]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa_misc.c
e4e0c35f01df4cc3efbbaabf9532b1cdf2f1c864
[mirror_zfs-debian.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fm/util.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/arc.h>
49 #include <sys/ddt.h>
50 #include "zfs_prop.h"
51
52 /*
53 * SPA locking
54 *
55 * There are four basic locks for managing spa_t structures:
56 *
57 * spa_namespace_lock (global mutex)
58 *
59 * This lock must be acquired to do any of the following:
60 *
61 * - Lookup a spa_t by name
62 * - Add or remove a spa_t from the namespace
63 * - Increase spa_refcount from non-zero
64 * - Check if spa_refcount is zero
65 * - Rename a spa_t
66 * - add/remove/attach/detach devices
67 * - Held for the duration of create/destroy/import/export
68 *
69 * It does not need to handle recursion. A create or destroy may
70 * reference objects (files or zvols) in other pools, but by
71 * definition they must have an existing reference, and will never need
72 * to lookup a spa_t by name.
73 *
74 * spa_refcount (per-spa refcount_t protected by mutex)
75 *
76 * This reference count keep track of any active users of the spa_t. The
77 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
78 * the refcount is never really 'zero' - opening a pool implicitly keeps
79 * some references in the DMU. Internally we check against spa_minref, but
80 * present the image of a zero/non-zero value to consumers.
81 *
82 * spa_config_lock[] (per-spa array of rwlocks)
83 *
84 * This protects the spa_t from config changes, and must be held in
85 * the following circumstances:
86 *
87 * - RW_READER to perform I/O to the spa
88 * - RW_WRITER to change the vdev config
89 *
90 * The locking order is fairly straightforward:
91 *
92 * spa_namespace_lock -> spa_refcount
93 *
94 * The namespace lock must be acquired to increase the refcount from 0
95 * or to check if it is zero.
96 *
97 * spa_refcount -> spa_config_lock[]
98 *
99 * There must be at least one valid reference on the spa_t to acquire
100 * the config lock.
101 *
102 * spa_namespace_lock -> spa_config_lock[]
103 *
104 * The namespace lock must always be taken before the config lock.
105 *
106 *
107 * The spa_namespace_lock can be acquired directly and is globally visible.
108 *
109 * The namespace is manipulated using the following functions, all of which
110 * require the spa_namespace_lock to be held.
111 *
112 * spa_lookup() Lookup a spa_t by name.
113 *
114 * spa_add() Create a new spa_t in the namespace.
115 *
116 * spa_remove() Remove a spa_t from the namespace. This also
117 * frees up any memory associated with the spa_t.
118 *
119 * spa_next() Returns the next spa_t in the system, or the
120 * first if NULL is passed.
121 *
122 * spa_evict_all() Shutdown and remove all spa_t structures in
123 * the system.
124 *
125 * spa_guid_exists() Determine whether a pool/device guid exists.
126 *
127 * The spa_refcount is manipulated using the following functions:
128 *
129 * spa_open_ref() Adds a reference to the given spa_t. Must be
130 * called with spa_namespace_lock held if the
131 * refcount is currently zero.
132 *
133 * spa_close() Remove a reference from the spa_t. This will
134 * not free the spa_t or remove it from the
135 * namespace. No locking is required.
136 *
137 * spa_refcount_zero() Returns true if the refcount is currently
138 * zero. Must be called with spa_namespace_lock
139 * held.
140 *
141 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
142 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
143 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
144 *
145 * To read the configuration, it suffices to hold one of these locks as reader.
146 * To modify the configuration, you must hold all locks as writer. To modify
147 * vdev state without altering the vdev tree's topology (e.g. online/offline),
148 * you must hold SCL_STATE and SCL_ZIO as writer.
149 *
150 * We use these distinct config locks to avoid recursive lock entry.
151 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
152 * block allocations (SCL_ALLOC), which may require reading space maps
153 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
154 *
155 * The spa config locks cannot be normal rwlocks because we need the
156 * ability to hand off ownership. For example, SCL_ZIO is acquired
157 * by the issuing thread and later released by an interrupt thread.
158 * They do, however, obey the usual write-wanted semantics to prevent
159 * writer (i.e. system administrator) starvation.
160 *
161 * The lock acquisition rules are as follows:
162 *
163 * SCL_CONFIG
164 * Protects changes to the vdev tree topology, such as vdev
165 * add/remove/attach/detach. Protects the dirty config list
166 * (spa_config_dirty_list) and the set of spares and l2arc devices.
167 *
168 * SCL_STATE
169 * Protects changes to pool state and vdev state, such as vdev
170 * online/offline/fault/degrade/clear. Protects the dirty state list
171 * (spa_state_dirty_list) and global pool state (spa_state).
172 *
173 * SCL_ALLOC
174 * Protects changes to metaslab groups and classes.
175 * Held as reader by metaslab_alloc() and metaslab_claim().
176 *
177 * SCL_ZIO
178 * Held by bp-level zios (those which have no io_vd upon entry)
179 * to prevent changes to the vdev tree. The bp-level zio implicitly
180 * protects all of its vdev child zios, which do not hold SCL_ZIO.
181 *
182 * SCL_FREE
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_free(). SCL_FREE is distinct from
185 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
186 * blocks in zio_done() while another i/o that holds either
187 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
188 *
189 * SCL_VDEV
190 * Held as reader to prevent changes to the vdev tree during trivial
191 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
192 * other locks, and lower than all of them, to ensure that it's safe
193 * to acquire regardless of caller context.
194 *
195 * In addition, the following rules apply:
196 *
197 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
198 * The lock ordering is SCL_CONFIG > spa_props_lock.
199 *
200 * (b) I/O operations on leaf vdevs. For any zio operation that takes
201 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
202 * or zio_write_phys() -- the caller must ensure that the config cannot
203 * cannot change in the interim, and that the vdev cannot be reopened.
204 * SCL_STATE as reader suffices for both.
205 *
206 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
207 *
208 * spa_vdev_enter() Acquire the namespace lock and the config lock
209 * for writing.
210 *
211 * spa_vdev_exit() Release the config lock, wait for all I/O
212 * to complete, sync the updated configs to the
213 * cache, and release the namespace lock.
214 *
215 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
216 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
217 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
218 *
219 * spa_rename() is also implemented within this file since is requires
220 * manipulation of the namespace.
