reclaim function the cache will be skipped to avoid deadlock.
1660 *
1661 * Longer term this would be the correct place to add the code which
1662 * repacks the slabs in order minimize fragmentation.
1663 */
1664 if (skc->skc_reclaim) {
1665 uint64_t objects = UINT64_MAX;
1666 int do_reclaim;
1667
1668 do {
1669 spin_lock(&skc->skc_lock);
1670 do_reclaim =
1671 (skc->skc_slab_total > 0) &&
1672 ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
1673 (skc->skc_obj_alloc < objects);
1674
1675 objects = skc->skc_obj_alloc;
1676 spin_unlock(&skc->skc_lock);
1677
1678 if (do_reclaim)
1679 skc->skc_reclaim(skc->skc_private);
1680
1681 } while (do_reclaim);
1682 }
1683
1684 /* Reclaim from the magazine and free all now empty slabs. */
1685 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
1686 spl_kmem_magazine_t *skm;
1687 unsigned long irq_flags;
1688
1689 local_irq_save(irq_flags);
1690 skm = skc->skc_mag[smp_processor_id()];
1691 spl_cache_flush(skc, skm, skm->skm_avail);
1692 local_irq_restore(irq_flags);
1693 }
1694
1695 spl_slab_reclaim(skc);
1696 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1697 smp_mb__after_atomic();
1698 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1699 out:
1700 atomic_dec(&skc->skc_ref);
1701 }
1702 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1703
1704 /*
1705 * Reap all free slabs from all registered caches.
1706 */
1707 void
1708 spl_kmem_reap(void)
1709 {
1710 struct shrink_control sc;
1711
1712 sc.nr_to_scan = KMC_REAP_CHUNK;
1713 sc.gfp_mask = GFP_KERNEL;
1714
1715 (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
1716 }
1717 EXPORT_SYMBOL(spl_kmem_reap);
1718
1719 int
1720 spl_kmem_cache_init(void)
1721 {
1722 init_rwsem(&spl_kmem_cache_sem);
1723 INIT_LIST_HEAD(&spl_kmem_cache_list);
1724 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1725 spl_kmem_cache_kmem_threads, maxclsyspri,
1726 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1727 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1728 spl_register_shrinker(&spl_kmem_cache_shrinker);
1729
1730 return (0);
1731 }
1732
1733 void
1734 spl_kmem_cache_fini(void)
1735 {
1736 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
1737 taskq_destroy(spl_kmem_cache_taskq);
1738 }