]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-taskq.c
5c22544b8b14c53b9234da28ba0af5e59e463ae6
[mirror_spl.git] / module / spl / spl-taskq.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Task Queue Implementation.
25 \*****************************************************************************/
26
27 #include <sys/taskq.h>
28 #include <sys/kmem.h>
29 #include <spl-debug.h>
30
31 #ifdef SS_DEBUG_SUBSYS
32 #undef SS_DEBUG_SUBSYS
33 #endif
34
35 #define SS_DEBUG_SUBSYS SS_TASKQ
36
37 /* Global system-wide dynamic task queue available for all consumers */
38 taskq_t *system_taskq;
39 EXPORT_SYMBOL(system_taskq);
40
41 /*
42 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
43 * is not attached to the free, work, or pending taskq lists.
44 */
45 static taskq_ent_t *
46 task_alloc(taskq_t *tq, uint_t flags)
47 {
48 taskq_ent_t *t;
49 int count = 0;
50 SENTRY;
51
52 ASSERT(tq);
53 ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP)); /* One set */
54 ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
55 ASSERT(spin_is_locked(&tq->tq_lock));
56 retry:
57 /* Acquire taskq_ent_t's from free list if available */
58 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
59 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
60 list_del_init(&t->tqent_list);
61 SRETURN(t);
62 }
63
64 /* Free list is empty and memory allocations are prohibited */
65 if (flags & TQ_NOALLOC)
66 SRETURN(NULL);
67
68 /* Hit maximum taskq_ent_t pool size */
69 if (tq->tq_nalloc >= tq->tq_maxalloc) {
70 if (flags & TQ_NOSLEEP)
71 SRETURN(NULL);
72
73 /*
74 * Sleep periodically polling the free list for an available
75 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
76 * but we cannot block forever waiting for an taskq_entq_t to
77 * show up in the free list, otherwise a deadlock can happen.
78 *
79 * Therefore, we need to allocate a new task even if the number
80 * of allocated tasks is above tq->tq_maxalloc, but we still
81 * end up delaying the task allocation by one second, thereby
82 * throttling the task dispatch rate.
83 */
84 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
85 schedule_timeout(HZ / 100);
86 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
87 if (count < 100)
88 SGOTO(retry, count++);
89 }
90
91 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
92 t = kmem_alloc(sizeof(taskq_ent_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
93 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
94
95 if (t) {
96 spin_lock_init(&t->tqent_lock);
97 INIT_LIST_HEAD(&t->tqent_list);
98 t->tqent_id = 0;
99 t->tqent_func = NULL;
100 t->tqent_arg = NULL;
101 tq->tq_nalloc++;
102 }
103
104 SRETURN(t);
105 }
106
107 /*
108 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
109 * to already be removed from the free, work, or pending taskq lists.
110 */
111 static void
112 task_free(taskq_t *tq, taskq_ent_t *t)
113 {
114 SENTRY;
115
116 ASSERT(tq);
117 ASSERT(t);
118 ASSERT(spin_is_locked(&tq->tq_lock));
119 ASSERT(list_empty(&t->tqent_list));
120
121 kmem_free(t, sizeof(taskq_ent_t));
122 tq->tq_nalloc--;
123
124 SEXIT;
125 }
126
127 /*
128 * NOTE: Must be called with tq->tq_lock held, either destroys the
129 * taskq_ent_t if too many exist or moves it to the free list for later use.