221 */
222
223 static avl_tree_t spa_namespace_avl;
224 kmutex_t spa_namespace_lock;
225 static kcondvar_t spa_namespace_cv;
226 static int spa_active_count;
227 int spa_max_replication_override = SPA_DVAS_PER_BP;
228
229 static kmutex_t spa_spare_lock;
230 static avl_tree_t spa_spare_avl;
231 static kmutex_t spa_l2cache_lock;
232 static avl_tree_t spa_l2cache_avl;
233
234 kmem_cache_t *spa_buffer_pool;
235 int spa_mode_global;
236
237 #ifdef ZFS_DEBUG
238 /* Everything except dprintf is on by default in debug builds */
239 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
240 #else
241 int zfs_flags = 0;
242 #endif
243
244 /*
245 * zfs_recover can be set to nonzero to attempt to recover from
246 * otherwise-fatal errors, typically caused by on-disk corruption. When
247 * set, calls to zfs_panic_recover() will turn into warning messages.
248 */
249 int zfs_recover = 0;
250
251
252 /*
253 * ==========================================================================
254 * SPA config locking
255 * ==========================================================================
256 */
257 static void
258 spa_config_lock_init(spa_t *spa)
259 {
260 int i;
261
262 for (i = 0; i < SCL_LOCKS; i++) {
263 spa_config_lock_t *scl = &spa->spa_config_lock[i];
264 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
265 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
266 refcount_create(&scl->scl_count);
267 scl->scl_writer = NULL;
268 scl->scl_write_wanted = 0;
269 }
270 }
271
272 static void
273 spa_config_lock_destroy(spa_t *spa)
274 {
275 int i;
276
277 for (i = 0; i < SCL_LOCKS; i++) {
278 spa_config_lock_t *scl = &spa->spa_config_lock[i];
279 mutex_destroy(&scl->scl_lock);
280 cv_destroy(&scl->scl_cv);
281 refcount_destroy(&scl->scl_count);
282 ASSERT(scl->scl_writer == NULL);
283 ASSERT(scl->scl_write_wanted == 0);
284 }
285 }
286
287 int
288 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
289 {
290 int i;
291
292 for (i = 0; i < SCL_LOCKS; i++) {
293 spa_config_lock_t *scl = &spa->spa_config_lock[i];
294 if (!(locks & (1 << i)))
295 continue;
296 mutex_enter(&scl->scl_lock);
297 if (rw == RW_READER) {
298 if (scl->scl_writer || scl->scl_write_wanted) {
299 mutex_exit(&scl->scl_lock);
300 spa_config_exit(spa, locks ^ (1 << i), tag);
301 return (0);
302 }
303 } else {
304 ASSERT(scl->scl_writer != curthread);
305 if (!refcount_is_zero(&scl->scl_count)) {
306 mutex_exit(&scl->scl_lock);
307 spa_config_exit(spa, locks ^ (1 << i), tag);
308 return (0);
309 }
310 scl->scl_writer = curthread;
311 }
312 (void) refcount_add(&scl->scl_count, tag);
313 mutex_exit(&scl->scl_lock);
314 }
315 return (1);
316 }
317
318 void
319 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
320 {
321 int wlocks_held = 0;
322 int i;
323
324 for (i = 0; i < SCL_LOCKS; i++) {
325 spa_config_lock_t *scl = &spa->spa_config_lock[i];
326 if (scl->scl_writer == curthread)
327 wlocks_held |= (1 << i);
328 if (!(locks & (1 << i)))
329 continue;
330 mutex_enter(&scl->scl_lock);
331 if (rw == RW_READER) {
332 while (scl->scl_writer || scl->scl_write_wanted) {
333 cv_wait(&scl->scl_cv, &scl->scl_lock);
334 }
335 } else {
336 ASSERT(scl->scl_writer != curthread);
337 while (!refcount_is_zero(&scl->scl_count)) {
338 scl->scl_write_wanted++;
339 cv_wait(&scl->scl_cv, &scl->scl_lock);
340 scl->scl_write_wanted--;
341 }
342 scl->scl_writer = curthread;
343 }
344 (void) refcount_add(&scl->scl_count, tag);
345 mutex_exit(&scl->scl_lock);
346 }
347 ASSERT(wlocks_held <= locks);
348 }
349
350 void
351 spa_config_exit(spa_t *spa, int locks, void *tag)
352 {
353 int i;
354
355 for (i = SCL_LOCKS - 1; i >= 0; i--) {
356 spa_config_lock_t *scl = &spa->spa_config_lock[i];
357 if (!(locks & (1 << i)))
358 continue;
359 mutex_enter(&scl->scl_lock);
360 ASSERT(!refcount_is_zero(&scl->scl_count));
361 if (refcount_remove(&scl->scl_count, tag) == 0) {
362 ASSERT(scl->scl_writer == NULL ||
363 scl->scl_writer == curthread);
364 scl->scl_writer = NULL; /* OK in either case */
365 cv_broadcast(&scl->scl_cv);
366 }
367 mutex_exit(&scl->scl_lock);
368 }
369 }
370
371 int
372 spa_config_held(spa_t *spa, int locks, krw_t rw)
373 {
374 int i, locks_held = 0;
375
376 for (i = 0; i < SCL_LOCKS; i++) {
377 spa_config_lock_t *scl = &spa->spa_config_lock[i];
378 if (!(locks & (1 << i)))
379 continue;
380 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
381 (rw == RW_WRITER && scl->scl_writer == curthread))
382 locks_held |= 1 << i;
383 }
384
385 return (locks_held);
386 }
387
388 /*
389 * ==========================================================================
390 * SPA namespace functions
391 * ==========================================================================
392 */
393
394 /*
395 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
396 * Returns NULL if no matching spa_t is found.
397 */
398 spa_t *
399 spa_lookup(const char *name)
400 {
401 static spa_t search; /* spa_t is large; don't allocate on stack */
402 spa_t *spa;
403 avl_index_t where;
404 char c = 0;
405 char *cp;
406
407 ASSERT(MUTEX_HELD(&spa_namespace_lock));
408
409 /*
410 * If it's a full dataset name, figure out the pool name and
411 * just use that.
412 */
413 cp = strpbrk(name, "/@");
414 if (cp) {
415 c = *cp;
416 *cp = '\0';
417 }
418
419 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
420 spa = avl_find(&spa_namespace_avl, &search, &where);
421
422 if (cp)
423 *cp = c;
424
425 return (spa);
426 }
427
428 /*
429 * Create an uninitialized spa_t with the given name. Requires
430 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
431 * exist by calling spa_lookup() first.
432 */
433 spa_t *
434 spa_add(const char *name, nvlist_t *config, const char *altroot)
435 {
436 spa_t *spa;
437 spa_config_dirent_t *dp;
438 int t;
439
440 ASSERT(MUTEX_HELD(&spa_namespace_lock));
441
442 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP | KM_NODEBUG);
443
444 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
445 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
446 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
447 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
448 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
449 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
450 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
451 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
452 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
453
454 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
455 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
456 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
457 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
458
459 for (t = 0; t < TXG_SIZE; t++)
460 bplist_create(&spa->spa_free_bplist[t]);
461
462 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
463 spa->spa_state = POOL_STATE_UNINITIALIZED;
464 spa->spa_freeze_txg = UINT64_MAX;
465 spa->spa_final_txg = UINT64_MAX;
466 spa->spa_load_max_txg = UINT64_MAX;
467 spa->spa_proc = &p0;
468 spa->spa_proc_state = SPA_PROC_NONE;
469
470 refcount_create(&spa->spa_refcount);
471 spa_config_lock_init(spa);
472
473 avl_add(&spa_namespace_avl, spa);
474
475 /*
476 * Set the alternate root, if there is one.
477 */
478 if (altroot) {
479 spa->spa_root = spa_strdup(altroot);
480 spa_active_count++;
481 }
482
483 /*
484 * Every pool starts with the default cachefile
485 */
486 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
487 offsetof(spa_config_dirent_t, scd_link));
488
489 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
490 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
491 list_insert_head(&spa->spa_config_list, dp);
492
493 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
494 KM_SLEEP) == 0);
495
496 if (config != NULL)
497 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
498
499 return (spa);
500 }
501
502 /*
503 * Removes a spa_t from the namespace, freeing up any memory used. Requires
504 * spa_namespace_lock. This is called only after the spa_t has been closed and
505 * deactivated.
506 */
507 void
508 spa_remove(spa_t *spa)
509 {
510 spa_config_dirent_t *dp;
511 int t;
512
513 ASSERT(MUTEX_HELD(&spa_namespace_lock));
514 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
515
516 nvlist_free(spa->spa_config_splitting);
517
518 avl_remove(&spa_namespace_avl, spa);
519 cv_broadcast(&spa_namespace_cv);
520
521 if (spa->spa_root) {
522 spa_strfree(spa->spa_root);
523 spa_active_count--;
524 }
525
526 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
527 list_remove(&spa->spa_config_list, dp);
528 if (dp->scd_path != NULL)
529 spa_strfree(dp->scd_path);
530 kmem_free(dp, sizeof (spa_config_dirent_t));
531 }
532
533 list_destroy(&spa->spa_config_list);
534
535 nvlist_free(spa->spa_load_info);
536 spa_config_set(spa, NULL);
537
538 refcount_destroy(&spa->spa_refcount);
539
540 spa_config_lock_destroy(spa);
541
542 for (t = 0; t < TXG_SIZE; t++)
543 bplist_destroy(&spa->spa_free_bplist[t]);
544
545 cv_destroy(&spa->spa_async_cv);
546 cv_destroy(&spa->spa_proc_cv);
547 cv_destroy(&spa->spa_scrub_io_cv);
548 cv_destroy(&spa->spa_suspend_cv);
549
550 mutex_destroy(&spa->spa_async_lock);
551 mutex_destroy(&spa->spa_errlist_lock);
552 mutex_destroy(&spa->spa_errlog_lock);
553 mutex_destroy(&spa->spa_history_lock);
554 mutex_destroy(&spa->spa_proc_lock);
555 mutex_destroy(&spa->spa_props_lock);
556 mutex_destroy(&spa->spa_scrub_lock);
557 mutex_destroy(&spa->spa_suspend_lock);
558 mutex_destroy(&spa->spa_vdev_top_lock);
559
560 kmem_free(spa, sizeof (spa_t));
561 }
562
563 /*
564 * Given a pool, return the next pool in the namespace, or NULL if there is
565 * none. If 'prev' is NULL, return the first pool.
566 */
567 spa_t *
568 spa_next(spa_t *prev)
569 {
570 ASSERT(MUTEX_HELD(&spa_namespace_lock));
571
572 if (prev)
573 return (AVL_NEXT(&spa_namespace_avl, prev));
574 else
575 return (avl_first(&spa_namespace_avl));
576 }
577
578 /*
579 * ==========================================================================
580 * SPA refcount functions
581 * ==========================================================================
582 */
583
584 /*
585 * Add a reference to the given spa_t. Must have at least one reference, or
586 * have the namespace lock held.
587 */
588 void
589 spa_open_ref(spa_t *spa, void *tag)
590 {
591 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
592 MUTEX_HELD(&spa_namespace_lock));
593 (void) refcount_add(&spa->spa_refcount, tag);
594 }
595
596 /*
597 * Remove a reference to the given spa_t. Must have at least one reference, or
598 * have the namespace lock held.
599 */
600 void
601 spa_close(spa_t *spa, void *tag)
602 {
603 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
604 MUTEX_HELD(&spa_namespace_lock));
605 (void) refcount_remove(&spa->spa_refcount, tag);
606 }
607
608 /*
609 * Check to see if the spa refcount is zero. Must be called with
610 * spa_namespace_lock held. We really compare against spa_minref, which is the
611 * number of references acquired when opening a pool
612 */
613 boolean_t
614 spa_refcount_zero(spa_t *spa)
615 {
616 ASSERT(MUTEX_HELD(&spa_namespace_lock));
617
618 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
619 }
620
621 /*
622 * ==========================================================================
623 * SPA spare and l2cache tracking
624 * ==========================================================================
625 */
626
627 /*
628 * Hot spares and cache devices are tracked using the same code below,
629 * for 'auxiliary' devices.