130 */
131 static void
132 task_done(taskq_t *tq, taskq_ent_t *t)
133 {
134 SENTRY;
135 ASSERT(tq);
136 ASSERT(t);
137 ASSERT(spin_is_locked(&tq->tq_lock));
138
139 list_del_init(&t->tqent_list);
140
141 if (tq->tq_nalloc <= tq->tq_minalloc) {
142 t->tqent_id = 0;
143 t->tqent_func = NULL;
144 t->tqent_arg = NULL;
145 list_add_tail(&t->tqent_list, &tq->tq_free_list);
146 } else {
147 task_free(tq, t);
148 }
149
150 SEXIT;
151 }
152
153 /*
154 * As tasks are submitted to the task queue they are assigned a
155 * monotonically increasing taskqid and added to the tail of the pending
156 * list. As worker threads become available the tasks are removed from
157 * the head of the pending or priority list, giving preference to the
158 * priority list. The tasks are then added to the work list, preserving
159 * the ordering by taskqid. Finally, as tasks complete they are removed
160 * from the work list. This means that the pending and work lists are
161 * always kept sorted by taskqid. Thus the lowest outstanding
162 * incomplete taskqid can be determined simply by checking the min
163 * taskqid for each head item on the pending, priority, and work list.
164 * This value is stored in tq->tq_lowest_id and only updated to the new
165 * lowest id when the previous lowest id completes. All taskqids lower
166 * than tq->tq_lowest_id must have completed. It is also possible
167 * larger taskqid's have completed because they may be processed in
168 * parallel by several worker threads. However, this is not a problem
169 * because the behavior of taskq_wait_id() is to block until all
170 * previously submitted taskqid's have completed.
171 *
172 * XXX: Taskqid_t wrapping is not handled. However, taskqid_t's are
173 * 64-bit values so even if a taskq is processing 2^24 (16,777,216)
174 * taskqid_ts per second it will still take 2^40 seconds, 34,865 years,
175 * before the wrap occurs. I can live with that for now.
176 */
177 static int
178 taskq_wait_check(taskq_t *tq, taskqid_t id)
179 {
180 int rc;
181
182 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
183 rc = (id < tq->tq_lowest_id);
184 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
185
186 SRETURN(rc);
187 }
188
189 void
190 __taskq_wait_id(taskq_t *tq, taskqid_t id)
191 {
192 SENTRY;
193 ASSERT(tq);
194
195 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
196
197 SEXIT;
198 }
199 EXPORT_SYMBOL(__taskq_wait_id);
200
201 void
202 __taskq_wait(taskq_t *tq)
203 {
204 taskqid_t id;
205 SENTRY;
206 ASSERT(tq);
207
208 /* Wait for the largest outstanding taskqid */
209 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
210 id = tq->tq_next_id - 1;
211 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
212
213 __taskq_wait_id(tq, id);
214
215 SEXIT;
216
217 }
218 EXPORT_SYMBOL(__taskq_wait);
219
220 int
221 __taskq_member(taskq_t *tq, void *t)
222 {
223 struct list_head *l;
224 taskq_thread_t *tqt;
225 SENTRY;
226
227 ASSERT(tq);
228 ASSERT(t);
229
230 list_for_each(l, &tq->tq_thread_list) {
231 tqt = list_entry(l, taskq_thread_t, tqt_thread_list);
232 if (tqt->tqt_thread == (struct task_struct *)t)
233 SRETURN(1);
234 }
235
236 SRETURN(0);
237 }
238 EXPORT_SYMBOL(__taskq_member);
239
240 taskqid_t
241 __taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
242 {
243 taskq_ent_t *t;
244 taskqid_t rc = 0;
245 SENTRY;
246
247 ASSERT(tq);
248 ASSERT(func);
249
250 /* Solaris assumes TQ_SLEEP if not passed explicitly */
251 if (!(flags & (TQ_SLEEP | TQ_NOSLEEP)))
252 flags |= TQ_SLEEP;
253
254 if (unlikely(in_atomic() && (flags & TQ_SLEEP)))
255 PANIC("May schedule while atomic: %s/0x%08x/%d\n",
256 current->comm, preempt_count(), current->pid);
257
258 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
259
260 /* Taskq being destroyed and all tasks drained */
261 if (!(tq->tq_flags & TQ_ACTIVE))
262 SGOTO(out, rc = 0);
263
264 /* Do not queue the task unless there is idle thread for it */
265 ASSERT(tq->tq_nactive <= tq->tq_nthreads);
266 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
267 SGOTO(out, rc = 0);
268
269 if ((t = task_alloc(tq, flags)) == NULL)
270 SGOTO(out, rc = 0);
271
272 spin_lock(&t->tqent_lock);
273
274 /* Queue to the priority list instead of the pending list */
275 if (flags & TQ_FRONT)
276 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
277 else
278 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
279
280 t->tqent_id = rc = tq->tq_next_id;
281 tq->tq_next_id++;
282 t->tqent_func = func;
283 t->tqent_arg = arg;
284 spin_unlock(&t->tqent_lock);
285
286 wake_up(&tq->tq_work_waitq);
287 out:
288 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
289 SRETURN(rc);
290 }
291 EXPORT_SYMBOL(__taskq_dispatch);
292 /*
293 * Returns the lowest incomplete taskqid_t. The taskqid_t may
294 * be queued on the pending list, on the priority list, or on
295 * the work list currently being handled, but it is not 100%
296 * complete yet.