630 */
631
632 typedef struct spa_aux {
633 uint64_t aux_guid;
634 uint64_t aux_pool;
635 avl_node_t aux_avl;
636 int aux_count;
637 } spa_aux_t;
638
639 static int
640 spa_aux_compare(const void *a, const void *b)
641 {
642 const spa_aux_t *sa = a;
643 const spa_aux_t *sb = b;
644
645 if (sa->aux_guid < sb->aux_guid)
646 return (-1);
647 else if (sa->aux_guid > sb->aux_guid)
648 return (1);
649 else
650 return (0);
651 }
652
653 void
654 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
655 {
656 avl_index_t where;
657 spa_aux_t search;
658 spa_aux_t *aux;
659
660 search.aux_guid = vd->vdev_guid;
661 if ((aux = avl_find(avl, &search, &where)) != NULL) {
662 aux->aux_count++;
663 } else {
664 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
665 aux->aux_guid = vd->vdev_guid;
666 aux->aux_count = 1;
667 avl_insert(avl, aux, where);
668 }
669 }
670
671 void
672 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
673 {
674 spa_aux_t search;
675 spa_aux_t *aux;
676 avl_index_t where;
677
678 search.aux_guid = vd->vdev_guid;
679 aux = avl_find(avl, &search, &where);
680
681 ASSERT(aux != NULL);
682
683 if (--aux->aux_count == 0) {
684 avl_remove(avl, aux);
685 kmem_free(aux, sizeof (spa_aux_t));
686 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
687 aux->aux_pool = 0ULL;
688 }
689 }
690
691 boolean_t
692 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
693 {
694 spa_aux_t search, *found;
695
696 search.aux_guid = guid;
697 found = avl_find(avl, &search, NULL);
698
699 if (pool) {
700 if (found)
701 *pool = found->aux_pool;
702 else
703 *pool = 0ULL;
704 }
705
706 if (refcnt) {
707 if (found)
708 *refcnt = found->aux_count;
709 else
710 *refcnt = 0;
711 }
712
713 return (found != NULL);
714 }
715
716 void
717 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
718 {
719 spa_aux_t search, *found;
720 avl_index_t where;
721
722 search.aux_guid = vd->vdev_guid;
723 found = avl_find(avl, &search, &where);
724 ASSERT(found != NULL);
725 ASSERT(found->aux_pool == 0ULL);
726
727 found->aux_pool = spa_guid(vd->vdev_spa);
728 }
729
730 /*
731 * Spares are tracked globally due to the following constraints:
732 *
733 * - A spare may be part of multiple pools.
734 * - A spare may be added to a pool even if it's actively in use within
735 * another pool.
736 * - A spare in use in any pool can only be the source of a replacement if
737 * the target is a spare in the same pool.
738 *
739 * We keep track of all spares on the system through the use of a reference
740 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
741 * spare, then we bump the reference count in the AVL tree. In addition, we set
742 * the 'vdev_isspare' member to indicate that the device is a spare (active or
743 * inactive). When a spare is made active (used to replace a device in the
744 * pool), we also keep track of which pool its been made a part of.
745 *
746 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
747 * called under the spa_namespace lock as part of vdev reconfiguration. The
748 * separate spare lock exists for the status query path, which does not need to
749 * be completely consistent with respect to other vdev configuration changes.
750 */
751
752 static int
753 spa_spare_compare(const void *a, const void *b)
754 {
755 return (spa_aux_compare(a, b));
756 }
757
758 void
759 spa_spare_add(vdev_t *vd)
760 {
761 mutex_enter(&spa_spare_lock);
762 ASSERT(!vd->vdev_isspare);
763 spa_aux_add(vd, &spa_spare_avl);
764 vd->vdev_isspare = B_TRUE;
765 mutex_exit(&spa_spare_lock);
766 }
767
768 void
769 spa_spare_remove(vdev_t *vd)
770 {
771 mutex_enter(&spa_spare_lock);
772 ASSERT(vd->vdev_isspare);
773 spa_aux_remove(vd, &spa_spare_avl);
774 vd->vdev_isspare = B_FALSE;
775 mutex_exit(&spa_spare_lock);
776 }
777
778 boolean_t
779 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
780 {
781 boolean_t found;
782
783 mutex_enter(&spa_spare_lock);
784 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
785 mutex_exit(&spa_spare_lock);
786
787 return (found);
788 }
789
790 void
791 spa_spare_activate(vdev_t *vd)
792 {
793 mutex_enter(&spa_spare_lock);
794 ASSERT(vd->vdev_isspare);
795 spa_aux_activate(vd, &spa_spare_avl);
796 mutex_exit(&spa_spare_lock);
797 }
798
799 /*
800 * Level 2 ARC devices are tracked globally for the same reasons as spares.
801 * Cache devices currently only support one pool per cache device, and so
802 * for these devices the aux reference count is currently unused beyond 1.
803 */
804
805 static int
806 spa_l2cache_compare(const void *a, const void *b)
807 {
808 return (spa_aux_compare(a, b));
809 }
810
811 void
812 spa_l2cache_add(vdev_t *vd)
813 {
814 mutex_enter(&spa_l2cache_lock);
815 ASSERT(!vd->vdev_isl2cache);
816 spa_aux_add(vd, &spa_l2cache_avl);
817 vd->vdev_isl2cache = B_TRUE;
818 mutex_exit(&spa_l2cache_lock);
819 }
820
821 void
822 spa_l2cache_remove(vdev_t *vd)
823 {
824 mutex_enter(&spa_l2cache_lock);
825 ASSERT(vd->vdev_isl2cache);
826 spa_aux_remove(vd, &spa_l2cache_avl);
827 vd->vdev_isl2cache = B_FALSE;
828 mutex_exit(&spa_l2cache_lock);
829 }
830
831 boolean_t
832 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
833 {
834 boolean_t found;
835
836 mutex_enter(&spa_l2cache_lock);
837 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
838 mutex_exit(&spa_l2cache_lock);
839
840 return (found);
841 }
842
843 void
844 spa_l2cache_activate(vdev_t *vd)
845 {
846 mutex_enter(&spa_l2cache_lock);
847 ASSERT(vd->vdev_isl2cache);
848 spa_aux_activate(vd, &spa_l2cache_avl);
849 mutex_exit(&spa_l2cache_lock);
850 }
851
852 /*
853 * ==========================================================================
854 * SPA vdev locking
855 * ==========================================================================
856 */
857
858 /*
859 * Lock the given spa_t for the purpose of adding or removing a vdev.
860 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
861 * It returns the next transaction group for the spa_t.
862 */
863 uint64_t
864 spa_vdev_enter(spa_t *spa)
865 {
866 mutex_enter(&spa->spa_vdev_top_lock);
867 mutex_enter(&spa_namespace_lock);
868 return (spa_vdev_config_enter(spa));
869 }
870
871 /*
872 * Internal implementation for spa_vdev_enter(). Used when a vdev
873 * operation requires multiple syncs (i.e. removing a device) while
874 * keeping the spa_namespace_lock held.
875 */
876 uint64_t
877 spa_vdev_config_enter(spa_t *spa)
878 {
879 ASSERT(MUTEX_HELD(&spa_namespace_lock));
880
881 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
882
883 return (spa_last_synced_txg(spa) + 1);
884 }
885
886 /*
887 * Used in combination with spa_vdev_config_enter() to allow the syncing
888 * of multiple transactions without releasing the spa_namespace_lock.
889 */
890 void
891 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
892 {
893 int config_changed = B_FALSE;
894
895 ASSERT(MUTEX_HELD(&spa_namespace_lock));
896 ASSERT(txg > spa_last_synced_txg(spa));
897
898 spa->spa_pending_vdev = NULL;
899
900 /*
901 * Reassess the DTLs.
902 */
903 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
904
905 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
906 config_changed = B_TRUE;
907 spa->spa_config_generation++;
908 }
909
910 /*
911 * Verify the metaslab classes.
912 */
913 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
914 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
915
916 spa_config_exit(spa, SCL_ALL, spa);
917
918 /*
919 * Panic the system if the specified tag requires it. This
920 * is useful for ensuring that configurations are updated
921 * transactionally.
922 */
923 if (zio_injection_enabled)
924 zio_handle_panic_injection(spa, tag, 0);
925
926 /*
927 * Note: this txg_wait_synced() is important because it ensures
928 * that there won't be more than one config change per txg.
929 * This allows us to use the txg as the generation number.
930 */
931 if (error == 0)
932 txg_wait_synced(spa->spa_dsl_pool, txg);
933
934 if (vd != NULL) {
935 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
936 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
937 vdev_free(vd);
938 spa_config_exit(spa, SCL_ALL, spa);
939 }
940
941 /*
942 * If the config changed, update the config cache.
943 */
944 if (config_changed)
945 spa_config_sync(spa, B_FALSE, B_TRUE);
946 }
947
948 /*
949 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
950 * locking of spa_vdev_enter(), we also want make sure the transactions have
951 * synced to disk, and then update the global configuration cache with the new
952 * information.
953 */
954 int
955 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
956 {
957 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
958 mutex_exit(&spa_namespace_lock);
959 mutex_exit(&spa->spa_vdev_top_lock);
960
961 return (error);
962 }
963
964 /*
965 * Lock the given spa_t for the purpose of changing vdev state.
966 */
967 void
968 spa_vdev_state_enter(spa_t *spa, int oplocks)
969 {
970 int locks = SCL_STATE_ALL | oplocks;
971
972 /*
973 * Root pools may need to read of the underlying devfs filesystem
974 * when opening up a vdev. Unfortunately if we're holding the
975 * SCL_ZIO lock it will result in a deadlock when we try to issue
976 * the read from the root filesystem. Instead we "prefetch"
977 * the associated vnodes that we need prior to opening the
978 * underlying devices and cache them so that we can prevent
979 * any I/O when we are doing the actual open.
980 */
981 if (spa_is_root(spa)) {
982 int low = locks & ~(SCL_ZIO - 1);
983 int high = locks & ~low;
984
985 spa_config_enter(spa, high, spa, RW_WRITER);
986 vdev_hold(spa->spa_root_vdev);
987 spa_config_enter(spa, low, spa, RW_WRITER);
988 } else {
989 spa_config_enter(spa, locks, spa, RW_WRITER);
990 }
991 spa->spa_vdev_locks = locks;
992 }
993
994 int
995 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
996 {
997 boolean_t config_changed = B_FALSE;
998
999 if (vd != NULL || error == 0)
1000 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1001 0, 0, B_FALSE);
1002
1003 if (vd != NULL) {
1004 vdev_state_dirty(vd->vdev_top);
1005 config_changed = B_TRUE;
1006 spa->spa_config_generation++;
1007 }
1008
1009 if (spa_is_root(spa))
1010 vdev_rele(spa->spa_root_vdev);
1011
1012 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1013 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1014
1015 /*
1016 * If anything changed, wait for it to sync. This ensures that,
1017 * from the system administrator's perspective, zpool(1M) commands
1018 * are synchronous. This is important for things like zpool offline:
1019 * when the command completes, you expect no further I/O from ZFS.
1020 */
1021 if (vd != NULL)
1022 txg_wait_synced(spa->spa_dsl_pool, 0);
1023
1024 /*
1025 * If the config changed, update the config cache.
1026 */
1027 if (config_changed) {
1028 mutex_enter(&spa_namespace_lock);
1029 spa_config_sync(spa, B_FALSE, B_TRUE);
1030 mutex_exit(&spa_namespace_lock);
1031 }
1032
1033 return (error);
1034 }
1035
1036 /*
1037 * ==========================================================================
1038 * Miscellaneous functions
1039 * ==========================================================================
1040 */
1041
1042 /*
1043 * Rename a spa_t.
1044 */
1045 int
1046 spa_rename(const char *name, const char *newname)
1047 {
1048 spa_t *spa;
1049 int err;
1050
1051 /*
1052 * Lookup the spa_t and grab the config lock for writing. We need to
1053 * actually open the pool so that we can sync out the necessary labels.
1054 * It's OK to call spa_open() with the namespace lock held because we
1055 * allow recursive calls for other reasons.
1056 */
1057 mutex_enter(&spa_namespace_lock);
1058 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1059 mutex_exit(&spa_namespace_lock);
1060 return (err);
1061 }
1062
1063 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1064
1065 avl_remove(&spa_namespace_avl, spa);
1066 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1067 avl_add(&spa_namespace_avl, spa);
1068
1069 /*
1070 * Sync all labels to disk with the new names by marking the root vdev
1071 * dirty and waiting for it to sync. It will pick up the new pool name
1072 * during the sync.
1073 */
1074 vdev_config_dirty(spa->spa_root_vdev);
1075
1076 spa_config_exit(spa, SCL_ALL, FTAG);
1077
1078 txg_wait_synced(spa->spa_dsl_pool, 0);
1079
1080 /*
1081 * Sync the updated config cache.
1082 */
1083 spa_config_sync(spa, B_FALSE, B_TRUE);
1084
1085 spa_close(spa, FTAG);
1086
1087 mutex_exit(&spa_namespace_lock);
1088
1089 return (0);
1090 }
1091
1092 /*
1093 * Return the spa_t associated with given pool_guid, if it exists. If
1094 * device_guid is non-zero, determine whether the pool exists *and* contains
1095 * a device with the specified device_guid.