297 */
298 static taskqid_t
299 taskq_lowest_id(taskq_t *tq)
300 {
301 taskqid_t lowest_id = tq->tq_next_id;
302 taskq_ent_t *t;
303 taskq_thread_t *tqt;
304 SENTRY;
305
306 ASSERT(tq);
307 ASSERT(spin_is_locked(&tq->tq_lock));
308
309 if (!list_empty(&tq->tq_pend_list)) {
310 t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
311 lowest_id = MIN(lowest_id, t->tqent_id);
312 }
313
314 if (!list_empty(&tq->tq_prio_list)) {
315 t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
316 lowest_id = MIN(lowest_id, t->tqent_id);
317 }
318
319 if (!list_empty(&tq->tq_active_list)) {
320 tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
321 tqt_active_list);
322 ASSERT(tqt->tqt_ent != NULL);
323 lowest_id = MIN(lowest_id, tqt->tqt_ent->tqent_id);
324 }
325
326 SRETURN(lowest_id);
327 }
328
329 /*
330 * Insert a task into a list keeping the list sorted by increasing
331 * taskqid.
332 */
333 static void
334 taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
335 {
336 taskq_thread_t *w;
337 struct list_head *l;
338
339 SENTRY;
340 ASSERT(tq);
341 ASSERT(tqt);
342 ASSERT(spin_is_locked(&tq->tq_lock));
343
344 list_for_each_prev(l, &tq->tq_active_list) {
345 w = list_entry(l, taskq_thread_t, tqt_active_list);
346 if (w->tqt_ent->tqent_id < tqt->tqt_ent->tqent_id) {
347 list_add(&tqt->tqt_active_list, l);
348 break;
349 }
350 }
351 if (l == &tq->tq_active_list)
352 list_add(&tqt->tqt_active_list, &tq->tq_active_list);
353
354 SEXIT;
355 }
356
357 static int
358 taskq_thread(void *args)
359 {
360 DECLARE_WAITQUEUE(wait, current);
361 sigset_t blocked;
362 taskqid_t id;
363 taskq_thread_t *tqt = args;
364 taskq_t *tq;
365 taskq_ent_t *t;
366 struct list_head *pend_list;
367 SENTRY;
368
369 ASSERT(tqt);
370 tq = tqt->tqt_tq;
371 current->flags |= PF_NOFREEZE;
372
373 /* Disable the direct memory reclaim path */
374 if (tq->tq_flags & TASKQ_NORECLAIM)
375 current->flags |= PF_MEMALLOC;
376
377 sigfillset(&blocked);
378 sigprocmask(SIG_BLOCK, &blocked, NULL);
379 flush_signals(current);
380
381 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
382 tq->tq_nthreads++;
383 wake_up(&tq->tq_wait_waitq);
384 set_current_state(TASK_INTERRUPTIBLE);
385
386 while (!kthread_should_stop()) {
387
388 add_wait_queue(&tq->tq_work_waitq, &wait);
389 if (list_empty(&tq->tq_pend_list) &&
390 list_empty(&tq->tq_prio_list)) {
391 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
392 schedule();
393 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
394 } else {
395 __set_current_state(TASK_RUNNING);
396 }
397
398 remove_wait_queue(&tq->tq_work_waitq, &wait);
399
400 if (!list_empty(&tq->tq_prio_list))
401 pend_list = &tq->tq_prio_list;
402 else if (!list_empty(&tq->tq_pend_list))
403 pend_list = &tq->tq_pend_list;
404 else
405 pend_list = NULL;
406
407 if (pend_list) {
408 t = list_entry(pend_list->next, taskq_ent_t, tqent_list);