1096 */
1097 spa_t *
1098 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1099 {
1100 spa_t *spa;
1101 avl_tree_t *t = &spa_namespace_avl;
1102
1103 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1104
1105 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1106 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1107 continue;
1108 if (spa->spa_root_vdev == NULL)
1109 continue;
1110 if (spa_guid(spa) == pool_guid) {
1111 if (device_guid == 0)
1112 break;
1113
1114 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1115 device_guid) != NULL)
1116 break;
1117
1118 /*
1119 * Check any devices we may be in the process of adding.
1120 */
1121 if (spa->spa_pending_vdev) {
1122 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1123 device_guid) != NULL)
1124 break;
1125 }
1126 }
1127 }
1128
1129 return (spa);
1130 }
1131
1132 /*
1133 * Determine whether a pool with the given pool_guid exists.
1134 */
1135 boolean_t
1136 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1137 {
1138 return (spa_by_guid(pool_guid, device_guid) != NULL);
1139 }
1140
1141 char *
1142 spa_strdup(const char *s)
1143 {
1144 size_t len;
1145 char *new;
1146
1147 len = strlen(s);
1148 new = kmem_alloc(len + 1, KM_SLEEP);
1149 bcopy(s, new, len);
1150 new[len] = '\0';
1151
1152 return (new);
1153 }
1154
1155 void
1156 spa_strfree(char *s)
1157 {
1158 kmem_free(s, strlen(s) + 1);
1159 }
1160
1161 uint64_t
1162 spa_get_random(uint64_t range)
1163 {
1164 uint64_t r;
1165
1166 ASSERT(range != 0);
1167
1168 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1169
1170 return (r % range);
1171 }
1172
1173 uint64_t
1174 spa_generate_guid(spa_t *spa)
1175 {
1176 uint64_t guid = spa_get_random(-1ULL);
1177
1178 if (spa != NULL) {
1179 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1180 guid = spa_get_random(-1ULL);
1181 } else {
1182 while (guid == 0 || spa_guid_exists(guid, 0))
1183 guid = spa_get_random(-1ULL);
1184 }
1185
1186 return (guid);
1187 }
1188
1189 void
1190 sprintf_blkptr(char *buf, const blkptr_t *bp)
1191 {
1192 char *type = NULL;
1193 char *checksum = NULL;
1194 char *compress = NULL;
1195
1196 if (bp != NULL) {
1197 type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1198 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1199 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1200 }
1201
1202 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1203 }
1204
1205 void
1206 spa_freeze(spa_t *spa)
1207 {
1208 uint64_t freeze_txg = 0;
1209
1210 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1211 if (spa->spa_freeze_txg == UINT64_MAX) {
1212 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1213 spa->spa_freeze_txg = freeze_txg;
1214 }
1215 spa_config_exit(spa, SCL_ALL, FTAG);
1216 if (freeze_txg != 0)
1217 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1218 }
1219
1220 void
1221 zfs_panic_recover(const char *fmt, ...)
1222 {
1223 va_list adx;
1224
1225 va_start(adx, fmt);
1226 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1227 va_end(adx);
1228 }
1229
1230 /*
1231 * This is a stripped-down version of strtoull, suitable only for converting
1232 * lowercase hexidecimal numbers that don't overflow.
1233 */
1234 uint64_t
1235 strtonum(const char *str, char **nptr)
1236 {
1237 uint64_t val = 0;
1238 char c;
1239 int digit;
1240
1241 while ((c = *str) != '\0') {
1242 if (c >= '0' && c <= '9')
1243 digit = c - '0';
1244 else if (c >= 'a' && c <= 'f')
1245 digit = 10 + c - 'a';
1246 else
1247 break;
1248
1249 val *= 16;
1250 val += digit;
1251
1252 str++;
1253 }
1254
1255 if (nptr)
1256 *nptr = (char *)str;
1257
1258 return (val);
1259 }
1260
1261 /*
1262 * ==========================================================================
1263 * Accessor functions
1264 * ==========================================================================
1265 */
1266
1267 boolean_t
1268 spa_shutting_down(spa_t *spa)
1269 {
1270 return (spa->spa_async_suspended);
1271 }
1272
1273 dsl_pool_t *
1274 spa_get_dsl(spa_t *spa)
1275 {
1276 return (spa->spa_dsl_pool);
1277 }
1278
1279 blkptr_t *
1280 spa_get_rootblkptr(spa_t *spa)
1281 {
1282 return (&spa->spa_ubsync.ub_rootbp);
1283 }
1284
1285 void
1286 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1287 {
1288 spa->spa_uberblock.ub_rootbp = *bp;
1289 }
1290
1291 void
1292 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1293 {
1294 if (spa->spa_root == NULL)
1295 buf[0] = '\0';
1296 else
1297 (void) strncpy(buf, spa->spa_root, buflen);
1298 }
1299
1300 int
1301 spa_sync_pass(spa_t *spa)
1302 {
1303 return (spa->spa_sync_pass);
1304 }
1305
1306 char *
1307 spa_name(spa_t *spa)
1308 {
1309 return (spa->spa_name);
1310 }
1311
1312 uint64_t
1313 spa_guid(spa_t *spa)
1314 {
1315 /*
1316 * If we fail to parse the config during spa_load(), we can go through
1317 * the error path (which posts an ereport) and end up here with no root
1318 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1319 * this case.
1320 */
1321 if (spa->spa_root_vdev != NULL)
1322 return (spa->spa_root_vdev->vdev_guid);
1323 else
1324 return (spa->spa_load_guid);
1325 }
1326
1327 uint64_t
1328 spa_last_synced_txg(spa_t *spa)
1329 {
1330 return (spa->spa_ubsync.ub_txg);
1331 }
1332
1333 uint64_t
1334 spa_first_txg(spa_t *spa)
1335 {
1336 return (spa->spa_first_txg);
1337 }
1338
1339 uint64_t
1340 spa_syncing_txg(spa_t *spa)
1341 {
1342 return (spa->spa_syncing_txg);
1343 }
1344
1345 pool_state_t
1346 spa_state(spa_t *spa)
1347 {
1348 return (spa->spa_state);
1349 }
1350
1351 spa_load_state_t
1352 spa_load_state(spa_t *spa)
1353 {
1354 return (spa->spa_load_state);
1355 }
1356
1357 uint64_t
1358 spa_freeze_txg(spa_t *spa)
1359 {
1360 return (spa->spa_freeze_txg);
1361 }
1362
1363 /* ARGSUSED */
1364 uint64_t
1365 spa_get_asize(spa_t *spa, uint64_t lsize)
1366 {
1367 /*
1368 * The worst case is single-sector max-parity RAID-Z blocks, in which
1369 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1370 * times the size; so just assume that. Add to this the fact that
1371 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1372 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1373 */
1374 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1375 }
1376
1377 uint64_t
1378 spa_get_dspace(spa_t *spa)
1379 {
1380 return (spa->spa_dspace);
1381 }
1382
1383 void
1384 spa_update_dspace(spa_t *spa)
1385 {
1386 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1387 ddt_get_dedup_dspace(spa);
1388 }
1389
1390 /*
1391 * Return the failure mode that has been set to this pool. The default
1392 * behavior will be to block all I/Os when a complete failure occurs.