409 list_del_init(&t->tqent_list);
410 tqt->tqt_ent = t;
411 taskq_insert_in_order(tq, tqt);
412 tq->tq_nactive++;
413 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
414
415 /* Perform the requested task */
416 t->tqent_func(t->tqent_arg);
417
418 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
419 tq->tq_nactive--;
420 list_del_init(&tqt->tqt_active_list);
421 tqt->tqt_ent = NULL;
422 id = t->tqent_id;
423 task_done(tq, t);
424
425 /* When the current lowest outstanding taskqid is
426 * done calculate the new lowest outstanding id */
427 if (tq->tq_lowest_id == id) {
428 tq->tq_lowest_id = taskq_lowest_id(tq);
429 ASSERT(tq->tq_lowest_id > id);
430 }
431
432 wake_up_all(&tq->tq_wait_waitq);
433 }
434
435 set_current_state(TASK_INTERRUPTIBLE);
436
437 }
438
439 __set_current_state(TASK_RUNNING);
440 tq->tq_nthreads--;
441 list_del_init(&tqt->tqt_thread_list);
442 kmem_free(tqt, sizeof(taskq_thread_t));
443
444 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
445
446 SRETURN(0);
447 }
448
449 taskq_t *
450 __taskq_create(const char *name, int nthreads, pri_t pri,
451 int minalloc, int maxalloc, uint_t flags)
452 {
453 taskq_t *tq;
454 taskq_thread_t *tqt;
455 int rc = 0, i, j = 0;
456 SENTRY;
457
458 ASSERT(name != NULL);
459 ASSERT(pri <= maxclsyspri);
460 ASSERT(minalloc >= 0);
461 ASSERT(maxalloc <= INT_MAX);
462 ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
463
464 /* Scale the number of threads using nthreads as a percentage */
465 if (flags & TASKQ_THREADS_CPU_PCT) {
466 ASSERT(nthreads <= 100);
467 ASSERT(nthreads >= 0);
468 nthreads = MIN(nthreads, 100);
469 nthreads = MAX(nthreads, 0);
470 nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
471 }
472
473 tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
474 if (tq == NULL)
475 SRETURN(NULL);
476
477 spin_lock_init(&tq->tq_lock);
478 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
479 INIT_LIST_HEAD(&tq->tq_thread_list);
480 INIT_LIST_HEAD(&tq->tq_active_list);
481 tq->tq_name = name;
482 tq->tq_nactive = 0;
483 tq->tq_nthreads = 0;
484 tq->tq_pri = pri;
485 tq->tq_minalloc = minalloc;
486 tq->tq_maxalloc = maxalloc;
487 tq->tq_nalloc = 0;
488 tq->tq_flags = (flags | TQ_ACTIVE);
489 tq->tq_next_id = 1;
490 tq->tq_lowest_id = 1;
491 INIT_LIST_HEAD(&tq->tq_free_list);
492 INIT_LIST_HEAD(&tq->tq_pend_list);
493 INIT_LIST_HEAD(&tq->tq_prio_list);
494 init_waitqueue_head(&tq->tq_work_waitq);
495 init_waitqueue_head(&tq->tq_wait_waitq);
496
497 if (flags & TASKQ_PREPOPULATE)
498 for (i = 0; i < minalloc; i++)
499 task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));
500
501 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
502
503 for (i = 0; i < nthreads; i++) {
504 tqt = kmem_alloc(sizeof(*tqt), KM_SLEEP);
505 INIT_LIST_HEAD(&tqt->tqt_thread_list);
506 INIT_LIST_HEAD(&tqt->tqt_active_list);
507 tqt->tqt_tq = tq;