1393 */
1394 uint8_t
1395 spa_get_failmode(spa_t *spa)
1396 {
1397 return (spa->spa_failmode);
1398 }
1399
1400 boolean_t
1401 spa_suspended(spa_t *spa)
1402 {
1403 return (spa->spa_suspended);
1404 }
1405
1406 uint64_t
1407 spa_version(spa_t *spa)
1408 {
1409 return (spa->spa_ubsync.ub_version);
1410 }
1411
1412 boolean_t
1413 spa_deflate(spa_t *spa)
1414 {
1415 return (spa->spa_deflate);
1416 }
1417
1418 metaslab_class_t *
1419 spa_normal_class(spa_t *spa)
1420 {
1421 return (spa->spa_normal_class);
1422 }
1423
1424 metaslab_class_t *
1425 spa_log_class(spa_t *spa)
1426 {
1427 return (spa->spa_log_class);
1428 }
1429
1430 int
1431 spa_max_replication(spa_t *spa)
1432 {
1433 /*
1434 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1435 * handle BPs with more than one DVA allocated. Set our max
1436 * replication level accordingly.
1437 */
1438 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1439 return (1);
1440 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1441 }
1442
1443 int
1444 spa_prev_software_version(spa_t *spa)
1445 {
1446 return (spa->spa_prev_software_version);
1447 }
1448
1449 uint64_t
1450 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1451 {
1452 uint64_t asize = DVA_GET_ASIZE(dva);
1453 uint64_t dsize = asize;
1454
1455 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1456
1457 if (asize != 0 && spa->spa_deflate) {
1458 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1459 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1460 }
1461
1462 return (dsize);
1463 }
1464
1465 uint64_t
1466 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1467 {
1468 uint64_t dsize = 0;
1469 int d;
1470
1471 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1472 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1473
1474 return (dsize);
1475 }
1476
1477 uint64_t
1478 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1479 {
1480 uint64_t dsize = 0;
1481 int d;
1482
1483 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1484
1485 for (d = 0; d < SPA_DVAS_PER_BP; d++)
1486 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1487
1488 spa_config_exit(spa, SCL_VDEV, FTAG);
1489
1490 return (dsize);
1491 }
1492
1493 /*
1494 * ==========================================================================
1495 * Initialization and Termination
1496 * ==========================================================================
1497 */
1498
1499 static int
1500 spa_name_compare(const void *a1, const void *a2)
1501 {
1502 const spa_t *s1 = a1;
1503 const spa_t *s2 = a2;
1504 int s;
1505
1506 s = strcmp(s1->spa_name, s2->spa_name);
1507 if (s > 0)
1508 return (1);
1509 if (s < 0)
1510 return (-1);
1511 return (0);
1512 }
1513
1514 void
1515 spa_boot_init(void)
1516 {
1517 spa_config_load();
1518 }
1519
1520 void
1521 spa_init(int mode)
1522 {
1523 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1524 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1525 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1526 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1527
1528 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1529 offsetof(spa_t, spa_avl));
1530
1531 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1532 offsetof(spa_aux_t, aux_avl));
1533
1534 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1535 offsetof(spa_aux_t, aux_avl));
1536
1537 spa_mode_global = mode;
1538
1539 fm_init();
1540 refcount_init();
1541 unique_init();
1542 zio_init();
1543 dmu_init();
1544 zil_init();
1545 vdev_cache_stat_init();
1546 zfs_prop_init();
1547 zpool_prop_init();
1548 spa_config_load();
1549 l2arc_start();
1550 }
1551
1552 void
1553 spa_fini(void)
1554 {
1555 l2arc_stop();
1556
1557 spa_evict_all();
1558
1559 vdev_cache_stat_fini();
1560 zil_fini();
1561 dmu_fini();
1562 zio_fini();
1563 unique_fini();
1564 refcount_fini();
1565 fm_fini();
1566
1567 avl_destroy(&spa_namespace_avl);
1568 avl_destroy(&spa_spare_avl);
1569 avl_destroy(&spa_l2cache_avl);
1570
1571 cv_destroy(&spa_namespace_cv);
1572 mutex_destroy(&spa_namespace_lock);
1573 mutex_destroy(&spa_spare_lock);
1574 mutex_destroy(&spa_l2cache_lock);
1575 }
1576
1577 /*
1578 * Return whether this pool has slogs. No locking needed.
1579 * It's not a problem if the wrong answer is returned as it's only for
1580 * performance and not correctness
1581 */
1582 boolean_t
1583 spa_has_slogs(spa_t *spa)
1584 {
1585 return (spa->spa_log_class->mc_rotor != NULL);
1586 }
1587
1588 spa_log_state_t
1589 spa_get_log_state(spa_t *spa)
1590 {
1591 return (spa->spa_log_state);
1592 }
1593
1594 void
1595 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1596 {
1597 spa->spa_log_state = state;
1598 }
1599
1600 boolean_t
1601 spa_is_root(spa_t *spa)
1602 {
1603 return (spa->spa_is_root);
1604 }
1605
1606 boolean_t
1607 spa_writeable(spa_t *spa)
1608 {
1609 return (!!(spa->spa_mode & FWRITE));
1610 }
1611
1612 int
1613 spa_mode(spa_t *spa)
1614 {
1615 return (spa->spa_mode);
1616 }
1617
1618 uint64_t
1619 spa_bootfs(spa_t *spa)
1620 {
1621 return (spa->spa_bootfs);
1622 }
1623
1624 uint64_t
1625 spa_delegation(spa_t *spa)
1626 {
1627 return (spa->spa_delegation);
1628 }
1629
1630 objset_t *
1631 spa_meta_objset(spa_t *spa)
1632 {
1633 return (spa->spa_meta_objset);
1634 }
1635
1636 enum zio_checksum
1637 spa_dedup_checksum(spa_t *spa)
1638 {
1639 return (spa->spa_dedup_checksum);
1640 }
1641
1642 /*
1643 * Reset pool scan stat per scan pass (or reboot).