508 tqt->tqt_ent = NULL;
509
510 tqt->tqt_thread = kthread_create(taskq_thread, tqt,
511 "%s/%d", name, i);
512 if (tqt->tqt_thread) {
513 list_add(&tqt->tqt_thread_list, &tq->tq_thread_list);
514 kthread_bind(tqt->tqt_thread, i % num_online_cpus());
515 set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(pri));
516 wake_up_process(tqt->tqt_thread);
517 j++;
518 } else {
519 kmem_free(tqt, sizeof(taskq_thread_t));
520 rc = 1;
521 }
522 }
523
524 /* Wait for all threads to be started before potential destroy */
525 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
526
527 if (rc) {
528 __taskq_destroy(tq);
529 tq = NULL;
530 }
531
532 SRETURN(tq);
533 }
534 EXPORT_SYMBOL(__taskq_create);
535
536 void
537 __taskq_destroy(taskq_t *tq)
538 {
539 struct task_struct *thread;
540 taskq_thread_t *tqt;
541 taskq_ent_t *t;
542 SENTRY;
543
544 ASSERT(tq);
545 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
546 tq->tq_flags &= ~TQ_ACTIVE;
547 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
548
549 /* TQ_ACTIVE cleared prevents new tasks being added to pending */
550 __taskq_wait(tq);
551
552 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
553
554 /*
555 * Signal each thread to exit and block until it does. Each thread
556 * is responsible for removing itself from the list and freeing its
557 * taskq_thread_t. This allows for idle threads to opt to remove
558 * themselves from the taskq. They can be recreated as needed.
559 */
560 while (!list_empty(&tq->tq_thread_list)) {
561 tqt = list_entry(tq->tq_thread_list.next,
562 taskq_thread_t, tqt_thread_list);
563 thread = tqt->tqt_thread;
564 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
565
566 kthread_stop(thread);
567
568 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
569 }
570
571 while (!list_empty(&tq->tq_free_list)) {
572 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
573 list_del_init(&t->tqent_list);
574 task_free(tq, t);
575 }
576
577 ASSERT(tq->tq_nthreads == 0);
578 ASSERT(tq->tq_nalloc == 0);
579 ASSERT(list_empty(&tq->tq_thread_list));
580 ASSERT(list_empty(&tq->tq_active_list));
581 ASSERT(list_empty(&tq->tq_free_list));
582 ASSERT(list_empty(&tq->tq_pend_list));
583 ASSERT(list_empty(&tq->tq_prio_list));
584
585 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
586
587 kmem_free(tq, sizeof(taskq_t));
588
589 SEXIT;
590 }
591 EXPORT_SYMBOL(__taskq_destroy);
592
593 int
594 spl_taskq_init(void)
595 {
596 SENTRY;
597
598 /* Solaris creates a dynamic taskq of up to 64 threads, however in
599 * a Linux environment 1 thread per-core is usually about right */
600 system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
601 minclsyspri, 4, 512, TASKQ_PREPOPULATE);
602 if (system_taskq == NULL)
603 SRETURN(1);
604
605 SRETURN(0);
606 }
607
608 void
609 spl_taskq_fini(void)
610 {
611 SENTRY;
612 taskq_destroy(system_taskq);
613 SEXIT;
614 }