1644 */
1645 void
1646 spa_scan_stat_init(spa_t *spa)
1647 {
1648 /* data not stored on disk */
1649 spa->spa_scan_pass_start = gethrestime_sec();
1650 spa->spa_scan_pass_exam = 0;
1651 vdev_scan_stat_init(spa->spa_root_vdev);
1652 }
1653
1654 /*
1655 * Get scan stats for zpool status reports
1656 */
1657 int
1658 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1659 {
1660 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1661
1662 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1663 return (ENOENT);
1664 bzero(ps, sizeof (pool_scan_stat_t));
1665
1666 /* data stored on disk */
1667 ps->pss_func = scn->scn_phys.scn_func;
1668 ps->pss_start_time = scn->scn_phys.scn_start_time;
1669 ps->pss_end_time = scn->scn_phys.scn_end_time;
1670 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1671 ps->pss_examined = scn->scn_phys.scn_examined;
1672 ps->pss_to_process = scn->scn_phys.scn_to_process;
1673 ps->pss_processed = scn->scn_phys.scn_processed;
1674 ps->pss_errors = scn->scn_phys.scn_errors;
1675 ps->pss_state = scn->scn_phys.scn_state;
1676
1677 /* data not stored on disk */
1678 ps->pss_pass_start = spa->spa_scan_pass_start;
1679 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1680
1681 return (0);
1682 }
1683
1684 boolean_t
1685 spa_debug_enabled(spa_t *spa)
1686 {
1687 return (spa->spa_debug);
1688 }
1689
1690 #if defined(_KERNEL) && defined(HAVE_SPL)
1691 /* Namespace manipulation */
1692 EXPORT_SYMBOL(spa_lookup);
1693 EXPORT_SYMBOL(spa_add);
1694 EXPORT_SYMBOL(spa_remove);
1695 EXPORT_SYMBOL(spa_next);
1696
1697 /* Refcount functions */
1698 EXPORT_SYMBOL(spa_open_ref);
1699 EXPORT_SYMBOL(spa_close);
1700 EXPORT_SYMBOL(spa_refcount_zero);
1701
1702 /* Pool configuration lock */
1703 EXPORT_SYMBOL(spa_config_tryenter);
1704 EXPORT_SYMBOL(spa_config_enter);
1705 EXPORT_SYMBOL(spa_config_exit);
1706 EXPORT_SYMBOL(spa_config_held);
1707
1708 /* Pool vdev add/remove lock */
1709 EXPORT_SYMBOL(spa_vdev_enter);
1710 EXPORT_SYMBOL(spa_vdev_exit);
1711
1712 /* Pool vdev state change lock */
1713 EXPORT_SYMBOL(spa_vdev_state_enter);
1714 EXPORT_SYMBOL(spa_vdev_state_exit);
1715
1716 /* Accessor functions */
1717 EXPORT_SYMBOL(spa_shutting_down);
1718 EXPORT_SYMBOL(spa_get_dsl);
1719 EXPORT_SYMBOL(spa_get_rootblkptr);
1720 EXPORT_SYMBOL(spa_set_rootblkptr);
1721 EXPORT_SYMBOL(spa_altroot);
1722 EXPORT_SYMBOL(spa_sync_pass);
1723 EXPORT_SYMBOL(spa_name);
1724 EXPORT_SYMBOL(spa_guid);
1725 EXPORT_SYMBOL(spa_last_synced_txg);
1726 EXPORT_SYMBOL(spa_first_txg);
1727 EXPORT_SYMBOL(spa_syncing_txg);
1728 EXPORT_SYMBOL(spa_version);
1729 EXPORT_SYMBOL(spa_state);
1730 EXPORT_SYMBOL(spa_load_state);
1731 EXPORT_SYMBOL(spa_freeze_txg);
1732 EXPORT_SYMBOL(spa_get_asize);
1733 EXPORT_SYMBOL(spa_get_dspace);
1734 EXPORT_SYMBOL(spa_update_dspace);
1735 EXPORT_SYMBOL(spa_deflate);
1736 EXPORT_SYMBOL(spa_normal_class);
1737 EXPORT_SYMBOL(spa_log_class);
1738 EXPORT_SYMBOL(spa_max_replication);
1739 EXPORT_SYMBOL(spa_prev_software_version);
1740 EXPORT_SYMBOL(spa_get_failmode);
1741 EXPORT_SYMBOL(spa_suspended);
1742 EXPORT_SYMBOL(spa_bootfs);
1743 EXPORT_SYMBOL(spa_delegation);
1744 EXPORT_SYMBOL(spa_meta_objset);
1745
1746 /* Miscellaneous support routines */
1747 EXPORT_SYMBOL(spa_rename);
1748 EXPORT_SYMBOL(spa_guid_exists);
1749 EXPORT_SYMBOL(spa_strdup);
1750 EXPORT_SYMBOL(spa_strfree);
1751 EXPORT_SYMBOL(spa_get_random);
1752 EXPORT_SYMBOL(spa_generate_guid);
1753 EXPORT_SYMBOL(sprintf_blkptr);
1754 EXPORT_SYMBOL(spa_freeze);
1755 EXPORT_SYMBOL(spa_upgrade);
1756 EXPORT_SYMBOL(spa_evict_all);
1757 EXPORT_SYMBOL(spa_lookup_by_guid);
1758 EXPORT_SYMBOL(spa_has_spare);
1759 EXPORT_SYMBOL(dva_get_dsize_sync);
1760 EXPORT_SYMBOL(bp_get_dsize_sync);
1761 EXPORT_SYMBOL(bp_get_dsize);
1762 EXPORT_SYMBOL(spa_has_slogs);
1763 EXPORT_SYMBOL(spa_is_root);
1764 EXPORT_SYMBOL(spa_writeable);
1765 EXPORT_SYMBOL(spa_mode);
1766
1767 EXPORT_SYMBOL(spa_namespace_lock);
1768
1769 module_param(zfs_recover, int, 0644);
1770 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
1771 #endif